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Abstract

Gabor frames {e2πinβ·xg(x − kα)}n,k∈Zd provide series repre-
sentations not only of functions in L2(Rd) but of the entire range
of spaces Mp,q

ν known as the modulation spaces. Membership of a
function or distribution f in the modulation space is characterized
by a sequence-space norm of the Gabor coefficients of f depending
only on the magnitudes of those coefficients, and the Gabor series
representation of f converges unconditionally in the norm of the
modulation space. This paper shows that Gabor expansions also
converge in the entire range of amalgam spaces W (Lp, Lq

ν), which
are not modulation spaces in general but, along with the modu-
lation spaces, play important roles in time-frequency analysis and
sampling theory. It is shown that membership of a function or dis-
tribution in the amalgam space is characterized by an appropriate
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sequence space norm of the Gabor coefficients. However, this se-
quence space norm depends on the phase of the Gabor coefficients
as well as their magnitudes, and the Gabor expansions converge
conditionally in general. Additionally, some converse results pro-
viding necessary conditions on g are obtained.

Key words and phrases: Amalgam spaces, frames, Gabor ex-
pansions, Gabor frames, modulation spaces, phase-space, sam-
pling, time-frequency analysis, Walnut representation

2000 AMS Mathematics Subject Classification: 42C15, 42C20,
46B15

1 Introduction

A Gabor frame G(g, α, β) = {e2πiβn·xg(x − αk)}k,n∈Zd for L2(Rd) pro-
vides basis-like series representations of functions in L2, with uncondi-
tional convergence of the series. However, unless the frame is a Riesz
basis (and hence, by the Balian–Low theorem has poor time-frequency
localization), these representations will not be unique. Still, a canonical
and computable representation exists, and Gabor frames have found a
wide variety of applications in mathematics, science, and engineering
[9]. An important fact is that Gabor frames provide much more than
just a means to recognize square-integrability of functions. If the win-
dow function g is reasonably well-localized in time and frequency, then
Gabor frame expansions are valid not only in L2 but in an entire range
of associated spaces Mp,q

ν known as the modulation spaces. The frame
expansions converge unconditionally in the norm of those spaces, and
membership of a tempered distribution in Mp,q

ν is characterized by mem-
bership of its sequence of Gabor coefficients in a weighted sequence space
`p,q
ν̃ . We refer to [25] for a recent detailed development of time-frequency

analysis and modulation spaces.
Some results on Gabor analysis outside of the modulation spaces

were obtained by Walnut in [34]. In particular, he introduced what is
now known as the Walnut representation of the frame operator, and con-
sidered the boundedness of the frame operator on Lp. Recently, it was
independently observed in [23] and [26] that Gabor expansions actually
converge in Lp(Rd) when 1 < p <∞. Since Lp is not a modulation space
when p 6= 2, it was known that Gabor expansions could not converge
unconditionally in Lp. However, the fact that they converge at all was
a surprise.
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In this paper we consider a much larger class of spaces than the Lp

spaces, namely, we consider the weighted amalgam spaces W (Lp, Lq
ν).

These spaces amalgamate a local criteria for membership with a global
criteria. They are the “right” spaces for a wide range of applications,
and in particular play important roles in recent developments in time-
frequency analysis [14], [16], [25] and in sampling theory [15], [1], [2], [3],
[4], [19]. We will show that not only do Gabor expansions converge for
the special case Lp = W (Lp, Lp), but that they converge in the entire
range of weighted amalgam spaces. Moreover, membership in the amal-
gam space is characterized by membership of the Gabor coefficients in
an appropriate sequence space. In the course of obtaining these results,
we prove several results of independent interest on the behavior of the
analysis and synthesis operators associated with the Gabor frame, and
on the Walnut representation, which is an extremely useful tool in Gabor
frame theory. Moreover, we include the cases p = 1,∞ or q = 1,∞ in
our consideration. In particular, we show that Gabor expansions exist
even in L1 and in a weak sense in L∞, given the right interpretation
of “expansion.” These results significantly extend the results in [26].
Additionally, we obtain some necessary conditions on the window g, ex-
tending weaker necessary conditions obtained by Balan in [5] for the
particular case W (L2, L∞).

Amalgam space techniques play an important role in the formulation
and proofs of sampling theorems. Specifically, we will prove the bound-
edness of the sampling operator on amalgam spaces. While our main
focus will be on the Gabor analysis of amalgam spaces, we are convinced
that our results on Gabor series are relevant for sampling problems per
se, and we plan to exploit this connection in our future work.

Our paper is organized as follows. Following some basic notation in
Section 2, we provide in Section 3 some background on Gabor expansions
in L2 and the modulation spaces. These set the stage for the precise
statement of our main results in Section 4. Proofs of these results are
given in Section 5.

2 Notation

2.1 General notation

In addition to the basic definitions and notation of [25], we use the fol-
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lowing notation. Qα denotes the cube Qα = [0, α)d. The characteristic
function of a measurable set E is χE . Translation and modulation of a
function f with domain Rd are defined, respectively, by

Txf(t) = f(t− x) and Myf(t) = e2πiy·t f(t).

The Fourier transform of f ∈ L1(Rd) is

f̂(ω) = Ff(ω) =
∫

Rd

f(t) e−2πit·ω dt, ω ∈ Rd.

The Short-Time Fourier Transform (STFT) of a function f with respect
to a window g is

Vgf(x, y) = 〈f,MyTxg〉 =
∫

Rd

e−2πiy·t g(t− x) f(t) dt,

whenever the integral makes sense. Analogously to the Fourier trans-
form, the STFT extends in a distributional sense to f , g in the space of
tempered distributions S ′, cf. [20, Prop. 1.42].

Given a strictly positive function w on Rd, the space Lp
w is defined

by the norm

‖f‖Lp
w

= ‖fw‖p =
(∫

Rd

|f(x)|pw(x)p dx

)1/p

,

with the usual adjustment if p = ∞. Here and in other definitions, if
w ≡ 1 then we omit writing it.

Given E ⊂ Rd, we use the shorthand

‖f‖p,E = ‖f · χE‖Lp =
(∫

E
|f(x)|p dx

)1/p

.

2.2 Weight functions

Throughout this paper, ω will denote a submultiplicative weight func-
tion, i.e., ω is positive, symmetric, and continuous, and satisfies

∀x, y ∈ Rd, ω(x+ y) ≤ ω(x)ω(y).

The prototypical example of a submultiplicative weight is the poly-
nomially-growing function ω(x) = (1 + |x|)s, where s > 0. We also
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consider weight functions defined on R2d by making the obvious changes
in the definition.

Throughout this paper, ν will denote an ω-moderate function, i.e.,
ν is positive, continuous, and symmetric, and there exists a constant
Cν > 0 such that

∀x, y ∈ Rd, ν(x+ y) ≤ Cν ω(x) ν(y). (1)

For example, ν(x) = (1 + |x|)t is moderate with respect to ω(x) =
(1 + |x|)s exactly for |t| ≤ s.

If ν is ω-moderate, then by manipulating (1) we see that

1
ν(x+ y)

≤ Cν ω(x)
1

ν(y)
,

so 1/ν is also ω-moderate (with the same constant). Thus, the class of ω-
moderate weights is closed under reciprocals, and consequently the class
of spaces Lp

ν using ω-moderate weights is closed under duality (with the
usual exception for p = ∞). This would not be the case if we restricted
only to submultiplicative weights. The following lemma provides an im-
portant additional motivation for considering moderate weights, namely
that Lp

ν is translation-invariant exactly for moderate weights [11].

Lemma 2.1. Let ω be a submultiplicative weight on Rd, and fix 1 ≤ p ≤
∞. Then the following statements are equivalent.

a. ν is ω-moderate.

b. Lp
ν is translation-invariant (i.e., for each x ∈ Rd, Tx is a continu-

ous mapping of Lp
ν onto itself).

c. For each compact set K ⊂ Rd, there exists a constant C > 0 such
that

∀ y ∈ Rd, sup
t∈y+K

ν(t) ≤ C inf
t∈y+K

ν(t).

