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Abstract

We analyze the evolution of behavioral rules for learning how to play a two-
armed bandit. Individuals have no information about the underlying pay-
off distributions and have limited memory about their own past experience.
Instead they must rely on information obtained through observing the per-
formance of other individuals. Evolution is modelled using the replicator
dynamic with the revision behaviors as replicators.

We find that evolution favors a special class of imitative rules. These so-
called strictly improving rules, that also play an important role in a bounded
rational selection approach (Schlag [16]), are found to be neutrally stable
when facing any two-armed bandit.

JEL classification numbers: C72, C79.

Keywords: multi-armed bandit, social learning, payoff increasing, im-
proving, proportional imitation rule, replicator dynamic, neutral stability,

survival.



1 Introduction

In every day life we are constantly making decisions. Many of our decisions
are based on minimal information or on very limited previous experience.
Changing environments make it difficult to rely on the previous experience
that we do have. Computational abilities and memory capacities of human
beings are limited. Consequently there are many situations in which a deci-
sion maker will follow a simple behavioral rule.

One type of simple behavior that immediately comes to mind is ¢mitation,
the act of copying or mimicking the actions of others. Its undeniable presence
among behavioral traits of human beings is perhaps the reason why lately,
with the growing popularity of Evolutionary Game Theory, many models of
social learning have emerged in which individuals select their future actions
by imitating others. Most of these models postulate that individuals follow
an imitative behavior and concentrate on the implications this has on popu-
lation behavior (e.g., Bjornerstedt and Weibull [2]; Cabrales [3]; Ellison and
Fudenberg [5]; Gale et al. [6]; Hofbauer [7], Novak and May [11]), only few
models attempt to explain the emergence of imitative behavior first before
analyzing its implications (Banerjee [1]; Rogers [12]). In our investigation we
follow the later approach.

Concerning the analysis of simple rules, current theory is hard pressed
to say what rational behavior would be when information and memory is
extremely limited. This motivates our pursuit of an evolutionary approach
where such theoretical problems do not arise. In this paper we compare the
performance of a wide variety of simple behavioral rules in an evolutionary
framework. Our study is very closely related to the model of Schlag [16]
who approaches the same questions from a bounded rational viewpoint. The
main question we wish to answer is: will evolution select imitative behavior,
and if so, what types of imitative behavior will be selected?

Our basic finding is that evolution favors a specific form of imitative
behavior among the set of behavioral rules that are without memory. This
is the same class of behavior - called strictly improving - that performs well

from the bounded rational viewpoint of Schlag [16]. Although being simple,



a strictly improving rule, when used by the entire population, can prevent
mutants that are specialized for a specific environment from taking over. This
however does not mean that strictly improving rules always take over the
entire population; they are not able to drive out any other type of imitative
behavior. Moreover, their imitative nature prevents them from being able
to successfully introduce a superior action (e.g., technology) in a society in
which the rest of the individuals stubbornly (unknowingly) adhere to an
inferior action.

Going more into detail, our investigation takes place in the classical two-
armed bandit setting (Rothschild [13]). An individual must repeatedly choose
one of two actions, each action yielding an uncertain payoff with an unknown
stationary distribution. This could be the model of an individual choosing a
restaurant or of a manager setting the price of a good. A priori it is assumed
that individuals do not know anything about the distribution of the payoffs in
the two-armed bandit they face. Instead they must rely on information they
receive about the performance of other individuals that are facing the same
situation. This occurs according to the following social learning scenario:
before making his choice, an individual observes the previous action and
payofl achieved by some other (randomly selected) individual.

Which action the individual chooses as a function of his previous expe-
rience and observations is called his revision behavior or rule. Following
our previous motivation and to keep the model simple, we assume that an
individual has no recall about how he came to choose his present action.
Consequently, a revision behavior is a function of the previous action and
previously achieved payoff (if the individual had previous experience) and of
the action and payoff observed.

