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DYNAMICAL SYSTEMS UNDER CONSTANT ORGANIZATION II:
HOMOGENEOUS GROWTH FUNCTIONS OF DEGREE p =2*

J. HOFBAUER,t P. SCHUSTER, K. SIGMUND* AND R. WOLFF#

Abstract. Qualitative analysis is presented for a system of differential equations, which play an important
role in a theory of molecular self-organization:

Jé,»=(2 k;,,x,,—ZZk,,qx,,xq)xi, i=1,---,n
p=1 pa

Besides the general case two simplifications are treated:
(1) the norihyperbolic case: k; =0 (k; =0) and
(2) cyclic symmetry: ki; = ki+1,j+1.

Criteria for cooperation and exclusion are derived.

1. Introduction.

1.1. The origin of the problem. A recent kinetic approach towards a theory of
molecular self-organization centers on the properties of a class of abstract dynamical
systems called ‘“hypercycles” and their physical realization (Eigen and Schuster [4]-
[6]). Because of this basic importance the differential equations corresponding to
hypercycles in their simplest form’

(1.1) X =Xi<xi~1’ ) xij—1), i=1,---,n
i=1

have been studied extensively by qualitative analysis [15].

Since hypercycles are just one class of a whole family of dynamical systems which
are of certain importance in biophysical chemistry and theoretical ecology we made an
attempt to analyze the corresponding generalized differential equations

1.2) 5= £ kto— £ % k).
p=1 r=1s=1

This generalization does not only provide a better understanding of some interes-
ting features of (1.1) like the appearance of a Hopf bifurcation observed for n =5 [15]
but yields also important information on the origin of hypercycles and the probabilities
of their formation.

Some of the questions to be discussed in this context are the following: where are
the fixed points and, in particular, the stable equilibrium points? Are there periodic
orbits, and in particular stable limit cycles? Are there bifurcations in the qualitative
behavior of (1.2) when the parameters k;; are allowed to vary? When is the system
cooperative and when do we have exclusion?

1.2. The physical background, some basic definitions and properties. An equation
of the form

1.3) % =r,~(x>—§¢<x), i=1,2,,n

withc >0and ¢ =Y, T; has been called an equation under the constraint of “‘constant
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DYNAMICAL SYSTEMS 283
(overall) organisation” by Eigen [3]. This constraint is closely related to but not
identical with “constant forces” often applied in irreversible thermodynamics to
simplify the analysis of complex systems. A situation simulated by (1.3) is, e.g.
encountered in a flow reactor (Fig. 1). The use of a flow reactor to study evolution
experiments has been discussed recently in great detail by Kiippers [11].

DILUTION FLUX: ¢

ENERGY RICH @ ENERGY POOR
MATERIAL @ MATERIAL

— [ouTPUT]

MONOMERS = " ASTE "
= BUILDING BLOCKS WAS

OF POLYMERS

" " SELFREPLICATIVE UNITS: TEMPERATURE : T=To
FOO0D PRESSURE : P=P
- L) = % MONOMER (F00D)
CONCENTRATION (aN)=c5
;‘t P - _%L ® ARE CONSTANT

F1G. 1. The evolution reactor. This kind of flow reactor consists of a reaction vessel which allows for
temperature and pressure .control. Its walls are impermeable to the self-replicative units (biological
macromolecules like polynucleotides—e.g. phage RNA, bacteria or, in principle, also higher organisms).
Energy rich material (‘“food”) is poured from the environment into the reactor. The degradation products
(“waste”’) are removed steadily. Material transport is adjusted in such a way that food concentration is constant
in the reactor. A dilution flux ¢ is installed in order to remove the excess of self-replicative units produced by
multiplication. Thus the sum of population numbers or concentrations,

(1+[B)+ - +[L]= ¥ xi=c,

may be controlled by the flux ¢. Under “constant organization” ¢ is adjusted to yield constant total
concentration c.

The self-replicative units may multiply either directly, then T'; is a linear function of x, or via catalytic help by
another self-replicative entity. The former case has been treated extensively in previous papers [3], [4]. Catalytic
action leads to quadratic terms in the growth functions T';. The dynamic behavior of purely catalytic systems is the
subject of this paper.

The experimental verification of evolution reactors has been discussed extensively by Kiippers [11].

The ‘“‘growth terms” I'; reflect the dynamical properties of the entities, selfre-
productive biological macromolecules, primitive organisms etc., growing in the reactor.
The constraint ¢ corresponds to an isotropic dilution flux.

With'S(x) = x;+- - - +x, one has S = ¢(1—(S/c)). Let S5 denote the simplex

{x=(X1,"',x,,)€R”:x,~§0, Z xi=c}.
i=1

Since S = ¢ implies S =0, S, is invariant. The constraint of constant organization thus
leads to a stationary state with constant total concentration S =, x; = ¢ (see also [5]).
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The equations to be studied here (1.2) are a special case of (1.3) as they are obtained by
putting

Fi=x; ¥ kipxp-
p=1

We shall investigate their restriction to S, (for S, we shall use simply S,,).

