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1. Introduction

Games get more interesting if they are repeated over and over again. Children know
this, and so do game theorists. A prime example is the Prisoner’s Dilemma. Since
‘Defect’ dominates ‘Cooperate’, there is, as has been said, not properly any dilemma in
this game. But if it is repeated an unknown number of times, cooperation becomes a
promising option.

In Axelrod’s computer tournaments (Axelrod, 1984), Tit For Tat (cooperate in the
first round, and then do whatever the other did last) scored extremely well. This
success encouraged biologists to try and explain the evolution of cooperation in
natural populations by reciprocal interactions based on repeated encounters (Axelrod
and Hamilton, 1981; Axelrod, 1987; Wilkinson, 1984; May, 1987; Milinski, 1987). This
motivates the study of reactive strategies {where the decision in each round depends
on the opponent’s behaviour in the previous round). Since biological interactions, in
contrast to interactions belween computer programs, teem with uncertainties, the
reactions will not be clear cut, in general, but rather stochastic: an increase or decrease
in the probability to cooperate.

In an error-prone world, Tit For Tat loses much of its lustre, since a single mistake
between two Tit For Tat players leads to a sequence of mutual recriminations which
can only be broken by a further mistake. A certain level of generosity (e a tendency
to cooperate even after a defection by the opponent) is much more appropriate. We
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For the Prisoner’s Dilemma, we have Gy > 0 > G,, while G, can have any sign. The
function f(r) has a zero at (P — S)AT— P)in (0, 1) T 2P < § 4+ T In this case (which
always holds if G, < 0) the strategies (p, 0) with (P — SH(T— P) < p < | belong to the
C-region. So do (in every case) the strategies (1. ) with<g<1—(T— R)(R =5
The unconditional strategies do not belong to the C-region (see Figure 2).

We briefly sketch how to determine the set of all strategies E" which can invade a
population of E-strategists in the sense that A(E', E) > A(E, E) (Nowak, 1990). With
¢ = dE,E)and s = ¢E, E) one obtains

AlE', E) — A(E, E)
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Fig. 3 The Prisoner’s Dilemma with G, < 0 (the numerical values are the same as for (a) in Fig. 2). The
hatched region corresponds to the strategies which can invide E (represented by the dot). In (). (b}, fc) and
id) four different positions of E are shown, In the four cases E lics on the same line through (1, 0), and the C-
level 5 of E against itsell (see Eq. (4)) is therefore the same.
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which vanishes for ¢’ = 5 and (if Gr = 0) for

; 4 G + Gyr

= fm — ;l.l-:-;i - '"*Glr !IT'
Onchass=5ifg=/f{r) 5=0if
q = folr):= (1 + r)fir) (18)

and 3= 1iff
g = filr):= folr) — rl —r).

For the Prisoner’s Dilemma, the curves given by f; and [ intersect in ¢ =0,
p=(P—8)(T— P) (provided 2P < § + T) and those given by f, and f in p=1,
g =1—(T— R)(R — S). The points in the strategy space satisfying g = f,(r) are in the
C-region if G, = 0 and in the D-region if G, < 0. For g = f,(r) the opposite holds. If
r # 0, the strategies E' with ¢’ between s and 5 can invade if G, < 0 (see Figure 3) those
in the complement can invade if G, > 0.

Let us consider G; <0 and choose a value § > 0 such that there is a unique
equilibrium (p, §) in the interior of the state space. Let us assume that § is
evolutionarily fixed in some way or other and that variation can only occur in p. Then
A(p. p) < A(p, p) for all p # p, so that p is a strict Nash equilibrium and, in particular,
an evolutionarily stable strategy: no ‘mutant’ p-value can invade., However, it is
difficult to see how p can become established in the first place. Indeed, as can casily be
seen from Figure 3, we have for any p # p that A(p, p) < A(p, p) so that the p values
cannot invade a homogeneous p-population. The adaptive dynamics — which now
reduces to the p-component of (16) - always points away from the ESS-value p. In this
sense an evolutionarily stable strategy can be inaccessible.

We note that the strategies E with A{AlID, E) = A(E, E)are those with g = f,(r) (and
AlID itself). The strategies with A(4lIC, E) = A(E, E) are those with ¢ = f,(r) (and AlIC
itself).

If we assume some minimal noise-level, so that the strategy space reduces to ¢ < p,
g = 1 —& then there is a tendency, within the C-region, to approach p=1—g
g=f(l —&—gq) ie

p~1, g~1—-— (20)

in the sense that every small deviation decreasing neither p nor g will succeed.
However, if G, > 0, a population evolving towards the limit given by (20) will leave
the south-east corner of the strategy space which is bounded by ¢ = f,(r), and then
AND can invade. By looking only at the dynamics given by (16) one does not notice the
important role of the sign of G,.