We analyze the evolution of behavior in an infinite population of individu-
als each facing the same two-armed bandit. In each round a small proportion
of individuals reproduce and then die. Reproduction is modelled according
to the biological model underlying the standard replicator dynamic (Taylor
and Jonker [17]); reproductive fitness of an individual (i.e., the number of
offspring) is determined by the payoff last achieved; offspring inherit the revi-

sion behavior of their parent and enter the population. Thus the individuals



that last chose the action that yields the highest expected payoff produce on
average the most offspring. In this sense we will refer to a better / a worse
action by the action achieving the higher / the lower expected payoff in the
two-armed bandit.

Since the individuals have no memory, the success of individual behavior
depends on how other individuals in the population behave. For simplicity
and thereby in the spirit of classical Evolutionary Game Theory (that started
with Maynard Smith and Price [9]), we restrict our attention to populations
in which at most two different revision behaviors exist, a two behavior contest.
We evaluate the success of individual behavior when it is used by the majority
of the population and its success when it is adapted by a minority.

An important limit case will be the situation in which every individual
uses the same revision behavior. For a given two-armed bandit, we character-
ize revision behavior - and call it strictly payoff increasing - that, when used
by everyone, enables eventually everyone to learn which action maximizes
expected payoffs. As previously shown by Schlag [16], a revision behavior
has this property in any two-armed bandit - such a rule is called strictly
improving - if and only if it is based on imitation and its switching behavior
satisfies a specific linear relationship. For example, proportional imitation
rules are strictly improving; these rules specify to imitate the action of the
sampled individual if he achieved a higher payoff and to do this with a prob-
ability proportional to the difference between the observed payoff and one’s
own payoff. One of the side results of Schlag [16] is that the probably most
intuitive behavior, to switch to the observed action if and only if it achieved a
higher payoff (e.g., see Ellison and Fudenberg [5]), is not strictly improving.

One of the main results of our paper shows that the evolutionary robust-
ness of a behavior used by the majority is directly related to the ability of
the rule to learn which action achieves the higher expected payoff when no
other rule is around. Along the lines of Maynard Smith [8], we call a revision
behavior neutrally stable if its offspring constantly constitute the majority of
the population after a one time mutation occurs in which a small proportion
of individuals adapt an (arbitrary) alternative behavior. We show that a rule

is neutrally stable precisely if it is strictly payoff increasing. Especially, this



means that even if all the individuals using the strictly payoff increasing rule
initially choose the worse action and the mutants know which action is best,
the strictly payoff increasing behavior will still be used by the majority of the
individuals in the long run. This occurs because the individuals using the
strictly payoff increasing behavior learn that the action adapted by the mu-
tants is better before the offspring of the mutants can take over a substantial
proportion of the population.

Especially it follows that only a strictly improving rule is neutrally stable
in any two-armed bandit. This has consequences for a slightly modified
setting. Only a strictly improving rule, when adapted by everyone, is robust
against a one time mutation of behavior and to a one time mutation of the
payoff structure of the bandit.

However, an evolutionarily stable behavior fails to exist in our model,
l.e., there is no revision behavior that, when used by the majority, is able
to drive out any alternative behavior. Any imitative behavior survives when
the majority is using a strictly payoff increasing rule, this is even true if the
majority of the population knows which action is best. This is because the
majority of the population teaches the minority which action is better and
thus eliminates selection pressure.

This intuition is also the reason why it is much more difficult for a behav-
ior to survive in the long run when the majority does not take over the role
of teaching which action is best (i.e., when the majority does not follow a
strictly payoff increasing rule). We show that only strictly payoff increasing
rules will never be eliminated from the population. Especially this means
that ‘imitate if better’ will be driven out of some two behavior contests.