Additionally, the growth terms fulfil the relation I'; = x;G; and hence (1.2) belongs
to the class of ecological equations. Thus all species present in the system are assumed to
be capable of self-induced replication. All constants in I'; refer to second order reaction
rates, e.g. k;, corresponds to catalytic help of species “p”’ with the replication of *“i”. In
case the “species’ are biological macromolecules, in particular polynucleotides, there
are several kinetic mechanisms which provide physical explanation for the origin of the
catalytic action [4], [5]. A second more formal consequence of the fact that (1.2) is an
ecological equation may be deduced from the property:

X,’=0_).X.I,'=0.

Hence the boundary, bd S,, consists of a hierarchically ordered set of ‘m-subfaces
(m < n) which are globally invariant.

We have to thank the referee for pointing out that the restriction of (1.2) on S,
coincides there with a type of equation studied by Jenks in [8]-[10]. Indeed, using
Y.x; =1, we may write (1.2) in the form

X=X 8i(kip — kpa)xpXax;,
1p,q
which is a special case of (1.1b) satisfying the condition (1.1c) from [8]. In that paper
Theorem 2 gives a necessary and sufficient condition than S, is positively invariant for
Jenks equation: in our special case, this is trivially fulfilled. Theorems 3, 4 and 5 of [8]
give conditions, in terms of the irreducibility of a certain tensor, for his system to have
critical points in the interior of S,. In our special case, the vertices of S, are always
critical points and the tensor is always reducible. Theorems 6-11 in [8] deal with critical
' points in the interior of S, and give conditions for asymptotic stability, for instability
and for the existence of strict Lyapunov functions in terms of a certain matrix R (¢).
These results are of local character. In our more special systems, we study questions of
exclusion and cooperation of a more global nature. In particular, we also take small
fluctuations into account. Since for the equations of Jenks, ¥ x; = ¢ is invariant for all c,
fluctuations may add up and significantly change the total concentration. In equations of
the form (1.3), if ¢ >0, a fluctuation in total concentration will be subsequently
canceled.

As deduced previously [5], there is a fundamental difference between dynamical
systems with homogeneous and inhomogeneous growth functions I';(x). In the first case
as in (1.2) the phase portrait %(n, T, ¢), does not depend on the total concentration ¢
and hence we set ¢ = 1 without losing generality. In the latter case which will be treated
extensively, in a forthcoming paper, the dependence of & on ¢ may be used to
characterize the various dynamical systems with respect to their self-organizing pro-
perties.

An easily verified but nevertheless important property of (1.2) is the fact that only
the differences in rate constants determine the dynamics of the system. Indeed,

ki =kiy+dij> b =X kipx; +; dijxix;
] 5]
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and thus
)é; =X (Z kipxp - Z kpquxq> = xi(z dipxp - Z dmxl’x )
14 pq 14 p,q

k(;, does not enter the differential equations (1.2).
We remove this arbitrariness by putting

In § 2 we present fixed point analysis of (1.2). A more detailed study of the phase
portrait #(n, T, 1) will be given under some supplementary assumptions. In § 3 we
investigate the case k;; = 0—called the ‘“‘nonhyperbolic” case by Epstein [7]—and in § 4
we consider the case of cyclic symmetry where species ‘“i’’ acts on *‘j”” like “i+1”° on
“j+1”. In both cases we give criteria for exclusion and cooperation of the correspond-
ing dynamical systems.

1.3. Exclusion, cooperation and fluctuational limit sets. The term “‘exclusion” is
frequently used in discussions of ecological differential equations, but its definition is
subject to slight variations. It says roughly that at least one species vanishes, and hence
could be translated as meaning that the w-limit of the orbit describing the ecological
system is not disjoint from the boundary of the concentration space. It may happen that
the definition is too narrow, however.

For example, in the special case of the Volterra-Lotka equation

L.5) )il=yl(1“)’1—)’2),
y2= y2(1—y1 —Y2),

(y1=0, y,=0), the phase portrait contains a line L of fixed points given by y; +y, = 1.
The w-limit of every orbit starting from some point with coordinates y; >0 and y, >0 is
apoint on L and hence no species vanishes. Still, one usually speaks of exclusion (see for
example McGehee and Armstrong [12]) since random fluctuations may move the
system from one equilibrium point to another, eventually sending it to one of the axis
y1=0 or y, =0 (see Fig. 2).

Y2

Y

3 &
? <

Y
FIG. 2. Phase portrait of the Lotka-Volterra equation (1.5).
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A possible way to take account of such small fluctuations is to replace the w-limit
set by the fluctuational limit set. If T,(¢ € R) is a one-parameter group of homeomor-
phisms of a metric space (M, d), the w-limit set of a point xe M is the set

w(x)={ye M: 3¢, 1+ 00 with d(T,, (x), y) > 0},
while the fluctuational limit set is
f—ox)=N N Jx,¢T)
e>0 T>0
with . ,
J(x, e, T)={ye M:3t, > T, Ix,, € M with xo =x

and d(T,, (x,), X»+1) < & such that d(x,, y) > 0 as n > co}.

Roughly speaking, J(x, &, T) is the set of points which may be approached
asymptotically, starting from x, by superposition of the time evolution 7, with some
fluctuational “jumps” which are small and rare (if ¢ is small and T large). This notion is
related to the “prolongational limit set” of Auslander and Seibert [1] and the “‘orbit-
tracing’’ of Bowen [2]. Here we only note that f—w(x) contains w(x) but may be
significantly larger.