Given an ω-moderate weight ν on Rd, we will often use the notation
ν̃ to denote the weight on Zd defined by ν̃(k) = ν(αk), and for a weight
ν on R2d we define ν̃(k, n) = ν(αk, βn).
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2.3 Amalgam spaces

Given an ω-moderate weight ν on Rd and given 1 ≤ p, q ≤ ∞, the
weighted amalgam space W (Lp, Lq

ν) is the Banach space of all measur-
able functions on Rd for which the norm

‖f‖W (Lp,Lq
ν) =

( ∑
k∈Zd

‖f · TαkχQα‖q
p ν(αk)

q

)1/q

(2)

is finite, with the usual adjustment if q = ∞.
The first use of amalgam spaces was by Wiener, who introduced the

spaces W (L1, L2) and W (L2, L1) in [35] and W (L∞, L1) and W (L1, L∞)
in [36], [37], in connection with his development of the theory of gen-
eralized harmonic analysis. The space W (L∞, L1) is sometimes called
the Wiener algebra, cf. [32]. It was shown in [34] that W (L∞, L1) is a
convenient and general class of windows for Gabor analysis within L2.

In a series of papers beginning with [12], [13], Feichtinger developed
a comprehensive theory of amalgam spaces on locally compact groups
which allows a wide range of spaces of functions or distributions to be
used as local or global components in the amalgam, not just spaces such
as Lp or Lq

ν that are defined solely in terms of integrability conditions.
See [14], [15], [16] for discussions of amalgam spaces and their applica-
tions. For an introduction to amalgams, concentrating on the weighted
amalgams W (Lp, Lq

ν) but providing an introduction to the general Fe-
ichtinger theory and containing background and references, we refer to
[28]. Additionally, the review of Fournier and Stewart [21] is a useful in-
troduction to the amalgams W (Lp, Lq) in the setting of locally compact
abelian groups.

Since any cube Qα in Rd can be covered by a finite number of trans-
lates of a cube Qβ , the space W (Lp, Lq

ν) is independent of the value of α
used in (2) in the sense that each different choice of α yields an equivalent
norm for W (Lp, Lq

ν). A wide variety of other equivalent norms is pro-
vided by the Feichtinger amalgam theory. In particular, we refer to [28]
for an exposition of the “continuous” norms on the amalgam spaces,
which provide a much clearer motivation than (2) of why W (Lp, Lq

ν)
should be viewed as an amalgamation of a local Lp with a global Lq

ν ,
rather than merely a disjoint piecing together of local Lp components.

For each ω-moderate weight ν, we have the following inclusion rela-
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tions: if p1 ≥ p2, q1 ≤ q2, then

W (Lp1 , Lq1
ω ) ⊂W (Lp1 , Lq1

ν ) ⊂W (Lp2 , Lq2
ν ) ⊂W (Lp2 , Lq2

1/ω).

In particular, the inclusions W (L∞, L1
ω) ⊂ W (Lp, Lq

ν) ⊂ W (L1, L∞1/ω)
hold for all 1 ≤ p, q ≤ ∞ and all ω-moderate weights ν. In this sense
W (L∞, L1

ω) is the smallest andW (L1, L∞1/ω) is the largest amalgam space
in the class of amalgam spaces with ω-moderate weight functions.

For p, q < ∞, the Schwartz class S and the space of functions with
compact support are dense in W (Lp, Lq

ν).

2.4 Amalgam Spaces and Sampling Theory

To highlight the important role of amalgam spaces in sampling theory,
we show how amalgam spaces arise in the rigorous definition of the
sampling operator. For more details on amalgam space techniques in
sampling theory, we refer to the pioneering work of Feichtinger [14], [15]
and the recent survey [4].

A discrete set X = {xj}j∈J ⊂ Rd is called separated if infj 6=k |xj −
xk| > 0, and relatively separated if X is a finite union of separated sets.
The sampling operator SXf is defined as the restriction of f to X, i.e.,
it maps a function f to the sequence SXf = {f(xj)}j∈J . In general,
SXf need not even be defined, therefore we must impose conditions on
f in order that the sampling operator be a well-defined object. Here
amalgam spaces are very useful.

Theorem 2.2. a. If X is a relatively separated set, then the sampling
operator is a bounded operator from W (L∞, Lq

ν)∩C to `qν̃(J), and
thus (∑

j∈J

|f(xj)|q ν(xj)q

)1/q

≤ C ‖f‖W (L∞,Lq
ν).

b. A continuous function f belongs to W (L∞, Lq
ν) if and only if

SXf ∈ `qν̃(J) for all relatively separated sets X ⊂ Rd.

Proof. For a proof of part a, we refer to Prop. 11.1.4 (and the remark
following) in [25], and to [4, Thm. 3.1].

(b) If f is a continuous function in W (L∞, Lq
ν), then SXf ∈ `qν̃(J)

by part a.
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Conversely, assume that f is continuous and that SXf ∈ `qν̃(J) for all
relatively separated sets X ⊂ Rd. For each k ∈ Zd, choose xk ∈ αk+Qα

with the property that |f(xk)| = ‖f ·TαkχQα‖∞. Then the set {xk}k∈Zd

is relatively separated. Using Lemma 2.1(c) and our assumption, we
find that

‖SXf‖`q
ν̃

=
( ∑

k∈Zd

|f(xk)|q ν(xk)q

)1/q

≥ C

( ∑
k∈Zd

‖f · TαkχQα‖q
∞ ν(αk)q

)1/q

= C ‖f‖W (L∞,Lq
ν).

Strictly speaking, any real sampling device takes only local averages
〈f, ψj〉 instead of the exact point evaluations f(xj), cf. [1]. Here, the
ψj ’s form a collection of averaging functions associated to the sampling
set X, and they are assumed to satisfy the following natural properties:

supp(ψj) ⊂ xj +Qα for some α > 0, (3)∫
Rd ψj(x) dx = 1, (4)

supj∈J ‖ψj‖p′ = M < ∞ for some 1 ≤ p ≤ ∞. (5)

A more realistic sampling model will then replace the sampling oper-
ator SX by the averaged sampling operator AX,Ψ defined by AX,Ψf =
{〈f, ψj〉}j∈J . As above, AX,Ψ is well-defined only on certain function
spaces, precisely some amalgam spaces, as is shown in the following
statement.

Proposition 2.3. If X ⊂ Rd is a relatively separated set and Ψ =
{ψj}j∈J is a set of averaging functions satisfying (3)–(5), then AX,Ψ is
a bounded operator from W (Lp, Lq

ν) to `qν̃(J).

Proof. First we note that

max
k∈Zd

#{j ∈ J : xj ∈ αk +Qα} = N0 < ∞, (6)

becauseX is relatively separated. Now, if xj ∈ αk+Qα, then supp(ψj) ⊂
xj +Qα ⊂ αk +Q2α, and therefore

|〈f, ψj〉| ≤ ‖f · TαkχQ2α‖p ‖ψj‖p′ .
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Using (5), (6), and Lemma 2.1, we then obtain that

‖AX,Ψf‖q
`q
ν̃

=
∑
j∈J

|〈f, ψj〉|q ν(xj)q

=
∑
k∈Zd

∑
xj∈αk+Qα

|〈f, ψj〉|q ν(xj)q

≤ N0MC
∑
k∈Zd

‖f · TαkχQ2α‖q
p ν(αk)

q

≤ C1‖f‖q
W (Lp,Lq

ν)
,

as desired.

2.5 Duality and convergence

We will need to be precise about the meaning of convergence of series.
For general references we refer to the text of Singer [33], and for ref-
erences on Banach function spaces we refer to the text of Bennett and
Sharpley [8].

The following lemma characterizing unconditional convergence will
be useful.

Lemma 2.4. Let X be a Banach space with dual space X∗, and let
fk ∈ X for k ∈ J . Then the following statements are equivalent.

a.
∑

k∈J fk converges unconditionally in X, i.e., it converges with
respect to every ordering of the index set J .

b. There exists f ∈ X such that for each ε > 0, there exists a finite
F0 ⊂ J such that

∀finite F ⊃ F0,
∥∥∥f − ∑

k∈F

fk

∥∥∥
X
< ε.

c. For every ε > 0, there exists a finite F0 ⊂ J such that

∀finite F ⊃ F0, sup
{∑

k/∈F

|〈fk, h〉| : h ∈ X∗, ‖h‖X∗ = 1
}

< ε.