Interestingly enough, the fact that a strictly payoff increasing imitation
rule always survives does not necessarily mean that it is able to teach the
population which action is better. When mutants that are playing the better
action and that follow an imitation rule enter a population that is stubbornly
playing the worse action then no one plays the better action in the long run.
Only non-imitative behavior that has a tendency to play the better action
even if none of the observed individuals do, can successfully introduce a better

action into a population in which there is a large fraction of stubborn play. It
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is in this sense that sophisticated behavior (i.e., strictly improving behavior)
when adopted by a minority can fail to cause an innovation to spread.

We proceed as follows. In Section 2, we define two-armed bandits, re-
vision behaviors over possible actions in a two-armed bandit, and switching
probabilities. In Section 3, we consider the dynamic on the shares using the
different actions in the two-armed bandit, given that all individuals in the
population follow the same revision behavior. Section 4 extends the analysis
to two behavior contests; a population with two revision behaviors present,
reproduction determining the relative size of each. Neutral stability and
survival of a revision behavior in the two behavior dynamic are analyzed.
Section 5 considers an additional class of behavioral rules based on exper-
imentation. In Section 6 the results together with the related literature is

discussed. Finally, the appendix contains the more lengthy proofs.

2 Choice and Revision Behavior

We will consider individuals who must repeatedly choose one of two actions,
denoted by 1 and 2. After an individual chooses an action i € {1,2}, he
receives a payoff p € R, according to the probability density function P; that
has support on the bounded interval {7TL ,H } and that yields the expected
value 7;. The payoff from a given action 7 is realized independently over time
and across individuals. The pair ({1,2},P = (P, P)) constitutes a two-
armed bandit (Rothschild [13]). The set of all such two-armed bandits will
be denoted by G ({1, 2}, {WL,WHD . When 7; > 7; we will sometimes call 7
the efficient or better action and j the inferior or worse action.

Individuals belong to an infinite population. The following scenario takes
place every 7 time units, so-called rounds, where 7 € (0,1) is fixed. We
initiate the process in a state in which each individual has previously chosen
an action at least once and ignore how this first state came to being. Be-
fore each round, each individual is independently selected with probability
7. With probability p € (0,1) a selected individual reproduces and then
dies; the offspring who inherit the behavior of their parent enter the popu-



lation. We will refer to p as the reproduction rate. It will not be necessary
to introduce the process governing the number of offspring until Section 4.
Selected individuals (or the offspring of the ones that died) are each given
the opportunity to choose an action (to “pull”).

Before choosing an action, the individual is able to gather information
about the performance of actions as follows. The individual samples an
individual among those that previously chose an action, i.e., among those
that did not enter the population since the last round. He learns the payoff
and the associated action that the sampled individual obtained at his last
pull. It is assumed that sampling occurs at random, i.e., the probability of
observing an individual using a given action who achieved a payoff in a given
range is equal to the associated population share of such individuals. This
process of obtaining information will be called random sampling.

The action the individual chooses after he samples as a function of the
information from this sample and from previous observations is called his
revision behavior or rule. We assume that the experience of the individual
prior to his last pull does not influence his future behavior, a restriction that
can result from limited memory capabilities. Formally, a revision behavior is

therefore a function

X {0y ({12} x |7 7))} < {1, 2) x 757 - A ({1, 2))

where A ({1,2}) is the set of probability distributions on {1, 2}, X}, (i,z, j,v)
is the probability of choosing action k& when he last chose action 7 that yielded
payoff  and just sampled an individual who chose action j and received
payofl y; X (0,7,y) is the corresponding probability for an individual that
newly entered the population and hence has no previous experience. The
realizations of X are assumed to be independent of the randomizations of
the other individuals, independent of the probability distributions F;, and
also independent of time.

For a given two-armed bandit ({1,2},F) in G ({1,2}, {WL,WHD and a
given triplet i,j,k € {1,2}, a revision behavior X induces the switching
probabilities Fé? and FZ’;, F@kj is the probability that the individual will switch
to action k after he samples action j when he newly entered the population



and FZ’; is the corresponding probability for when the individual has previous
experience and last chose action 7, both calculated a priori to the realization

of the payoffs. Formally,

F, :/Xk (0,4,9) F;(q)dq
7|—L
7TH’7TH

By = [ [ XaG.p.d ) P (p) Py (g) dpda.
Tl gL

Notice that this probability is a function of the two-armed bandit and that
it is independent of the population shares playing the different actions.