If, for example, x is in the basin of attraction of a sink y of some ODE, then
f—w(x) =w(x)=y. On the other hand if we consider (1.5) for some y = (y1, y>) with
y1>0, y,>0, then w(y) is a point of the line L while f — w(y) = L. Thus w(y) is disjoint
from the boundary of the concentration space but not f—w(y). This suggests the
following definition.

DEFINITION. X€ S,, is said to lead to exclusion for (1.2) if f—w(x)Nbd S, # ¢.
Otherwise x is said to be cooperative. Equation (1.2) is said to lead to exclusion (resp. to
be cooperative) if the corresponding assertion is valid for all x€int S,..

2. Some preliminary results on fixed points.

2.1. Positions of the fixed points. The dynamical system (1.2) on S, can be
subdivided into a hierarchically ordered set of restrictions on m-subfaces (m = n). Fixed
points have to fulfil the conditions

Zkipxp—¢=0, i=1,'."m
p=1

with x;>0,Vi=1, -+ ,mand x;,=0,Vi=m+1, - - -, n (possibly after reordering of
variables) as well as

2.1) _ Y x,=1.
p=1
Elimination of ¢ yields m —1 homogeneous linear equations
(2.2) Y (k1p—kip)x, =0; i=2,-,m
p=1
Together with (2.1), these equations define linear subspaces of fixed points on the

corresponding m-subface.

2.2. The Jacobian. Let A =(a;) be the Jacobian of (1.2) at a fixed point X =
(%1, +, xp). Since
¢ =

a—'xj = pgl (klP + kp]‘)x‘;,
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one obtains

ai=Y kipfo=¢—% X (kip+kpi)Xp
p=1 p=1
(2.3)
a;; = fi(kij - Zl (k,'p + kp,').fp) fOI'f #1.
p=

A has n—1 eigenvalues corresponding to eigenvectors in the plane parallel to the
invariant simplex S, the remaining one will be denoted by w.. It tells us nothing about
the behavior of (1.2) on S, and we will often omit it.

2.3. The corners of S,. The cornerse; = (815, * * * , 8,1) (8 is the Kronecker symbol)
are fixed points (/ =1, - - -, n). The Jacobian has as the lth row (—k1;, —k2s, * * * , —Ku1);
for p # [, the pth row consists of zeros except for the diagonal term k. As eigenvalues
one obtains w;(=w.)=0and w, =ky(p=1,-+,n,p #I).

2.4. Fixed points for §,. Apart from e; (with eigenvalue k,;) and e, (with
eigenvalue k1,) we may have the fixed point

1
X3 =—(k12, k21)
q
provided q = k12 + k21 # 0. Its eigenvalue is
1
a)(3) = ——k12Vk21.
q

If k12k»1 >0, then X3 € int S,. For k»; >0 it is a sink and the system is cooperative. For
k»1 <0 it is a source and we have exclusion. If k12k;1 =0, X3€int S, and we have
exclusion: int S, either consists of a single orbit or of fixed points.

2.5. Fixed points for Ss. e; has the eigenvalues k3; and k»1; e», the eigenvalues k1
and k3»; and es, the eigenvalues k,; and k3. Apart from linear degeneracies, there are
four more possible fixed points:

1
X4 = q—(O, k23, k3z) (where g4 = ka3 + k32)
4
has the eigenvalues

1 1
w$? =;‘(k23(k12-k32)+k32k13) and 5 =——kaska,
4

4
Xs and X¢ are obtained by’cyclic permutations. Finally

4) (5) (6)

4 5 6
® 0, 0®) (where g;= 0" +0? +of

o1
X7 =— (w1,
a7
may lie in int S3. The explicit formula for the eigenvalues is rather complicated. In
general, it is not a rational function of the k;’s.

3. The nonhyperbolic case. In this paragraph we consider the so-called non-
hyperbolic case, where we assume that k; =0 for 1=, j=n (and k; = 0 for all {).

With a nonhyperbolic equation of type (1.2) we associate a graph whose vertices
are the species i (i =1, - - -, n) and where there is a directed edge from i to j iff k; >0, .
i.e., iff i catalyzes j. The graph is said to be irreducible if each i can be reached from each /'
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j through a directed arc. It is said to be Hamiltonian if it contains a directed circuit (an
arc that returns to its starting point) which covers all vertices of the graph without
self-intersection.

In[16] it is shown that if the graph of a nonhyperbolic system (1.2) is a circuit, then
the system is cooperative. It would be interesting to know whether some converse of this
is true or more precisely whether the graph of every cooperative hyperbolic system (1.2)
hasto be Hamiltonian. Numerical evidence supports this, but we can only prove it for
n =3 (for n =2 itis trivial). For n =4 we can only show that a cooperative system has to
be irreducible.

3.1. The case n =3. Up to permutations of the indices, there are 16 different
graphs shown in Fig. 3. We prove first

THEOREM 1. If the nonhyperbolic system (1.2) has a unique fixed point X in int S,
then it is cooperative.

