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Dedicated to Hans Feichtinger on the occasion of his 65th birthday.

1. Introduction

Hans Feichtinger has officially retired in December 2015 and has celebrated his
65th birthday on June 16, 2016. However, the “retirement” is a distortion of facts.
Since Hans’s official retirement he has been more active than ever, his traveling
activity has increased exponentially. Between two short courses or colloquia he
briefly visits us at NuHAG and brings us news.

The official date shall serve as an occasion to celebrate and honor Hans Fe-
ichtinger. This article pays homage to Hans and highlights a few accomplishments
of his “official” career. It is also an account of our long personal and mathematical
friendship.

2. Mathematical Origins — Abstract Harmonic Analysis ( AHA)

Hans started his mathematical career at the peak of abstract harmonic anal-
ysis. His thesis “Subalgebras of L1(G)” (1974) was written under the advisor
Hans Reiter. Reiter’s book “Classical Harmonic Analysis and Locally Compact
Groups” [36] had a profound impact on the scientific orientation of the Depart-
ment of Mathematics at the University of Vienna and must be considered the basis
of the Viennese school of harmonic analysis.

Originally Hans had wanted to become a high school teacher, but he soon dis-
covered his vocation for active research. After the Ph. D. thesis he became very
productive, and within only five years he wrote his habilitation thesis on “Ba-
nach convolution algebras of functions” (1979). At that time the habilitation was
equivalent to tenure, consequently at the age of 28, Hans had already a permanent
position at the Department of Mathematics at the University of Vienna.

The topics of his first years in mathematical research covered convolution alge-
bras, ideal theory of subalgebras, factorization theorems, and many other directions
of abstract harmonic analysis.

Looking at his thesis and his habilitation one notices that Hans has remained
faithful to his mathematical origins. Hans is still pursuing and refining his first
mathematical love. The style, however, has changed radically. Abstract harmonic
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Figure 1.1. Hans Feichtinger explaining the Feichtinger algebra

analysis is no longer persued as an end in itself, but now serves as a tool for
the elegant formulation of problems in signal analysis and as a framework for
application-oriented mathematics.

3. Mathematical Visions

3.1. The Feichtinger Algebra. Hans first claim to fame is the discovery of what
we now call the Feichtinger algebra. Starting as an abstract harmonic analyst,
he investigated a class of Segal algebras and tried to find a minimal isometrically
character invariant Segal algebra. In [10] he showed that there exists such a minimal
Segal algebra and for obvious reasons called it S0. The first version of S0 can be
formulated as a mathematical existence theorem.

Let Txf(t) = f(t− x) be the operator of translation and Mξf(t) = e2πiξ·t be the
operator of modulation acting on f ∈ L2(Rd). Hans found and characterized the
minimal character-invariant Segal algebra. In less technical terms, the existence
theorem can be formulated as follows.
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Figure 3.1. The famous paper on S0

Theorem 1. There exists a unique minimal Banach space S0 of functions on Rd

with a norm ‖ · ‖S0 such that S0 contains the Gaussian e−πx·x and ‖TxMξf‖S0 =
‖f‖S0 for all f ∈ S0. In addition, S0 is invariant under the Fourier transform and
is a Banach algebra with respect to pointwise multiplication and convolution.

Hans gave a detailed construction of S0 and formulated this result for general
locally compact Abelian groups. See Figure 3.1.

It soon turned out that this space has many beautiful properties that go far
beyond its abstract characterization. The Feichtinger algebra now serves as a space
of test functions in harmonic analysis and replaces the more complicated Schwartz
space for most purposes.

Indeed, Hans soon developed a very original and personal approach to Fourier
analysis that is based on the properties of S0. This approach does not require
the fine details of Lebesgue integration and only a minimum of basic functional
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Figure 3.2. New developments on S0. Abstract for an Oberwolfach conference.

analysis. As a student I attended one of Hans’s first courses in which he began
to develop his personal style of Fourier analysis. Now, 35 years later, Hans has
refined and perfected his approach to Fourier analysis. He can rightly claim that
this point of view may be better suited to the needs of engineers than the classical
presentations of Fourier analysis.

