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The Alternating Prisoner’s Dilemma

MARTIN A, NowAkt AND KARL SIGMUND}

t Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
and  Institut fiir Mathematik, Universitdt Wien, Strudlhofgasse 4, A-1090 Wien, Austria

(Recetved on 2 October, 1993, Accepted on 13 December, 1993)

Reciprocal altruism can often be modelled by a variant of the iterated Prisoner’s Dilemma where players
alternate in the roles of donor and recipient, rather than acting simultaneously. We consider strategies
realised by simple transition rules based on the previous encounter, and show that the evolutionary
outcome for the alternating Prisoner’s Dilemma can be quite different from the simultaneous case. In
particular, the winner of a simultancous Prisoner’s Dilemma is frequently a “win-stay, lose-shift™
strategy based on the payoff experienced in the last round, whereas in the alternating Prisoner’s
Dilemma, the trend leads towards a “Generous Tit For Tat” strategy. If one allows only for reactive
strategies based on the other player’s last move, the overall payoff is the same for the alternating or
the simultaneous version, although the sequence of moves can be different. In the alternating game
“win-stay, lose-shift” strategies can only be successful if there is a longer memeory of past encounters.
The alternating and simultaneous Prisoner’s Dilemma are two very different situations, and the whole

existing literature is based on the simultancous game.

1. Introduction

In many instances of reciprocal altruism, the partners
alternate in their roles of donor and recipient. Trivers
{Trivers, 1985: 393) summarizes that “reciprocal
altruism is expected to evolve when two individuals
associate long enough to exchange roles frequently as
potential altruist and recipient” (our italics). Never-
theless, in the prevalent model for reciprocal altruism,
the iterated Prisoner’s Dilemma (PD), the player’s
roles are symmetric in each round: both have the same
two options, namely to co-operate (i.e. to play C) or
to defect (play D). It is usually assumed that this
symmetry is of small effect. Axelrod states that “it
makes little difference whether the choices are treated
as simultaneous or as sequential” (see Axelrod, 1991:
85). In this paper we show that in some situations (as,
for instance, when players make occasionally mis-
takes), important differences can arise.

One of the best known examples of reciprocal
altruism is offered by South American vampire bats,
who in their nightly excursions fasten on cattle and
feast on their blood. Bats who have found a good
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meal are liable to help their hungry fellow-bats with
some of their surplus {Wilkinson, 1984), Such blood
donations are of critical, occasionally even of life-
saving importance to the recipient. They seem to
offer an instance of reciprocal altruism—which is, in
Trivers’ definition, “the trading of altruistic acts in
which benefit is larger than cost, so that over a period
of time both enjoy a net gain” (Trivers, 1985: 361).
According to a ringing sequence by Richard Dawkins,
“vampires could form the vanguard of a comfort-
able new myth of sharing, mutualistic cooperation”
(Dawkins, 1989).

Another well-documented example concerns young
male baboons (c¢f. Packer, 1977; and Trivers, 1985):
one of them picks a fight with a dominant male, while
the other profits from the diversion by mounting an
oestrous female. On the next occasion, the roles of the
youngsters may be reversed. Other real-life examples
for reciprocal altruism include helping in fights, allo-
grooming, alarm calls, ¢tc (see Axelrod & Hamilton,
1981). In most of these examples, it makes no sense
to co-operate simuftaneously; the partners have
to take turns, To quote Trivers again: “‘reciprocal
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altruism can also be viewed as a symbiosis, each
partner helping the other while he helps himself, The
symbiosis has a time lag, however: one partner helps
the other and must then wait a period of time before
he is helped in turn™ (Trivers, 1971).

To be sure, there are examples of mutual help
where the actions of the two players are simultancous.
The most clear-cut of these is described in a well-
known investigation of predator inspection by a pair
of stickleback {Milinski, 1987). In Milinski’s exper-
imental set-up, a single stickleback is confronted with
a dummy predator and deluded by a mirror into
believing that another stickleback is in the water
tank. Inspection of the predator demands a careful
approach by a sequence of short, halting moves.
Depending on the inclination of the mirror, the image
stickleback either keeps abreast, thus seemingly
sharing the risk, or else lags consistently behind.
The moves of the two stickiebacks could not be
more simultaneous: one is the mirror-image of the
other, (Milinksi found that the stickleback moved
significantly closer up to the predator if the mirror
image keeps abreast.)