Proof. Equation (1.2) is now

¥1=x1(ki2x2 + k13x3— ¢),
(3.1) X2 = x2(k21x1+ Kk23x3 — @),
X3 = x3(k31x1+Kazx2— @)
and the fixed point X in int S5 satisfies
(3.2) k12%2 + k13%3 = k21X1 + k23X3 = k31 %1 + k3242

as well as ¥; >0, ¥,>0, ¥3>0. We have in int S5

d
(3.3) a (ﬁ) = (ﬁ> = (ﬁ) (k12x2+ ky3x3—ka1x1 — k23%3).
t\X2 X2 X2
3 1 ) —_
° . o —0 o"‘_____'_"’o ° > e . >e . >e >0 o 2o
3 L] L] ./ ./ \. \./ \.
(a) (b) (e) - (d) (o) (f) (9) (h)

.\—b. .\__/_). .@. .\—7. oi/:o .i\ > o .\\(__7;0 .\‘_\__7;0
(i) (3 - () (v) (m) (n) (o) (P)
FI1G. 3. Possible graphs of the nonhyperbolic equation (1.2) with n =3.

Let L; be the line where (x1/x;) = 0. This line passes through X and intersects the
edge x3; =0 somewhere between e; and e, (the coordinates x; and x, of the point of
intersection satisfy k;1x; = k12x5 by (3.2), and hence 0=x;=1).

Let [, I, resp. I be the lines through x and e, e, resp. es. Let P; be an arbitrary
point on /; between e; and x; let Q, (resp. Q3) be the intersection of Pie; (resp. P;e,)
with [, (resp. I3). Let P, (resp. P3) be the intersection of Qse; (resp. Q.e;) with /,
(resp. I3). Then the intersection of P,e; and.Pse; is a point Q; on /; (see Fig. 4: a proof of
the last statement is in [16]).
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FIG. 4. Geometric construction for the proof of Theorem 1.

Consider now the two opposite edges P;Q, and P,Q; of the hexagon
P1Q,P5Q1P-Qs. Since they are both colinear with es, the ratio (x;/x») is constant on
each of them. On the other hand, the two edges are separated by L3, and it follows that
on P1Q,, we have (x1/x;) <0, while on P,Q; we have (x1/x,) >0. Thus all orbits
through P; Q; and P,Q; point into the hexagon. The same is true for the other edges of
the hexagon. Since P; was arbitrary, it follows that X is the w-limit (and the fluctuational
w-limit) of every orbit in int S5. Thus the system is cooperative.

THEOREM 2. If the graph of the nonhyperbolic system (1.2) with n=3 is not
Hamiltonian, the system leads to exclusion.

Proof. Apart from the case considered in the previous theorem, we may have the
following two situations:

(a) There is no fixed point in the interior of S3. In this case, the theorem of
Poincaré-Bendixson implies exclusion.

(b) There is a straight line of fixed points through int S (see § 2.1). Since this line
intersects bd S3, we have exclusion again. Hence the theorem is proved.

As an illustration let us consider an equation whose graph is given by (n) in Fig. 3.
This means that we have (3.1) with k> = k»; = 0. Equation (3.3) becomes

(3.4) (ﬁ) = (%) x3(k13—k23).

X2 2

8,

FI1G. 5. Phase portrait of a dynamical system corresponding to graph (n) in Fig. 3.
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If k13— ka3 # 0, one of the species 1 or 2 must vanish, we have a situation as in part
(a) of the lagt proof. If k13 = k23, the ratio (x1/x2) is constant. Let [ be the line of fixed
points of (3.1) given by k13x3 = k31x1+ k32x2. We then have a situation as in part (b) of
the last proof. The phase portrait is sketched in Fig. 5. The fluctuational limit set of
every point in int S5 consists of /1S3, which is not disjoint from the boundary. The
situation is similar to that in § 1.3, Fig. 2, and hence we have exclusion.

Note that all graphs in Fig. 3 except (j), (m), (0) and (p) lead to exclusion.

3.2. The case n =4.

THEOREM 3. If the graph of the nonhyperbolic equation (1.2) with n =4 is not
irreducible, then the system leads to exclusion.

Proof. There exists a proper subset D of {1, 2, 3, 4} which is closed, i.e., such that no
directed edge leads from a vertex in D to a vertex in the complement D’ of D.

(1) If D' consists of one point, say {1}, then no species catalyzes species 1 and hence
x1=0. This implies exclusion.

(2) Suppose that D' consists of 3 points, say {1, 2, 3}. By assumption, species 4
catalyzes no other species, i.e., kis = 0 for i = 1, 2, 3. Therefore the first three equations
of (1.2), i.e., the equations for x;, X, and ¥3, look like (3.1), the only difference being
that ¢ is now of another form. This difference plays no role in the following considera-
tions. The expression for (x;/x»)"is given by (3.3) again; (x,/x3) and (x3/x;) are similar.
It may be that one of these expressions is always of the same sign. The corresponding
quotient (x;/x;) then converges either to 0 or to +00, or it remains constant. In each of
these cases one has exclusion.

The remaining alternative is that there exists a solution (¥, £,, ¥3) of (3.2) with
x1>0, x,>0, ¥3>0. We want to show that in this case one has ‘“‘internal equilibration,”
i.e., that (x;/x;) > (X;/%;) for 1 =4, j =3. But this can be shown just as in the proof of
Theorem 1, the only difference being that we have x; +x,+x3=1 instead of x; +x,+
x3=1. Nothing changes except that instead of hexagons in S3, we get pyramids with
corresponding hexagonal bases. (A similar case is treated in [16]).