In a population belonging to the C-region, AND can only appear through a large
mutational jump. The gradient approach is myopic in the sense that it evaluates only
those fluctuations which are close to the established strategy.
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In an interesting paper, Molander (1985) has shown that for a small noise level &,
the strategy with

T—-R R-P
| e

S H PRI I Ot 99 o IR
? g [ Rad TP
maximizes the payoff of the population, subject to being invasion-proofl against
defectors using strategies with g = 0. The sign of G, determines for which value the
minimum in (21) is attained. Our approach takes into account a larger class than the

{ p, D)-strategies.
THEOREM. Let us assume that ¢ < p. g < | — & Then the strategy with
p=1—¢ g=min[f(l —&—qh foll —&—4q)] (22)

maximizes the pavofl of the population, subject to being incasion-proof under selection
against defectors using any strategy with a smaller p- or g-value.

Of course (22) converges for ¢ — 0 to the limiting value (21).

5. The Special Case of Equal Gains from Switching

We now turn to the case w < 1, where the initial probability y plays a role. For the
sake of simplicity, we first consider the special case where the gain T— R obtained by
switching from € to D against a C-opponent is the same as the gain P — S againsta D-
opponent. This special case G, = 0 holds for example for the Prisoner’s Dilemma with
T=4 R=13 P=2 §=1 as considered by Smale (1980), or for the numerical
simulations in Miiller (1987) and in Boyd (1988). It also holds for zero sum games,
where R=P=0and §= -T
The dynamics (15) is now supplemented by the equation

0 A
== (E, E), (23)
ay
where the right-hand side is evaluated at E = E'.

THEOREM. The adaptive dynamics for w < 1 and G, = 0 is given by

W I& W e
= h = i — . g=id — 1= -}, 24
b=d 4 dl—wl—-wr : I—w( l—wr) (24)
where
Gaw
d=dir)= Gll j“,:':.‘:r. e={(l = wly+ wg. (25)

Since 0 < ¢ < 1 — wr, the components of the dynamics all have the same sign, given
by G, + Gywr. Again we can speak of a € -region (where all the parameters y, p, ¢ tend
{0 increase) and a D-region. They are separated by a plane parallel to the plane p = g.
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We note that

Y _y—p—g=0 (26)
l—w
and
1N,
yjr+(p—;)p+w=ﬂ &9

so that the vector defined by (24) at E = (y, p, g) lies in the plane orthogonal to (1 — w,
—w, —w) and is tangent to the sphere with center (0, 1/w, 0) through E.

For fixed E, the set of strategies having a given payofl A(E’, E) lies on a plane. In
particular, the set of strategies E' with A(E', E) = A(E, E) is the intersection of the
strategy space with the plane through E which is orthogonal to (§, p, ). We know that
this plane contains (0, 1/w, 0) and is parallel to (1 —w, —w, —w). Hence

THEOREM. The strategies E° which can invade E =(y,p.q) in the sense that
AlE' E) = A|E, E) are those in the open half-space into which (24) is pointing.

One can verify that
d
A(ANID, E) — A(E, E) = — A (1 + wrle
and
: d
AANC, E) — A(E, E) =I—w{l + wrlil — wr — e},

This implies the following theorem.

THEOREM. Far the vector field given by (24), one has
1

i - W B
¥ =737 [AAIIC, E) — A(AlID, E)),

e L . B

F - I — “-'zrz [A‘E. E] A"I"‘;ID. E]]. {23}
p o W B

§ =77 LAAIC, E) — A(E, E)].

In the case of the Prisoner’s Dilemma with equal gains from switching, the C-region is
nonempty iff w = (P — 85){T— P). (For this to be possible we need 2P < S+ T). In
this case the C-region is a prism, one edge of which consists of the reciprocal strategies
(y. 1,0)

If there exists a minimal noise-level =, the same reasoning as in the last section yields
the following theorem.
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THEOREM. If we assume that ¢ < p. ¢ < | — ¢ then the strategy given by
1l P-5
=p=1]1-= =} —Ef—— Z
p=y=1-& gq=l-s-—F—7 29)

maximizes the payoff of the population, subject to being uninvadable by any defectors
using smaller p-, g- or y-values. (If the value q in (29) is negative, there exists no strategy
uninvadable by defectors).