Both the simultaneous and the alternating PD are
therefore relevant for reciprocal altruism. In an alter-
nating Prisoner’s Dilemma, to co-operate must mean
to act altruistically by playing C when it is one’s turn
to do so. This slight modification can affect strategies
and payofls to a considerable extent. For instance, if
two Tit For Tat (TFT) players engage in an iterated
PD of the usual, simultaneous kind, and if one of them
defects by mistake, both players will subsequently
play C and D in turns. On the other hand, if two Tit
For Tat players engage in an alternating PD, and if
again a defection occurs by mistake, then the resuit
will be a sequence of mutual defections (Fig. 1).

In this paper, we shall discuss two varieties of the
alternating PD. First, we assume that the roles are
exchanged in every encounter: this is the srrictly
alternating PD. Next, we deal with the case where the
roles alternate in a haphazard way. This second case
is usually more realistic. It could happen, for instance,
that the same bat is lucky two nights in succession,

(i) The simultaneous game
Player | CCCD'CDCD ... DD'DD .. . DC'D.. . DCCC...
Player 2 CCCC PCDC...CD DD ... DD C...CC'CC. ..

(i1) The alternating game
Player 1C C b~ D D D...D C C C C...
Player 2 ¢ ¢ b D D D...D C C C C...

Fic. 1. The effect of occasional errors on the game between two
Tit For Tat players for the simultancous PDD and for the strictly
alternating PD. There are three possible kinds of run for the
simultaneous game, and two for the alternating game; but the
average payoff is the same. The primes indicate mistakes.

or that the same young baboon needs the help of
his comrade on two or three consecutive occasions.
But since this rardomly alternating PD is slightly
more complicated, we assume first that roles alternate
strictly.

2. The Description of the Game

Let us start by describing the simultancous PD (see
Axelrod, 1991). In each round, the two players have
the options to play C (i.e. to co-operate) or play D
{(to defect). If both co-operate, both earn as payoff a
“reward” R which is larger than the payoff P, the
“punishment”, which they receive if they both defect.
But if one players opts for D and the other for C, then
the defector receives a payoff T (the “‘temptation”)
which is larger than R, while the co-operator’s payoff
S (for “sucker”) is even smaller than P. We assume
furthermore that the two players earn more if both
co-operate than if they agree to choose different
moves and then share the total payoff: this means that
R > XT + §). The payoff, according to evolutionary
game dynamics, is assumed to be an increment in
fitness, or reproductive success (see Maynard Smith,
1982).

In the alternating PD, the symmetry between
the two players is broken. In each single round, one
of the players is the “leader” (to use a game-
theoretic expression), i.c. able to decide what the
outcome is going to be. The leader has to choose
between two options, which we denote again by
C and D. Option € means that the leader receives
payoff & and the other player payoff . Option D
means that the leader receives payoff ¢ and the other
player d. Such payoff values can be negative, as in the
case of a vampire bat feeding another. But we always
assume

(iyc>a (i)c—a<b-—d (1)

Condition (i) means that in a single round, option
D is better than C for the leader. Condition (i) means
that the cost occurring to the leader by altruistically
playing C is less than the benefit to the other player
{which, together with (i), implies b > d].

Conditions (i) and (ii) are surely satisfied if a
well-fed bat shares part of its meal with a starving
colleague. We shall not address the important ques-
tion of how to signal one’s need, and the attendant
problem of how to assess the other’s honesty—cf. the
“Philip Sydney game” (Maynard Smith, 1991; and
Grafen, 1990).