2.1 Examples

Definition 1 We call a revision behavior X stubborn if the induced choice

of an action is independent of the observations, i.e., if there exists u €
A ({1,2}) such that Xy (0,7,) = Xi (i,-,4,") = ux for all i,j,k € {1,2}.
We will say that X stubbornly chooses action i if u; = 1.

A more versatile class of revision behaviors are those we call imitating.
Using an imitating behavior the individual will never switch to an action

that he did not just observe, formally,
Definition 2 a revision behavior X is called imitating if Vi, j k € {1,2},

Xi (0, k) =1 and
Xi(i,, 7, )=01ifk & {i,5}.

Due to the different ways in which newly born choose their first action,
there is no revision behavior that is both stubborn and imitating. In the

following we present some examples of imitating revision behaviors.

e Reciprocal switching rules are imitating revision behaviors where

Xo(1,p,2,9) = X1 (2,¢,1,p) for p,g € [x",x"].
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Special cases are the rule ‘never switch’ where X, (i,-,+,-) =1 for i €
{1,2} and the rule ‘always switch’ (or copy-cat) where X; (-,-,7,-) =1
for all j € {1,2}.

e The proportional imitation rules are the imitating revision behaviors
that satisfy
X;(i,p,4,q) = 0 - max (¢ - p,0)
for any 7,7 € {1,2}, i # j and some fixed 0 < o < ﬁ The
proportional imitation rule with o = ﬁ is the optimal rule in a the

closely related model of Schlag [16].

e ‘Imitate if better’ is the imitating revision behavior that satisfies

o 1 g>p
Xj(@,p,J,q)Z{ 0 g<p

for i # j.

The switching probabilities of a given revision behavior will generally
depend on the two-armed bandit at hand. Moreover, in a given two-armed
bandit many revision behaviors can induce the same switching probabilities.
Calculating the set of revision behaviors that correspond to given switching
probabilities is generally difficult. In section 3.2 some general relationships

between revision behaviors and switching probabilities will be presented.

3 Adaptive Dynamics of a Single Behavior

Population

In this section we analyze how the shares of actions change over time in
a single behavior population, a population in which each individual is us-
ing the same revision behavior. Since offspring inherit the behavior of their
parent, we can analyze the dynamics in single behavior populations without
specifying the actual process of reproduction. Let X denote the underly-

ing revision behavior, let F' be the associated switching probabilities. The



population state at any given time is characterized by the proportion of in-
dividuals x; = x; (t) using the action i (i € {1,2}); hence zy,25 > 0 and
x1 4+ 22 = 1. We identify the vector of population shares z = (1, z9) with
the probability distribution z € A ({1,2}) associated to randomly select-
ing an individual from the population. According to the scenario given in
Section 2 the population shares change over time according to the following

adjustment process:

o (t+7) = ) +7(1—p) > [FZ;a:Z () ; (t) — Fymy (1) x; (t)}(l)

5,5e{1,2}
tri Y0 [ (6) B — i (0) FRy
ic{1,2}
where ¢t = r7 for some r € N and k € {1,2} . In order to simplify our analysis
we take the limit in (1) as 7 goes to Oand obtain the following differential

equation:

p=(01-p > [FZ’;a:Za:J - F,ija:ka:j}—l—u > {a:ZF@kZ - xkFék} ke {12},
ije{l,2} ie{1,2}
(2)

3.1 The ‘Payoff Increasing’ Condition

We will now define some properties of switching probabilities and then char-
acterize which switching probabilities satisfy them. The properties relate to
the change of the average payoff in a population where each individual uses
a revision behavior that induces the given switching probabilities. The av-
erage payofl 7 = 7 (z) in a given population state x € A ({1,2}) is given by

T = 117 + Tomy.

