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Abstract—Because of their numerous advantages, multicarrier (MC) modulation techniques such
as orthogonal frequency division multiplexing (OFDM) are very attractive for broadband wireless
communications. Here, we consider the application of frame theory and related mathematical
models to pulse-shaping MC systems transmitting over doubly dispersive fading channels (i.e.,
random time-varying channels with memory). An analysis of the intersymbol and intercarrier in-
terference occurring in such systems demonstrates that the time and frequency concentration of the
transmit and receive pulses is of central importance for low interference. We prove the existence of
such jointly concentrated pulse pairs by adapting recent mathematical results on Weyl-Heisenberg
frames to the MC context. Furthermore, we propose pulse optimization procedures that minimize
interference by exploiting the design freedom existing for redundant MC systems. Numerical
results demonstrate that our optimized pulse-shaping MC systems can outperform conventional
cyclic-prefix OFDM systems.

1. Introduction

For broadband wireless communications, multicarrier (MC) modulation techniques are attractive due to their nu-
merous desirable properties. In particular, an MC technique known as cyclic-prefix orthogonal frequency division
multiplexing (CP-OFDM) [2–5] is currently used in several wireless communication standards. CP-OFDM uses
rectangular transmit and receive pulses whose frequency concentration is rather poor, however. More advanced
MC techniques such as pulse-shaping OFDM and biorthogonal frequency division multiplexing (BFDM) [1, 2, 6–
16], though rarely used up to now in practical systems, have several advantages over traditional CP-OFDM. One of
these advantages, reduced intersymbol/intercarrier interference (ISI/ICI) [1, 7], will be an important requirement
for future mobile wireless systems that will have to tolerate faster channel variations, i.e., larger Doppler frequency
shifts due to higher carrier frequencies and higher mobile velocities.

For such advanced MC systems, the design of the OFDM/BFDM transmit and receive pulses has been considered
in [7, 9–15, 17, 18]. In particular, in [11, 14, 15] the duality of MC systems and Weyl-Heisenberg (or Gabor)
frames is applied to the design of OFDM and BFDM systems. In a similar spirit, [7] proposes an optimization
procedure for BFDM systems that builds on frames and Riesz sequences and explicitly accounts for channel effects.
In [12], hexagonal time-frequency lattices are advocated, and sphere-packing arguments are used to construct a
pulse through orthogonalization of a Gaussian function. [18] investigates the construction of pulses that are well-
concentrated in time and frequency separately.

In this paper, motivated by the approach of [7, 11, 12], we apply frame theory, Riesz sequences, Gabor systems,
and associated mathematical results to pulse-shaping MC systems transmitting over doubly dispersive fading chan-
nels. We present the following results.
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• We show that there exist (bi)orthogonal transmit and receive pulses that both are well concentrated with
respect to time and frequency. More specifically, we use a recent, deep mathematical result from [19] to
provide explicit expressions for the achievable time and frequency decay of the transmit/receive pulses in
terms of their cross-ambiguity functions. This is important because, as we will show, good time-frequency
concentration is essential for small ISI/ICI, and because in practice finite-length pulses have to be used.

• We present two different pulse optimization procedures that exploit the design freedom existing for redun-
dant MC systems to explicitly minimize the ISI/ICI.

• We compare the performance of our optimized pulse-shaping OFDM/BFDM systems with that of standard
CP-OFDM systems (cf. also [12]). It is shown that pulse-shaping MC systems can outperform CP-OFDM
systems for realistic spectral efficiencies or, equivalently, redundancies. (We note that most previous
numerical results pertained to spectral efficiencies ≤ 0.5, which are rarely used in practice.)

This paper is organized as follows. The MC system model is reviewed in Section 2. In Section 3, we present
a frame-theoretic computation of biorthogonal pulse pairs. In Section 4, we prove the existence of biorthogonal
pulses with good time-frequency concentration. Two methods for designing pulses with minimum ISI/ICI are
described in Section 5. Finally, the performance of optimized pulse-shaping MC systems is assessed in Section 6.

2. MC System Model

In this section, we review a compact mathematical formulation of a generic MC system including a random time-
varying channel [20, 21]. This is a unifying formulation for CP-OFDM, pulse-shaping OFDM, and BFDM systems.