Now let S* be the subset of S, satisfying (3.2). This is an invariant 2-simplex. As
toordinates in $*, we may use x4 and y = x1(1 + x2(%1/%2) + x3(%1/%3))(= x1+ X2+ x3 0n
S§*). It is easy to see that on S$*, (1.2) becomes

y=y(qy —¢),
(3.5) yigy—¢
Xa=x4(ky — &)
with
xaty=1,  ¢=yl(qy+kxd),
_ o\ _ _
k=(1+x2¥+x3¥> (k41+k42£_3+k43£_§>
X2 X3 X1 X1
and
_ o\ 1 _ _
q=(1+x2?+xsf_l> (k12¥+k13£_§)-
X2 X3 X1 X1

Equations (3.5) always lead to exclusion (if g = k all points are fixed points; otherwise
either y >0 or y - 1). Since all orbits of (1.2) in int S, converge to S¥*, it follows that
(1.2) leads to exclusion.



DYNAMICAL SYSTEMS 291

(3) Consider finally the case where D’ consists of 2 points, say {1, 2}. If one of these
species is not end-point of an oriented edge, then this species has to vanish and we have
exclusion. The remaining alternative is that k15> 0 and k,; > 0. It is shown in [16] that
in such a situation one has internal equilibrium in the sense that

x1 ki
MESNGAE LY

X2 ko
Let S* now denote the subset of S, where k,1x1=kix,. S* is an invariant

3-simplex. As coordinates on ¥, we may use x3, x4 and y = x1(1+ (k21/k12))(=x1+x2
on $*). On $*, (1.2) becomes

y=y(qy—¢),
(3.6) x3=x3(k3y + kasxa— o),

¥a=xa(kay + kazxs— ),

where y+x3t+xa= 1, b= y(qy +ksxs+ k4x4)+x3x4(k34+k43),

-1
(1 +@> ko1,

Il

q

kiz

ko \ 71 ka1
3 K1z 31 32qu

ka\ 7! ka1
ko= (1452) (kat+k 2).
4 K1 41+ Ka2 K12

Reestablishing condition k; = 0 so as to get (3.6) with g = 0 one obtains a system of the
form (3.7) which is studied in § 3.3. We show there that we have exclusion. Since every
orbit of the nonhyperbolic (1.2) in int S4 converges to $*, exclusion holds again and the
proof is completed.

- Up to permutation of the indices, there are 8 irreducible graphs without Hamil-
tonian arc. They are shown in Fig. 6. Numerical solutions indicate that we always have
exclusion and lend some weight to the conjecture that in order to be cooperative, the
nonhyperbolic system must have a Hamiltonian graph and thus must be at least as
complex as a hypercycle.

=z 1z 0%
1z, 20 1N X

FI1G 6. Possible irreducible graphs without Hamiltonian arcs for the nonhyperbolic equation (1.2) with
n=4.
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3.3. A system with exclusion. In order to complete the proof of Theorem 3 we
have to show that the (not necessarily nonhyperbolic) system

xl :xl(_¢)a
(3.7 X2=x2(—q2x1+hax3— ),
X3=2x3(—q3x1+ h3x, — @)

(where h», h3>0 and q», g3 € R) leads to exclusion. We shall only consider the case
where q; >0 and g, >0, the other cases being trivial. There is then a unique fixed point
C inint S5. We shall see that C is a saddle point—this is enough to guarantee exclusion.
With A =hyhs+hsq,+hoqs, the coordinates of C are x;=A ‘hyhs, xo=
A_lhzq;;, X3 —A”1q2h3 Let us make a change of variables, putting x, =x, x3 =y and
obtaining x; = 1 —x —y. Interchanging x and y means just permuting the indices 2 and
3. We obtain

=—q2x —q3y +xy(h2+h3+q>+q3)
and

d
£= —q2+ (ha+hs+qz+q3)y +2q2x.

Equation (3.7) becomes
i =x(—=q2(1—x—y)+h2y —¢)=Fi(x, y),
¥y =y(=q3(1=x=y)+hsx —¢) = Fa(x, y).
At the point C one gets

(3.8)

d _

a—f = A7'q2(h3+ h3qs +qsha),

oF, ‘

3;1——'A 2h2h3q2613(k2+612‘“h3‘"q3)’
oF _

a_yl = A"%h2h3q3[(q2+ h2)* — g2q5]

and for the determinant of the Jacobian at C:

—A72(h2h3)’q2q5[(ha + q2) (h3+ q3) — 42q5F <O,
which implies that C is a saddle. The phase portrait is sketched in Fig. 7.

L2 .3
FI1G. 7. Phase portrait of equation (3.7).
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4. Cyclic symmetry. The study of (1.2) is greatly simplified in the case of cyclic
symmetry, i.e., under the assumption that k;; = ki1,;+1 for all i, j. We still assume.
(without restriction of generality) that k; = 0, but drop the condition k; =0. Denoting
kii+; by ki(j=0,1,- -+, n—1) one obtains the equation

4.1) X% =x(Gi— )
with
n—1
Gi= Z k,'XH-f
j=1
and

n—1 n
¢ = > ki( xixi+j>-
i=1 i=1

Note that the point C = (1/n, - - -, 1/n) is always an equilibrium point of (4.1). We shall
see that in most cases it is the only fixed point in int S,.
4.1. Some general results.