Definition 3 The switching probabilities ' are called payoff increasing
if, for any x € A ({1,2}), the average payoff in a monomorphic population
, %ﬁ = I171 + Temy > 0 where 1y defined in
(2). A revision behavior X is called payoff increasing if it induces payoff

does not decrease over time, i.e.

increasing switching probabilities.



Definition 4 The switching probabilities F' are called strictly payoff in-
creasing if for any x € A({1,2}) with 0 < zy < 1 and if m # 7
then the average payoff in the population strictly increases over time, i.e.,

%7_'(' = I + Ty > 0.

Notice that every behavioral rule is strictly payoff increasing when m; =
9. The following proposition states that an individual induces switching
probabilities that are payoff increasing in two-armed bandits precisely when
he does not switch “without reason” away from the efficient action and is
more likely to switch to the efficient action when it is sampled than vice

versa.

Proposition 1 In a two-armed bandit ({1,2} | P), the switching probabilities
I are payoff increasing if and only if

7Ti>7Tj:>Fji=E{-=0andF;iZF? (3)

% 2

the switching probabilities I are strictly payoff increasing if and only if they

are payoff increasing and
7Ti>7rj:>F@ij>0OrF;j>00rF;Z->F$-. (4)
Proof. The statement follows directly from

(1—n) <F212 (352)2 + <F211 - F122) Ty — I (351)2)

. <7T1 — 7T2) .
+p (F@12a32 - F@21a:1)

d__
ai

In two-armed bandits, the underlying rule in a single behavior population
is strictly payoff increasing if and only if inferior actions are eliminated when
the efficient action is initially present. This result is a direct consequence of

Definition 4 and Proposition 1.

Corollary 1 Consider a two-armed bandit ({1,2}, P) and a behavioral rule
X. Then X is strictly payoff increasing if and only if m; < 7; and z; (0) > 0

implies z; (t) — 0 as t — oo.
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3.2 Revision Behavior and Switching Behavior

In this section we will quote results of Schlag [16] that concern connections
between properties of revision behaviors and their induced switching prob-
abilities. The following proposition completely characterizes a revision be-
havior that is payoff increasing in any two-armed bandit yielding payoffs in
{7TL ,mH } , a property Schlag [16] refers to as improving.

Definition 5 A revision behavior based on action set {1,2} and payoff in-
terval [7TL,7TH] is called (strictly') improving if it is (strictly) payoff in-

creasing in any two-armed bandit in G ({1, 2}, [WL, WH]) .

Proposition 2 Let X be a revision behavior. Then the following statements
are equivalent.

i) X is improving.

ii) X is imitating and in any two-armed bandit in G ({1, 2}, [WL,WHD ,

7TZ>7TJ:>F}ZZZFZJJ

iii) X is imitating and there erists o € |:0’7FH£7FL:| such that for any

p.q € [7F 7],
X2 (17p727q)_X1 <2Jq717p)20_<q_p) (5)

Proof. The fact that statements i) and ii) are equivalent follows directly from
Proposition 1 and the definitions. Regarding the proof of the equivalence of
statement iii) we refer to Schlag [16]. B

It follows from the above characterization that reciprocal switching rules
(e.g., ‘never switch’, ‘always switch’) are improving. On the other hand, as
noted by Schlag [16], the seemingly intuitive rule ‘imitate if better’ fails to
be improving. Notice that part iii) in the above characterization requires for
the revision behavior to react in a smooth manner to small changes in the
payoffs, a property the rule ‘imitate if better’ lacks.

The following result characterizes revision behavior that is strictly payoff

increasing for any underlying payoff distribution in the two-armed bandit.

Tn Schlag [16] the term “non stationary” is used instead.
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Proposition 3 Let X be a revision behavior. Then X is a strictly improving
rule if and only if X is improving with underlying o > 0 where o defined by

the characterization in Proposition 2.