2.1. MC Modulator and Demodulator. For an MC system with K subcarriers, symbol period T , and subcarrier
frequency spacing F , the equivalent baseband transmit signal is given by

s(t) =
∞∑

l=−∞

K−1∑

k=0

al,k gl,k(t) . (1)

Here, al,k denotes the data symbol at symbol time l ∈ Z and subcarrier k ∈ {0, . . . , K − 1}, and gl,k(t) is a
time-frequency (TF) shifted version of an elementary transmit pulse g(t):

gl,k(t) , g(t− lT ) ej2πkF (t−lT ). (2)

The set of functions {gl,k(t)}, (l, k) ∈ Z2 is known as a Weyl-Heisenberg (WH) function set.
At the receiver (demodulator), the inner products of the received signal r(t) with TF shifted versions γl,k(t) ,

γ(t−lT ) ej2πkF (t−lT ) of an elementary receive pulse γ(t) are computed:

xl,k , 〈r, γl,k〉 =
∫

t

r(t) γ∗l,k(t) dt . (3)

(Integrals are from −∞ to ∞.) In the theoretical case of an ideal channel, we have r(t) = s(t). Here, the
demodulated symbols xl,k equal the transmit symbols al,k iff the transmit pulse g(t) and the receive pulse γ(t)
satisfy the biorthogonality property

〈g, γl,k〉 = δl δk . (4)

For OFDM, in particular, we have γ(t) = g(t) and thus (4) reduces to the orthogonality property 〈g, gl,k〉 = δl δk.
A necessary condition for the biorthogonality property (4) is TF ≥ 1 [22]. However, TF is typically chosen

only slightly larger than 1 because the spectral efficiency (i.e., the data rate normalized by the transmit bandwidth)
is proportional to 1/(TF ). Practical CP-OFDM systems use TF = 1.03 . . . 1.25. On the other hand, larger values
of TF increase the freedom in designing pulses g(t) and γ(t) satisfying (4).

2.2. Channel. The wireless channel is modeled as a random linear time-varying system H with time-varying
impulse response h(t, τ) [20, 21]. The channel output (received signal) is thus given by

r(t) = (H s)(t) =
∫

τ

h(t, τ) s(t−τ) dτ . (5)

(We do not include an additive noise component because we are not interested in noise effects in this paper.)
The statistical description of the channel is greatly simplified by the wide-sense stationary uncorrelated scattering
(WSSUS) assumption [20, 21]

E {h(t, τ)h∗(t′, τ ′)} = RH(t− t′, τ) δ(τ − τ ′),



where E {·} is the expectation operator and RH(∆t, τ), the channel’s time-delay correlation function, describes
the second-order statistics of H. Alternatively, the scattering function defined as [20, 21]

CH(τ, ν) =
∫

∆t

RH(∆t, τ) e−j2πν∆t d∆t ,

describes the second-order statistics of H in terms of time delay τ and Doppler frequency shift ν. The integral
of CH(τ, ν) over the delay-Doppler plane, σ2

H =
∫

τ

∫
ν
CH(τ, ν) dτ dν, is known as the channel’s path gain. The

scattering function of wireless channels is effectively supported within a rectangular region R , [0, τmax] ×
[−νmax, νmax] of area 2τmaxνmax ¿ 1 [7, 21, 23].

2.3. Matrix Representation and Almost Diagonalization. The modulator (1), channel (5), and demodulator (3)
can be combined to obtain the following linear relation connecting the transmit symbols al,k and the demodulated
symbols xl,k [7]:

xl,k =
∞∑

l′=−∞

K−1∑

k′=0

Hl,k;l′,k′ al′,k′ , with Hl,k;l′,k′ , 〈H gl′,k′ , γl,k〉 . (6)

In this sum, the terms with (l′, k′) 6= (l, k) describe the “crosstalk” between different symbols (ISI and ICI). The
parameters of MC systems are usually chosen such that these ISI/ICI terms are negligible and thus (6) simplifies
to an “almost diagonal” relation:

xl,k ≈ hl,k al,k , with hl,k , Hl,k;l,k . (7)

This greatly simplifies the receiver because a simple scalar equalization can be used. It follows from (7) that the
transmit pulses gl,k(t) must be approximate eigenfunctions of the channel, i.e., (Hgl,k)(t) ≈ hl,k gl,k(t) [23, 24]
(together with (4), this implies (7)).

As will be shown in Section 5.1, the approximate input-output relation (7) requires the biorthogonal pulses g(t)
and γ(t) to be well TF concentrated. In Section 4, we will show that such pulses indeed exist.