From 1995 on our systematic work on time-frequency analysis revealed that S0

is the canonical space of test functions for time-frequency analysis.
The modern definition of S0 is given in the context of time-frequency analysis

and modulation spaces. Let

(1) MξTxg(t) = e2πiξ·tg(t− x) x, ξ, t ∈ Rd ,

be the time-frequency shift by (x, ξ) ∈ R2d of a function g ∈ L2(Rd) and define the
short-time Fourier transform of f with respect to the fixed, non-zero window g to
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Figure 3.3. Almost the modern definition of S0 as a modulation
space from [10] .

be

(2) Vgf(x, ξ) = 〈f,MξTxg〉 = (f ∗Mξḡ)(x) .

Then a function f ∈ L2(Rd) belongs to S0, if and only if

(3) ‖f‖S0 :=

∫
Rd

∫
Rd

|Vgf(x, ξ)| dxdξ <∞ .

In contrast to the original construction, it is very easy to see that translations and
modulations are isometries in the norm (3).

3.2. Modulation Spaces. The definition (3) lead to an immediate generaliza-
tion. Replacing the L1-norm on Vgf by other norms, Hans introduced the class of
modulation spaces. As so often, he immediately proceeded in full generality and
defined and investigated the basic properties of modulation spaces on locally com-
pact Abelian groups. His long manuscript from 1983 did not receive the approval
of the referees and editors and circulated as an influential technical report [11],
until it was finally published in 2003 in [14].

The original definition of the modulation space Mp,q
m was through the norm

‖f‖q
Mp,q

m
=

∫
Rd

(∫
Rd

|(f ∗Mξg)(x)|pm(x, ξ)pdx
)q/p

dξ .

Here g is some non-zero test function, 1 ≤ p, q ≤ ∞ and m > 0 a suitable weight
function on R2d. In view of (2) we see that this is indeed a weighted mixed Lp-
norm of the short-time Fourier transform, the Feichtinger algebra S0 is the special
modulation space M1,1 with constant weight.

This definition should be compared with the analogous definition of a Besov
space, which is defined by taking a mixed Lp-norm of the expression f ∗Dtg where
Dtg(x) = t−dg(x/t), t > 0 is the dilation. Hans’s original motivation for modulation
spaces was not generality per se, but he tried to invent a new theory of functions
spaces and to offer an interesting alternative to the class of Besov spaces. Thus, in
the beginning, the investigation naturally emphasized the analogy between Besov
spaces and modulation spaces and focussed on modulation spaces as an aspect of
the theory of function spaces. It was only some years later that the full use and
context of modulation spaces became apparent.
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Figure 3.4. S0 in relation to other spaces

From a modern perspective, Mp,q
m -norms measure the smoothness of a function by

means of the time-frequency concentration (or phase-space concentration in terms
of physics) rather than by differences and derivatives.

It is an irony of historical development that in recent years several mathemati-
cians have rediscovered the similarity of modulation spaces with Besov spaces and
applied corresponding techniques to the modulation spaces.

Some modulation spaces were known before the general definition, notably the
Bessel potential spaces H2 = M2,2

m with weight m(x, ξ) = (1 + |ξ|2)s/2 and the
Shubin classes M2,2

vs with weight vs(x, ξ) = (1 + |x|2 + |ξ|2)s/2. The special mod-
ulation space M∞,1

m with constant weight function m ≡ 1 was rediscovered by
Sjöstrand [38]. Because of its importance in PDE is often called the Sjöstrand
class. Similarly, the modulation space M2,1

m with m(x, ξ) = (1 + |ξ|)s was rediscov-
ered in PDE by B. Wang [2].

Figure 3.2 is Hans’s favorite visualization of S0 and its relation to other standard
spaces in Fourier analysis.