6. The General Case

Due to the complicated form of Iy, the general case G, # 0 leads to some rather
tedious computations, One gets for the adaptive dynamics

jy=d—gly—wrly—q)
1 —w, ¢ aF

w L—wr (1 —wrkl —wr?)’ (31)

: :.'w g4 [I 1 ju‘r} i (- wrﬂ]{}; —wrl) glaly) — wriy — gl]
with d as in (25), ¢ as in (13},

_G‘!

Il —wr)
and

F = yir(1 — wil — wr)® + ygll — wi{1 + wr® — 2wir)+

+wg(l + r— wr* = wird),
For G, = 0 we are back to (25). We see directly that (31) leads to
S - =glay) — ] (32)

| —w

which has the sign of G,(y — s), where s is the stationary C-level in the population

given by (3)
We will consider first the evolution of the initial probability y only, for fixed p and g.

From (31) we obtain

=o[; ]
y=g|-—Wl—wr)j—wrq|
4

an expression which vanishes for

i
y=0-wn)" (& - wn;). (33)
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Let us denote by ¥ = {r, g) a truncated form of this, given by

F=(l—wr"! (‘—! - qu) if this value is in (0, 1),
q

=1 ifitis larger than 1,
=0 if it is smaller than 0.

Since the payoff A(y, y) as given by (12) is linear in y and ', we can write it—up
to a constant — in the form of an Euclidean inner product ¥+ Ay’ with y = (1 — ». y)
¥ =(1-y,y)and

_ (A{ﬂ. 0 A0, n)

AL, 0) AL 1)
A direct computation shows that A(1,0) — A(0,0) = d — gwrg and A0, 1) — A(L, 1)
= gil + wrq — wr) — d. These expressions sum up to g(1 — wr). It follows that
A(1, 0) — A(0, 0) 1 (g_ - )
[A(1, 0) = A(0, 0)] + [A(©O, 1) — A(L, )] (1 —wr) \g g

If 7e(0, 1), this implies that it corresponds to an equilibrium: A(D, §) = A(l, )
{=A(y, ¥ for all ye[0, 1]). Hence

THEOREM. For fixed p and g, ¥ corresponds to a strict Nash equilibrium if G, < 0.
If G, =0, the boundary points of [0,1] which are distinct from ¥ are strict Nash
equilibria.

In the (p, g)-square, the region with ¥ = 0 is bounded by the curve g = (gwr) ™ 'd. This
curve has the point P, (p=(P—S)[W{T—P)] ', 4=0) in common with the curve
q = v. Similarly the region j = 1 is bounded by the curve ¢ = (wr) ™ "({d/g) — 1 + wr),
which has the point Py(p=1, g=1—{T— RI[W{R—5)] ') in common with the curve
¥ = p. Finally, the curve ¥ = s also contains the point P, and P, (always assuming that
these points belong to the strategy space).

We have seen that for w = |, the signs of p and § agree; similarly, if w < 1 but
G, = 0, the signs of 7, p and § agree. In general, this is not the case however. The
surfaces i = 0. p = 0 and § = 0 do not coincide. On the other hand, they are not ‘in
general position’ (i.e. transversal) either.

THEOREM. The equilibria of (31} in the (v, p, q}-space form a line which is given by the
intersection of the surfaces y = s and y = 3.
Indeed, if jf = p = § = Othen (trivially) y = y and (by (32)) ¥ = =(y) which is equivalent
to y = 5. Conversely, if y = s, then j, p and § are positive multiples of d — gs(1 — wr?),
which implies the theorem.

We note in passing that for Ee |y = s} one has

AE, B) = 1= (Gys + Gy + Gy)
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and that the equality A(AlID, E) = A(E, E) holds if and only if s = — Gy WGy + Gawr),
e

g=1 —r}{f{—l-l- wr)

g (1 — wr?) (34)

which means that E is an equilibrium. In the (p, g)-space, both the curve (34) and the
curve g = v converge for w— 1 to ¢ = fy(r) (where [, is given by (18)). In this sense,
g = 7 bounds the region where AllD can invade a stationary strategy. Similarly,p =¥
converges to ¢ = f,(r) and bounds the region where AlIC can invade a stationary

strategy.
One can also check that for w1 1, the surfaces p = 0 and § = 0 both converge to the

vertical face defined by g=/f(r) and ye[0,1], while j=0 converges to
y=(1=7r"'[l+rflr)—grl.

THEOREM. For the Prisoner's Dilemma, the faces p = 0 and § = 0 do not intersect
transversally.

It follows that the faces only touch tangentially.