3. Frame-Theoretic Computation of MC Pulses

We now commence our discussion of the construction of transmit pulses g(t) and receive pulses γ(t) with desirable
properties. First we show how the theory of WH (Gabor) frames can be applied to the computation of a receive
pulse γ(t) satisfying the biorthogonality relation (4) for a given transmit pulse g(t) [11, 15].

3.1. Some Mathematical Fundamentals. We first review some mathematical fundamentals concerning WH
Riesz sequences, WH frames, and a duality relation connecting them. Our subsequent development applies to
an infinite number of subcarriers (K = ∞); the results to be obtained can be expected to be meaningful if the
actual number of subcarriers is reasonably large.

Weyl-Heisenberg Riesz Sequences. Evidently, a necessary condition for successful data transmission is the
possibility to recover the transmit symbols al,k from the transmit signal s(t). Mathematically, this amounts to the
requirement that the WH function set

{
gl,k(t)

}
, (l, k) ∈ Z2 in (2) constitutes a Riesz sequence [22], i.e., there

exist constants A′, B′ > 0 such that

A′‖a‖2`2 ≤
∥∥∥∥

∑

l,k

al,k gl,k

∥∥∥∥
2

L2

≤ B′‖a‖2`2 , for all al,k ∈ `2(Z2) , (8)

with ‖a‖2`2 =
∑

l,k |al,k|2 and ‖s‖2L2 =
∫

t
|s(t)|2 dt. It can be shown [22] that a necessary condition for a

WH Riesz sequence is that the TF lattice constants T, F satisfy TF ≥ 1. If {gl,k(t)} is a WH Riesz sequence,
there exists a (nonunique) WH Riesz sequence {γl,k(t)} that satisfies the biorthogonality condition (4). Thus, the
transmit symbols al,k can be recovered according to (3) (assuming r(t) = s(t)).

If 〈g, gl,k〉 = δl δk holds in addition to (8), then the Riesz sequence {gl,k(t)} is an orthogonal sequence that
corresponds to a pulse-shaping OFDM (and not just BFDM) system.

Weyl-Heisenberg (Gabor) Frames. A WH function set
{
g̃l,k(t) = g(t − lT̃ ) ej2πkF̃ t

}
, (l, k) ∈ Z2 is called a

WH frame [22] if there exist constants A,B > 0 (known as frame bounds) such that

A‖x‖2L2
≤

∑

l,k

|〈x, g̃l,k〉|2 ≤ B‖x‖2L2
, for all x(t) ∈ L2(R) .

If
{
g̃l,k(t)

}
is a frame, any x(t) ∈ L2(R) can be stably recovered from the numbers 〈x, g̃l,k〉 by means of the frame

expansion x(t) =
∑

l,k〈x, g̃l,k〉 γ̃l,k(t). Here, γ̃l,k(t) is a dual WH frame that is based on a (generally nonunique)



dual pulse γ(t). A necessary condition for a WH frame is that the TF lattice constants T̃ , F̃ satisfy T̃ F̃ ≤ 1 [22].
A frame {g̃l,k(t)} is said to be tight if the frame bounds A, B are equal. For a tight frame, the dual pulse is a
multiple of the original pulse: γ(t) = T̃ F̃

A g(t).

Ron-Shen Duality. A fundamental relation of WH frames and WH Riesz sequences is formulated by the Ron-
Shen duality theorem [25, 26]. Let {gl,k(t)} and {γl,k(t)} be WH sets on the lattice (T, F ). Furthermore let
{g̃l,k(t)} and {γ̃l,k(t)} be the corresponding WH sets (using the same g(t) and γ(t)) on the adjoint lattice (T̃ , F̃ ) =
(1/F, 1/T ). Then

• {gl,k(t)} is a Riesz sequence iff {g̃l,k(t)} is a frame;
• {gl,k(t)} and {γl,k(t)} are biorthogonal Riesz sequences iff {g̃l,k(t)} and {γ̃l,k(t)} are dual frames;
• {gl,k(t)} is an orthogonal Riesz sequence iff {g̃l,k(t)} is a tight frame.