The following conclusions are easily derived from the above results: i)
proportional imitation rules are strictly improving rules, ii) improving rules
that are not strictly improving are precisely the reciprocal switching rules,
and iii) strictly improving rules only exist if the payoffs realized by choosing
an action are contained in a bounded interval.

Schlag [16] argues that the proportional imitation rule with ¢ = ﬁ is
the unique most preferred rule for the individual under certain circumstances.
As we will see in the following, our model will not be able to select among
strictly improving rules, especially the proportional imitation rule will not

play a special role in our analysis.

4 Two Behavior Contests

We will now investigate the dynamics of a population in which various revi-
sion behaviors compete against each other. In order to simplify the analysis
we will restrict attention to populations in which at most two different rules
(denoted by X and Y') are present. The resulting dynamic adjustment pro-
cess will be called a two behavior contest. This section develops the dynamic
equations that will be needed in the dynamic stability analysis in the next
section.

Selection among the revision behaviors is determined through the number
of offspring an individual produces before he dies. As stated in Section 2,
before any round a given individual is selected and then dies with probabil-
ity 7p. However, before he dies he reproduces as follows. The number of
offspring of an individual is assumed to be equal to h + An’ > 0 where 7’ is
the payoff the individual last realized, A > 0 is fixed and h is such that the
total number of offspring is equal to the total number of parents, i.e., to the
number individuals that were withdrawn; hence, h = 1 — AT where 7 is the

average payoff among those withdrawn which is equal to the average payoff

12



in the population and A € (0, ﬁ) Individuals breed true, i.e., offspring
inherit the behavioral rule of their parent. Finally, the offspring randomly
take the positions of the individuals that died.

After reproduction is completed, the individuals that were selected and
that did not die together with the offspring of the selected individuals that
died are given the opportunity to choose an action.

Since the population size is assumed to be infinite, the state of the pop-
ulation is uniquely determined by the proportion of the individuals using a
given rule and a given action. At a given point in time ¢ let x; = x;(¢) denote
the proportion of individuals playing action i = 1,2 and using the revision
behavior X and y; denote the corresponding proportions using the behavior
Y. By definition, x1 + 3 + y; + y2 = 1. Since the population size is infinite,
the average number of offspring of individuals using action 7 is 1 + A (m; — 7)
where T = 7y - (21 +y1) + T2 - (22 + y2) . Hence, the proportion of offspring
using the behavioral rule F'is 2y [1 + A (1 — 7)] + 22 [1 + A (9 — 7)].

As in the previous setting without selection, an entering individual sam-
ples an individual that was not replaced and then chooses his first action
according to his inherited behavioral rule. Hence, the increase in the propor-
tion of individuals using the behavioral rule I and playing action 1 between

the present and the next round is given by

o1 = [T (L +A(m — 7))+ 29 (L + A(mg — 7))
[ T+ Fm (372 + yo) F(012:| — T
= (z1y2 — 22u1) [(T1 + Y1) A (m1 — 72) — 1] (6)

+ [F@12 (z2 4+ y2) — F®21 (1 + yl)} (2112 — 2oy1) A (M1 — o) + 21 + 2]

and similarly, the increase in the proportion of individuals using F' and action

2 is given by

dra = (T1y2 — ayn) [(z2 + o) A (M1 — 7o) + 1] (7)
+ {F®21 (1 +31) — Fiy (w2 + y2)} [(z1Y2 — Zoth) A (M1 — T2) + 21 + 29]

especially,
Gr1+ Py = (1Y — Toyy) A (M — o) . (8)

13



If each selected individual is replaced (i.e., ;4 = 1), the adaptation of x4
at time ¢ = 77 (r € N) is given by

2 (L+7) =21 () + TP (9)

If 4 =1, all individuals using X stubbornly play action 1 and all individuals
using Y stubbornly play action 2, i.e., lel =G} =1,i=1,2and z,(0) =
y1(0) =0 then x5 (1) =y (t) = 0 and

r1(t+717) = 1) +7A(M —7T)ay (10)

which is a discrete version of the replicator dynamic (Taylor and Jonker [17]).