Indeed, it is easy to see that p=0 or §=0 can hold only if r=0, as we shall now
assume. One then writes p=G,U and §=G(V-U) with U = Ay* + Byg+
Cq* + Dy + Eq and V= Fy + Gg + H, the coefficients A to H being given by (31):

A=r(l1—wil —wr), B = (1 —wKl + wr® = 2w?rd),

C=wl +r—wr? —wirl), D=l —wil - M‘rz}(—g),
2 d 2
E=wl—wr }(—a), F=rl—=wlil —wril —wr’),

G = (1 —wrl1 + wrll — wr?), H={1—wr]l[1—wr1](~—-g).

One notes that A, B, C, F, G > 0 while p =0 or § = 0 implies d/g <0, i.e. D, E,
H < 0. For fixed y, U is quadratic in ¢ and convex, while V' is affine linear and
increasing. If U(g) = 0 then V(g) < 0. Indeed, Ulg) = 0 means

qg=1(2C)" " —(By + E) £ [(By + E)* —4CyAy + D)3}
One has to show that ¥ig) < 0, i.e. that
G[(By + E)* = 4CyAy + D)]'? < G(By + E) — 2C(Fy + H). (35)

We check first that the term on the right-hand side is positive, since the coefficient of y

15

GB — 2CF = (1 — w1 — wr)*(l — wr)?
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and the remaining term is
d 2 ) 3
—w{l = wr)H (1l —wrll + 2r + wr) 2 0
q

Next, the expression
[G(By + E) — 2C(Fy + H)]* — G*[(By + E)* — 4Cy{(Ay + D]
is just
d 2
wr(l — w1 — wr)*(1l — wr?)2 I:_}{I - wrl) — ;:I

which is nonnegative {and 0 iff y = d/(g(1 — wr?)), which is just §{ p, g) for this value of
gq). Thus (35) holds.

Hence p = 0 implies G,§ < 0, which shows that p = 0 and § = 0 cannot intersect
transversally.

We conjecture that more is true: for all reactive games

{a) if G,r < 0 then p > 0 implies § > 0,
{b) if G,r > O then § > 0 implies p > 0.

The condition G, < 0 means that by a ‘reform’ (i.. switching from D to C) one gains
more against a C-opponent than against a D-opponent, and the condition r > 0
means that such a reform increases the frequency of ulterior C’s. The implication in
statement (a) means that if it pays to be more grateful, it pays to be also more
forgiving.

It is easy to check that with r = 0, i.e. for unconditional strategies,

l —w

l —w
35 p=elG, + Gyg) and = q=1(1—elG;: + G,q)
have always the same sign, so that p = 0iff§ = 0iffp = ¢ = —(G,/G,). This value s in
{0, 1) for the Chicken game, but for the Prisoner’s Dilemma, it is always negative.

7. Discussion

In this paper, we have dealt mostly with the evolution of homegeneous populations. In
Nowak and Sigmund (19894, b) it is shown that heterogeneous populations consisting
of three or four subtypes can already exhibit a remarkable variety of selection
dynamics, including limit cycles and heteroclinic cycles. It seems difficult to decide
how general these examples are, and to go beyond numerical simulations. Computer
experiments tend to suggest that heterogeneous populations end up in more or less
stationary distributions smeared out along arcs of the line of equilibria of (29), or
clustering near AlD,

The fact that homogeneous populations do not evolve towards TFT is not
surprising. Tit for Tat fares never better than its opponent (and sometimes a bit
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worse). Its success in Axelrod’s tournaments is due to the composite structure of the
*population’ of contestants, which frequently harmed each other while settling into a
cooperative mode with TFT. The fact that in a heterogeneous population of reactive
(v, p. q)-strategies, TFT does not emerge as winner, could possibly mean that these
reactive strategies form an ensemble which too narrow to be representative.

Apart from computer simulations, there are few treatments of the heterogenous
case. The importance of composite populations emerges from Boyd and Lorberbaum
(1987) where it is shown that every pure strategy can be invaded by the joint effect of
two deviating strategies, if w is sufficiently large (see also May, 1987). This does not
imply, as Boyd and Lorberbaum claim, that pure strategies are not evolutionary
stable, which means proof against invasion by any one deviant strategy.

There are several papers dealing with the iterated Prisoner’s Dilemma in a noisy
environment. Axelrod (1986) has shown that with an error rate of 1%, TFT still
finishes first in the tournament, while Donninger (1986) showed that with 10%, it
finishes sixth. Actually noise hurts TFT mostly in conflicts against itself, so that the
variegated composition of the tournament does not really display the most obvious
weakness of TFT which is its echoing effect. Axelrod has suggested that a strategy
which is sometimes generous leads to a better performance. The results in Molander
(1985) and in our paper confirm this.