3.2. Application to Pulse Computation. The Ron-Shen duality relation allows us to reduce the computation of
pulses inducing (bi)orthogonal WH Riesz sequences to the computation of dual WH frames on the adjoint lattice,
for which frame-theoretic methods are available [11, 15, 22, 27]. First, we choose lattice constants T, F and a pulse
g(t) such that the WH set {g̃l,k(t)} with g̃l,k(t) = g(t− lT̃ ) ej2πkF̃ t on the adjoint lattice (T̃ , F̃ ) = (1/F, 1/T ) is
a WH frame (this requires TF ≥ 1). For the further procedure, two cases have to be distinguished:

• For a BFDM system, the transmit pulse is directly given by g(t), and the biorthogonal receive pulse with
minimum L2-norm is given by the canonical dual pulse γc(t) = TF (S̃−1g)(t), where the invertible frame
operator S̃ is defined by

(S̃x)(t) =
∑

l,k

〈x, g̃l,k〉 g̃l,k(t) .

• For an OFDM system, the transmit pulse and the receive pulse are both equal to g⊥(t) =
√

TF (S̃−1/2g)(t).
An efficient numerical implementation of this computation procedure can be based on conjugate gradient and

matrix factorization methods [27] as well as Zak transform methods [11, 15]. Alternatively, γc(t) can be com-
puted by inserting the expansion γc(t) =

∑
l,k cl,k gl,k(t) into the biorthogonality condition (4), whereby a linear

equation in the unknown coefficients cl,k is obtained [27].
For TF > 1, the biorthogonal receive pulse corresponding to a given transmit pulse g(t) is not unique. In

fact, all biorthogonal pulses are of the form γ(t) = γc(t) + ψ(t) where γc(t) = TF (S̃−1g)(t) is the canonical
biorthogonal pulse and ψ(t) is an arbitrary function in the orthogonal complement of the space G , span

{
gl,k(t)

}
[22]. The resulting freedom in designing a biorthogonal receive pulse for a given transmit pulse can be exploited
for pulse optimization, as discussed in Section 5.

4. Time-Frequency Concentration of MC Pulses

We have shown in the previous section how the canonical biorthogonal pulse γc(t) and the orthogonalized pulse
g⊥(t) can be constructed for a given transmit pulse g(t). In the MC context, pulses with good TF concentration are
desirable because, as we will see in Section 5.1, the ISI/ICI in the case of doubly dispersive channels is determined
by the joint TF concentration of g(t) and γ(t). More specifically, the ISI/ICI power depends on the cross-ambiguity
function (CAF) of γ(t) and g(t) that is defined as [22]

Aγ,g(τ, ν) ,
∫

t

γ(t) g∗(t− τ) e−j2πνtdt .

We will now use a recent mathematical result [19] to show that the canonical dual γc(t) and the orthogonalized
pulse g⊥(t) as defined in Section 3.2 inherit the TF localization properties of g(t). Let us say that a pulse g(t) is
polynomially localized of degree s ≥ 0 if

∫

τ

∫

ν

|Ag,g(τ, ν)|w(τ, ν) dτ dν < ∞ , (9)

with weight function w(τ, ν) , (1 + |τ/T0|+ |νT0|)s, where T0 > 0 is an arbitrary normalization time constant.
The polynomial localization condition implies that |Ag,g(τ, ν)| ≤ c/w(τ, ν) for some c > 0 and that all mo-
ments of Ag,g(τ, ν) up to order s are finite, i.e.,

∫
τ

∫
ν
|Ag,g(τ, ν)|

∣∣τ/T0

∣∣m|νT0|n dτ dν < ∞ for m + n ≤ s. A
stronger measure of TF localization is obtained by using in (9) the sub-exponential weight function w(τ, ν) =
exp

(
b(|τ/T0|+ |νT0|)β

)
with b > 0 and 0 < β < 1. We thus say that g(t) is sub-exponentially local-

ized if (9) holds with a sub-exponential weight w(τ, ν). The sub-exponential localization condition implies that
|Ag,g(τ, ν)| ≤ c e−b(|τ/T0|+|νT0|)β

for some c > 0 and that all moments of Ag,g(τ, ν) are finite.



The next result asserts the existence of transmit and receive pulses that simultaneously have excellent TF con-
centration properties.