4.1.1. The eigenvalue at the point C. A simple computation starting from (2.3)
shows that the Jacobian of (4.1) at C is of the form

Co c1 C2 *°* Cp-1

A=|Chn1 Co €1 ' Ca—2

with ¢; = (1/n)(ki —2k) and k = (1/n) T~} k;
The matrix A is circulant; hence its eigenvalues can be easily computed by using the
formula in [14, p. 198], for example. One obtains

n—1 " 1 n—1 "
wi=Y cA"==% k',
=0 n1=0
(4.2)

j=1,---,n-1, A=exp(?.

Furthermore the nth eigenvalue corresponding to o, is equal to —k. For convenience we
will denote it by —wo(wo = k).

4.1.2. A change of variables. We shall use the following change of variables, which
can be viewed as Fourier transformation on the space Z, of indices modulo n,

V=2 A%x;  (p=0,---,n—1).
i=1

One then has
1 n—1

xi=— Y APy, (i=1,--+,n).
n p=0

The new variables y, obviously represent the eigenvectors which correspond to the
eigenvalues w, defined by (4.2), see also [15].
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The y, are complex numbers. Since the x; are real and Yi1 x; =1, we have the
relations ’

)7P=);n—p (P=1,"',n_1),

4.3) Jo=1.

Equation (4.1) then becomes

Z AP = Z A x,( Z ,x.+j—¢)

=ni1 k,-(ii AP xx,+,) (g >
(S o))

n—1 1 n—1 n ol Zim
= kj"‘f (Z A ot )>A ! yIYm_¢yP’

i=1

Since
Z /\i(p_l—m)=n6p’[+m,
i=1
we obtain
Z k - Z_OA—im_Yp—mYm—'¢yp
1 n—1 —im
=Z( ZkA’>ypmym ®Y»
nj=1
n—1
z @—mYmYp-m — PYp
or
(44) Z memY;H—m ¢yp

For p =0, using yo = 1, one obtains
- n—1 2 n—1 2
(4.5) ¢= Z_melyml = ;0 Re W |yml
and therefore (4.1) is transformed into
n—1
(46) )"p = Z wmym())p+m _Yme) (P =1,-,n —'1)'

m=1

From this follows, incidentally, that for even n, the system (4.1) contains an
invariant n/2-dimensional subsystem of the same type. More precisely, the set S, N
{yi=y3="+-y,—1=0} is easily seen to be invariant, and we can check that the
restriction to this set is of the form (4.1), with k; + k(,/2+:(i =1, - - -, n/2) instead of k..
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4.1.3. The function P. For the study of (4.1) the function

4.7) P(x)=x1x2""" X,
is very convenient. On S,, its maximum is attained in C, its minimum O is attained on
bds..

One obtains
P=pP _;1 (Gi— &)

=P[(k1+- - +kn-1)—no]

4.8)
( = nP(wo— )

n—1
=—nP zl Re Wm|ym|*.
In terms of the x;’s, a short computation shows that

n—1 n
(49) P = nP 'Zl (k, - E)( Z (x,~ —x,~+,-)2).
i= iz
An immediate consequence of (4.8) is
THEOREM 4. (1) If Cis a sink, it is the w-limit of every orbit inint S, and the system is
cooperative.
(2) If Cis a source, the w-limit of every orbit inint S,, (with the exception of C) lies on
bdS,,, and the system leads to exclusion.
Hence, in these two cases the qualitative analysis reduces to an investigation of the
central fixed point.

4.1.4. The occurrence of Hopf bifurcations. Let us consider the case where n =5
and where exactly one pair of conjugate eigenvalues of C are on the imginary axis, while
all other eigenvalues are in the left half-plane. We may thus assume Re w; =0 (w1 # 0)
and Re w; <0 for i #1, n —1. Then (4.8) reduces to

. n—2
P=—nP Y Rewn|ym|*=0.
m=2

We want to show that C is asymptotically stable, with int S,, as basin of attraction. For

this it is enough to show that the set {P =0}={y,, =0, m =2, - -, n —2} contains no
invariant set with the exception of C (which is the point (1, 0, - - -, 0) in y-space). Since
on this set

" n-1

)}i= Zowm)?myi-*m (i=2" : '7n_2)’

the assumption that y; =0fori=2,---, n—2 leads to

n—1
0= }}2 = ZO wmym)’m+2 = wn—ly%
and hence y; =0fori=1,- - -, n—1. Therefore C is the only invariant set.
Suppose now that u —>k(u) = (k(w), - - -, k.(@)) is a path in the parameter space,
where w varies in an interval with 0 as an inner point. Let us assume that
(i) foru <Oonehas Rew; <0 (i=1,--+,n—1);
(ii) foru =0Rew;=0(w;#0)and Re w; <0 (i =2, --,n—2);
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(iii) foru >0Rew;>0and Rew; <0 (i=2,--,n—2);
and furthermore that (Re w1(1)),=0>0.

Since for the case (ii) C is asymptotically stable, the Hopf bifurcation theorem
applies (see [13]). This means that if u > 0 is sufficiently small, there exists a stable limit
cycle. Note that for n =5 and k;>0, k,=ks;=ks=0 we have the case of the
symmetric hypercycle treated in [15], where we offered numerical evidence for the
existence of the stable limit cycle. The situation for n =3 and n =4 will be treated in the
next section.

4.2. Qualitative discussions for low dimensions. The case n =2 is trivial: We have
exclusion iff k; =0, and cooperation otherwise.