Let us now consider a “unit” of two consecutive
rounds. Under the assumption of strict alternation,
each of the players is leader once. If both partners



THE ALTERNATING PRISONER’S DILEMMA 221

play C, both earn a + b points in one unit. If both
play D, both earn ¢ + d. If one player plays C and
the other D, then the defector earns ¢ + » and the
co-operator a + d. These payoff values for one unit
are like those in one round of the simultaneous PD.
We have only io set

R=a+b P=c+d T=c+b S=a+d (2)

The inequality ¢ >a implies T>R and P> S,
whereasc —a < b — dimpliesR > Pand S + T < 2R.
Since T>R>P>8 and §+ T <2R are the two
conditions which define a simultaneous PD, two
consecutive rounds of the alternating game are equiv-
alent to one-round of the simultaneous game. On the
other hand, if R, T, S and P are given as in (2), then
necessarily

T+S=P+R 3)

This is satisfied, for instance, if T=4, R=3,P =1
and § = 0 (cf. Smale, 1980), the values which we shall
use in our simulations, but it does not hold for T = 5,
R =3 P=1and § =0, the values used by Axelrod
in his computer tournaments {Axelrod, 1991). It
follows that not every simultaneous PD corresponds
ta an alternating PD. But for every alternating PD,
there is a corresponding simultaneous PD. The two
games are quite different, however, because they
admit different strategies (in the alternating PD, a
strategy can depend on whether one starts by being
the donor, for instance), and more importantly, be-
cause the same strategies can lead to different out-
comes,

Condition (3) greatly simplifies the analysis of the
simultaneous (iterated) PD (see Nowak & Sigmund,
1990). 1t means that the cost of switching from D
to ( is the same against a defector as against a
cooperator. In the context of the alternating PD, it
means that if both players alternate between C and D,
it does not matter whether we view this game as
composed of units where (C,C) follows {(D,D), or
where (D,C) follows (C,D). We note that (2), as a
linear equation in the four unknowns a, b, ¢, d, is
of rank 3. The set of solutions is either empty or, if
(3) is satisfied, a one-dimensional subspace. For our
simulations, we shall takea =2, b=1,c =3,d = =2
(hence R=3,85=0,T=4, P=1).

In the following, we shall consider the infinitely
iterated PD only. This is, of course, an idealization,
approximated by real-life interactions only if the
probability of further encounters is very high. Fur-
thermore, we shall restrict our attention to strategies
which are conditional upon the last few rounds only,
and probabilistic. This means that the memories of
the players are short, and that their behavioural rules

are not clear-cut, but rather fuzzy: a higher or lesser
propensity to opt for C or for D, given the outcome
of the last interactions. In particular, this approach
takes account of errors in implementing a rule, which
are unavoidable in any biological context (May, 1987).

3. The Simultaneous PD

For expository reasons, we begin by briefly sketch-
ing the situation for the simultaneous PD, which is
well understood if we assume that the players base
their decisions on the previous round only, (see
Nowak 1990; Nowak & Sigmund 1990, 1992, 1993,
Lindgren 1991). The outcome in such a round is
specified by the payoff, which can be R, S, T or P.
These outcomes will be numbered 1, 2, 3,4 (in this
order). Thus outcome 3 means “I got I, or more
explicitly “I opted for D in the previous round, and
my co-player opted for C”. A player’s strategy will
be given by a quadruple p = (p,, ps. p3, p4), where p,
is a2 number between 0 and 1 and denotes the prob-
ability to play C, given that the outcome of the
previous round was i (with i=1,2,3 or 4). The
strategy Tit For Tat, for instance, is given by the
rule (1,0,1,0), it simply repeats the previous
move of the other player. If ¢ is the probability of an
error in implementing a move, then this becomes
{1 —¢51—¢¢) If a player with strategy p meets
a player with strategy p"= (p7, p3,pi, ps), then the
transition from one round to the next is given by the
Markov chain

ppr p(l=p)) (—ppy (A—=p)H(1—pD)
ppy P21 —p3) (L —pps (1 —p)y(i—p))
ppy pi(l—=p3) (L—py)py (1 —p3)(1 —p3)
295 Pa(l—pl) (1 —pdpi (1 —p)(l—pi)

(4)

For instance, the transition from outcome | to
outcome 3 means that the p-player defects after
experiencing an R (which happens with probability
1 —p) and that the p’-player co-operates (which
happens with probability p;). We note that one
player’s T is the other player’s S.