Localization Theorem. Let {g̃l,k(t) = g(t − l/F ) ej2πkt/T
}

, (l, k) ∈ Z2 with TF ≥ 1 be a
WH frame. Then, if g(t) is polynomially localized of degree s (sub-exponentially localized),
the canonical biorthogonal pulse γc(t) = TF (S̃−1g)(t) and the orthogonalized pulse g⊥(t) =√

TF (S̃−1/2g)(t) are also polynomially localized of degree s (sub-exponentially localized), and
furthermore the CAF of γc(t), g(t) satisfies∫

τ

∫

ν

|Aγc,g(τ, ν)|w(τ, ν) dτ dν < ∞ ,

where w(τ, ν) is the appropriate polynomial (sub-exponential) weight function.

The proof of this theorem is an application of the results derived in [19] in combination with Ron-Shen duality
theory. The theorem agrees well with previous empirical observations [11].

5. Optimization of MC Pulses

In this section, we present methods for an optimization of the transmit and receive pulses. The optimality criterion
is minimum ISI/ICI under the assumption of a WSSUS channel with given second-order statistics (scattering
function CH(τ, ν), cf. Section 2.2). We first present an expression for the mean ISI/ICI power which shows that
for low ISI/ICI, an MC system should use pulses that are jointly well localized in time and frequency.

5.1. Mean ISI/ICI Power. The mean ISI/ICI power is defined as the mean-square error of the approximation
(7), i.e., σ2

I , E
{ |xl,k − hl,k al,k|2

}
, whereas the mean power of the desired component hl,k al,k is defined as

σ2
D , E

{ |hl,k al,k|2
}

. Note that σ2
I and σ2

D do not depend on l and k since the channel is assumed WSSUS. In
what follows, we consider a pulse-shaping MC system with an infinite number of subcarriers. We also assume
that the (random) data symbols al,k are independent and identically distributed (i.i.d.) with zero mean and mean
power E

{|al,k|2
}

= σ2
a. One can then show (cf. [7] and, for the special case of a CP-OFDM system, also [28])

the following expression for the mean ISI/ICI power:

σ2
I = σ2

a

∫

τ

∫

ν

QH(τ, ν) |Aγ,g(τ, ν)|2 dτ dν . (10)

Here,
QH(τ, ν) ,

∑

(l,k)6=(0,0)

CH(τ−lT, ν−kF )

is a periodized version of the scattering function CH(τ, ν) with the term at the origin ((l, k) = (0, 0)) suppressed.
Similarly, the mean power of the desired component can be expressed as

σ2
D = σ2

a

∫

τ

∫

ν

CH(τ, ν) |Aγ,g(τ, ν)|2 dτ dν . (11)

According to (10), σ2
I will be small if Aγ,g(τ, ν) has small overlap with QH(τ, ν). Such a behavior is favored

by a good TF concentration of both g(t) and γ(t), by a small support region R of CH(τ, ν) (i.e., the channel is
only weakly dispersive), and by large lattice constants T and F . Unfortunately, the channel dispersion is beyond
the control of the designer and large T and F entails poor spectral efficiency. Therefore, it remains to design
pulses g(t) and γ(t) that are jointly well TF concentrated in the sense of quick decay of their CAF Aγ,g(τ, ν).
Our localization theorem in Section 4 proves the existence of such well-localized pulse pairs: for a given transmit
pulse g(t) with polynomial (sub-exponential) TF localization, the canonical biorthogonal receive pulse γc(t) also
has polynomial (sub-exponential) TF localization and Aγc,g(τ, ν) exhibits fast decay. However, for TF > 1 there
are an infinite number of other biorthogonal receive pulses besides the canonical one. Therefore, we next propose
a pulse optimization procedure that exploits this design freedom to improve on the canonical biorthogonal receive
pulse in terms of ISI/ICI.

5.2. Optimization of Biorthogonal Receive Pulse. We assume that we are given a transmit pulse g(0)(t) and
calculate the receive pulse γ(t) minimizing the ISI/ICI power σ2

I subject to the biorthogonality condition (4). Any
receive pulse biorthogonal to g(0)(t) can be written as [22]

γ(t) = γc(t) + ψ(t) , (12)

where γc(t) is the canonical biorthogonal pulse and ψ(t) is an arbitrary function in G⊥, the orthogonal complement
space of G = span

{
g
(0)
l,k (t)

}
. We can express ψ(t) in terms of an orthonormal basis {ui(t)} of G⊥ as ψ(t) =



∑
i ci ui(t), with ci = 〈ψ, ui〉. Using (12), the minimization of σ2

I with respect to γ(t) under the biorthogonality
constraint (4) can be formulated as an unconstrained minimization with respect to the expansion coefficients ci.