An essential notion for games with uncertainties is the concept of perfect
equilibrium (Selten, 1975), Boyd (1989) has shown that if the probability of a mistake
is always positive, then a pure strategy which is a strong perfect equilibrium against
itself is evolutionarily stable. Boyd has shown that AllD is a strong perfect equilibrium
against itself, and claims the same for contrite Tit for Tat, where players cooperate if
they are not in good standing or if the opponent is in good standing, and otherwise
defect, (One starts in good standing, remains in good standing as long as one follows
this strategy, and returns to good standing by cooperating in one round.) This allows
to apologize for a mistake. However, if one of two contrite TFT-players mistakenly
believes to be in good standing, this leads again to endless recriminations. Hence,
Boyd's argument is valid if there are no errors in perception but only in im-
plementation, i.e. if the occasional mistake is due to a ‘trembling hand’, but not if it is
due to a fuzzy mind’.

Contrite Tit for Tat has to take into account more than just the last move by the
adversary and hence is not reactive in our sense. Another class of strategies with a
longer memory are the CC-strategies (cooperate conditionally) studied by Miller
{1987). Such strategies are determined by two parameters, the probability to retaliate
after an opponents defection, and the ‘relaxation time’ of the retaliation. An extreme
example is GRIM, a strategy which always defects after the first defection of the
adversary and never cooperates again. Miller has shown that in 4 noisy environment,
this is the CC-strategy best suited to invade an AlD population. After such an
invasion, the level of forgiveness can be raised (it would be interesting to know by how
much, in term of the two parameters). But if ANC becomes too frequent, AID can take
OVET again.
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shall see that in the presence of ‘noise’, it is best to forget sometimes (not always!) a bad
turn but never a good one.

There are other repeated biological games, besides the Prisoner’s Dilemma. We
mention ‘Hawk-Dove’ (called *Chicken’ by classical game theorists) where the options
are to escalate the conflict or not. If the expected gain is less than the cost of losing an
escalated contest, neither ‘Hawk'- nor ‘Dove’-strategy dominates and some mixture is
evolutionarily stable. Again, it is plausible that the two opponents meet repeatedly
and react to cach other’s behaviour in the last round.

Other plausible assumptions would be: (a) that a larger part of the past than just the
last round should be taken into account: (b) that the history of one’s own decisions
should be included: (c) that the possibilities to increase and decrease the chance of
future encounters, and to learn during the game, should be allowed (Axelrod, 1984;
Feldman and Thomas, 1987). All these aspects will be omitted here: our players are
pretty dumb.

This is acceptable in a ‘game theory without rationality’ (the expression is from
Rapaport) which aims at modelling the evolution of biological populations. We are
not interested in finding strategies which optimize the benefit of the group, or best
replies against a given behaviour, but rather in the directional change favoured by
selection. If an individual with a deviant strategy does better than the rest, it is likely
that more and more individuals will adopt this strategy. This can occur in several
ways, through imitation or learning or - if the strategy is a hereditary trait, and the
payoff reproductive success — through natural selection. What we will model is an
essentially homogeneous population sprinkled with a few “mutants’ using strategies
which differ only slightly from the original one. The population then moves into the
direction which is most promising. Of course, this is rather a caricature of an
evolutionary process. In particular, the assumptions that the population remains
homogeneous and that only small deviations are taken into account are debatable.
We will return to this in the discussion, but mention now that computer simulations
based on less restrictive evolutionary mechanisms agree quite well with these
simplifications.

The (already) classical ESS-theory is also based on the assumption of a homo-
geneous population. In particular, a strategy is said to be evolutionarily stable(i.e. an
ESS) if an infinite homogeneous population adopting it cannot be invaded by mutants
under the action of natural selection (Maynard Smith, 1982). This explains how such a
strategy is able to hold itself, but not how it can get established. We will see that this
can be quite a problem. An ESS need not be attainable: every other homogeneous
population can be proof against invasion by the mutant using this ESS. Such an ESS
is then a Garden of Eden configuration, in the sense that it is not the outcome of a
sequence of adaptations. The adaptive dynamics that we are proposing casts an
interesting light on this phenomenon, which has first been noted -in another
context — by Eshel and Motro (1981).