If the p,and p are strictly positive (as is always the
case, if we take errors into account), matrix (4) has
a unique left eigenvector 8 = (5,,5,,5,,5,) to the eigen-
value | with the property that the s; are all strictly
positive and sum up to 1. The asymptotic frequency
of outcome i is then given by s,, so that the payoff for
the p-player in the iterated PD, i.e. the limit in the
mean of the payoff per round, is simply given by

SR+ 5,8 +5,T+5, P (5
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This is independent of the first moves of the
players. The initial condition has only a transitory
effect, as it is blurred by mistakes.

In Nowak & Sigmund (1992, 1993), we have
analysed by computer experiments the evolution of
large, well-mixed populations under the effect of
selection and mutation. Each individual has some
strategy p and interacts with all other individuals
in the population. Since its average payoff (which
depends on the strategies of the other players, and
hence on the composition of the population) is a
measure of its reproductive success, the frequency
of its offspring (which inherits strategy p) is pro-
portional to this success. This yields the frequency
of p in the following generation, and reflects the
action of natural selection. Furthermore, we intro-
duce occasionally a tiny minority using a new, ran-
domly chosen strategy ¢: depending on its fitness, it
spread or vanished. This mutational process provides
an endless source of variability.

The evolutionary process displayed in these com-
puter chronicles is difficult to analyse in details, and
exhibits a bewildering richness of dynamical features.
But basically, most chronicles show a distinct trend
towards an increasingly stable co-operation. Most
co-operative populations, in the long run, adopt a
strategy close to p, =1, p,=0, p;=0, p,=1. This
strategy co-operates if and only if both players, in the
previous round, opted for the same move. This is a
“win-stay, lose-shift” strategy: players stick to their
former move if it was rewarded with a T or an R,
but switch to the other option if they received only a
Poran &

4. The Strictly Alternating PD

Now let us consider the infinitely iterated PD with
strictly alternating rounds. Let us assume that the
memory of each player covers the previous two
rounds, i.e. one “unit” of the alternating game.
Again, there are four possible outcomes, depending
on the choices of the player and of the co-player (the

(i) The simultaneous game
Player 1 CCCD’DCCC ...
Player 2 CCCC DCCC ...

(ii) The alternating game
Player 1 C C D CDDC..DCDC CC...
Player2 C C DD CDD...DDC CCC...

F1G. 2. Occasional errors in the game between two win-stay,
lose-shift players. In the simultaneous game, the strategy is error
correcting and leads back to mutual co-operation. In the strictly
alternating PD, a mistake leads to a run where each player plays
two Cs and one D, periodically. A further mistake can redress the
situation only if it changes a D into a C, which happens only for
one in three errors. The primes indicate mistakes.

latter was the leader in the previous round, and the
former in the round before). These outcomes are
experienced as R, S, T or P, and will be numbered
from 1 to 4, again. But we must note that within one
unit, the memories of the two players are based upon
different (though overlapping) past units, The leader
in round 2n considers the outcome of round (2n — 2)
and (2n — 1), the leader in round (2r + 1) considers
rounds (2n - 1) and 2n. If we denote by p;, again, the
propensity to play C after outcome / in the previous
unit, and by p; that of the other player, then we
obtain as transition matrix, from one round to the
next, the Markov chain

(1=p)(1—p3)
(1—p)(1—pH
(1—-p)(1—p3)
(1=p)(1—pd)
(6)

which is distinct from (4), but has a related structure.
The average payoff, again, is computed as in (5).

There is a considerable difference between the
simultaneous and the strictly alternating PD. This
can be seen, for instance, by watching two “win-
stay, lose-shift” players matched against each other
({Fig. 2). In the simultaneous PD, a mistaken defection
by one of the players leads to one round where both
players defect, and then to a return to co-operation.
In this sense, “win-stay, lose-shift™ is error-correcting:
a brief burst of hostility, and then back to business.
The average payoff, in a population adopting this
strategy, is close to R. In the strictly alternating PD,
this is quite different. A mistaken D is answered by a
D, which elicits a C, which is followed by a D in turn,
Thus each player, after a mistake, keeps playing
two D’s and one C, periodically. With probability
2, the next mistake does not affect this regime; only
with probability 1 will it redress the game to a
run of mutual co-operation. The average payoff is
L(R + P), and hence lower than R.