Inserting (12) into (10), we obtain an expression of σ2
I in terms of the coefficients ci. It is then straightforward

to show that the ci’s minimizing σ2
I are the solution to the linear equation

Bc = −b ,

where [c]i = ci and

[B]i,j =
∫

τ

∫

ν

QH(τ, ν)A∗ui,g(0)(τ, ν)Auj ,g(0)(τ, ν) dτ dν ,

[b]i =
∫

τ

∫

ν

QH(τ, ν)A∗ui,g(0)(τ, ν)Aγ(0),g(0)(τ, ν) dτ dν .

Therefore, the biorthogonal receive pulse minimizing the ISI/ICI power σ2
I is obtained as

γopt(t) = γc(t) +
∑

i

copt
i ui(t) with copt = −B−1b . (13)

In practical digital implementations, the matrix B and the vectors b and c are finite-dimensional.
This design method presupposes knowledge of the channel’s second-order statistics (scattering function CH(τ, ν)).

If CH(τ, ν) is unknown or if a common pulse for a broad range of channel statistics is desired, one may use by
default the brick-shaped scattering function

CH(τ, ν) =

{
σ2
H

2τmaxνmax
, (τ, ν) ∈ R = [0, τmax]× [−νmax, νmax]

0 , (τ, ν) 6∈ R ,
(14)

with a suitable (worst-case) choice of τmax and νmax.
We note that a similar method can be used to optimize the transmit pulse g(t) for a prescribed receive pulse

γ(0)(t).

5.3. Joint Optimization of Transmit and Receive Pulses. With the linear optimization method discussed above,
one of the two pulses must be chosen beforehand and is not optimized. A further reduction of ISI/ICI may be
achieved by a joint optimization of the transmit pulse g(t) and receive pulse γ(t). As a cost function, we use the
reciprocal of the signal-to-interference ratio (SIR) σ2

D

/
σ2

I ,

J(g, γ) , σ2
I

σ2
D

=

∫
τ

∫
ν
QH(τ, ν) |Aγ,g(τ, ν)|2 dτ dν∫

τ

∫
ν
CH(τ, ν) |Aγ,g(τ, ν)|2 dτ dν

(15)

(cf. (10), (11)). For the sake of increased design freedom and, thus, lower ISI/ICI power, we perform the mini-
mization of J(g, γ) with respect to g(t) and γ(t) without the biorthogonality constraint (4). This means that some
residual ISI/ICI will be obtained for an ideal (nondispersive) channel. Such a channel rarely occurs in practice,
however. Besides, in our simulations we observed that the jointly optimized pulses tend to be almost biorthogonal
(in fact, almost orthogonal).

To minimize the nonquadratic cost function J(g, γ), numerical techniques can be used. The resulting pulses
typically correspond to a local minimum of J(g, γ) that depends on the initialization of the minimization procedure.

6. Numerical Results

We show some numerical results to demonstrate the performance of our pulse optimization techniques. We first
designed an MC system, denoted SI, using the linear optimization method of Section 5.2. The transmit pulse
g(0)(t) was chosen as a truncated orthogonalized version of a Gaussian pulse for which the ratio of its root-mean-
square (RMS) duration and RMS bandwidth was equal to T/F (cf. [7, 17]). The optimal biorthogonal receive
pulse γopt(t) was determined according to (13). Furthermore, we designed another MC system SII using the
nonlinear optimization of Section 5.3. Here, the truncated orthogonalized Gaussian pulse served to initialize
both the transmit pulse and the receive pulse in the numerical optimization procedure (we used the unconstrained
minimization function fminunc from MATLAB’s optimization toolbox [29]). We compared our two optimized
designs with a conventional state-of-the-art CP-OFDM system (denoted Scp). As a measure of performance, we
used the SIR, i.e., the reciprocal of J(g, γ) = σ2

I /σ2
D in (15).