Now let X be a Banach function space in the sense of [8]. In par-
ticular, this includes the amalgam spaces W (Lp, Lq

ν). The Köthe dual

233



(or associated space, as it is called in [8]), is the space X̃ consisting of
all measurable functions h such that fh ∈ L1 for each f ∈ X. By [8,
Thm. 1.2.9], X̃ is a closed, norm-fundamental subspace of X∗, so in
particular,

∀ f ∈ X, ‖f‖X = sup{|〈f, h〉| : h ∈ X̃, ‖h‖X̃ = 1}.

By [8, Cor. 1.5.3], X is complete in the σ(X, X̃) topology, i.e., the weak
topology on X generated by X̃. In particular, a series

∑
k∈J fk con-

verges in the σ(X, X̃) topology if
∑

k∈J〈fk, h〉 converges for each h ∈ X̃.
It converges unconditionally in that topology if the convergence is in-
dependent of the ordering of J , and since the terms 〈fk, h〉 are scalars,
this occurs if and only if

∀h ∈ X̃,
∑
k∈J

|〈fk, h〉| < ∞.

The dual and Köthe dual of the amalgam spaces are given in the
next lemma.

Lemma 2.5. Let ν be an ω-moderate weight.

a. For 1 ≤ p, q <∞, the dual space of W (Lp, Lq
ν) is W (Lp′ , Lq′

1/ν).

b. For 1 ≤ p, q ≤ ∞, the Köthe dual of W (Lp, Lq
ν) is W (Lp′ , Lq′

1/ν).

3 Background: Gabor Expansions in L2 and the
Modulation Spaces

3.1 Gabor frames in L2

Given a window function g ∈ L2(Rd) and given α, β > 0, we say that

G(g, α, β) = {MβnTαkg}k,n∈Zd = {e2πiβn·xg(x− αk)}k,n∈Zd

is a Gabor frame for L2(Rd) if there exist constants A, B > 0 (called
frame bounds) such that

∀ f ∈ L2(Rd), A ‖f‖2
L2 ≤

∑
k,n∈Zd

|〈f,MβnTαkg〉|2 ≤ B ‖f‖2
L2 .

The basic properties of Gabor frames are laid out in the following
result; we refer to [9], [25], or [29] for more extensive treatments of frames
and Gabor frames.

234



Theorem 3.1. Let G(g, α, β) be a Gabor frame for L2(Rd) with frame
bounds A, B. Then the following statements hold.

a. The analysis operator Cgf = (〈f,MβnTαkg〉)k,n∈Zd is a bounded
mapping Cg:L2 → `2, and we have the norm equivalence ‖f‖2 �
‖Cgf‖`2.

b. The synthesis operator Rgc =
∑

k,n∈Zd cknMβnTαkg is a bounded
mapping Rg: `2 → L2. The series defining Rgc converges uncondi-
tionally in L2 for every c ∈ `2.

c. Rg = C∗g , and the frame operator Sg = RgCg:L2 → L2 is strictly
positive.

d. The dual window γ = S−1
g g generates a Gabor frame G(γ, α, β)

for L2(Rd) with frame bounds 1/B, 1/A.

e. RγCg = I on L2(Rd), i.e., we have the Gabor expansions

f = RγCgf =
∑

k,n∈Zd

〈f,MβnTαkγ〉MβnTαkg (7)

for f ∈ L2(Rd), with unconditional convergence of the series.

In brief, if G(g, α, β) is a frame for L2(Rd) then the `2-norm of the se-
quence of Gabor coefficients (〈f,MβnTαkg〉)k,n∈Zd is an equivalent norm
for L2, and the Gabor expansions given by (7) hold in L2. Moreover, for
our purposes it is important to note that once the analysis and synthesis
operators are defined, the statement “Gabor expansions converge in L2”
is equivalent to the statement that the identity operator on L2 factorizes
as I = RγCg.

In all these statements, and throughout this paper, the roles of g and
γ may be interchanged.

3.2 Gabor frames in the modulation spaces

Under stronger assumptions on g, the expansions in (7) are valid not only
in L2 but in the entire class of function spaces known as the modulation
spaces. For detailed discussion of these spaces we refer to [17], [25]. The
appropriate window class in this setting is the Feichtinger algebra

M1
ω = {f ∈ S ′(Rd) : Vff ∈ L1

ω(R2d)}.
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where ω is a submultiplicative weight on R2d with polynomial growth
(see [25, Sec. 11.4] for a discussion of the details required in dealing
with more general weights). The Schwartz class S is dense in M1

ω. Since
ω ≥ 1, we have M1

ω ⊂M1, and it can be shown that M1 is contained in
the Wiener algebra W (L∞, L1).

Let ν be an ω-moderate weight function on R2d, and let g ∈ M1
ω

be fixed. Then the modulation space Mp,q
ν is the space of all tempered

distributions f ∈ S ′(Rd) for which the norm

‖f‖Mp,q
ν

=
(∫

Rd

(∫
Rd

|Vgf(x, y)|p ν(x, y)p dx

)q/p

dy

)1/q

is finite. This definition is independent of the choice of g ∈ M1
ω in

the sense of equivalent norms. Further, M1
ω = M1,1

ω (with equivalent
norms). For 1 ≤ p, q <∞, the dual of Mp,q

ν is Mp′,q′

1/ν . The space M∞,∞
ν

is a subspace of the tempered distributions, but has the advantage of
being a Banach space. If ν(x, y) = ν(x) = (1 + |x|)s, then M2,2

ν is the
weighted L2 space L2

ν . If ν(x, y) = ν(y) = (1 + |y|)s, then M2,2
ν = Hs,

the standard Sobolev space. However, Lp does not coincide with any
modulation space when p 6= 2 [18].

The following result summarizes some basic facts on Gabor frames
in the modulation spaces, cf. [25, Ch. 12]. The theorem is not stated in
its weakest possible form; for example, the boundedness of the analysis
and synthesis operators requires only the assumption g ∈M1

ω, and does
not require that g generate a frame for L2. The mixed-norm sequence
space `p,q

ν̃ consists of all sequences c = (ckn)k,n∈Zd such that

‖c‖`p,q
ν̃

=
( ∑

n∈Zd

( ∑
k∈Zd

|ckn|p ν̃(k, n)p

)q/p)1/q

< ∞,

where ν̃(k, n) = ν(αk, βn).

Theorem 3.2. Let ν be an ω-moderate weight on R2d, and let 1 ≤
p, q ≤ ∞. Let g ∈ M1

ω be such that G(g, α, β) is a Gabor frame for
L2(Rd). Then the following statements hold.

a. The analysis operator Cgf = (〈f,MβnTαkg〉)k,n∈Zd is a bounded
mapping Cg:M

p,q
ν → `p,q

ν̃ , and we have the norm equivalence

‖f‖Mp,q
ν

� ‖Cgf‖`p,q
ν̃
.
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b. The synthesis operator Rgc =
∑

k,n∈Zd cknMβnTαkg is a bounded
mapping Rg: `

p,q
ν̃ → Mp,q

ν . The series defining Rgc converges un-
conditionally in the norm of Mp,q

ν for every c ∈ `p,q
ν̃ (weak∗ uncon-

ditionally in M∞,∞
1/ω if p = ∞ or q = ∞).

c. The frame operator Sg = RgCg is a continuously invertible map-
ping of Mp,q

ν onto itself.

d. The dual window γ = S−1
g g lies in M1

ω.

e. RγCg = I on Mp,q
ν .

f. A distribution f ∈M∞,∞
ν belongs to Mp,q

ν if and only if Cgf ∈ `p,q
ν̃ .

If g ∈ S, then a tempered distribution f ∈ S ′(Rd) belongs to Mp,q
ν

if and only if Cgf ∈ `p,q
ν̃ .