3.3. Contemporary Applications of Modulation Spaces. Modulation spaces
are useful and arise in many areas of mathematics and in many real applications. In
fact, modulation spaces appear naturally and necessarily whenever time-frequency
shifts MξTx are used. Thus modulation spaces are unavoidable in time-frequency
analysis. Here is a short list of such applications:

(1) Gabor expansions [19,27]
(2) Nonlinear approximation with time-frequency shifts [31]
(3) Modulation spaces as symbol classes for pseudodifferential operators [28,

29,38]
(4) Formulation of uncertainty principles [26]
(5) Mathematics and Music [1]
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(6) Investigation of time-frequency localization operators [7, 25]
(7) Modulation spaces and the Schrödinger equation [4, 8]
(8) Wireless communications [35,39]

As a particularly important application I mention the theory of Gabor expan-
sions. These yield series expansions of arbitrary functions or distributions with
respect ot a discrete set of time-frequency shifts {MξkTxkg} of a fixed template g.
A very general early theorem is already contained in [17].

Theorem 2 (Gabor Expansions). Let g ∈ S(Rd), g 6= 0 and X = {(xj, ξj)} ⊆ R2d

relatively separated, 1 ≤ p ≤ ∞ and m > 0 a moderate weight function.
(i) If c ∈ `pm(X), i.e.,

∑
j |cj|pm(xj, ξj)

p < ∞, then f =
∑

j∈J cjMξjTxjg is in

Mp,p
m (Rd) and ‖f‖Mp,p

m
≤ C‖c‖`pm .

(ii) Conversely, if X is dense enough in R2d, then every f ∈Mp,p
m (Rd) possesses

a Gabor expansion with `pm coefficients.

3.4. Gabor Analysis. While Hans sees himself mainly as a theory builder and
not no much as a problem solver, he has several important and deep theorems to
his credit.

In particular, I would like to mention the following results:
(i) The duality theory of Gabor frames over general time-frequency lattices: The

duality theory was discovered by Janssen [33] and fully exhibited by Ron-Shen [37]
and Daubechies-Landau-Landau [9]. Originally the duality was formulated only
for rectangular lattices, and it took some time and Hans’s insight to understand
the role of the adjoint lattice and to formulate the duality theory for arbitary
time-frequency lattices [22]. In particular Hans found an easy and transparent
proof of the duality theorem that requires only the Poisson summation formula [23]
(whereas the previous proofs has used fancy tools from von Neumann algebras or
the fibrization technique).

(ii) Perturbation of the lattice (deep) and other perturbation results: While the
standard perturbation theory of frames deals with local perturbations, Hans es-
tablished a new line of research by studying global perturbations, which are better
called deformations. To see what is at stake, let {π(λ)g : λ ∈ Λ} be a Gabor frame
on a lattice Λ. A perturbation of Λ is a set λ′, such that the Hausdorff distance
between Λ and Λ′, d(Λ,Λ′) = supλ∈Λ infλ′∈Λ′ |λ′ − λ| ≤ δ for small δ > 0. It is
then easy and has been proved many times that the frame property is preserved
under a sufficiently small perturbation. Hans and N. Kaiblinger considered how
the frame property behaves under a change of the lattice from Λ to Λ′ = AΛ for
some matrix A close to the identity matrix. In this case the Hausdorff distance
between Λ and Λ′ can never be small. Nevertheless, Hans proved the following
fundamental result [21].

Theorem 3. Assume that g ∈ S0, Λ is a lattice in R2d, and {π(λ)g : λ ∈ Λ}
is a Gabor frame. Then there exists a δ > 0 such that for every matrix A with
‖A − Id‖ < δ, the deformed Gabor system {π(λ′)g : λ′ ∈ AΛ} is still a Gabor
frame.
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Note again the crucial role of the assumption g ∈ S0. The theorem is false
without this hypothesis. This result has deeply inspired my own research [30] and
will ultimately lead to a much bigger theory for the deformation of general frames.
As it turns out, Hans’s result is closely related to a deep result of Bellissart in
non-commutative geometry [3].

3.5. Coorbit Theory. The biggest mathematical success was undoubtedly the
creation of coorbit theory. In 1986 Hans read the papers of Daubechies, Grossmann,
Morlet, Meyer and saw the connections between the emerging theory of wavelets
and Besov spaces on the one hand, and between Gabor frames and modulation
spaces on the other hand. He immediately understood that the natural framework
would be that of square-integrable group representations and their reproducing
formulas. Grossmann and Morlet [32] had formulated such reproducing formulas
just for the underlying Hilbert space, but Hans saw how to define abstract function
spaces in this setting.