Let us now assume a small noise level &. Among
the strategies which are “almost pure”, in the sense
that all p, differ from 0 or | by ¢ only, the strategy
closest to (1,0,L 1), ie (l—¢e1—¢1—¢)
emerges almost always as the winner of the evolution-
ary race, especially if we assume that 2R>T + P
(which holds precisely if ¢ —a <j(b —d), i.e. if the
cost to the donor is smaller than half the benefit to the
recipient, and is satisfied for our numerical values).
This condition is equivalent to the requirement that
the strategy close to (1,0, 1,1) cannot be invaded
by the always defecting strategy which is close to
(0, 0, 0,0), or, for that matter, by the strategies close

n(l—=p1) (1=p)p;
p(1—p3) (1—-p)p;
p(l—p)) (A —p)p3
p(1—p3} (1 —pps

PP
P2P3
P3P
Pab
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10 (0,0,1,0), (0,1,0,0), (0,1,1,0), 1,0,0,0), or
(1,1,0,0). Furthermore, the other strategies can
never invade, with the exception of the strategy close
to (1,1,1,0) (which does exactly as well, and can
therefore enter by random drift) and the Tit For Tat
strategy, which is close to (1,0, 1,0): the outcome
is a mixture where a minority (with frequency
(T — R)/R — P) plays Tit For Tat and the over-
whelming majority adopts the strategy close to
(1,0, 1, 1). In the simultaneous PD, by contrast, the
condition 2R > T + P leads to the non-invadability
of the win-stay, lose-shift strategy close to (1,0,0, 1).

The strategy (1,0, 1, 1) is a very tolerant strategy,
which only defects if it has been played for a sucker,
i.e. if it has experienced an S during the last unit.
In contrast to “win-stay, lose-shift”, it does not defect
after a 7, which means that it does not try to exploit
suckers. A strategy (1,0,1,x), with 0<x <1, is
somewhat less tolerant than this, but more tolerant
than Tit For Tat: with probability x it forgives a D
of the co-player, if this was in response¢ to one’s own
D in the previous round. If 2R > T + P, a population
playing a strategy close to (1,0,1,x) cannot be
invaded by All D invaders, for any x.

Let us now look how these generous strategies do
against cach other. A (1 -¢,¢ 1 —e¢, x)-player in a
population of (1 —&, ¢, 1 —g x') strategists has a
payoff

R +8[ —RQ2+x"~xx)+ T’(Zx’—’xx’)+P(2——x’)
X+ x —xx

—(R —S)]- Q)

This can be shown by using the same straightforward
perturbation method as in Nowak et al. (1994). For
our numerical values, this yields

-—4+4x’—xx’]

F(x,x’)=3+8[—3+ - >
X +X —xx

It follows that F(x,x")— F(x'.x") is of the same
sign as (x — x")(3x"?— 8x" + 4). This last term has a
zero at x* =13, As long as x’ <%, an x-player does
better than average in an x’-population whenever
x > x'; it follows that higher x-values can invade as
long as x” < §, and conversely, among the strategies
of the form (1 —¢,¢ 1—¢, x), evolution will lead
towards an x-value of 2. Moreover, it can easily be
shown that this value is evolutionarily stable (see
Maynard Smith, 1982), in the sense that a homo-
geneous population of the form (1 —g,¢ 1 —g,2)
cannot be invaded by a (1 —e¢,¢, 1 — ¢, x) minority,
for any value of x.

Lzt us now consider evolutionary chronicles, start-
ing from a random strategy and introducing a small
minority of a randomly generated mutant strategy
every 100 generations. We can observe that natural

3-0

Payoff

Strategies

P2
SeQ
[ -]

T
L

| I | | 1 L 1
100 200 300 400 500 600 700 80O
Time {in 1000 iteration steps)

Fi. 3. Evolutionary simulation of the strictly alternating
Prisoner’s Dilemma with all stochastic strategies that remember the
last two moves. The payoffs were evaluated according to eqns (4)
and (5). We started with a homogeneous population of the random
strategy (0-5,0-5,0-5,0-5). Every 100 generations (on average) a
new mutant was introduced. New mutants were chosen at random;
the probabilities p, yere taken from the U-shaped density distri-
bution [mx (1 — x)]? to get more bias towards the boundaries of
the four-dimensional strategy space (because the relevant strategies
like Al D, TFT or GTFT are close to the boundary). But we only
admit p, values within 0-001 and 0-999 (to have some minimum level
of noise). As population dynamics we use the difference equation
x| =x.fi{f, where x, denotes the frequency of strategy /, f; its payoff
in the population, and f = Zx,f; the average payoff of the popu-
lation, Thus payoff is related to fitness, successful strategies leave
more offspring. If the frequency of a strategy drops below 0-001 it
is removed from the population (new strategies start with a
frequency of 0-0011).