In Section 2, we deal with reactive strategies and their stationary outcomes, and in
Section 3, with the payoff function. In Section 4, the important limiting case of
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probability one for the next round is investigated. In this case, where the invadability
of a homogeneous population is well understood, we introduce and analyse the
adaptive dynamics which describes the optimal directional change. In Section 5,
another special case is studied, where the expected gain for switching from one type of
move to the other does not depend on the adversary's move. In Section 6, the adaptive
dynamics for the general case is investigated. In particular, it is shown that in the two
special cases, whenever it pays to increase gratitude (i.e. readiness to cooperate aftera
cooperation by the adversary), it also pays to increase forgiveness (the readiness to
cooperate after a defection by the adversary), and vice versa. In the general case, one
direction still holds, but not always its converse.

2. Reactive Strategies and C-Levels

We shall consider games with two strategies € and D and assume that there exists a
constant probability we ]0, 1] to repeat the game. The reactive strategies to which we
limit our attention will be determined by triples (3, p. g) &[0, 1]°, where y is the
probability to play C in the first round, while p and g are the conditional probabilities
to play C after an opponent’s C (resp. D) in the previous round (Nowak and Sigmund
19894, b).

Strategies where r:= p — ¢ vanishes, are said to be unconditional. They do not
properly depend on the adversary’s move. A strategy withr =1 (ie.p=1,g=10)is
said to be reciprocal, while it is said to be paradoxical ifr = —1{ic.p=0,q9=1). Tit
For Tat and Suspicious Tit For Tar are reciprocal (with y = 1, resp. y = 0). Such
strategies are not stochastic. Neither are AlD (y=p=¢g=0) and AlC
(y=p=gq=1). Since we are mostly interested in noisy interactions (caused, for
example, by uncertainties in the perception of the opponent’s move or identity, or by
the lacking control over one’s own actions), we shall usually consider only strategies
with [r] = 1. The special cases of reciprocal or paradoxical strategies are always easy to
deal with separately (see Aumann, 1981).

The C-level ¢, is the probability to play C in the nth round. For a (p, g)-strategist, it
is given by the response function

#Hx)=px + gil —x) =g + rx, i1

where x is the C-level of the opponent in the previous round.

If a player with strategy E = (y, p. g) is matched against an opponent using strategy
E =1(y,p.q) then his C-level ¢, determines his opponents C-level ¢, ., which, in
turn, determines ¢, ... This ‘echo-effect’ is described by the recursive relations
¢y = ale,) (with 2(x) = ¢ + r'x) and ¢, ; = 2(c,+ ), so that

Coez=axle,) and o, = a'2lc) (2)

This yields directly
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THEOREM. The C-levels ¢, and ¢, converge at the geometric rate |rr'|"'? to the
stationary values ¢ and ¢ satisfying

(1 = rr')e = =2lg’) = ax'(D),
(1 =rr)e’ = #(g) = «'2(D), W
ac)=rc, ®le) = ¢

For unconditional strategies the convergence is in one step. If [rr| = 1, the C-levels
oscillate periodically.

The stationary C-level of strategy E against itself is the solution of x = x(x) and,
hence, given by

. L (4)
I =r
In the (p, g)-space, all strategies on the straight line through E and the reciprocal
strategy (1,0) have the same stationary C-level against themselves, and consequently
apainst each other. Indeed, if two of the stationary C-levels s (E against itself), s’ (E’
against itself), ¢ (E against E')and ¢ (E’ against E) are equal, then so are all four. More
precisely, the differences ¢ — ¢, ¢ — & and s — 5" have always the same sign.

We close this section with a remark on more general strategies. Depending on the
simultaneous moves of the two players, the *state’ of the game in the nth round is CC,
D, DC or DD. If we assume that the first player uses C in the next round with
probabilities py, p,, ps OF py, respectively, and the second player similarly with pj, then
the transition probabilities to the state in the n + 1th round are given by the matrix

ppy Pl =py) (1 =pJpy (1= p X1 —p)
papy pall —p3) (1 =pa)py (1= pall = p3)
paps pall —p5) (1L —palps (1 = pall — pj)
psPs pall = pi) (1= paps (1 —pall — pl)

p=

For properly stochastic strategies, P is mixing and the elements pl7' of P" converge
(independently of i) to the components m; > 0 of a stochastic vector z. [n this paper,
we consider only opponent-determined strategies, i.e.
pr=py=p Pr=ps=4q and pi=pi=p. pi=pi=4.
In this case 7,7, = m17,, i.c. the events that the players use C in the stationary state
are independent. The same independence holds if the strategies are self-determined, i.c.
m=p=n pi=ps=4q and py=py=p, Fr=pr=q.
In fact the ‘linkage’ x,x, — x,x, converges in both cases to 0 at the geometric rate |rr'l,
since z = xP implies 2,2, — 2,23 = rri(x, x4 — x;%,). In the general case described by
P, however, this does not hold: one has

IIfg — 25, = E xxilpi — php — pj)

i<j
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and the stationary solution = = nP need not satisfy the ‘linkage equilibrium’
condition m,7, = m,75, even if the initial probability did.

