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Computer simulations have shown that mutation—selection processes frequently
lead to the establishment of cooperation in the repeated prisoner’s dilemma. To
simplify the mathematical analysis, it has usually been assumed that the interaction
is repeated infinitely often. Here, we consider the finitely repeated case. Using
renewal equations, we derive analytic results on the adaptive dynamics of monomor-
phic populations evolving in trait-space, describe the cooperation-rewarding zone
and specify when unconditional defectors can invade. Tit for tat plays an essential,
but transient, role in the evolution of cooperation. A large part of the paper considers
the case when players make their moves not simultaneously, but alternatingly.
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1. INTRODUCTION

Starting with Trivers’ classical paper on reciprocal altruism (1971), socio-
biologists have used the prisoner’s dilemma (PD) game to focus on the
main bugbear besetting mutual aid: the danger arising from exploiters who
do not reciprocate the support of others and thereby undermine cooperation
(see, e.g., Axelrod and Hamilton, 1981; Trivers, 1985; May, 1987; Dawkins,
1991; and, for a review, Axelrod and Dion, 1988). Today, the PD approach
has become the dominant (but not the only) theme of the theory of recipro-
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cal aliruism; it motivated a wealth of theoretical investigations and even a
handful of empirical studies on animal behavior.

The prisoner’s dilemma encapsulates the problem of defection in a mini-
malistic setup. Two players choose either to play C (i.e., to cooperate) or
to play D (i.e., to defect). If both defect, they receive a payoff P (punish-
ment) which is smaller than the payoff R (reward), which they obtain if
both cooperate. But if one player defects and the other cooperates, the
defector receives a payoff T (temptation) which is larger than R, while the
cooperator receives only S (the sucker’s payoff), which is even smaller than
P. In addition to

T>R>P>S 1)

one also assumes
2R>T+ S 2)

so that the joint payoff for two players is larger if both cooperate than if
one of them defects unilaterally. By (1), the strategy D dominates in the
sense that it yields the higher payoff, no matter whether the coplayer opts
for C or D. As a result, two rational players obtain only payoff P.

The dilemma can also be viewed in a population setting. Let us assume
a population of players interacting with randomly chosen opponents and
interpret payoff as reproductive success. In this case, D players will always
have more success than C players and therefore spread in the population.
Defectors will eventually take over.

The situation changes if one assumes that the prisoner’s dilemma game
is played repeatedly between two players. Let us assume that there exists
a constant probability w for a further round. In this case, if A, is a player’s
payoff in the nth round, his total expected payoff is £ A,w" (we note that
w" is the probability for the occurrence of the nth round and that (1 —
w)lis the expected number of rounds). There are enormously many strate-
gies for the iterated PD, and Axelrod (1984) has shown that if w is suffi-
ciently large, no strategy dominates: its success now depends crucially on
the strategy of the coplayer, i.e., on the composition of the population. It
is true that a player using the AllD strategy (always defect) will never do
worse than his coplayer: but this coplayer can have cooperative interactions
with other members of the population which make up for the losses due
to the AllD player.

There are many ways of exploring the evolutionary dynamics of the
amazingly complex world of the iterated PD. A straightforward approach
would be to study its replicator dynamics: according to this dynamics, the
increase (or decrease) of a strategy’s frequency is given by how much better
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(or worse) it does than the population average (see, for instance, Hofbauer
and Sigmund, 1988). However, as soon as one admits a sizeable number
of competing strategies, this dynamics becomes too complex to analyze.
We are obliged, therefore, to restrict our attention to the case of two
competing strategies. More precisely, we investigate when one strategy can
invade another. We shall assume that the population is very large and
essentially homogeneous, all individuals playing the same strategy E. A
dissident individual playing strategy E’ interacts only with E players in this
case. The question which we shall address is then, when can this dissident
spread under the influence of replicator dynamics? In Nowak (1990a,b),
this question has been completely solved for reactive strategies (described
in Section 2) in the case w = 1. In our present paper, we consider larger
classes of strategies and assume w < 1. Because we cannot fully solve the
problem, we restrict our attention to two aspects: (a) When can an E
population be invaded by close-by mutants? (b) When can an E population
be invaded by AlD?

To deal with the first question, we shall use the notion of adaptive
dynamics, which singles out the optimal directional change for a deviation
from the common strategy £. The rationale is that the homogeneous popula-
tion is surrounded by close-by mutants and that myopic selection leads in
the direction of the most prospering one. Of course this dynamics is an
extremely rough caricature of an evolutionary process. Real-life populations
are not homogeneous; mutants can easily miss the most promising direc-
tions; even if they do invade a population, this need not mean that they
can completely take over; and the assumption that no further mutations
will mess up the picture before this takeover is completed is also wildly
optimistic. Nevertheless, one can view adaptive dynamics as a helpful tool
for understanding evolutionary change (see Hofbauer and Sigmund, 1991;
Metz er al., 1992; Rand et al., 1994; Dieckmann and Law, 1995).