The system parameters were chosen similar to parameters defined by the terrestrial digital video broadcast-
ing (DVB-T) standard [30]: carrier frequency 800 MHz, subcarrier separation F = 2 kHz, and symbol period
T = 562.5 µs. We thus have TF = 1.125, which corresponds to a redundancy of 12.5%. For the CP-OFDM



system, this results in a CP length of Tcp = 62.5 µs. The random time-varying wireless channel was simu-
lated based on the WSSUS assumption, using the brick-shaped scattering function (14) with maximum delay
τmax ∈ {20.83 µs, 31.25 µs, 62.5 µs, 83.33 µs} and maximum Doppler νmax ∈ {37 Hz, 74 Hz, 111 Hz, 148 Hz}.
We note that maximum delay τmax = 83.33 µs corresponds to a maximum propagation path length of 25 km, and
maximum Doppler νmax = 148 Hz corresponds to a relative velocity of 200 km/h. Such path lengths and velocities
may occur e.g. in single-frequency DVB-T networks providing digital video in high-speed trains.
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Figure 1. SIR versus normalized maximum Doppler frequency obtained with Scp (dashed line),
SI (dash-dotted line), and SII (solid line) for (a) τmax/(2T ) = 2%, (b) τmax/(2T ) = 4%, (c)
τmax/(2T ) = 6%, (d) τmax/(2T ) = 8%.

Fig. 1 shows the SIR obtained with the three MC systems Scp, SI, and SII as a function of the normalized
maximum Doppler frequency νmax/F for four different normalized maximum delays τmax/T (we note that the
optimization of the MC pulses was redone for each set of channel parameters τmax, νmax). It is seen that the SIR of
all systems decreases—or, equivalently, the ISI/ICI increases—for increasing τmax and νmax, except for the system
Scp whose SIR is independent of τmax as long as τmax does not surpass the CP length Tcp. It can furthermore be
seen that our optimized pulse-shaping MC systems SI and SII outperform the CP-OFDM system Scp for a broad
range of channel parameters, especially for channels with large νmax and small-to-medium τmax (see Fig. 1(a) and
(b)) as well as for channels with τmax > Tcp (see Fig. 1(d)). In particular, Scp is (slightly) superior to SII only for
channels with τmax slightly below Tcp and small νmax.
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Figure 2. Pulse shape (top) and Fourier transform magnitude (bottom, in dB) of transmit pulses
obtained with joint nonlinear optimization for (τmax,νmax) equal to (a) (20.83 µs, 148 Hz), (b)
(62.5 µs, 111 Hz), and (c) (83.33 µs, 37 Hz).

Fig. 2 shows the transmit pulse of system SII (i.e., the result of our nonlinear numerical optimization) for three
different sets of channel parameters, namely, for (τmax, νmax) equal to (20.83 µs, 148 Hz), (62.5 µs, 111 Hz), and
(83.33 µs, 37 Hz). It can be seen that the pulse tends to be more concentrated in frequency when νmax is larger.
This makes sense because a better frequency concentration means that the (large) Doppler shifts do not result in
excessive ICI. On the other hand, for large τmax the pulse is better concentrated in time, which again makes sense
since it means that the (large) delay spread does not result in excessive ISI.



7. Conclusion

For wireless communications over fast varying channels, pulse-shaping multicarrier (MC) techniques have im-
portant advantages over conventional MC transmission using CP-OFDM, because pulse shaping avoids the poor
spectral concentration of the rectangular pulse employed by CP-OFDM. To leverage these advantages—most no-
tably reduced intersymbol/intercarrier interference (ISI/ICI)—, it is necessary to design the transmit and receive
pulses in accordance with the statistical properties of the wireless channel.

We applied frame theory and related mathematical models and results to the analysis and design of pulse-
shaping MC systems transmitting over doubly dispersive fading channels. We demonstrated that for low ISI/ICI,
the transmit and receive pulses should be jointly well localized both in time and frequency. The existence of such
jointly localized pulse pairs was proven by adapting recent mathematical results on Weyl-Heisenberg frames to the
MC context. This adaptation was based on the Ron-Shen duality of Weyl-Heisenberg frames and Weyl-Heisenberg
Riesz sequences.

We furthermore proposed two pulse optimization techniques that minimize the ISI/ICI power for given channel
statistics. One technique assumes one of the two pulses to be given and optimizes the respective other pulse,
while the other technique performs a joint optimization of both pulses. Simulation results demonstrated that pulse-
shaping MC systems using the optimized pulses can significantly outperform conventional CP-OFDM systems for
realistic spectral efficiencies and channel parameters. Further advantages of the optimized pulses (not discussed
here) include their reduced out-of-band energy, which allows a larger number of subcarriers to be used for a
prescribed spectral mask, and improved robustness to frequency offsets (which act like an additional Doppler
shift) and to large channel delays (which in CP-OFDM systems would require time-domain equalizers).
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