3. The Payoff Function
For each round of the game, the payoff is given by the matrix

c D

C{R § (5)
ol »)

The letters are meant to suggest the Prisoner's Dilemma, where C stands for
‘cooperate’ and D for “defect’. If both players opt for C they get a ‘reward’ R which is
higher than the ‘punishment’ P obtained if both choose D. But if one player chooses D
and the other C. the defector gets away with a payofl T (for “temptation’) which is
higher than the reward, and the cooperator gels the ‘sucker’s payoff” § which is even
smaller than P. We assume furthermore that the joint payoff for two cooperators, 2R,
is larger than T+ S, the joint payoff for one cooperator and one defector. Thus the
Prisoner’s Dilemma is characterized by

T<-R=>=P=8§ and 2R>T + 5. (6)

Since D dominates € (no matter what the other does, it is best to defect), both players
will defect and end up with P as payoff. The pure strategy D is a Nash equilibrium - no
player can improve his lot as long as his adversary sticks to it

But (5) serves to describe all 2 x 2-games and not just the Prisoner’s Dilemma. In the
Chicken-game, for example, D means ‘escalate’ the confrontation and € means ‘don't’
(i.e. ‘chicken out’). The payoff P is both parties escalate is smaller than the payoff if
they don’t. The payoff T for one-sided escalation is highest again. But —and this is the
difference with the Prisoner’s Dilemma - the payoff § for a player who does not
escalate. but is faced with an escalating adversary, lies between R and P. Hence

T=>=R>85=P (7

and the mixed strategy with a ratio § — P: T— R between C and D is the unique Nash
equilibrium.

We shall use as our examples only Chicken and the Prisoner’s Dilemma, in view of
their biological significance; but if not specified otherwise, the results will hold for all
2 x 2-games.

Player I obtains as payoff in the nth round

A, = Re,c + Se, (1 — ) + T(1 — c e, + Pl —c )l = )
His payoff for the iterated game is given by

An" (8}

n
I

AE, E) =

i~

i
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ifw < 1 (since each round is *discounted’ by the probability w to stop the interaction).
For w = 1. this series diverges. In this case we use as payoff

A(E, E'}=1lim A, (9)

In both cases, it is useful to write the payofl as sum

AE EV=06, +G,I; + G35 + G,Iy, (10)
with

G,=(R-T)+(P-5), G,=8S-P, G=T-P and G,=P.

THEOREM (Nowak and Sigmund, 1989b); The payoff for the iterated game is given by
(10) with

r1=l’.'l'l+ I-_;:f. r3=f'. l'_t=] “]]
ifw=1, and, if w< 1, with
1
L
Iy = I ] (& + wr'e) 12
T —wl-wm? " ' (
I, = : + wre'),
2‘“|_“.|_"w2{*' .
1
M=

w? u
e -t A" 5! g’ 4 {
(}} + w2z 41— w(w L e [t'(e + wre') + vie +wre}])).

where
e=(1—wly+ wyq, e = (1 — wiy' + wq,
u=rr, z =aly'h 2 =o'y, v =g v = «qg) (13)

The proof is a straightforward computation. We note that for w =1, the initial
probabilities y and ¥ play no role. Also, if one denotes by A, and A, the payolls given
by (12) and (11), then lim(1 — w)A4,, = A, for w1, as has to be expected.

4. WNo Discount of the Future

For w = 1, we can neglect the initial probability y and speak of (p, g)-strategies. This
case is well understood (Nowak, 1990) and can be used to illustrate the proposed
adaptive dynamics.

The group-selectionist approach would be to look for a policy optimizing the total
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payoll. If all members of a population use the same strategy E = (p, ¢), which choice
would be best? This means to maximize A(E, E), i.e. the expression G5* + (G + G,)s,
with 5 = (1 —r) 'qe[0,1]. The solution s, yields a straight line in the (p, g)-space
through the reciprocal strategy (1.0). In most cases it reduces to s, = 0 or 55 = 1 (or
both), corresponding to ¢ = 0 or p = L.