If x is a parameter describing a phenotypic trait—or, in the present
context, a strategy F—then x changes, according to the adaptive dynam-
ics, by

. _OP(E,E")
T ox 3)
where P(E, E') is the payoff for an E-strategist in a population of E’-
players and the right-hand side is evaluated at E' = E. This adaptive
dynamics describes at least locally how phenotypic traits change in a mono-
morphic population. It points toward the local best response. (For a deriva-
tion of (3), see Hofbauer and Sigmund, 1991.)

Since it seems almost impossible to investigate the game in its full general-
ity, we shall restrict our attention to conditional strategies where the propen-
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sity to cooperate depends on the outcome of the previous round only.
These strategies have been investigated in Nowak and Sigmund (1993a,b,
1994a,b), but only for the infinitely iterated PD, where the probability
w for a further round is equal to 1. In this case, the total payoff is
given by the limit in the mean of the payoffs per round, ie., by
lim(1/n)(A, + - -- + A,), where A,, as before, is the payoff in round n. This
allows for considerable computational simplifications, but can, of course, be
challenged for its lack of realism.

For starters, we briefly describe the special case of reactive strategies,
where a player’s decision depends only on what the coplayer did in the
previous round. This situation, which is fairly well understood, helps us get
acquainted with the notion of adaptive dynamics and lays the groundwork
for the more complex case, where a player takes also the own previous
move into account. In the next stage, we deal with the alternating PD, where
a relation between the payoff values simplifies the analysis considerably. (It
will be argued that the alternating case is interesting in many instances of
mutual help.) Only then do we deal with the full case of stochastic memory-
one strategies. In the final discussion, we compare this with numerical
simulations of the replicator dynamics (occasionally introducing new mu-
tant strategies) and emphasize the many problems which are left open in
this context.

It should be stressed that we do not discuss the problem of evolutionary
stability. Roughly speaking, a strategy is an ESS (evolutionarily stable
strategy) if, whenever a population adopts this strategy, no mutant can
invade under the action of selection. We are considering sets of strategies,
however, which are so large that to any strategy E, one can find strategies
E' which do just as well against £ and against E’, as E does. There exists
no ESS in such a case. Moreover, even if, in a restricted set of strategies,
an ESS exists, it can happen that evolution leads away from it (see No-
wak, 1990b).

2. REACTIVE STRATEGIES

Let us start by considering the case of the infinitely iterated PD, i.e., w =
1, while restricting our attention to strategies defined by the two conditional
probabilities p and q of playing C after a C, resp. after a D, of the coplayer
in the previous round.

The set of all (p, q) strategies is the unit square. The corner (0, 0)
corresponds to the strategy AllD which always defects the southeast corner
(1, 0) to the tit-for-tat (TFT) strategy, the center (3, 3) to the fully random
strategy, etc. We assume that all strategies are subject to some noise and
hence restrict our attention to the (p, g) strategies in the interior of the
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unit square. This has the advantage that the resulting game is described
by a Markov chain which is ergodic: every state (i.e., every pair of moves
by the two opponents) occurs with a positive probability. Instead of (1, 0),
for instance, we shall assume that the tit-for-tat player occasionally makes
a mistake in implementing his strategy, and we consider a strategy given
by (1 — &, &), where ¢ is some (small) error probability.

The payoff for a (p, q)-player against a (p’, g')-player is easily computed
to be

(R-T+P—-8oo" +(§S—Pa+(T—- P)o + P, 4)
where
_q_uq
7 1 — u )

(with u = g — p and &’ = g’ — p') is the asymptotic probability for the
(p, q) player to play C in the nth round (for n —» ), and ¢’ is the
corresponding expression for the coplayer.

If we compute the adaptive dynamics according to (3), with p and ¢q as
parameters x, we find

[)=1:I_uG (6)
1-4tlo

with

- (iTlu_)z [(R —S—T+P)g—(1+uw)L= P()1u»+u()P = S)]. (8)

It follows that the propensities p and g to cooperate are either both increas-
ing or both decreasing, depending on the sign of G. The region where this
expression is positive defines the so-called cooperation-rewarding zone.
Within this zone, any sufficiently small mutation which increases the proba-
bility o to cooperate can invade, while any small mutation which decreases
this probability cannot.

Similarly, we can also specify the so-called defector-proof zone, the set
of all strategies £ which cannot be invaded by A/lD. This is given by
the inequality
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FiG. 1. The defector-proof zone (I) and the cooperation-rewarding zone (I + II) for T =
5 R=4,P=2 and § = 0 (see text).

(R-S—T+P)gq-0+uw)(T-—Pu+P-5)>0. (9

We note that for most E, AllD cannot be viewed as a small mutation. In
Fig. 1, we sketch the two zonesfor T=5, R =4, P =2, and § = 0. We
see that in this case, both the cooperation-rewarding zone and the defector-
proof zone are neighborhoods of tit for tat, i.e., of the southeast corner
(1, 0) of the space of reactive strategies. The latter zone is (for the given
payoff values) a proper subset of the former. A strategy E belonging to
one but not to the other zone can be invaded by A//D, but not by any
mutant £’ differing from E by only a slightly smaller value of p or q.

The vector field defined by the adaptive dynamics is, at any point
(p, q), orthogonal to the line joining (p, q) to the tit-for-tat corner
(1, 0), suggesting that tit for tat is the pivot rather than the ultimate
goal of the evolution toward cooperation.