I am a first-hand witness to Hans’s mathematical vision. We attended an AMS-
DMV seminar on harmonic analysis near Düsseldorf (with Elias Stein and Detlev
Poguntke as lecturers, and I understood nothing at that time). On the train ride
from Düsseldorf to Vienna Hans started to talk about his ideas, and he did not
stop talking until we arrived eight hours later. With infinite energy he kept circling
around his idea of a unifying theory of function spaces. In many iterations he kept
refining it and sharpening his formulations. I cannot say that I fully understood at
the time what he wanted, but occasionally I could keep him on track and prevent
him from following thoughts that did not make sense. As I had finished my Ph. D.
several months before on a topic in abstract harmonic analysis and representation
theory and had some knowledge of representation theory. I got hooked on Hans’s
ideas, and so we started to collaborate for many years.

As so often in his career, Hans startet a new idea with a conference article. To
this day I am stunned that the brandnew coorbit theory was first published as a
conference proceedings [16] and was classified as a survey article! See Figure 3.5.

Coorbit theory is undoubtedly our most successful work. According to Math-
SciNet our paper [17] is the most cited papers in the MSC class 43 “Abstract
Harmonic Analysis”. However, coorbit theory was also one of our most frustrat-
ing experiences. Some of the initial referees’ reports dismissed the theory as “soft
analysis”. From the onset coorbit theory was formulated in full generality and a
high degree of abstraction. Perhaps for this reason coorbit theory was recognized
and became more fashionable only after 2000.

A modern “publication strategy” would start with the treatment of classes of
examples, say two papers for the coorbit theory of Besov spaces and two papers
for modulation spaces, then try to generalize the pattern of the examples step by
step, say, from Lp to weighted mixed norm Lp to arbitrary solid function spaces.
Ultimately we should have proposed a unifying “theory of everything”, and then
have continued with detailed papers on special aspects of coorbit space theory.
Instead we crammed the most important aspects of what we knew into three densely
written papers and stopped. We certainly knew what else could be done, but we
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Figure 3.5. The “survey” paper

moved to more successful topics, and later found some of our unpublished material
in other papers.

What is coorbit theory? Hans and I developed coorbit theory in 1987-90 as a
universal wavelet theory based on group representations. As a sample theorem that
exhibits the ingredients of coorbit theory I formulate the result about the existence
of coherent frames.

Theorem 4 (coherent frames). Let (π,H) be (square) integrable, irreducible uni-
tary representation of a locally compact group G. If X = {xj : j ∈ J} ⊆ G is
sufficiently dense in G and g ∈ B (“nice admissible vectors”), then

{π(xj)g : j ∈ J}
is a frame for H

Comments:
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Figure 3.6. Abstract sampling theorem.

(1) This theorem implies the existence of wavelet and Gabor frames, it implies
sampling theorems for Bargmann and Bergman spaces, anisotropic wavelet
frames etc. In fact, some of these special cases were derived much later by
the specialists in their respective areas.

(2) The set X must be “dense enough”, but is not required to have a particular
structure. Thus at a time, when the experts tried to understand Gabor
frames on rectangular lattices or wavelet frames with dyadic dilations and
integer shifts, this theorem already offered a construction, albeit qualitative,
of non-uniform wavelet and Gabor frames.

(3) Hans always considered it a very important aspect of the general coorbit
theory that it treats families of function spaces and not just a single space.
Thus the abstract coorbit space CoπL

p
m is characterized by expansions of

the form f =
∑

j∈J cjπ(xj)g with coefficients in `pm. Whereas Theorem 4 is
formulated for Hilbert space, the general version for coorbit spaces yields
atomic decompositions and Banach frames for coorbit spaces.

3.6. Non-Uniform Sampling of Bandlimited Functions. While working on
the coorbit theory, Hans saw also a vague connection to the sampling of bandlimited
functions. In 1988 the state of the art was the important survey article of Butzer,
Splettstößer, Stens [5]. This survey treated exclusively the uniform sampling in
the line of Shannon’s sampling theorem. According to Butzer nothing was known
about non-uniform sampling (except for a few classical papers in complex analysis).