This simulation is representative for the overwhelming majority
of simulations we performed for the strictly alternating Prisoner’s
Dilemma. Here a strategy close to (1,0, 1, 2/3) dominates after
some 600000 iterations of the difference equation. We performed
40 such simulations (each for 107 iterations yielding a total of about
10° mutants per tun) and strategics very close to this strategy won
in 39 runs. The figure shows (from the top): the average population
payoff (for one double move), the number of different strategies
in the system and the population averages of the probabilities
P12 P2, P1. Py. The payoff values are a=2 b=1¢=3 d= -2,
corresponding to R=3 5 =0T=4 P=1.
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selection leads in the overwhelming majority of the
simulations to a co-operative society where most
members adopt a strategy close to (1,0, 1,%) (see
Fig. 3). This variant of the Generous Tit For Tat
(GTFT) forgives (roughly) two thirds of all those
defections of the adversary which follow one’s own D,
but it does not forgive those defections which were
unwarranted. If all play this strategy, a defection by
mistake would entail a D as reply, but a subsequent
D would only follow with a probability of 1. A run
of defections is therefore very short; evolution has
found again a strategy which is error-correcting. A
“win-stay, lose-shift” strategy, which does so well in
the simultaneous PD (Nowak & Sigmund, 1993), does
rather poorly in the strictly alternating case, because
it is no longer error-correcting against its own.

5. Reactive Strategies: an Unexpected Equivalence

Let us now restrict our attention to the so-called
reactive strategies, where each move depends only on
the previous move of the other player. Tit For Tat
is an example for such a reactive strategy. These
strategies are characterised, both in the simultaneous
and in the strictly alternating case, by p, = p, and
by p, = p,. We shall denote the first of these values
by p, and the second by g¢. Thus p is the probability
to co-operate afier a C of the other player, and
g the probability to co-operate after a D. In the
simultaneous PD, the average probability to play C
converges to

o P-9a'tg

1—(p—q)(p'—q7)
{where p’ and ¢’ are the corresponding probabilities
of the co-player). This was shown, by different
methods, in Nowak (1990) and Nowak & Sigmund
(1990). Exactly the same argument holds for the
strictly alternating PD. It follows that the payoff, for
a {p, q) player meeting a (p’, ¢’) co-player is given
in the simultaneous game by

Rss'+ Ss(1—sy+ T(1 —-s)s’
+P(1=5)1—5 (9

and in the strictly alternating game by

(8)

as+c(l—s)+bs"+d(l —s")
=P+s(a—c)+s'(b—-d) (10)

If the simultaneous PD corresponds to the alternat-
ing PD, ie. if (3) holds, the two expressions given
by (9) and (10) reduce to the same value. This
is somewhat surprising, as the sequence of moves,
in the two games, can be quite different. For instance,

if two Tit For Tat players are matched against each
other, and if occasional mistakes occur, then in the
simultaneous case, all possible outcomes (i.e. R, §, T
or P) occur with the same frequency; indeed, if we
start with a run of all-out co-operation, a mistake
will cause a D and thus a run of alternating co-
operation with defection, before another mistake
turns the game into cither a co-operative run again
or, with the same probability, into a run of mutual
defections. In contrast, to this, two Tit For Tat
players in a strictly alternating game experience units
of R or of P with the same frequency; indeed, a
mistake turns a run of all-out cooperation into a run
of mutual defection, and vice versa (Fig. 1}. In the
former case, the payoff is (R + S+ T+ P), and in
the latter case (R + P), but by (3) this reduces to the
same value,