If the reproduction rate 1 € (0,1), then combining (9) and (1) we obtain

p(+7) =2, (1) +7[(1 — p) Y + ppi]

and taking the limit as 7 goes to 0,

b= (1= ) U+ i, (1)
and similarly,

By =—(1—p) Yp + o, (12)

where Uy gives the net increase of individuals using action 1 among those

that are not replaced, given by

Up = Fyy (z2 4 y2) T2+ Fyy (w1 + 11) 39 — Fy (w3 + 1) 1 — Fy (w1 + 1) 21
(13)
Similarly,
i1 =1-p)¥Ye+ pda (14)
and

o = — (1 — p) Yg + poar,

where ¢g1, ¢g2 and Ug are derived by replacing = by y and F' by G in (6),
(7) and (13).

14



From (8), (11) and (12) it follows that
Ty 4 Ty = pA (M1 — m2) (T1ye — Tatn) - (15)

Consider a population in which both behaviors X and Y are present and
7 > . Then (15) implies that the proportion of individuals using behavior
X grows and the proportion of individuals using Y falls if and only if among
the individuals using X the relative proportion using action 1 is greater than
among individuals using Y, i.e.,

T
if 1y > 7y then &y + &9 > 0 if and only if LIS Ll

Ti+xs Yty

4.1 Neutral Stability

In this section we investigate the robustness or stability of a single behav-
ior population with respect to mutations. Individuals are characterized by
their revision behavior and by the action they chose last. Given a single
behavior population with a given distribution of actions we assume that
a small proportion of individuals mutate such that they then all follow
a different behavior and choose different actions. Since selection pressure
on the revision behaviors only takes place as long as the inferior action is
present in the population we can not hope for an evolutionarily stable be-
havior (i.e., one that drives out every mutant behavior; Maynard Smith and
Price [9]) to exist. Instead we will analyze revision behaviors that have a
slightly weaker property. We will characterize a revision behavior that, when
played by the incumbents, is able to prevent mutant behavior from spread-
ing. Mutants replace incumbents according to their relative proportions in
the population; if 4° € A ({1,2}) is the action profile played among the
mutants, z° € A ({1,2}) are the population shares of the incumbent be-
fore entry and ¢ is the fraction of the original population that is replaced,
then ((1—6)z9, (1 —8) x5, 6y, 8y;) is the population state after the muta-
tion. Along the lines of Maynard Smith [§] a behavioral rule will be called
neutrally stable at a given distribution of actions if the proportion of any
mutant rule stays arbitrarily small provided that the initial proportion of

mutants is sufficiently small.
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Definition 6 For a given two-armed bandit and given z° € A ({1,2}), a
behavior X will be called neutrally stable at x° if for any behavior'Y, any
y° € A({1,2}) and any = > 0,36 > 0 such that 0 < &' < § and

(,171 (0) y L2 (0) y Y1 (0) » Y2 (0)) = ((1 - 6/> aj(i? (1 - 6/> 37;7 6/y(1)7 6/y(2)) Zmphes
y1 () + 2 (t) < 2 V> 0.

In other words, the proportion of a neutrally stable behavior X will not
decrease substantially provided that the initial proportion of the entering
mutation is sufficiently small. Never-the-less the relative proportion of the
actions played among the individuals using the neutrally stable behavior may
change drastically over time, especially if there are incumbents that are not
using the efficient action (see Section 4.2). This fact complicates the proofs
of neutral stability since the usual local linearization techniques concern local
stability.

In the following we will investigate the class of rules that are neutrally
stable when initially the incumbents are using the efficient action. It turns
out that any revision behavior that is strictly payoff increasing is neutrally
stable. Moreover, being payoff increasing is a necessary condition. Alongside
we obtain the intuitive result that after a small mutation individuals stop

using the inferior action in the long run.