The methods of coorbit theory lead to a series of abstract “constructive sam-
pling results” for bandlimited functions in Lpm(Rd), and even on LCA groups. See
Figure 3.6. The first papers on sampling theory amounted to a “proof of concept”
(to use a fashionable word) and showed that a bandlimited function with given
spectrum can be reconstructed by an explicit iterative algorithm from its nonuni-
form samples. As in the case of coorbit theory, the generality was too much for the
time. Only nowadays it has become fashionable to reformulate results for Rd also
for LCA groups.

From a technical point of view, the nonuniform sampling theory and coorbit
theory share the same inspiration and the same mathematical sources: reproducing
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Figure 3.7. The ACT algorithm

formulae, the theory of amalgam spaces, and convolution relations. Hans was and
is a great virtuoso in the application of these tools.

3.7. Towards Numerical Harmonic Analysis. Our first papers on nonuniform
sampling were again extremely general and derived iterative algorithms that work
on weighted Lp-spaces and even on locally compact groups. However, simultane-
ously we thought about numerical implementations. I remember my first semester
at the University of Connecticut in 1988; I had to learn everything simultaneously:
English, teaching, LaTex, and Matlab. My first numerical experiment in Matlab
was a ten line implementation of one of the iterative algorithms we had proposed. It
worked, it converged, it demonstrated the expected behavior. The problem seemed
settled, I lost interest, and moved to more theoretical questions.

No so Hans. He developed a contagious enthusiasm for the new algorithmic
toy and continued to experiment with them and to refine the implementations.
From the beginning he pushed for the development of numerical algorithms and
emphased their implementation. What a complete change of perspective! After
years of abstract harmonic analysis and important general ideas, Hans devoted
himself with great passion to numerical questions and details of implementation
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Figure 3.8. Convergence rates of several reconstruction algorithms

(without neglecting mathematics). The list of titles from that period documents
this change of paradigm for Hans.

1990 “Iterative methods in irregular sampling theory: numerical results”

1991 “Iterative methods in irregular sampling: a first comparison”

1992 “IRSATOOL — Irregular Sampling of band-limited signals, TOOLBOX”

1990 — 1992 Project “Experimental signal analysis”

The final product of this period is the ACT algorithm from 1995 [20] with
Thomas Strohmer. See Figure 3.7. This algorithm for nonuniform sampling
combines “Adaptive weights”, the “Conjugate gradient acceleration”, and the
“Toeplitz structure” of the problem and yields an algorithm of order n log n. To
this date this seems to be most successful reconstruction algorithm for nonuni-
form sampling. Later versions and variations appeared under various names, such
as “nonuniform FFT”, on the numerical market. In computer tomography the
adaptive weights have become a big deal under the name “density compensation
factors”.

In my view Hans was far ahead of his time and had a sixth sense of things to
come. At a time when numerical analysis was a subject of its own and numeri-
cal simulation was practiced mainly in engineering departments, he developed his
own brand of numerical harmonic analysis. Indeed, not long afterwards, scien-
tific computating, computational sciences, and the foundations of computational
mathematics became mainstream. In the wavelet community this trend led to
the foundation of “Applied and Computational Harmonic Analysis” in 1993, the
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Figure 3.9. Analysis of astronomical data.

“Journal of Fourier Analysis and Applications” in 1994, and the biannual confer-
ence series on “Sampling Theory and Applications” in 1995. Needless to say that
Hans was involved in these enterprises from the very beginning.

3.8. A Zoo of Applications. Over the years, Hans initiated and guided many
applied projects. The sources of data cover many different fields of sciences, such
as astronomy, medical imaging, and music.

He went into the image processing of astronomical data. Astronomy is an excel-
lent test ground for many data processing methods. Hans succeeded in applying
both time-frequency analysis and nonuniform sampling (Figure 3.8). This applica-
tion is still close to Hans’s interests and he is currently working on an interdisci-
plinary project with the department of astronomy.