In brief, the `p,q
ν̃ norm of the Gabor coefficients (〈f,MβnTαkg〉)k,n∈Zd

is an equivalent norm forMp,q
ν , and the Gabor expansions (7) are valid in

Mp,q
ν , with unconditional convergence of that series in the norm of Mp,q

ν .
Moreover, there is a strong statement made in part f of Theorem 3.2 that
is not usually observed in the standard list of Gabor frame properties
in L2 (Theorem 3.1), namely that ‖Cgf‖`p,q

ν̃
is not only an equivalent

norm for Mp,q
ν , but membership of f in the modulation space is charac-

terized by membership of its sequence of Gabor coefficients Cgf in `p,q
ν̃ .

In particular, only the magnitude of these coefficients is important in
determining whether a given distribution lies in Mp,q

ν .
The proof of Theorem 3.2 requires deep analysis. In particular, the

invertibility of Sg on M1,1
ω for arbitrary values of α, β was only recently

proved in [27].
In summary, once the analysis and synthesis operators have been

correctly defined, the fact that Gabor expansions converge in the modu-
lation spaces is simply the statement that the identity operator on Mp,q

ν

factorizes as I = RγCg.

Remark 3.3. For comparison with later results, let us rewrite the def-
inition of the synthesis operator in several ways:

Rgc(x) =
∑

k,n∈Zd

cknMβnTαkg(x) (8)

=
∑
k∈Zd

( ∑
n∈Zd

ckn e
2πiβn·x

)
Tαkg(x) (9)
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=
∑
k∈Zd

mk(x)Tαkg(x), (10)

where mk(x) =
∑

n∈Zd ckn e
2πiβn·x is a 1/β-periodic function. In the

modulation spaces, the convergence of the double sum in (8) is uncon-
ditional, but when we turn to the amalgam spaces in Section 4, this will
no longer be the case. A correct formulation of the meaning of the syn-
thesis operator will then be essential, and the form of Rgc given by (9)
or especially (10) becomes the appropriate inspiration.

One potential point of confusion in comparing the statement of re-
sults for amalgam spaces with the modulation spaces is that although
the amalgam spaces W (Lp, Lq

ν) and the modulation spaces Mp,q
ν both

involve a weight, the weight serves different purposes and is defined on
different spaces. For the modulation spaces, the weight is a joint time-
frequency weight, and hence is defined on R2d, while for the amalgams
it is a weight on the global component of the amalgam, and hence is a
weight on Rd.

4 Gabor Expansions in the Amalgam Spaces

In this section we will state our main results precisely. In particular,
we show that there is an analogue of Theorem 3.2 for the case of Gabor
expansions in the weighted amalgam spaces. This is surprising, because
the modulation spaces are the natural setting for Gabor analysis. And
indeed, while Gabor expansions converge unconditionally in the modu-
lation spaces, the convergence in the amalgam spaces is conditional in
general and even the meaning of the term “expansion” must be handled
appropriately. Throughout, we will use the notation ν̃(k) = ν(αk).

4.1 Sequence spaces

Before stating our results, we must define the sequence spaces that will
be associated with Gabor expansions in the amalgam spaces. We begin
by recalling that the Fourier transform of f ∈ L1(Q1/β) is the sequence
f̂ defined by

f̂(n) = Ff(n) = βd

∫
Q1/β

f(t) e−2πiβn·t dt, n ∈ Zd.
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For 1 ≤ p ≤ ∞, let FLp(Q1/β) denote the image of Lp(Q1/β) under
the Fourier transform. Since Fourier coefficients are unique in Lp, if c =
(cn)n∈Zd ∈ FLp(Q1/β) then there exists a unique function m ∈ Lp(Q1/β)
such that m̂(n) = cn for every n, and the norm on FLp(Q1/β) is defined
by

‖c‖FLp(Q1/β) = ‖m‖p,Q1/β
. (11)

For 1 < p <∞, Littlewood–Paley theory can be used to give an equiv-
alent norm for (11), cf. [10, Ch. 7].

Definition 4.1. Let α, β > 0 be given. Then Sp,q
ν̃ = `qν̃(FLp(Q1/β))

will denote the space of all FLp(Q1/β)-valued sequences which are `qν̃-
summable. That is, a doubly-indexed sequence c = (ckn)k,n∈Zd lies in
Sp,q

ν̃ if for each k ∈ Zd there exists mk ∈ Lp(Q1/β) such that

m̂k(n) = ckn, k, n ∈ Zd,

and such that

‖c‖Sp,q
ν̃

=
( ∑

k∈Zd

‖mk‖q
p,Q1/β

ν̃(k)q

)1/q

< ∞,

with the usual change if q = ∞.

When 1 < p <∞, we can write mk as a Fourier series

mk(x) =
∑
n∈Zd

ckn e
2πiβn·x, (12)

in the sense that the square partial sums of (12) converge to mk in the
norm of Lp(Q1/β), cf. [30], [38]. Hence, for 1 < p < ∞ and 1 ≤ q < ∞
we can write the norm on Sp,q

ν̃ as

‖c‖Sp,q
ν̃

=
( ∑

k∈Zd

(∫
Q1/β

∣∣∣∣ ∑
n∈Zd

ckn e
2πiβn·x

∣∣∣∣p dx)q/p

ν̃(k)q

)1/q

.

Note that for p = 2, we have via the Plancherel theorem that S2,q
ν̃ =

`2,q
ν̃ , However, for general p, Sp,q

ν̃ is not a “solid” space. In particular,
changing the phases of the ckn can change the norm of c.
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4.2 Boundedness of the analysis and synthesis operators

Our first main result states some facts which do not require a frame
hypothesis. In particular, the following result makes precise the meaning
and behavior of the analysis and synthesis operators on the amalgam
spaces, and shows that the Walnut representation, which is an extremely
useful tool in Gabor analysis, holds on the amalgam spaces.

Theorem 4.2. Let ν be an ω-moderate weight on Rd. Let α, β > 0
and 1 ≤ p, q ≤ ∞ be given. Fix g, γ ∈ W (L∞, L1

ω). Then the following
statements hold.

a. The analysis operator Cgf = (〈f,MβnTαkg〉)k,n∈Zd is a bounded
mapping Cg:W (Lp, Lq

ν) → Sp,q
ν̃ , Moreover, there exist unique func-

tions mk ∈ Lp(Q1/β) which satisfy m̂k(n) = Cgf(k, n) for all
k, n ∈ Zd, and these are given explicitly by

mk(x) = β−d
∑
n∈Zd

(f · Tαkḡ)(x− n
β )

= β−d
∑
n∈Zd

(Tn
β
f · Tαk+n

β
ḡ)(x). (13)

The series on the right side of (13) converges unconditionally in
Lp(Q1/β) (unconditionally in the σ(L∞(Q1/β), L1(Q1/β) topology
if p = ∞).

b. Given c ∈ Sp,q
ν̃ , let mk ∈ Lp(Qα) be the unique functions satisfying

m̂k(n) = ckn for all k, n ∈ Zd. Then the series

Rgc =
∑
k∈Zd

mk · Tαkg (14)

converges unconditionally in W (Lp, Lq
ν) (unconditionally in the

σ(W (Lp, Lq
ν), W (Lp′ , Lq′

1/ν)) topology if p = ∞ or q = ∞), and
Rg is a bounded mapping Rg:S

p,q
ν̃ →W (Lp, Lq

ν).

c. The Walnut representation

RγCgf = β−d
∑
n∈Zd

Gn · Tn
β
f (15)
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holds for f ∈ W (Lp, Lq
ν), with the series on the right of (15) con-

verging absolutely in W (Lp, Lq
ν), and where

Gn(x) =
∑
k∈Zd

g(x− n
β − αk) γ(x− αk)

=
∑
k∈Zd

(Tαk+
n
β
ḡ · Tαkγ)(x). (16)

Remark 4.3. When 1 < p <∞, the functions mk appearing in (14) can
be written as Fourier series, allowing Rgc to be written as the iterated
sum

Rgc(x) =
∑
k∈Zd

( ∑
n∈Zd

ckn e
2πiβn·x

)
Tαkg(x), (17)

i.e., the same series as appears in (9). When p = 1 or p = ∞, this is
not the case. The functions mk are still uniquely determined by c, but
cannot be written as Fourier series. When p = q = 2, both the inner and
outer sums in the iterated series in (17) converge unconditionally, and
then Rgc can also be written as the double sum in (8), with unconditional
convergence of that series.