4.2.1. The case n = 3. By (4.2) the eigenvalues of (4.1) at C are
w12=—ki1—kaxiV3(ks— k).
By (4.9)

= g(/ﬂ +k)[(x1—x2)> + (X2 = x3)> + (x3 — x1)°]

3

4.2.1.1. If 0< k, + k, then C is a sink and the system is cooperative according to
Theorem 4.

3P, 3 1\2
=?(k1+k2) ‘gl (x,-——) .

4.2.1.2. If k;+k, =0, then P=0. If, in this case, k; = k,(=0), then every point in
S5 is a fixed point. If k; # k,, then C is an equilibrium point of center type, and the only
fixed point in the interior of S3. (Indeed, one sees easily that x; = 0 implies x, = x3, and

6q

p > L1
F1G. 8. Phase portrait of the dynamical system according to equation (4.1) withn =3 (k; =—0.5; k,=0.5).
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X2 =0 implies x3 = x1.) Thus in this case every point in the interior of S; is on a periodic
orbit given by P =const. around the center C, which is therefore stable, but not
asymptotically stable (see Fig. 8). In both cases we have exclusion.

4.2.1.3. If, finally, k, + k> <0, the point C is unstable, and every other orbit in the
interior of $3 converges to its boundary. In case k; and k, have different sign, the points
e, ;> and e3 (Whose eigenvalues are k; and k») are of saddle type and are the only fixed
points on bdSs. In this case, every point in the interior of S3 (apart from C) has the set
bdS; as w-limit (see Fig. 9). If ky and k, are negative the points e;, e; and e; are sinks and

BSq

>

FI1G. 9. As in Fig. 8 (ky=-0.9; k; =0.1).

there are three more fixed points on bdSs. As shown in § 2.5 these points X4, X5 and Xs
are of saddle type. The interior of S3 is divided by their separatrices into three parts
corresponding to the three possible w-limits, namely the corners of S5 (see Fig. 10). In
any case one has exclusion.

Note that as —k;—k, increases from negative to positive values, the Hopf
bifurcation is of a degenerate type: C changes from sink to a source but there is no
stable periodic orbit emerging around C. This is due to the fact that for the critical value
k1+k,=0, the point C is not asymptotically stable. In the formulation of the Hopf
bifurcation theorem as found in [13, p. 87], the condition HS5 is not valid. This is in
contrast to the corresponding situation for n =4.

4.2.2. The case n =4. By (4.2) the eigenvalues of (4.1) at C are
w2 =%(k2—k1 "ks),
w13 = i(—koxi(ky—ks)).

It is easy to see that the eigenspace corresponding to w, is the line where x; = x3 and
X2 = X4, the one corresponding to w13 is the plane x; +x3 = 1
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F1G. 10. As in Fig. 8 (k; = —0.1; ko =—2.9). Basins of the sinks in e, e, and e3 are hatched.

Using (4.9) one obtains
P = P{4(ky+ks—k2)(x1+x3—3)* + ko[ (x1+ x2—=3)* + (21 + x4 —3)°]}
=P{d(k1+ks—k2)(x1+x53 “%)2 +%k2[(x1 - x3)2 +(x2 —x4)2]}.

4.2.2.1. If ky+k3>k,>0, then C is a sink and an attractor whose basin is the
interior of the simplex S,4. The system is therefore cooperative.

4.2.2.2. If k1 + k3 <k, <0, then C is a source and the w-limit of every point in the
interior of S,, except C, lies on the boundary. We have exclusion.

4.2.2.3. The case k; =0. One has
P =4P(ky+k3)(x1 +x3—%)°
and

¢ = (k1 +k3)(x1+ x3)(x2+ x4).
4.2.2.3.1. The case k; + k3 =0. Then P =const. and ¢ =0. Also,
X1=x1(k1x2+ ksxs)
=x1k1(x2—x4).
If k; =0, the system consists only of fixed points. If k; # 0, then one also has
xX3=x3k1(xs—x2).

Thus one obtains (x;x3) =0 and similarly (x,x4) =0. The points on the line where
x1=x3 and x; = x4 are fixed points. All other points in the interior of S, are periodic
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points, i.e. each orbit is on the intersection of two sets x;x3 = const. and x,x4 = const.
(see Fig. 11). In any case one has exclusion.

89

eg ©3

F1G. 11. Phase portrait of the dynamical system according to (4.1) with n =4. Projection onto a face
(k1 =1; ky=0; ks =—1).

4.2.2.3.2. The case k; + k3 # 0. One has P = 0iff x; + x3 = 3. On this plane, one has

¢ =ilki+ks),

X1=x1(k1x2+ksxs— ),

X3 =x3(ksx2+kixa— @)
and

. 1
X1+%3=(k1—k3)(x1x2 + Xx3%4—3).

‘In the case kq = k3, the plane x; +x3 = Jis invariant (it consists of fixed points). The
w-limit of orbits in int S, depends on the sign of k;, but one has always exclusion.

In the case ki # ks, the situation is slightly more complicated. On the plane
X1+x3= %, one has x1+x3 =0 iff x1x,+x3x4 =é or, since x,+x4= %, iff

4x,(4x,—1)=4x,—1.
This is the case iff x; =% or x, =% If x; =2 but X2 #5 then %, # 0, and vice versa; in any
case, apart from the fixed point C, there is no invariant set on the plane x; +x3 = 3. Thus
P =0 only for a discrete set of times. If k; + k3> 0, this implies that every orbit in the
interior has C as w-limit (hence C is asymptotically stable, see Fig. 12) and the system is
cooperative. If k; + k3 <0, then P 0 and one has exclusion.
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eq

F1G. 12. As in Fig. 11 (k;=k,=0; k3 =1).