This holds for reactive strategies and w = 1 (see Nowak, 1990a; Nowak
and Sigmund, 1990; Molander, 1985). In Nowak and Sigmund (1990), we
also discussed reactive strategies for w < 1. We now turn to strategies
depending on the previous moves by both players, and w < 1. Again, we
shall look for the cooperation-rewarding and the defector-proof zones.
These two concepts, while far from yielding a complete understanding of
the evolution, seem to yield at least a certain insight into its structure.

3. THE ALTERNATING PRISONER'S DILEMMA
In Nowak and Sigmund (1994) it has been shown that many instances

of reciprocal altruism ought to be modeled by an alternating form of the
PD (see also Boyd, 1988; Frean, 1994). In this setup, one assumes that in
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each round, chance decides which of the two players is the leader (or donor)
and which is the recipient. The leader then chooses between two options
C and D. Option C yields a points to the donor and b points to the recipient,
whereas option D yields ¢ points to the donor and d points to the recipient.
We shall assume that in a single round, playing C rather than D entails a
cost to the donor which is smaller than the benefit that this action brings
to the recipient. Since the cost is ¢ — a and the benefit b — d, this means that

O0<c—-—a<b-d (10)

Now let us consider two rounds for which the players are donors in turn.
If both play C, both earn a + b, which we denote by R; if both play D,
both earn ¢ + d, which we denote by P; if one plays C and the other D
while leader, the cooperator earns ¢ + d = § and the defector earns ¢ +
b = T. Condition (10) implies (1) and (2), i.e., the usual conditions for the
payoff for the simultaneous PD. Moreover, we have

T+S=R+P, (11)

which greatly simplifies Eqgs. (4), (8), and (9).

It is argued in Boyd (1988), Nowak and Sigmund (1994), and Frean
(1994) that mutual aid is often given alternatingly: a good turn to a partner
in the hope of an eventual return. A vampire bat feeding a hungry fellow
bat is obviously performing a cooperative move; this can be repaid, not
simultaneously, but with a time lag. The same holds for a wolf that joins
a fight to help its fellow, a bird emitting a warning call, or a monkey
scratching another monkey’s back. It needs no help right now; it may need
it later. A similar principle operates in economic exchanges within simple
social groups, for instance in the bartering of goods and services in house-
holds and among neighbors.

The outcome of one round of the repeated alternating PD is completely
specified by the payoff obtained by one of the players; this can be a, b, c,
or d. We denote these outcomes by 1 to 4 (in this order), noting that one
player’s a (or c) is the other player’s b (resp. d). We restrict our attention
to players whose strategy is determined by the outcome of the previous
round only, i.e., given by a quadruple p = (py, p2, p3, Pa), where p; denotes
the propensity to play C after outcome i, and in addition by the propensity
y to play C in the first round. These propensities are independent of the
random decision about who is going to be the leader (we shall always
assume the corresponding probability to be $). If a p player is matched
against a p’ player, then the transition probability from one round to the
next is given by
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piopr (1—p1) (1-pj)
P2 Pi (1“172) (I‘Pf)
ps (1—p3) (1-pd
ps p3 (L—ps) (1-p3)

(12)

81—
N
(%)

The total payoff of a player using strategy £ = (y, p) against a player using
strategy E' = (y', p') is given by

P(E,E)=4{yA+(1-y)C+y'B+ (1 -y)D] (13)
HC+ D +y(A-C)+y(B—- D),

where A, B, C, and D are the expected total payoffs for the E player, given
that the first round of the game resulted in a, b, ¢ resp. d. We have

A=a+Z[pA+piB+(1-p)C+ (1~ p)D] (14)

since w is the probability that the game proceeds to the second round,
where the situation renews itself: } is the probability that the E player will
be leader in this round, p, is the probability that he will play C (remembering
that he just experienced an a), etc. Equation (14) and the corresponding
equations for B, C, and D can be written as

A a
B b
M cl=te) (15)
D d
where
M=1Id - wT (16)

has full rank, so that we can compute the payoff. Writing out (15), we obtain

C+D+p1(A—C)+p§(B—D)+%(a—A)=O a7)

C+D+p2(A—C)+p;(3—o)+%(b—3):0 (18)
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c+D+p3(A—C)+p;(3~0)+%(c—C)=o
C+D+pufA-C)+pi(B~D)+2(@-D)=o0.

Subtracting (17) from (19), and setting
v=w(ps—p1), u=w(ps—p), t=w(ps+pa),
and similarly for v’, u', and ¢', we obtain
Q2+ v)(A—-C)+u'(B— D)=2@a - o).
Similarly substracting (18) from (20), we obtain
u(A-C)+ Q2+ v'YB - D)=2b - d).
Cramer’s rule yields

(a—c)2+v')y—(b—d)u’
2+v)R+v')—ud

A-C=2

and

(b—d)2+v)—(a—cu

B-D=2 2Z+v)2+v') - u

Adding (19) and (20) yields

1
- w

C+D=r——[c+d+3(A~C)+5(B-D)]

(19)

(20)

(21

(22)

(23)

24)

THEOREM 1. The total payoff P(E, E') for an E player against an E’
player is given by (13), where B — D, A — C, and C + D are as in (22),

(23), and (24), respectively.