If we view each reactive strategy (p,gq) as a
point in the unit square, we can easily describe its
game dynamics, i.e. the evolution of a population of
players meeting at random and spreading at a
rate proportional to their payoff. The straight line
P —q=(T — R)/(T — P) divides the square into two
parts. In the part which contains the iower right
corner (1,0), i.c. the strategy Tit For Tat, there is a
tendency towards cooperation: if all members of a
population play a strategy {p,g) which belongs to this
set, invaders using a strategy with a higher p- or
g-value, i.e. a higher propensity to play C, will spread
and eventually take over. On the other hand, in
a population whose members all stick to a (p, g)
strategy belonging to the other part of the unit square
invaders with a tendency to defect more frequently
will spread. The strategy

R-F

9==">3 (11}

p=1, TP

is optimal in the sense that a population where all
members adopt it is (i) immune to defectors, and (ii)
receives the highest payoff among all populations
enjoying such an immunity (see also Molander, 1985).
This strategy, which always responds to a C with a C,
but tolerates D with a certain probability, has been
called Generous Tit For Tat. As shown in Nowak &
Sigmund (1992) by means of extensive computer
simulations, in a population which is a mixture of
many (p, ¢) strategies, selection usually leads to one
of two possible outcomes, namely either to a popu-
lation consisting of all-out defectors, or to a popu-
lation very close to Generous Tit For Tat. This last
outcome occurs only if the initial population con-
tains a small minority of stern Tit For Tat players
(strict retaliators, where p is very close to | and g very
close to 0), or if such a minority is introduced by a
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random mutation. Tit For Tat is a catalyser for the
establishment of Generous Tit For Tat.

This, then, is what happens within the range of
reactive strategies, both for the simultaneous and for
the strictly alternating PD.

6. The Randomly Alternating PD

Let us now turn to the randomly aliernating PD.
We assume here that in every round, each player has
a 50% chance of being the leader. It no longer makes
sense to divide the games into “units” of two rounds
each. Instead, we assume that players base their
propensity to play C on the outcome of the iast round
only; this includes knowledge of who was the leader,
of course. Again, each player experiences this out-
come through the payoff received in the last round,
which can be a (the player was leader, and opted for
C), or b (the co-player was leader, and chose C), or
similarly ¢ or 4. Again, we enumerate the outcomes q,
b, c,dby 1, 2,3, 4 (in this order), and denote by p, the
probability that the player opts for C, given that the
outcome of the previous round was i, (For instance,
p; denotes the propensity of the player to co-operate
after outcome 3, i.e. after having been leader in the
previous round and having opted for D. The prob-
ability that the player can actually implement this
decision, i.e. the chance of being leader in the next
round, is % independent of the player’s decision). The
transition rule, from one round to the next, is given
by the Markov chain

popy (I=p) (1—p3)

Pl (T=p) (1—p)

g py (=py) (1—p) (12)
ps py (1—p) (1—p3)

The corresponding left eigenvector s is of the form
(s,5",5—5,5—5", with 0<s,5 <} The values s
and s’, whose sum is the asymptotic probability for
a move C, satisfy

5(4—2p,+2p3)+5'(2ps— 2py) = p3 + s
5@ —pi+2p3)+s(pi-2p3)=pi+p; (13)
The limit in the mean payoff, for the p-player, is

P
5+S(R—T)~s(T—P)
_c+d
2

In a homogeneous population (where all members
adopt the same strategy p), we have s =s5'. The
maximal payoff is £, but unconditional co-operation
(ie. s =5’ =1) could be subverted by exploiters.

+s(a—-c)+s'(b—d) (14)

The evolutionary races, in this case, lead less fre-
quently to co-operation than in the strictly alternating
game. Nevertheless, if 2R > T + P, one observes in
most evolutionary runs the establishment either of
all-out defectors, or clse of a co-operative strategy
with p,=p,=p;=1 and p,=2R-T—-P{T - P,
which is ; for our numerical values (Fig. 4). In fact, -
one can directly check that among populations c¢lose
to (1,1,1, x), selection leads towards ever higher
x-values; but among those close to (1, 1, 1, x) which
are immune to invasion by ANl D players, the maximal
value of x is 2R — T — PjT — P. It is interesting
to sec that once co-operation becomes preponder-
ant, p, and p, evolve much faster towards 1 than
does p;. A population discovers soon that it pays to