An earlier application was devoted to the analysis of electrocardiograms, specif-
ically the ECG-analysis during ventricular fibrillation (Figure 3.8).

Finally I mention mathematics and music, a subject dear to many mathemati-
cians. Hans used Gabor analysis for the music transcription problem. Roughly
the goal is to generate a score from an acoustic recording. In this problem time-
frequency methods are unavoidable, since spectrogram, short-time Fourier trans-
form, and other time-frequency representations are considered the mathematical
metaphors for a musical score. Hans organized a workshop and edited a book on
this topic [1] (Figure 3.8).

3.9. Mathematical Tools. With all his activity in both numerical and abstract
harmonic analysis one should not forget Hans’s many other contributions. Another
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Figure 3.10. ECG-analysis during ventricular fibrillation

role of Hans is that of a mathematical tool maker. He likes the investigation of
function spaces as an interesting topic in its own right, but he also considered
function spaces as a tool for the appropriate formulation of mathematical problems.

Hans is probably the world’s foremost expert on Wiener amalgam spaces which
he uses with great virtuosity in many contexts. While amalgam spaces were in-
vented earlier, Hans has pushed the theory furthest. He used convolution relations,
multiplier theorems, and the interpolation of amalgam spaces [13] as a powerful
tool for sampling theory, generalized harmonic analysis, Gabor frames, etc.

His work on decomposition spaces dates back to 1985 and 1987 [12, 15]. This
time the chronological order was right. Modulation spaces, Besov spaces, and
alpha-modulation spaces were already available and understood. Hans found a
suitable unification that covers all these families of function spaces.
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Figure 3.11. Mathematics and Music.

Decomposition spaces are based on suitable partitions of Fourier space. Choose
partition U = (Uj) of Rd and a corresponding bounded admissible partition of unity
(ψj), suppψj ⊆ Uj (in Hans’s language a BAPU). Then the decomposition space
Bp,q
U ,w is defined by the norm

‖f‖B =
(∑
j∈J

‖f̂ψj‖qpw(j)q
)1/q

,

where 0 < p, q ≤ ∞ and w is a weight function. Hans’s paper was almost unnoticed,
but recently decomposition spaces became really fashionable and many people are
now feeding on Hans’s ideas.

In the last few years Hans has developed his enthusiasm for Gelfand triples [24].
A Gelfand triple B ↪→ H ↪→ B consists of a Banach space B and a Hilbert space H
with continuous embedding ↪→ between these spaces. Hans uses the Gelfand triple
S0 ↪→ L2 ↪→ S ′0 as a fundamental object on which he builds his approach to the
Fourier transform. See Figure 3.9 for an early example of Gelfand triples in Hans’s
work.

4. The Professional Mathematician

Hans loves to communicate, to interact, and to get involved. This personal char-
acter deeply shaped his life as a professional mathematician and has undoubtedly
contributed to his impact on the mathematical community.

4.1. Numerical Harmonic Analysis Group. Hans’s interest in the combination
of problems in applied harmonic analysis with computational issues led also to a
new emphasis in the structure of his work. From 1990 he began to direct his
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Figure 3.12. A very early example of Gelfand triples.

Figure 4.1. The Founding Session (1992)

students systematically to numerical questions. Informally he united his students
under the umbrella of the “Numerical Harmonic Analysis Group”, in short NuHAG.

I guess that this group was in the making for several years. The first official
record of NuHAG is a reservation tag for a restaurant in 1992 (Figure 4.1). Thus
we may take 1992 as the official birth of the “Numerical Harmonic Analysis Group”.
Under the acronym “NuHAG” it has become a brand name that has attained high
visibility not only for Hans, but for the University of Vienna as a whole.

The importance of NuHAG for Hans is best expressed in his own words. On his
homepage http://www.univie.ac.at/nuhag-php/home/feiinterests.php he mentions
under the rubric “Private matters and interests” that we wants to
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Figure 4.2. The spirit of NuHAG. SampTA 1997 in Aveiro. From
left to right: Thomas Strohmer, Hans Feichtinger, Karlheinz
Gröchenig.