For the sake of completeness, we add that in the limiting case w = 1,
where the total payoff is defined as the limit in the mean of the payoff per

round, we have

Ot2+v')~tul+(b—-d)['(2 +v) - ']

! — (a-
PEE)=ctd+ Rro)@ro)—u

Y
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which turns out to be the same expression as (24), except for the factor
(1 — w)". (It is obvious that the initial probabilities y and y’, which occur
in (13), play no role in this case.)

We now turn to the adaptive dynamics underlying the alternating PD.
In our case, the trait x in Eq. (3) canbe y, py, ..., ps. Rather than differentiat-
ing P(E, E'), which yields very cumbersome computations, we shall use
the implicit function theorem. We write (15) as

fi(Pl,PZ’P%P%P[,Pé,PéapfhA. Ba Ca D) =0
(for i = 1 to 4) and see that

a(fl’fz’f3’f4) - M
3{A, B, C, D)
and that

A ffof) _w g
3(p1, Pa. P, Pa) 2dlag(C A).

It follows from the implicit function theorem that

a(A,B, C, D) — _[a(flvf29f39ﬂ):l4 a(fl’fZ’fI%ﬁ‘) (25)
a(PlsPZ’pr‘l) a(AaB’ C’D) a(PhPZ’P%P‘t)

w
= —5(C—-A)G,
where G = M'. We note that since
G=(d-wh)'=1d+wT+ (WI)?+ -

all elements g; of G are strictly positive. The formulae for these expressions
are rather unpleasant, but they combine in a decent way. For future use,
we note

detM=1—:—11(2+v+u)(2+v—u) (26)

and, as one can easily deduce from the special form of M,
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811 = 82 L12 = 821, B13 = 824, 814 T K23, (27)

as well as

831 = a2, 832-8ar. 833 = 445 834 = 843- (28)

A straightforward computation shows that

2w
+ = —_ ——
gutgn=gutgn= Je tM(2 +v ”)( 2+ p; +P4) (29
and

tgu=gnt —~
g3t ga=8nt gu= dtM(2+v w)(2—pr—p2) (30)

and hence

2w
gut g g3 Bu= Q2+v-—u)
det M (31)

2
X (;—4+p1 +p2+ ps +p4)‘
Now (13) and (4) yield
=la-o
y 2 3
1 3B INELe
pl_Z[y(ap +6p>+(1 y)(ap +6p >]
etc. By (25), this yields
LW
/h=7 (A = O)[y(gu + gi2) + (1 — y)(g13 + 814)].

We note that the last term on the right-hand side is always strictly positive,
so that the sign of py, etc., is always that of A — C, an expression which
has been computed in (22). (Since we now evaluate our expressions for
E = E', we have v = v’, etc.) Together with (29) and (31), we obtain
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THEOREM 2.  The adaptive dynamics for the randomly alternating PD is
given by

y=5(A-0C) (32)

DI | =

4w?

) =P = +v+u)!
P =D 1_w(2 v+ u)

(33)
2

4w?
1-w

Py=pa= QR+v+u!

2 2 (34)
X ;—Pl—PZ"“)’ ’;+P1+P2+P3+P4 A4-0),

where
a-c)2+uv)—-(b—-du

C+v+uw)2+v—u) (33)

A-c=2¢

The corresponding expressions for the limiting case w = 1 is given by

.. _tlla- )2 +v)— (b—d]
A S e T w2+ 0 - w)

(36)

and an analoguous expression for p; = pg,, with ¢ = p; + p, replaced by
2-p1—pa

We note in every case (i) that py = p, and p; = p,, which implies that
the optimal adaptation depends only on whether there was a C or a D in
the previous round and not on who actually implemented it and (ii) that
vand all the p; are of the same sign. This sign is positive in the cooperation-
rewarding zone, which is defined by

(a-c)2+v)>(®b—du 37)
and hence independent of y. Setting

b-d

c—a

o =

(which is just (T — P)/(T — R), and always larger than 1), we see that the
cooperation-rewarding zone is given by
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2
;<Pl — pa + apr — pa). (38)

This zone is non-empty, therefore, if and only if it contains the tit-for-tat
strategy, which is given by (p1, p2, p3, ps) = (1, 1,0, 0), i.e., if and only if

a>3‘7f. (39)

We note that in the limiting case w = 1, this condition is always satisfied.
Cooperation is easier to achieve the larger the zone, i.e., the smaller the
“temptation” T — R to defect unilaterally, compared with the gain R — P
obtained by mutual cooperation. In particular, if

2
a>:v‘, (40)

then the cooperation-rewarding zone contains (1, 1, 1, 0), the strategy which
is always ready to cooperate except if it has been played for a sucker, i.e.,
if it has experienced a d in the last round. In this case, a (1, 1, 1, 0) player
defects if he is leader in the next round, but he defects only once; if he is
leader in the subsequent round, or if the other player resumes cooperation,
he will switch back to C. We note that in the limiting case w = 1, condition
(40) simply means that the cost to the donor ¢ — a is at least twice as large
as the benefit to the recipient b — d.