4.3 Gabor expansions in the amalgam spaces

Under the assumption that G(g, α, β) is a frame for L2(Rd), we obtain
the following result.

Theorem 4.4. Let ν be an ω-moderate weight on Rd, and let α, β > 0
and 1 ≤ p, q ≤ ∞ be given. Assume that g, γ ∈ W (L∞, L1

ω) are such
that G(g, α, β) is a Gabor frame for L2 with dual frame G(γ, α, β). Then
the following statements hold.

a. We have the norm equivalence ‖f‖W (Lp,Lq
ν) � ‖Cgf‖Sp,q

ν̃
.

b. RγCg = I on W (Lp, Lq
ν).

c. A function f ∈ W (L1, L∞1/ω) belongs to W (Lp, Lq
ν) if and only if

Cgf ∈ Sp,q
ν̃ .

Remark 4.5. a. Theorem 4.4 says that, given an appropriate condition
on the window g and its dual window γ, a Gabor frame for L2 extends to
the amalgam spaces and provides “Gabor expansions” for the amalgam
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spaces in the sense that we have the factorization of the identity as
I = RγCg. The specific form of these expansions is that given f , there
exist functions mk such that f = RγCgf =

∑
mk · Tαkg. When 1 <

p <∞, the functions mk can be realized as Fourier series, leading to an
expansion of the form

f(x) = RγCgf(x) =
∑
k∈Zd

( ∑
n∈Zd

〈f,MβnTαkγ〉 e2πiβn·x
)
Tαkg(x). (18)

The inner sum defining mk converges conditionally in general, while the
outer sum converges unconditionally.

b. For the case p = 1, the functions mk cannot be written as Fourier
series, so we do not have a series expansion of the form (18). A different
approach to the case p = q = 1 and ν = 1, based on Littlewood–Paley
theory, is developed by Gilbert and Lakey in [22], where they show that
Gabor frames can be used to characterize a Hardy-type space on the
line.

c. Theorem 4.4c says that if we use the “largest” amalgam space
W (L1, L∞1/ω) as our “universe,” then membership of a function in an
amalgam W (Lp, Lq

ν) is characterized by membership of its sequence of
Gabor coefficients in an appropriate sequence space. By imposing addi-
tional restrictions on g, γ, we could enlarge the universe on which this
characterization is valid. In particular, if we required g, γ to lie in the
Schwartz class S, then the universe on which this characterization was
valid would be the space S ′ of tempered distributions.

d. For the case of the modulation spaces, there is a deep result that
states that if g lies in the Feichtinger algebra M1

ω, then the dual window
γ will lie in M1

ω as well, cf. Theorem 3.2. For the case of the amalgam
spaces, we do not know if the assumption g ∈ W (L∞, L1

ω) implies that
the dual window γ also lies in that space. This is an interesting and
possibly difficult open question.

4.4 Convergence of Gabor expansions

As pointed out above, when 1 < p <∞, the synthesis operator Rg can be
written as the iterated sum (17). The inner series in this sum converges
conditionally in general, while the outer series converges unconditionally.
Our next result shows that this series can also be written as a double
sum, as in (8), but because the proof relies on the convergence of Fourier
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series in Lp, the convergence is conditional in general. In dealing with
Fourier series in higher dimensions, it is important to use the maximum
norm |x| = max{|x1|, . . . , |xd|} on Rd.

Proposition 4.6. Let ν be an ω-moderate weight. Let α, β > 0 and
1 < p < ∞, 1 ≤ q < ∞ be given. Assume that g, γ ∈ W (L∞, L1

ω) are
such that G(g, α, β) is a Gabor frame for L2 with dual window γ. Then
the following statements hold.

a. If c ∈ Sp,q
ν̃ , then the partial sums

SK,Nc =
∑
|k|≤K

∑
|n|≤N

cknMβnTαkg, K,N > 0,

converge to Rgc in the norm of W (Lp, Lq
ν), i.e., for each ε > 0

there exist K0, N0 > 0 such that

∀K ≥ K0, ∀N ≥ N0, ‖Rgc− SK,Nc‖W (Lp,Lq
ν) < ε.

b. If f ∈ W (Lp, Lq
ν), then the partial sums of the Gabor expansion

of f ,

SK,N (Cgf) =
∑
|k|≤K

∑
|n|≤N

〈f,MβnTαkg〉MβnTαkγ,

converge to f in the norm of W (Lp, Lq
ν).

4.5 Necessary conditions on the window

Our final main result provides a partial converse to Theorem 4.2a. In
particular, Theorem 4.2a implies that if g ∈ W (L∞, L1

ω), then Cg is
bounded on each W (Lp, Lq

ν). In the converse direction, if g is a measur-
able function and 1 ≤ p, q ≤ ∞ are given, then in order for Cg to be well-
defined on W (Lp, Lq

ν), we must at least have Cgf(0, 0) = 〈f, g〉 =
∫
fḡ

defined for each f ∈ W (Lp, Lq
ν). Hence fḡ ∈ L1 for all such f , so we

immediately have that g must lie in the Köthe dual of W (Lp, Lq
ν), which

is W (Lp′ , Lq′

1/ν).
For the unweighted case, we obtain the following further necessary

condition in order that Cg be bounded on W (Lp, L∞). For the case
p = 2, this result was obtained by Balan in [5] and published in [6],
[7]. Extensions of some other results from [5] to the case p 6= 2 are also
possible by combining the arguments of Balan with the techniques of
this paper.
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Theorem 4.7. Let α, β > 0 and 1 < p <∞ be given. If g ∈W (Lp′ , L1)
and Cg is a bounded map from W (Lp, L∞) to Sp,∞, then g ∈W (L∞, Lp).

As noted above, the hypothesis g ∈ W (Lp′ , L1) is not a limitation
on the generality of the result, as it is necessary in order that Cg can
even be defined. Furthermore, if 1 < p < ∞ then W (L∞, Lp) is not
contained in W (Lp′ , L1) nor conversely, so Theorem 4.7 is not a trivial
consequence of embeddings of modulation spaces. The result is also true
if p = 1, but in this case W (L∞, Lp) = W (Lp′ , L1) and there is no new
information gained.

5 Proofs

In this section, we present the proofs of the results stated above. First,
Section 5.1 provides some useful lemmas. The proof of Theorem 4.2
is divided into Sections 5.2–5.4, which deal respectively with the syn-
thesis operator, the analysis operator, and the Walnut representation.
Section 5.5 contains the proof of Theorem 4.4, Section 5.6 contains the
proof of Proposition 4.6, and Section 5.7 contains the proof of Theo-
rem 4.7.

5.1 Lemmas

The following lemmas will be important in the sequel. The first lemma
is simply a counting argument.

Lemma 5.1. Let α, β > 0 be given. Let Kαβ be the maximum number
of 1

β Zd-translates of Q1/β required to cover any αZd-translate of Qα, i.e.,

Kαβ = max
k∈Zd

#{` ∈ Zd : |( `
β +Q1/β) ∩ (αk +Qα)| > 0}.

Then given 1 ≤ p ≤ ∞, we have for any 1/β-periodic function m ∈
Lp(Q1/β) and any k ∈ Zd that

‖m‖p,αk+Qα ≤ K
1/p
αβ ‖m‖p,Q1/β

,

where K1/∞
αβ = 1.

The second lemma is a weighted version of an estimate that is useful
in the Walnut representation of the Gabor frame operator on L2, see
[34, Lemma 2.2].
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Lemma 5.2. Let ω be a submultiplicative weight, and let α, β > 0 be
given. Then there exists a constant C = C(α, β, ω) > 0 such that if g,
γ ∈W (L∞, L1

ω) and the functions Gn are defined by (16), then∑
n∈Zd

‖Gn‖∞ ω(n
β ) ≤ C ‖g‖W (L∞,L1

ω) ‖γ‖W (L∞,L1
ω).