Establish NuHAG as an international “long term, global player” within the
European research landscape

After almost 25 years of NuHAG it is fair to say that he has reached this goal.
At the time of his retirement the Numerical Harmonic Analysis Group is stronger
than ever and has great potential for further growth.

Figures 4.1 and 4.1 express best how we all want to see NuHAG: visionary,
dynamic, and creative.

4.2. The Problem Poser. Hans likes to talk about mathematics.
Talking to Hans is always inspiring. He developed a culture of getting people

interested by asking stimulating questions. During a short discussion, he would ask
dozens of mathematical questions. Amazingly he could ask questions on all levels
of difficulty. Sometimes a question was doable by a Ph. D. student, got a student
hooked, and, in the end, led to a Ph. D. thesis. This is probably one of the reasons
why he attracted so many students.

The Feichtinger Conjecture. Hans’s most famous question is a seemingly
simple, but extremely deep question about general frames. Around 2000 Hans
asked whether every every frame F = {fj : j ∈ J} with inf ‖fj‖ > 0 can be
decomposed into a finite union of Riesz sequences. This question was motivated by
an experimental observation of the behavior of Gabor frames. Pete Casazza likes
to tell the story that Hans posed this problem to him via email. Pete, enthusiastic
as always, promised to answer within a few hours. Well, the answer took much
longer, and the problem became known as the Feichtinger conjecture. Pete Casazza
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Figure 4.3. The spirit of NuHAG: a far-sighted trio. SampTA 1997
in Aveiro. From left to right: Georg Zimmermann, Hans Feichtinger,
Karlheinz Gröchenig.

discovered successively that it implied, was implied, and finally, was equivalent to
the famous Kadison-Singer conjecture [6]. Only recently in 2014, Hans’s question
was solved affirmatively along with the Kadison-Singer conjecture [34].

Yet this is not the full truth. Rereading the coorbit theory from 1989 in the light
of the recent past, one easily sees Hans must have been thinking about similar
questions for many years. Here is a special case of an abstract theorem in [18,
Thm. 7.3].

Theorem 5. Let (π,H) be a (square-) integrable irreducible representation of a
locally compact group G, X = {xj : j ∈ J} ⊆ G relatively separated in G, and
g ∈ B (“nice” admissible vector). Then the Bessel sequence {π(xj)g : j ∈ J} can
be partioned into a finite union of Riesz sequences in H.

4.3. The Editor. The Journal of Fourier Analysis and Applications (JFAA) was
founded in 1994 by John Benedetto. After John stepped down, Hans became the
Editor-in-Chief of JFAA in 2000 (Figure 4.3). Since then Hans has led the journal
and tried to raise its standards and impact factor. JFAA is flourishing and is, side
by side with Appl. Comp. Harm. Anal. (ACHA), the leading journal of the large
applied harmonic analysis community.

Being Editor-in-Chief is a challenge with diverging demands. On the one hand,
the job requires a steadfast adherence to high scientific standards, on the other
hand, it requires diplomacy, patience, and kindness towards the authors. If Hans
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did not have these qualities, he would not have survived so long. Stated in simple
terms: he is a great editor.

4.4. The Networker. Hans enjoys to work in a team and to lead a team. His own
team was always the Numerical Harmonic Analysis Group. But for special tasks he
really liked to create new teams. Funding is important, and it is a common place
that Hans was always very successful in attracting funds and people. But for Hans
this meant more. He was particularly eager to operate on the European level and
initiated numerous European networks. Here is a short, by no means exhaustive
list of networks and European research projects that he initiated:
• HASSIP (harmonic analysis and statistics for signal and image processing)
• EUCETIFA (European Center of Time-Frequency Analysis)
• UNLOcX
• ESO (European Southern Observatory — astronomical data)
• ECG — Analysis during ventricular fibrillation
• NetAGES (Networks for automated extraction from seismic data)
• Gabor analysis for the music transcription problem
This is just a small part of his funded projects. A full list can be found on his

homepage.