It is easy to find the best consensus strategy which is immune to defection.
If all members of the population adopt this strategy, then exploiters with
a lower propensity to cooperate cannot invade, and the overall payoff for
the population is maximal (subject to this noninvadability condition). This
payoff is given by

a—1 t c+d
P(E’E)=2+v+u(2y+1—w>+1—w'

THEOREM 3. The cooperation-rewarding zone is non-empty if and only
if (39) holds. If

2-—w 2
<a<—,
w w

then the consensus strategy E with the highest payoff in this zone is given by
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2
(y’Pl’pz’p3’p4) = (1’ 15 1’1 + _;,0>

and if (40) holds, it is given by

2
(y,p1, P2, 3, Pa) = (1, 1,1,1,1 - Ev—)

Next, we ask for which values of x a homogeneous population of players
using £ = (1, 1, 1, 1, x) is defector-proof, i.e., cannot be invaded by AlD.
The average payoff between two E players is given by (R/2)(1 + w + - - ),
ie., by (R/2)(1 — w)™'. Let u be the payoff for an AllD player against an
E player. AllID players can invade if and only if

R

/.L>——————2(1_w). (41)

We have

p=3%L + N),

where L and N are the payoff for the AlID player, given that he (resp. his
opponent) makes the first move. Clearly, we have

N=b+wu (42)

since b is what the AllD player receives in the first round, and then every-
thing proceeds as from scratch. Also,

L=c+%kN+ﬂ—de+wM} (43)

Indeed, ¢ is the AlID player's payoff in the first round, and in the next
round, he and the other player have equal chances to be the leader. We
used that the game proceeds as from scratch if the E-player retaliates by
a D. By (42) and (43), we can compute u. (41) implies the following result.

THEOREM 4. AIlD can invade a (1, 1, 1, 1, x) population if and only if



378 NOWAK AND SIGMUND

2({T— Rlw
x> 1 ;(———R_S). (44)

For w = 1, this reduces to

x>1--=.

4. Tue SimuLTanNeous PD

The same methods can be used to compute the payoff and the adaptive
dynamics for the simultaneous prisoner’s dilemma. The outcome of each
round can be described by the payoff R, S, T, or P for one of the two
players. We shall again label these outcomes by 1 to 4 (in this order). We
restrict our attention again to strategies which depend only on the outcome
of the previous round. If we denote by p, the probability that the player
plays C, given that he experienced outcome i in the previous round, then
the player’s strategy E is completely specified by p = (p1, p2, P3, p4) and
by the probability y that he plays C in the first round. The transition matrix,
from one round to the next, will again be denoted by T. It is now given by

pipi pi(1—p1) (1—p)pi (1 —p)(A-pi)
T = pps Pl —p3) (1 -pr)ps (1 —p)(1—p3) (45)
pp: ps(l—p3) (1 —p3)ps (1 —p3)(1—p2) |

pips pa(l—pi) (1 —pipi (1—py)(l—p2)

We can use the same renewal argument as before to compute the overall
payoff. We denote by r the total payoff if the player experiences an R in
the first round and define s, ¢, and p in a similar way. Since

r=R+wpipirr+p(1—pds+ A —p)pit+ (1 -p)Q-p)pl,

etc., we get

(46)

oo TSGR PR Y
N X
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where
M =1Id — wT.

The total payoff for a player using strategy £ = (y, p) against a player
using strategy £’ = (y’, p’) is now given by

PELE') =yyr+y(l —y)s+ (1 —-y)y't+ (1 -y)1-y) (47

and can be computed by Eq. (46). The explicit formula, however, is a good
deal more complicated than in the case of the alternating PD.
Using the same methods for the adaptive dynamics, we find that

y=yr-09+d-y)s-p),
that p, is a strictly positive multiple of
pi(r =)+ (1 = p)(s — p),

and that similarly p,, ps, and p, are strictly positive multiples of ps:(r — 1)
+ (1= p3)(s = p),par = 1) + (1 = p2)(s — p), and pa(r — 1) + (1 = p4)
(s — p), respectively. In general, these expressions will not always have the
same sign, because r — s — ¢t + p will in general be distinct from 0. This
holds even if (11) is valid, except for the special case that

p1t pa=p;+ p;. (48)

This condition is satisfied if the strategies are self-determined, i.e., depend
only on what the player himself did in the previous round (meaning that
p1 = p2and p; = py) and in the case where strategies are reactive, and hence
depend only on what the opponent did in the previous round (meaning that
p1 = ps and p, = py; discussed in Section 2).