But this approach is not in the Darwinian spirit, where group benefit is of secondary
importance. For Axelrod's values T=5 R =3, P=1 and § = (), for example, the
maximal payoff is attained whenever p = 1. But a population with p=1 and g = |
would be invaded by less cooperative strategists. It is the individual success that
counts.

Thus, we will look for the best strategy of an individual mutant. IT the rest of the
population is homogeneous, this reduces to finding the best reply E = (p, g) against a
known strategy E' =(p.,q¢). Maximizing A(E, E’), ie. the expression
Guee' +Gae + Gy’ + Gy means  in view of ¢ =ac) to maximize
c*Gyr' + oGy + Ga + Gyr')asa function of e. In most cases (for example if G,r’ > 0)
this maximum is attained for ¢ =0 or ¢ = |, i.e. AlID or AlIC. If the expression is
maximized for a ¢,e(0, 1), the corresponding solutions in the (p, g)-space are the
points on the straight line plg’ + cor') + g1 — ¢' — €4') = ¢4. (For Axelrod’s values, if
p'=1and ¢ =1 all strategies with 3p + g = 2 are optimal replies.)

In biological applications, of course, it is not likely that a mutant will jump right
away to his optimal strategy. It seems more plausible to assume that small individual
deviations will explore the strategy space and that the population will evolve under
selection into the direction which seems most promising.

If the homogeneous population is in the state E' = (p', '), this direction is given by
the gradient of the payolf A(E, E') of a mutant strategy E = (p. g), with components
dA/dp and 24/dq evaluated at E = E'.

This defines a vectorfield in the strategy space pointing into the direction which
optimizes a mutants increase in payofl. The corresponding adaptive dynamics is given
by

d

p=2EE).  §="2(EE) (15)
ap i
where the derivatives are evaluated at E = E',

We emphasize that (15) is not the gradient of A(E, E), which would, in our situation,
correspond to a group-selectionist approach. The vector field (15) points into the
direction which is most advantageous for the single mutant. Under selection, the
population as a whole moves into this direction; this alters the fitness landscape in
such a way that the optimal direction changes gradually. We note that in more
elaborate models involving genetic or developmental constraints, the vector field has
to be multiplied by some covariance matrix, This more general model of frequency
dependent selection is studied in Hofbauer and Sigmund (1990), where it is shown that
such adaptations can lead to cyclic or even chaotic dynamics. But nothing of the sort
happens for the present model.
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THEOREM. The adaptive dynamics is given by
—r
+r[
S et W [ +Gr]l"r (16)
a=n_p| ™ B T |
This follows by a straightforward computation.
We note that both components have the same sign. The region in the strategy space
where this sign is positive will be called the C-region, and the other the D-region.
If G, = 0, the C-region is bounded by the straight line G, + G,r = 0.1f G, # 0,itis
bounded by the graph of

s oo =l !
B [quﬂﬁz + Gar) I

Gz"‘ﬁarl"r
G] l+r

q=flr):=

We are only interested in values re(—1, 1). In this strip f is convex if Gy WG, — Ga)is
negative, and concave if it is positive. It converges to Oforr T 1 and to infinity (with the
sign of —G; (G, — Gy)) for r| —1. I |G, < |G, it has a zero forr=—G;'G; in
(—=1,1)

The vector (p, §) at the point E = (p, q) is orthogonal to the line from E to the
reciprocal strategy (1,0). In a homogeneous population, therefore, there is no

1.0

9 F

//// ///'

I.'!.-“I paeFeab iflis Irlulnuh.lrll-ll JLJ:II|I'II|
¥ 9 1D
Fig 1. The C-region (hatched) for the Chicken game with T'= 5R=1,85=LP=0
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evolutionary tendency towards this strategy. Reciprocity is the pivot rather than the
aim of this evolution. We also note that the magnitude of (16) is (roughly)
proportional to the distance from the reciprocal strategy.

Let us consider Chicken as an illustration. In this case G, < 0 and G, > G, > 0.
Thus f is concave and has a root in (—1,0). The C-region is sketched in Figure 1 (we
used that f'(1)£(0, 1) and f(0) = —(G,/G,)&(0, 1)). This region contains all strategies
with ¢ = 0, but no strategy with ¢ = 1 or p = 1. The equilibria of (16) are on the curve
q = f(r). Among the strategies which are unconditional, the only equilibrium is given

by
e, (BP
e P TR

which is the unique Nash solution for the nonrepeated game.
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Fig. 2. The C-region (hatched) for the Prisoner’s
Dilemma. (a) T=5R=38=0,P=1,G, <D
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