Proof. It follows from Lemma 2.1 and the fact that ω is ω-moderate that
‖fω‖W (L∞,L1) is an equivalent norm for W (L∞, L1

ω). In particular, we
have gω, γω ∈W (L∞, L1), so by [25, Lemma 6.3.1],∑

n∈Zd

‖G̃n‖∞ ≤ ( 1
α + 1)d (2β + 1)d ‖gω‖W (L∞,L1) ‖γω‖W (L∞,L1),

where G̃n is the analogue of Gn with g replaced by |g|ω and γ replaced
by |γ|ω. Hence,∑

n∈Zd

‖Gn‖∞ ω(n
β )

=
∑
n∈Zd

ess sup
x∈Rd

∣∣∣∣ ∑
k∈Zd

g(x− n
β − αk) γ(x− αk)×

ω((x− αk)− (x− n
β − αk))

∣∣∣∣
≤

∑
n∈Zd

ess sup
x∈Rd

∑
k∈Zd

|g(x− n
β − αk)|ω(x− n

β − αk)×

|γ(x− αk)|ω(x− αk)

=
∑
n∈Zd

‖G̃n‖∞

≤ C ‖g‖W (L∞,L1
ω) ‖γ‖W (L∞,L1

ω).

Finally, we need an estimate on the effect of translations on the
amalgam space norm.

Lemma 5.3. Let ν be an ω-moderate weight. Then for 1 ≤ p, q ≤ ∞,
we have for each f ∈W (Lp, Lq

ν) and ` ∈ Zd that

‖Tα`f‖W (Lp,Lq
ν) ≤ Cν ω(α`) ‖f‖W (Lp,Lq

ν).
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5.2 Proof of Theorem 4.2b: Boundedness of the synthesis
operator

In this subsection we will prove part b of Theorem 4.2, establishing the
boundedness of the synthesis operator on Sp,q

ν̃ .
We divide into cases. First, we consider the case 1 ≤ p, q < ∞.

We are given c ∈ Sp,q
ν̃ , and we must prove that the series (14) defining

Rgc converges unconditionally in the norm of W (Lp, Lq
ν), and that Rg

so defined is a bounded mapping of W (Lp, Lq
ν) into Sp,q

ν̃ . To show the
convergence we will make use of Lemma 2.4.

Fix ε > 0. Then, by definition of the norm in Sp,q
ν̃ , we have that∑

‖mk‖q
p,Q1/β

ν̃(k)q <∞. Hence there exists a finite set F0 such that

∀finite F ⊃ F0,
∑
k/∈F

‖mk‖q
p,Q1/β

ν̃(k)q < εq. (19)

Recall that 1/ν is an ω-moderate weight, and let Kαβ be the constant
appearing in Lemma 5.1. Fix any h ∈W (Lp′ , Lq′

1/ν). Then∑
k/∈F

|〈mk · Tαkg, h〉|

≤
∑
k/∈F

∫
Rd

|mk(x)Tαkg(x)h(x)| dx

=
∑
k/∈F

∑
n∈Zd

∫
Qα

|mk(x)Tαkg(x)h(x)|Tαn+αkχQα(x) dx

≤
∑
k/∈F

∑
n∈Zd

‖Tαkg · Tαn+αkχQα‖∞ ‖mk‖p,αn+αk+Qα ×

‖h · Tαn+αkχQα‖p′
ν(αk)

ν(αn+ αk − αn)

≤
∑
n∈Zd

‖g · TαnχQα‖∞ ×

∑
k/∈F

K
1/p
αβ ‖mk‖p,Q1/β

‖h · Tαn+αkχQα‖p′
Cν ν(αk)ω(αn)
ν(αn+ αk)

≤ CνK
1/p
αβ

∑
n∈Zd

‖g · TαnχQα‖∞ ω(αn)
(∑

k/∈F

‖mk‖q
p,Q1/β

ν(αk)q

)1/q

×
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( ∑
k∈Zd

‖h · Tαn+αkχQα‖
q′

p′
1

ν(αn+ αk)q′

)1/q′

. (20)

Combining (19) and (20), we have that∑
k/∈F

|〈mk · Tαkg, h〉| ≤ εCνK
1/p
αβ ‖g‖W (L∞,L1

ω) ‖h‖W (Lp′ ,Lq′
1/ν

)
.

Therefore, taking the supremum over all h of unit norm and appealing
to Lemma 2.4, we see that Rgc =

∑
mk ·Tαkg converges unconditionally.

Further, replacing F by Zd in the calculation in (20) yields

|〈Rgc, h〉| ≤
∑
k∈Zd

|〈mk · Tαkg, h〉|

≤ CνK
1/p
αβ ‖g‖W (L∞,L1

ω) ‖c‖Sp,q
ν̃
‖h‖

W (Lp′ ,Lq′
1/ν

)
. (21)

Since W (Lp′ , Lq′

1/ν) is the dual space of W (Lp, Lq
ν), taking the suprema

over all h of unit norm in (21) shows that

‖Rgc‖W (Lp,Lq
ν) = sup{|〈Rgc, h〉| : ‖h‖W (Lp′ ,Lq′

1/ν
)
= 1}

≤ CνK
1/p
αβ ‖g‖W (L∞,L1

ω) ‖c‖Sp,q
ν̃
, (22)

so Rg is bounded. This completes the proof for the case 1 ≤ p, q <∞.
When p = ∞ or q = ∞, we make use of the fact that W (Lp′ , Lq′

1/ν)
is the Köthe dual of W (Lp, Lq

ν). The fact that the series defining Rgc
converges in the weak topology is given by the same calculations as
in (20), (21), and the fact that the Köthe dual is a norm-fundamental
subspace of the dual space means that we can again estimate ‖Rgc‖Sp,q

ν̃

by using (22). Hence Rg is bounded, and the proof is complete.

5.3 Proof of Theorem 4.2a: Boundedness of the analysis
operator

In this subsection we will prove part a of Theorem 4.2, establishing the
boundedness of the analysis operator on W (Lp, Lq

ν).
We are given that g ∈ W (L∞, L1

ω) and that 1 ≤ p, q ≤ ∞. Let
f ∈ W (Lp, Lq

ν), which is a subspace of W (L1, L∞1/ω). First we must
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show that the functions mk given by (13) are well-defined. Since mk

is the 1/β-periodization of the integrable function f · Tαkg, the series
definingmk converges at least in L1(Qα). To show that the periodization
converges unconditionally in Lp(Q1/β) (weakly if p = ∞) and to derive
a useful estimate, fix any 1/β-periodic function h ∈ Lp′(Q1/β). Then for
each fixed k, we have∫

Q1/β

∑
n∈Zd

|f(x− n
β )Tαkg(x− n

β )h(x)| dx

=
∫

Rd

|f(x)Tαkg(x)h(x)| dx

=
∑
n∈Zd

∫
Qα

|f(x)Tαkg(x)h(x)|Tαk+αnχQα(x) dx

≤
∑
n∈Zd

‖Tαkg · Tαk+αnχQα‖∞ ‖f · Tαk+αnχQα‖p ×

‖h‖p′,αk+αn+Qα

ν(αk + αn− αn)
ν(αk)

≤
∑
n∈Zd

‖g · TαnχQα‖∞ ‖f · Tαk+αnχQα‖pK
1/p′

αβ ×

‖h‖p′,Q1/β

Cνν(αk + αn)ω(αn)
ν(αk)

= CνK
1/p′

αβ ‖h‖p′,Q1/β

1
ν(αk)

∑
n∈Zd

‖g · TαnχQα‖∞ ω(αn) ×

‖f · Tαk+αnχQα‖p ν(αk + αn). (23)

This yields the desired convergence, and taking the suprema in (23) over
h with unit norm implies the estimate

‖mk‖p,Q1/β
≤ β−dCνK

1/p′

αβ

1
ν(αk)

∑
n∈Zd

‖g · TαnχQα‖∞ ω(αn) ×

‖f · Tαk+αnχQα‖p ν(αk + αn).