In the general case, the cooperation-rewarding zone (i.e., that region in
the parameter space (y, p1, ... , Ps), Where y, py, ..., p4 are all positive)
is difficult to describe. But we can easily compute the signs of r — ¢ and
s — p for those deterministic strategies where all p; are equal to 0 or 1.
These strategies are characterized by transition rules defined by quadruples
(p1. ..., pa) of zeros and ones. There are 16 such quadruples and hence
16 transition rules which we denote by S;, fori = 0,1, ..., 15, in such a
way that i = p, + 2p3 + 2%p, + 2°p,

Let us normalize the payoff values such that R — P = 1 (this is no loss
of generality) and set 8 = P — Sand y = T — R (both B8 and v are positive:
they are equal if (11) holds). We find that r — ¢ is always negative except
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for S,, S5, Sg, S, Sy, and S;;, when the sign is that of —y + Bw — w2,
-y + Bw, —y+w(l+y), —y+w, —y+w(ll+8),and -y + w(l + B),
respectively. Similarly, the sign of s — p is always negative, except for S,,
S3, Ss, S10, Si1, and Sy, when the sign is that of —8 + w(l + v),
B+ wy, B8+w, -8+ w(l+ vy, -8+ wy - w)and -8 +
w(l + B), respectively. From this the next result follows easily.

THEOREM S.  The only deterministic strategies which can lie in the cooper-
ation-rewarding zone are those with the tit-for-tat transition rule Sy. They
belong to the zone if and only if

T—-R P—S]. (49)

w>max[R_S,T_P

This emphasizes once more the role of tit for tat in twisting evolution
toward cooperation. We conjecture that the zone of cooperation is non-
empty if and only if (49) holds, i.e., that it has to contain tit for tat if it
contains any strategy at all.

Extensive computer simulations show that populations evolve very fre-
quently to a cooperative strategy with y = 1 and p = (1, 0, 0, x,) for a
certain value x, which depends on the payoff values R, S, T, P and on w
(for w = 1, we refer to Nowak and Sigmund, 1993b; for w < 1 see Section
S below). To better understand this result, we note, first of all, that the
transition rule (1, 0, 0, 1) means that the player cooperates if and only if
he experienced an R or a P in the previous round, i.e., if he opted for the
same move as his coplayer. To put it another way, he repeats his previous
move if and only if he experienced an R or a 7 and consequently had
reason to be satisfied with his payoff. (For this reason, a strategy with p =
(1, 0, 0, 1) has been termed Pavlov by Kraines and Kraines, 1988.) In
contrast to tit for tat, this strategy (a) is error-correcting against itself and
(b) exploits unconditional cooperators. Indeed, we see that (a), if, in a
match between two Pavlov-players, one commits a mistake and defects,
then both players defect in the next round but subsequently resume mutual
cooperation; and (b) if a Paviov-player notices that an inadvertent D against
his coplayer meets no retaliation, he will continue to defect. In a Pavlov-
dominated society, suckers cannot spread. However, in a society dominated
by players who always defect, Pavlov fares poorly, as it tries every second
time to resume cooperation.

A strategy with transition rule (1,0, 0, x) has—like Pavlov—the property
to resume cooperation, against its like, after an erroneous D, and to exploit
players who do not retaliate, but it is less naive than Pavlov against all-out
defectors. Let us compute the payoff u for a player with strategy AllD (i.e.,
always defecting) against a player who starts with a C move and then uses
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Fic. 2. The event tree for the game between two (1, 0, 0, x) players (see text).

(1, 0, 0, x). In the first round, the A{lID player receives a T and in the
second round (which occurs with probability w), he receives a P. In the
third round (which occurs with probability w?), there are two alternatives:
(i) with probability x, the other player cooperates: in this case, it is as if
the game started anew, and the future payoff, for the A/lD player, is again
w; (ii) with probability (1 — x), the other player continues to defect, so
that the A/ID player receives P as his payoff in this round and finds himself
in exactly the same situation as after the previous round (see Fig. 2). This
means that if a further round occurs (for which the probability is w), he
faces again the two alternatives (i) and (ii). Iterating this argument, we
see that

w=T+wP+wi (l—x)P+xu]+w3 (1 —x)[(1 -x)P+xu]l+- -
=T+ WP+ wixp)[1 +w(l —x)+w?(1—x)*+ -]

and hence that

It follows that

wix wP
—_ :T+m
”(l 1—w(1—x)> 1-w(~-x)
so that

_T-w(-x)T+wP
= 1-wY(1 +wx) (50)
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The corresponding expression for w = 1 reduces to

:P+xT
1+x°

Returning to w < 1, we see that in a population of players all using y =
1and p = (1, 0, 0, x), the average payoff is (1 — w)™! R. AlID players can
invade if and only if

R
I,L>T—_—:v-. (51)

This implies the following result.

THEOREM 6. In a population of players all usingy = 1 and p = (1, 0,
0, x), AILD players can invade if and only if

1
x>a—;;:=x0. (52)

Here we used again o = (7 — P)/(T — R). In particular, A!lD can invade
Pavlov (where x = 1) if and only if

T—R

< .
YSR-P

(53)

Thus if 2R > T + P, Pavlov cannot be invaded by any strategy. However,
this does not mean that Pavlov is an evolutionarily stable strategy in the
sense of Maynard Smith (1982). As stressed (in the context of the tit-for-
tat strategy) in Selten and Hammerstein (1984), there are many strategies
which do just as well, against themselves and against Pavlov, and which
can spread through neutral drift. This is not just a mathematical detail: the
spread of some such strategies can render the population vulnerable to
subsequent invasions by defectors (see also Young and Foster, 1991).