4.2.2.4. The case k,= k;+ k3. In this case
P =2k, P[(x1—x3)"+ (x2— x4)°].

If k> =0, we obtain the situation discussed in § 4.2.2.3.1. If k, # 0, then P = 0 only for
the points on the line where x; = x3 and x, = x4. On this line, every point is a fixed point.
No matter what the w-limit is, the fluctuational w-limit has points in common with 5dS,
and the system leads to exclusion.

4.2.2.5. The case where k,>0 and k;+ k3 <k,. This case seems to be the most
difficult to analyze. Note that (4.1) always has two fixed points, (3, 0, 3, 0) and (0, 3, 0, 3),
on the boundary and that their eigenvalues are —%k, and 3(k, + ks —k>). In the case
considered here, these two points are sinks, while the four corners are unstable.
Numerical computations indicate that we have exclusion (Fig. 13).

4.2.2.6. The case where k>, <0 and k4 + k3> k,. This case is obtained from the
“stable’ casein § 4.2.2.1 by letting the real part of the conjugate pair of eigenvalues w3
cross the imaginary axis. In the critical case where Re w13 =k, =0, ((ii) from § 4.1.4))
the point C is asymptotically stable by § 4.2.2.3.2. Hence the hypotheses of the Hopf
birfurcation theorem are satisfied and we have a stable periodic orbit in the interior of
S4 (see Fig. 14).

4.3. Hierarchy of restrictions. Cyclic symmetry reduces the number of different
restrictions to m-subfaces and facilitates a combinatorial analysis for the low dimen-
sional cases (m = 3).

4.3.1. m=1: All corners of S, are equivalent, the eigenvalues being w,=
k(=1,---,n=1).
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eq

FIG. 13. Asin Fig. 11 (ky=1; ky=4; k3 =2).

FIG. 14. As in Fig. 11 (k, =1.98; ky = —.02; k3 = —1.02). The stable limit cycle is approached very slowly
by the two spirals.
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4.3.2. m =2: We assign an order r =min {|j —i|, n —|j — i[} to the edge ij. Due to
cyclic symmetry the order r is sufficient to determine the dynamical system of the
corresponding restriction:

% = (kxj — d)xi,

edge ij, order r{ ",
gey {xi = (kn—x: — P)x;.

For schematic illustration we map the simplex S, onto a polygon P, (see Fig. 15).

FI1G. 15. The simplex S¢ is mapped onto a regular polygon. A face of type (123) is hatched for illustrations.

(a) n is odd: There are edges up to the order r = (n —1)/2, n of each class.

(B) niseven: There are n edges of each class up to the order r = (n —2)/2 and n/2
edges of the order r = n/2. The latter edges are symmetric since k, = k,,_.

In case there is a single fixed point (k,/2 # 0) it is placed in the middle of the edge,
Rj: (Fi=%=3,%=0,Vk#i,j, k=1, ,n).

4.3.3. m =3: We can classify the various 3-faces on S,, by triples of indices (k, I, m)
which represent the orders of the three edges of this face. Again the dynamical system is
determined by the three indices. Without losing generality we assume k=/=m. A
- given triangle does occur in bdS, iff the indices fulfill the following conditions:

m=min(k+,n—k—-1),
k+l+m=n—i(1-6im), i=0,1,---.
The numbers of triangles of a given class is given by

1+(1—6:)(1—8:m)

Nk, I, m)=
( m)=n 1426161

Several results can be deduced easily from these conditions. Examples are:

(a) Triangles with three equivalent edges (k = = m) do occur iff # is an integer
multiple of 3. Then k =n/3 and N(k, k, k) = n/3.

(B) There are two classes of triangles with two equivalent edges

k=1:(k,k,m), m=min 2k, n —2k), k <[(n—1)/3)and N(k, k, m) =n;

l=m:(k,,1),2l+k=n,N(k,1,])=n.

(y) For n =4 there is only one type of restriction to a 3-subface, namely (1, 1, 2).

For illustration see the restrictions up to So in Table 1. The hypercycle with cyclic
symmetry (k=" + - = k,_; =0) has been treated for arbitrary » and m in [15].
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TABLE 1
Restrictions of S,,(n =9) to 3-subfaces

Class of triangles Number of triangles
n (k, I, m) N(k, I, m)

3 (111 -
4 (112)
5 (112)
(122)
6 (112)
(123)
(222)
7 (112)
(123)
(133)
(223)
8 (112)
(123)
(134)
(224)
(233)
9 (112)
(123)
(134)
(144)
(224)
(234)
(333)

—
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Note added in proof. Recently, Taylor and Jonker, Evolutionary stable strategies
and game dynamics, Math. Biosci. 40 (1978), pp. 145-156 and Zeeman in Population
dynamics from game theory (to be published) have found that equation (1.2) plays a
fundamental role in a theory of social behaviour of animals. We refer also to Hofbauer,
Schuster and Sigmund, A note on evolutionary stable strategies and game dynamics, to
appear in J. Theoret. Biol.
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