Second, we show that m̂k(n) has the correct form. Since e2πiβn·x ∈
Lp′(Q1/β), we have by the weak convergence of the series defining mk
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that

m̂k(n) = βd 〈mk, e
2πiβn·x〉

=
∑
`∈Zd

∫
Q1/β

〈T `
β
f · Tαk+ `

β
ḡ, e2πiβn·x〉

=
∑
`∈Zd

∫
Q1/β

f(x− `
β )Tαkḡ(x− `

β ) e−2πiβn·(x−`/β) dx

=
∫

Rd

(f · Tαkḡ)(x) e−2πiβn·x dx

= 〈f, MβnTαkg〉

= Cgf(k, n).

Finally, we must show that Cg is a bounded mapping of W (Lp, Lq
ν)

into Sp,q
ν̃ . Given f ∈W (Lp, Lq

ν), to show that Cgf ∈ Sp,q
ν̃ we must show

that the sequence r given by

r(k) = ‖mk‖p,Q1/β
, k ∈ Zd

lies in `qν̃ . To do this, fix any sequence a ∈ `q
′

1/ν̃ . Then, using (24), we
have

|〈r, a〉| ≤
∑
k∈Zd

‖mk‖p,Q1/β
|a(k)|

≤ β−dCνK
1/p′

αβ

∑
n∈Zd

‖g · TαnχQα‖∞ ω(αn) ×

∑
k∈Zd

‖f · Tαk+αnχQα‖p ν(αk + αn) |a(k)| 1
ν(αk)

≤ β−dCνK
1/p′

αβ

∑
n∈Zd

‖g · TαnχQα‖∞ ω(αn) ×

( ∑
k∈Zd

‖f · Tαk+αnχQα‖q
p ν(αk + αn)q

)1/q

×

( ∑
k∈Zd

|a(k)|q′ 1
ν(αk)q′

)1/q′
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≤ β−dCνK
1/p′

αβ ‖g‖W (L∞,L1
ω) ‖f‖W (Lp,Lq

ν) ‖a‖`q′
1/ν̃

. (24)

Since `q
′

1/ν̃ equals (`qν̃)
∗ when q <∞ and is a norm-fundamental subspace

when q = ∞, taking the suprema in (24) over sequences a with unit norm
yields the estimate

‖Cgf‖Sp,q
ν̃

= ‖r‖`p
ν̃
≤ β−dCνK

1/p′

αβ ‖g‖W (L∞,L1
ω) ‖f‖W (Lp,Lq

ν).

Hence Cg is a bounded mapping of W (Lp, Lq
ν) into Sp,q

ν̃ .

Remark 5.4. For the case 1 < p, q <∞, the boundedness of Cg could
also be shown by proving that Cg:W (Lp, Lq

ν) → Sp,q
ν̃ is the adjoint of

Rg:S
p′,q′

1/ν̃ → W (Lp′ , Lq′

1/ν), and then using the reflexivity of the space
W (Lp, Lq

ν) and the fact that 1/ν is also ω-moderate.

5.4 Proof of Theorem 4.2c: The Walnut representation

In this subsection we will prove part c of Theorem 4.2, establishing the
validity of the Walnut representation of RγCg on W (Lp, Lq

ν).
We are given g, γ ∈ W (L∞, L1

ω) and 1 ≤ p, q ≤ ∞. For this proof,
let us use the equivalent norm for W (Lp, Lq

ν) obtained by replacing α
in (2) by 1/β. Then by Lemma 5.3,

‖Tn
β
f‖W (Lp,Lq

ν) ≤ Cν ω(n
β ) ‖f‖W (Lp,Lq

ν).

Therefore, using the autocorrelation functions Gn defined in (16), we
have for f ∈W (Lp, Lq

ν) that∑
n∈Zd

‖Gn · Tn
β
f‖W (Lp,Lq

ν)

≤
∑
n∈Zd

‖Gn‖∞ ‖Tn
β
f‖W (Lp,Lq

ν)

≤ Cν ‖f‖W (Lp,Lq
ν)

∑
n∈Zd

‖Gn‖∞ ω(n
β )

≤ CCν ‖f‖W (Lp,Lq
ν) ‖g‖W (L∞,L1

ω) ‖γ‖W (L∞,L1
ω),

the last inequality following from Lemma 5.2. Hence the series
∑
Gn ·

Tn
β
f converges absolutely in W (Lp, Lq

ν).
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Now fix f ∈W (Lp, Lq
ν). Then Cgf ∈ Sp,q

ν̃ by Theorem 4.2a. Letting
mk be defined by (13), we have Cgf(k, n) = m̂k(n). Further, RγCgf =∑
mk · Tαkγ, this series converging unconditionally if p, q < ∞, or

unconditionally in the weak topology otherwise. In any case, for h ∈
W (Lp′ , Lq′

1/ν̃) we have

〈RγCgf, h〉 =
∑
k∈Zd

〈mk · Tαkγ, h〉

=
∑
k∈Zd

∫
Rd

mk(x)Tαkγ(x) h̄(x) dx

= β−d
∑
k∈Zd

∫
Rd

∑
n∈Zd

Tn
β
f(x)Tαk+n

β
ḡ(x)Tαkγ(x) h̄(x) dx

= β−d
∑
n∈Zd

∫
Rd

∑
k∈Zd

Tn
β
f(x)Tαk+n

β
ḡ(x)Tαkγ(x) h̄(x) dx

= β−d
∑
n∈Zd

∫
Rd

Tn
β
f(x)Gn(x) h̄(x) dx.

= β−d
∑
n∈Zd

〈Gn · Tn
β
f, h〉,

from which (15) follows. The interchanges of integration and summation
can be justified by Lemma 5.2 and Fubini’s Theorem.

5.5 Proof of Theorem 4.4: Gabor frames in the amalgam
spaces

In this subsection we will prove Theorem 4.4. We are given g, γ ∈
W (L∞, L1

ω) such that G(g, α, β) is a Gabor frame for L2 and γ is the
dual window to g. By Theorem 4.2, we have that Cg, Cγ :W (Lp, Lq

ν) →
Sp,q

ν̃ and Rg, Rγ :Sp,q
ν̃ → W (Lp, Lq

ν) are bounded mappings for each
1 ≤ p, q ≤ ∞ and each ω-moderate weight ν. Further, for the case
p = q = 2 and ν = 1, the frame hypothesis implies that the identity
RγCg = I holds on L2, and the definition of Rγ given in Theorem 3.1
coincides in this case with the definition of Rγ given in Theorem 4.2.
Letting Gn be the autocorrelation functions defined in (16), the fact that
RγCg = I holds on L2 implies by [25, Thm. 7.3.1] that

β−dG0 = 1 a.e. and Gn = 0 a.e. for n 6= 0.
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Consequently, using the Walnut representation (15) ofRγCg on the space
W (Lp, Lq

ν), we have for f ∈W (Lp, Lq
ν) that

RγCgf = β−d
∑
n∈Zd

Gn · Tn
β
f = f.

Hence RγCg = I holds on W (Lp, Lq
ν) as well. This proves part b of

Theorem 4.4.
Next, given f ∈W (Lp, Lq

ν), we have

‖f‖W (Lp,Lq
ν) = ‖RγCgf‖W (Lp,Lq

ν)

≤ ‖Rγ‖ ‖Cgf‖Sp,q
ν̃

≤ ‖Rγ‖ ‖Cg‖ ‖f‖W (Lp,Lq
ν).

Consequently, ‖Cgf‖Sp,q
ν̃

� ‖f‖W (Lp,Lq
ν), which proves part a of Theo-

rem 4.4.
Finally, we prove part c of Theorem 4.4. Let f ∈ W (L1, L∞1/ω) be

given. We must show that f ∈ W (Lp, Lq
ν) if and only if Cgf ∈ Sp,q

ν̃ .
The forward direction, that if f ∈W (Lp, Lq

ν) then Cgf ∈ Sp,q
ν̃ , is simply

Theorem 4.2a. For the reverse direction, assume that Cgf ∈ Sp,q
ν̃ . Then

by Theorem 4.2a, the function f̃ = Rγ(Cgf) lies in W (Lp, Lq
ν). However,

the factorization RγCg = I holds on every amalgam space, including
W (L1, L∞1/ω) in particular, so we also know that f = RγCgf . Thus

f = f̃ ∈W (Lp, Lq
ν), which completes the proof.