One can perform a computation similar to the previous one with the
generous TFT strategy, which has transition rule (1, x, 1, x) and starts with
a C. This rule forgives a coplayer’s D with probability x. Against its like,
its payoff is again R(1 — w) !, The payoff w of an AllID player against
generous TFT is

p=T+whku+ A -x)Pl+wixp+ (1 -x)P]+ -

wa+(1 -—x)P.
1—w

(54)
=T+
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From this it follows easily that A/lD can invade a generous TFT population
if and only if

1
x>1—;-‘;. (55)

A simple exercise shows that in a population of generous TFT players with
rule (1, x, 1, x), a one-sided defection is overcome after (on average)
1/x — 1 rounds: after that both players resume cooperation. Similarly, such
a defection is overcome after (on average) 2/x — 1 rounds in the case of
a population with Pavlovian transition rule (1, 0, 0, x).

5. DiscussioN

We have stressed in the Introduction that the adaptive dynamics can be
expected only to give a rough idea of the local dynamics in the parameter
space. We do not believe that an analysis of its asymptotic behavior would
be very fruitful. If the population in the cooperation-rewarding zone is
close to the boundary, for instance, then a mutation could lead to the
establishment of a population which is outside of this zone. It could also
lead to a mixed population to which the adaptive dynamics (which relies
on a monomorphic population) no longer applies.

For a more realistic picture, we have to use computer simulations describ-
ing the evolution of the frequencies of different strategies under a mutation—
selection dynamics. Selection alone is described by the replicator dynamics
(see, e.g., Hofbauer and Sigmund, 1988). If we assume that E; (fori =1, ...
,n) are the different strategies in the population and x(¢) their frequencies at
time ¢, then this dynamics is given by

i = x{fi— 1), (56)

where f; is the expected payoff for an E-player (which depends on the
frequencies x1, ..., x, of the different strategies in the population), whereas
f= 2 x,f; is the average payoff in the population. As mentioned already,
even with as few as four or five strategies present, this dynamics can be
extremely complicated, exhibiting all kinds of regular or irregular oscilla-
tions. We have studied computer simulations with hundreds of strategies
present: it seems hopeless to expect analytical results in this context, given
the present state of knowledge. For a realistic picture of the evolution, one
also has to add a mutation term introducing, from time to time, small
amounts of new strategies. Such dynamics were described in Nowak and
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Sigmund (1993b, 1994a) for the case w = 1. The corresponding simulations
for w < 1 lead to analogous results. The main conclusions are:

(a) The average payoff in the population is usually close to the values
R or P; the shifts from one regime to the other are rare and sharp and
somewhat analogous to phase transitions. The later in the run, the longer
the periods of stasis, and the more likely is a regime of cooperation.

(b) If the average payoff is close to R, the population is dominated by
a few strategies sharing two properties: (a) while a D can occasionally occur
in a game between two players using such a strategy, it is quickly overcome
and mutual cooperation is resumed; and (b) they relentlessly keep playing
D if the coplayer does not retaliate.

Figure 3, for the case of the alternating PD, is a typical run leading to
cooperation. The outcome is close to the consensus strategy defined in
Section 3. Figures 4 and 5 apply to the case of the simultaneous PD. More
precisely, in these simulations, we use a discrete game dynamics: if x; is
the frequency of strategy E; in one generation, its frequency in the next
generation is given by x/ = (f) 'x,f;. Every hundreth generation, we intro-
duce a new randomly chosen strategy (y, pi, P2, P3, P4) With a small initial
frequency. Each p; is chosen according to the U-shaped probability density
[mx(1 — x)]"!/2 from the unit interval [0, 1] (or more precisely from the
interval [0.001, 0.999], because we assume a minimal amount of noise).
Strategies with frequencies below 0.001 are removed (and the other fre-
quencies re-adjusted to sum up to 1). Usually, there are 1 to 10 strategies
in the population. We extend each simulation to cover 107 generations,
thereby sampling 10° strategies in each run, giving special attention to those
near to the corners (this is why we chose the U-shaped density).

We see in Fig. 4 a typical run: after some time, the parameters y and p,
are close to 1, the parameters p, and p; are close to 0, and p, slowly edges
closer to the value x, given by (52). We see from Fig. 5 that Pavlov is the
most frequent outcome as soon as R > 3, which again agrees well with (52).

How robust are these simulations? If one changes the starting point of
the simulation, the arrival interval of mutations, the payoff values, the
average length of the game, or the frequencies below which the strategies
are considered to be ‘‘extinct” and removed from the population, or if one
varies the minimal amount of noise or the distribution of the mutants,
nothing much changes in the overall picture. There is a single parameter
which is critical: this is the initial frequency of the mutant. If this is too
low, there will be no emergence of a cooperative regime. This emphasizes
a result well known since the pioneering work of Axelrod and Hamilton:
there has to be a minimal clustering of retaliators.