Payoff
[\~
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Strategies
-

= 04
os W
] ] J ) )
100 200 300 400 500 600
Time (in 1000 iteration steps)

FiG. 4. An evelutionary simulation of the stochastically
alternating Prisoner’s Dilemma for all strategies that consider the
last move. The simulation was performed exactly as outlined in
the legend of Fig. 3. For the payoff evaluation we used eqn {13).
Here it is more difficult to achieve cooperation, probably because
the invasion barrier of TFT into AN D is twice as high as for the
simultaneous or strictly alternating game (the invasion barrier
is the smallest frequency of TFT players capable of invading an
All D population). Co-operation was reached in eight runs out of
40. Co-operative populations were always dominated by strategies
very close to the GTFT variant (1, 1, [, 1/3), Note that the prob-
abilities p, have different meanings for the strictly and randomly
alternating game (see text for details). Payoff values as Fig. 3.
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co-operate after a C {i.c. a co-operative move by
oneself or by the other player). It takes much longer
to realize that it pays also to co-operate after one's
own D (i.e. to extend an olive-branch by reverting to
C, and thus to make up for one’s defective move from
the previous round). Altogether, this strategy can
again be viewed as a variant by Generous Tit For Tat:
it always repays a kind move, tolerates a defection by
the co-player with a certain probability, and punishes
at most by a single D.

We can again define reactive strategies, i.e. those
for which only the co-player’s last move is of rel-
evance. Since these strategics have to repeat their
previous move if they happened to have been leader,
they are of the form (1,p,0,¢g). Tit For Tat, for
instance, is now realized by the transition rule
(1,1,0,0). For reactive strategies, (13) yiclds 25 =
g+(@—q)g/1—(p—49)(p"—q), cf. (8), and the
payoff, up to the obvious factor }, is the same as the
payoff for the strictly alternating PD given in (10),
and hence also the same as for the simultaneous PD.
The evolutionary winner among reactive strategies is
(1,1,0,3), again.

7. Conclusion

To conclude, we can say that evolutionary simu-
lations show, both for the simultaneous and for the
alternating PD, a strong tendency (but no necessity)
to evolve towards co-operation. The co-operative
strategies achieving this are quite different in the
simultaneous and the alternating case. In the simul-
taneous case, they embody a “‘win-stay, lose-shift”
principle which does not shrink from exploiting a
sucker. In the alternating case, we find that some sort
of Generous Tit For Tat emerges, (just as it did within
purely reactive strategies in the simultansous case).
In the simultaneous PD, the emerging ‘“‘win-stay,
lose-shift” strategy has two important properties:
(i) it is error-correcting in the sense that if a mistake
occurs against players using the same strategy, then
mutual co-operation is quickly re-established; and
(ii) it exploits unconditional co-operators, thus pre-
venting the spreading of suckers through random
drift in the population. In this sense, “win-stay,
lose-shift™ is proof against both strategical and muta-
tional noise. For the alternating PD, there is no
strategy with memory two (i.e. taking account of the
last two moves) which satisfies both (i) and (ii). It is
only strategies with memory longer than three which
combine both these properties. For the strictly alter-
nating PD such as strategy is the following: remain
co-operative (=play C after C-C); reciprocate an
unwarranted defection (=play D after C-D); offer a
handshake (=play ¢ after a D-D); recognise a

handshake (=play C after C-D-D-C); and finally,
never give a sucker an even break (=play D after
D-C-D-C). This strategy has the same features as
“win-stay, lose-shift” in the simultaneous game.

We emphasize the difference between (i) strategies
like Tit For Tat and its variants, which more or less
mimic the co-players moves, and (ii) “win-stay, lose-
shift”-strategies which depend only on the payoff
experienced by the player. A “win-stay, lose-shift”
principle can work even for players which do not
understand that they are engaged in a game, and
which are unaware of encountering another decision-
maker. There are many differences between the simul-
taneous and the alternating Prisoner’s Dilemma. This
paper does some first steps to explore a new world.
The dilemma has no end.

This work was partly supported by the Austrian
Forschungsférderungsfonds P8043, the British Councii and
the Wellcome Trust.
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