5.6 Proof of Proposition 4.6: Convergence of Gabor ex-
pansions

In this subsection we will prove Proposition 4.6. We are given g, γ ∈
W (L∞, L1

ω) such that G(g, α, β) is a Gabor frame for L2 and γ is the
dual window to g, and we fix 1 < p <∞ and 1 ≤ q <∞.

Assume that c ∈ Sp,q
ν̃ , and let mk be defined by (13). For N > 0,

write
SNmk =

∑
|n|≤N

ckn e
2πiβn·x

for the partial sums of the Fourier series of mk. The exponentials
{e2πiβn·x}n∈Zd form a basis for Lp(Q1/β) [30], [38], so, letting C1 de-
note the basis constant for this system, we have for each k ∈ Zd that

lim
N→∞

‖mk − SNmk‖p,Q1/β
= 0 (25)
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and
sup
N>0

‖SNmk‖p,Q1/β
≤ C1 ‖mk‖p,Q1/β

. (26)

Since c ∈ Sp,q
ν̃ , given ε > 0, we can find K0 > 0 such that

∀K ≥ K0,

( ∑
|k|≥K

‖mk‖q
p,Q1/β

ν̃(k)q

)1/q

< ε. (27)

Because of (25) and the fact that K0 is finite, we can find an N0 > 0
such that

∀N ≥ N0, sup
|k|≤K0

‖mk − SNmk‖p,Q1/β
ν̃(k) <

ε

(2K0 + 1)d/q
. (28)

Now, since c ∈ Sp,q
ν̃ and 1 < p < ∞, we know that Rgc can be written

as the iterated series (17). Write the partial sums of the outer series as

SK,∞c =
∑
|k|≤K

( ∑
n∈Zd

ckn e
2πiβn·x

)
Tαkg =

∑
|k|≤K

mk · Tαkg.

Given K ≥ K0 and N ≥ N0, write

Rgc−SK,Nc = (Rgc−SK0,∞c)+(SK0,∞c−SK0,Nc)+(SK0,Nc−SK,Nc).
(29)

We will calculate the W (Lp, Lq
ν) norm of each of these terms separately.

For the first term, define a sequence r by rkn = ckn for |k| ≤ K0

and n ∈ Zd, and rkn = 0 otherwise. Then SK0,∞c = Rgr, and Rg is a
bounded mapping of Sp,q

ν̃ →W (Lp, Lq
ν), so using (27) we have

‖Rgc− SK0,∞c‖W (Lp,Lq
ν) = ‖Rg(c− r)‖W (Lp,Lq

ν)

≤ ‖Rg‖ ‖c− r‖Sp,q
ν̃

= ‖Rg‖
( ∑
|k|>K0

‖mk‖q
p,Q1/β

ν̃(k)q

)1/q

≤ ‖Rg‖ε. (30)

For the second term, define skn = ckn for |k| ≤ K0 and |n| ≤ N , and
skn = 0 otherwise. Then SK0,Nc = Rgs, so using (28), we have

‖SK0,∞c− SK0,Nc‖W (Lp,Lq
ν)
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≤ ‖Rg‖ ‖r − s‖Sp,q
ν̃

= ‖Rg‖
( ∑
|k|≤K0

‖mk − SNmk‖q
p,Q1/β

ν̃(k)q

)1/q

≤ ‖Rg‖ε. (31)

For the third term, define tkn = ckn for |k| ≤ K and |n| ≤ N , and
tkn = 0 otherwise. Then SK0,Nc = Rgt, so using (26) and (27), we have

‖SK0,Nc− SK,Nc‖W (Lp,Lq
ν)

≤ ‖Rg‖ ‖s− t‖Sp,q
ν̃

= ‖Rg‖
( ∑

K0<|k|≤K

‖SNmk‖q
p,Q1/β

ν̃(k)q

)1/q

≤ C1‖Rg‖
( ∑

K0<|k|≤K

‖mk‖q
p,Q1/β

ν̃(k)q

)1/q

≤ C1‖Rg‖ε. (32)

Applying (30)–(32) to (29), we see that ‖Rgc − SK,Nc‖W (Lp,Lq
ν) ≤

(2 + C1) ‖Rg‖ ε, which completes the proof.

5.7 Proof of Proposition 4.7: Necessary conditions

We will prove Theorem 4.7 in this subsection. We assume that g ∈
W (Lp′ , L1) is such that Cg is a bounded map from W (Lp, L∞) to Sp,∞,
where 1 < p < ∞, and we wish to show that g ∈ W (L∞, Lp). Let us
show first that g ∈ L∞. If not, then given any D > 0 there would exist
a set J contained in some cube `

β +Q1/β and with positive measure such
that |g(x)| > D on J .

Set f = 1
|J |1/p e

i arg g χJ . Using the equivalent norm for W (Lp, L∞)
obtained by replacing α in (2) by 1/β, we have that ‖f‖W (Lp,L∞) ≤ 1.
By hypothesis, Cgf ∈ Sp,∞, so there exist 1/β-periodic functions mk

such that m̂k(n) = Cgf(k, n). Since f · Tαkḡ ∈ L1, it is easy to see that
mk is given by (13). In particular, considering k = 0 we have

‖m0‖p
p,Q1/β

= β−pd

∫
Q1/β

∣∣∣∣ ∑
n∈Zd

f(x− n
β ) ḡ(x− n

β )
∣∣∣∣p dx
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=
β−pd

|J |

∫
`
β

+Q1/β

χJ(x) |g(x)|p dx

≥ β−pdDp.

Hence

D ≤ βd sup
k∈Zd

‖mk‖p,Q1/β

= βd ‖Cgf‖Sp,∞

≤ βd ‖Cg‖ ‖f‖W (Lp,L∞) ≤ βd ‖Cg‖.

But since D is arbitrary, this contradicts the fact that Cg is a bounded
mapping. Hence g must be in L∞.

Now we show that g ∈ W (L∞, Lp). Fix ε > 0, and for each n ∈ Zd

define
Jn = {x ∈ n

β +Q1/β : |g(x)| ≥ 1
2‖g‖∞, n

β
+Q1/β

}.

Then set J ′n = Jn if |Jn| ≤ ε, otherwise let J ′n be a subset of Jn of
measure ε. Let

Nε = sup{N ∈ N : |J ′n| ≥ ε
2 for all |n| ≤ N}

Note that Nε → ∞ as ε → 0 (and may even be ∞ for some ε). Define
f = ei arg g

∑
|n|≤Nε

χJ ′n , and note that ‖f‖W (Lp,L∞) ≤ ε1/p. Therefore
Cgf ∈ Sp,∞, and letting mk be defined by (13), we have

‖m0‖p
p,Q1/β

= β−pd
∑

|n|≤Nε

∫
n
β

+Q1/β

|g(x)|p χJ ′n(x) dx

≥ β−pd
∑

|n|≤Nε

(‖g · Tn
β
χQ1/β

‖∞
2

)p

|J ′n|

≥ β−pd2−p−1ε
∑

|n|≤Nε

‖g · Tn
β
χQ1/β

‖p
∞.

Hence ∑
|n|≤Nε

‖g · Tn
β
χQ1/β

‖p
∞ ≤ βpd2p+1

ε
sup
k∈Zd

‖mk‖p
p,Q1/β
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=
βpd2p+1

ε
‖Cgf‖p

Sp,∞

≤ βpd2p+1

ε
‖Cg‖p ‖f‖p

W (Lp,L∞)

≤ βpd2p+1 ‖Cg‖p.

Since Nε →∞ as ε→ 0, this implies that g ∈W (L∞, Lp).
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Sitzber.d. österr. Adad. Wiss., 188, 451–471, 1979.

[12] H. G. Feichtinger, Banach convolution algebras of Wiener type,
in: Functions, Series, Operators, Proc. Conf. Budapest 35, Col-
loq. Math. Soc. János Bolyai, B. Sz.-Nagy and J. Szabados, eds.,
North Holland, Amsterdam, 509–524, 1983.

[13] H. G. Feichtinger, Banach spaces of distributions of Wiener’s type
and interpolation, in: “Functional Analysis and Approximation”
(Oberwolfach, 1980), Internat. Ser. Numer. Math., 60, Birkhäuser,
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