The adaptive dynamics emphasizes the role of the cooperation-rewarding
zone, where evolution leads toward strategies more and more ready to
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Fi1G. 3. Evolutionary simulation of the stochastically alternating, finitely repeated prisoner’s
dilemma with stochastic strategies that only consider the previous round of the iterated game.
Each strategy is given by five probabilities (y, pi, p2. p3, p4). The probability to cooperate
in the first move is denoted by y. The probabilities to cooperate after one’s own C, the
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cooperate. The main question in this context is, how can a population of
defectors be coaxed into this zone? In the case of reactive strategies, the
answer is clear (see Nowak and Sigmund 1992): one needs a cluster of tit-
for-tat players. Tit for tat is, in this case, almost specified by the property
that it can invade an A/lD-population in minimal cluster size. In the more
general case, a careful look at the numerical simulations shows that again
a very stern, highly provokable strategy has to invade. However, this need
not necessarily be tit for tat: in the case of the simultaneous PD, it is more
frequently a strategy close to grim Sg, which starts with a C and then applies
the transition rule (1, 0, 0, 0). After a defection, grim never cooperates
again. We note that grim is very vulnerable to errors, whereas Pavlov is
not: strategies with transition rule (1, 0, 0, x) lie in between: the larger the
x, the quicker such a defection will be overcome, but the lower the payoff
against AllD-players.

In contrast to the case w = 1, the initial move of a strategy is now of
importance. For a non-forgiving rules like TFT or grim, it is essential that
this first move is a C, since otherwise the whole future will be poisoned.
For a rule like Pavlov, this need no longer be the case. On the contrary,
it can be advantageous now to start with a D.

In papers by Rubinstein (1986), Abreu and Rubinstein (1988), Binmore

opponent’s C, one’s own D, and the opponent’s D are given by p, p,, p3, and p4, respectively.
The population averages of these quantities, together with the total number of strategies in
the population and the average payoff of the population, are shown. The simulation was
performed with the usual game dynamical difference equation x; = x,f,/f, where x; denotes
the frequency of strategy i, f; its payoff in the population, and f = 2 x.f, the average payoff
of the population. Thus strategies spread according to their success. Payoff equals fitness. We
start with a homogeneous population using strategy (0.5, 0.5,0.5, 0.5, 0.5). Every 100 iterations
(on average) a new mutant is introduced. New mutants are chosen at random; the probabilities
y and p; are taken from the U-shaped distribution [#x(1 — x)]"2 to get more bias toward
the boundaries of the five-dimensional strategy space {because relevant strategies are usually
close to the boundary). We only admit probabilities between 0.001 and 0.999, thereby including
a minimum amount of intrinsic stochasticity. If the frequency of a strategy drops below 0.001
it is removed from the population. New strategies are introduced at an initial frequency of
0.01. It is important that this initial frequency is not too low, as otherwise A/D populations
could never be invaded by TFT-like strategies and cooperation would never emerge. This
simulation shows a rapid emergence of cooperation. There are ensembles of strategies with
¥, p1, and p; all close to one. The two other probabilities, p; and p,, show more fluctuations.
Interestingly at the end a strategy emerges which is given approximately by the consensus
strategy defined in the text. We performed 40 such simulations. Cooperation was reached in
15 runs and was always based on strategies around y = p; = p, = 1, p varying between 0.5
and 1, and p, varying between 0 and 0.4. Payoff values: a = 2, 6 = 1, ¢ = 3,d = -2,
corresponding to R = 3,5 = 0, T = 4, and P = 1. Discount of the future w = 0.95, implying
an average length of the repeated prisoner’s dilemma of 20 rounds.
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FiG. 4. An evolutionary run as before, but this time for the simultaneous PD. The strategies
are given the five probabilities: the probability y to cooperate in the first move, and four
probabilities (p,, p3. pa. p4) to cooperate after having received payoff R, S, T, or P. We used
the population values R =3, § =0, 7T =5, and P = 1.
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FiG. 5. Statistics for evolutionary runs for the simultaneous PD. We used the parameter
values § = 0, P = I, T = 5, and R as indicated. For each value of R we performed 40
independent simulations as described in the legend to Fig. 4, each generating a total of 10°
different mutant strategies. The fractions of runs dominated by generous tit for tat, Paviov.
and AlID after 107 iterations of the game dynamical difference equation are shown.

and Samuelson (1992), Papadimitriou (1992), and Probst (1993) and Schlag
(1994), we can find investigations of the infinitely iterated PD for determin-
istic strategies based on finite automata (see also Binmore, 1992). Lindgren
(1991) investigates mutation—selection dynamics of such strategies, adding
small error terms. He considers strategies with longer memories, whereas
we allow for stochastic strategies which are not necessarily close to deter-
ministic strategies. Other papers dealing with the effect of stochastic pertur-
bations on repeated games are by Farrell and Ware (1988) and Fudenberg
and Maskin (1990), who deal with the ESS approach, as well as Foster and
Young (1990), Kandori et al. (1991), and Young (1993), who use another
approach based on adaptive play (not to be confused with adaptive dy-
namics).

Here we have investigated the finitely repeated PD (w < 1), allowing
for stochastic strategies. Using renewal arguments, we computed payoffs
and dealt with questions of invadability. Among the problems left open,
we mention (a) a characterization of those strategies best able to invade
populations of defectors and to lead the population into the cooperation-
rewarding zone and (b) the extension of this work to strategies with
longer memories.
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