4.5. The Organizer. Hans loves to bring together people. On a large scale this
means that he was always involved in the organization of workshops and confer-
ences. He has organized workshops in most major research centers in Europe. To
mention some highlights: Hans organized a workshop on time-frequency analysis at
the Newton Institute in Cambridge, a wonderful workshop in Oberwolfach, he was
Jean Morlet Professor at the Centre International de Rencontres Mathmatiques
in Marseille-Luminy in 2014, where he organized a whole semester with several
workshops and a big conference. Together we organized two semester programs on
modern time-frequency analysis at the Erwin Schrödinger Institute in Vienna in
2005 and 2012.

Perhaps the most important conference for us all is the biannual Strobl conference
on topics in “Modern Time-Frequency Analysis and Related Topics.” The first
Strobl conference in 2003 was one of the early conferences of the series “Sampling
Theory and Applications” (SampTA) and was so nice and successful that Hans
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wanted to continue and immediately reserved a week for 2005. Since then we have
had the Strobl conferences in 2005, 2007, 2009, 2011 (for Hans’s 60th birthday),
2014, and2016.

Strobl is a great place in a beautiful touristic region near Salzburg with an
excellent conference center that usually serves as a federal institute for continuing
education. As in Oberwolfach, all participants are accommodated in the same place
and spend the entire week together. Many of us have spent their evenings outdoors
under a starry sky and discussed math over one or several beers.

Over time, the list of plenary speaker included Ingrid Daubechies, John J.
Benedetto, Emanuel Candes, Kristian Seip, Pete Casazza, Albert Cohen, to men-
tion just a few.

The organization of a conference is usually a full time job. It starts with the
reservation of the conference site and the invitation of plenary speakers two years
in advance (just when the previous conference is finished) and gets really intense
in the three months before the conference. For myself the organization of one
conference would be enough for a career, but Hans does never seems to get tired
and in fact, seems to enjoy the organization. He always feels rewarded by the large
attendance and by the happy participants.

4.6. The Teacher. Hans loves to talk about mathematics and to share his vision
of mathematics. He loves to talk about mathematics on all levels. This is the
innermost prerequisite for every teacher. Originally Hans wanted to become a
high school teacher, but his mathematic talent guided him to a different destiny.
Nevertheless, teaching was and is a pillar of his activities, and he has become
a dedicated and generous teacher who has attracted myriads of students. Hans
never gets tired to explain his research, he must have explained his results on
S0 (Figure 1), on amalgam spaces and convolution relations, or Gelfand triples
thousands of times — and he still enjoys it!

Hans’s greatest strength is his openness, his patience, and his ability to meet his
students at their own level. This allows them to develop according to their own
pace and abilities. Hans has had some really outstanding students who are now
among the leaders in applied harmonic analysis: Ole Christensen (1993), Thomas
Strohmer (1993), Massimo Fornasier (2003). Many of his students have moved to
academia, and many are now successful in industry.

According to the MathGenealogy project he has had 29 Ph. D. students (with
some more to come). Thus the NuHAG school of applied harmonic analysis is a
real legacy!

I really do not have the words to fully do justice to the teacher Hans Feichtinger.

5. Outlook

Retirement at age 65 is mandatory in Austria, where most people want to retire
earlier (the average retirement age is below 60 in Austria). However, mandatory
retirement is not the end of the professional life. It is clear that Hans will not
retire as a mathematician. Indeed, the formal retirement gives him a boost of
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energy to continue to do research and to teach. He no longer needs to deal with
petty administrative formalities at the Faculty of Mathematics, he is free to travel
at any time without consideration of a teaching schedule, he is in great physical
and mental shape to contribute to the world of mathematics for many years to
come!

Perhaps the best way to conclude this article is the song by Ingrid Daubechies
composed on the occasion of Hans’s 60th birthday in 2011 in Strobl (Figure 5).
We all celebrated his birthday in Strobl. I do not remember the melody that was
supposed to be sung to Ingrid’s text, but certainly this text describes Hans as he
is.

5.1. Resources. Hans’s homepage

http://www.univie.ac.at/nuhag-php/home/fei.php

NuHAG homepage:

http://www.univie.ac.at/nuhag-php/home/index.php

List of publications:

http://www.univie.ac.at/nuhag-php/home/feipub_db.php
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