Proposition 4 Let ({1,2},P) be a two-armed bandit such thal m > .
i) If X is neutrally stable at (x9,x5) = (1,0) then X is payoff increasing.
ii) If X is strictly payoff increasing then X is neutrally stable at (z3,z3) =
(1,0) and x5 (t) +yo (t) converges to 0 ast goes to infinity, provided x4 (0) is
sufficiently large.

Proof. (see appendix).
An open question remains whether the converse of statement i) is true or

not.

4.2 Neutral Stability for Arbitrary Initial States

In this section we wish to characterize revision behaviors that are neutrally

stable for any initial state. In Proposition 4 we saw that any strictly payoff
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increasing rule playing the efficient action is neutrally stable. The question
arises whether or not it is also neutrally stable if it must learn which action is
the better one. In particular, is a strictly payoff increasing behavior neutrally
stable even when all the incumbents are initially playing the inferior action?

The following result states that this is true.

Proposition 5 Let ({1,2},P) be a two-armed bandit such that m > .
Then the behavioral rule X is neutrally stable at x° for any 2° € A ({1,2}) if
and only if X is strictly payoff increasing. Fspecially, if X is strictly payoff
increasing then xqy (t) +ys (t) converges to 0 ast goes to infinity provided that
21 (0) + 22 (0) is sufficiently large.

Proof. (see appendix).

If the neutrally stable incumbents all start out playing the inferior action
and the mutant stubbornly plays the efficient action then although the fre-
quency of the mutant behavior increases steadily over time, the incumbents
learn which action is better and thus eliminate their selective disadvantage
by playing the efficient action too - our result states that this happens be-
fore the mutants have taken over a substantial proportion of the population.
Therefore, even if all mutants were to know which action is better, arbitrarily
long after the mutation occurred the majority of the individuals will still be
using the strictly payoff increasing behavior.

With Proposition 5 we can now characterize behaviors that are neutrally
stable in any two-armed bandit (Notice that any rule is neutrally stable when

mM™ = 7T2).

Corollary 2 X is neutrally stable at any z° € A ({1,2}) and for any two-
armed bandit ({1,2} ,P) in G ({1, 2}, [WL,WHD if and only if X is a strictly

improving rule.

Rules that are neutrally stable for any two-armed bandit and for any ini-
tial configuration have intuitive appeal in an environment where the payoff
distributions in the bandit are subject to rare changes. The notion of an evo-

lutionarily stable strategy was introduced by Maynard Smith and Price [9]
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as an intuitive concept for a population playing a single strategy to be able
to survive rare mutations. As an approximation of very rare mutations, for-
mally their concept only considers a one time mutation. In fact, when there
are only a finite number of sufficiently rare mutations, then their concept
remains valid (see Schlag [14]). Similarly, when interested in rare changes
in the payoffs of a two-armed bandit (more precisely, in changes in the dis-
tributions of the payoffs associated to an action in the two-armed bandit),
one might consider a one time change as a first approximation. Consider
a single behavior population that is subject to a one time mutation of be-
havior and to a one time change in the payoffs of the two-armed bandit,
the mutation and the change of the payoffs must not occur simultaneously.
With Corollary 2 it follows easily that strictly improving rules are neutrally
stable in this setting. If the two-armed bandit changes before the mutant
enters then the property of being neutrally stable at any initial configuration
is sufficient to prevent the mutant from taking over a substantial proportion
of the population. If the mutant enters before the two-armed bandit changes
then Corollary 2 must be applied “twice”. In fact, strictly improving rules
are the only rules that are neutrally stable in this setting of slowly changing
environments.

An alternative justification for searching for a rule that is neutrally stable
for any distribution of the payoffs is that it has intuitive appeal when an
individual is uncertain about the specifications of the two-armed bandit.
Such considerations are the basis of the bounded rational selection approach

pursued in the model of Schlag [16].

4.3 Survival

In the previous two subsections we focused on the stability of a single behavior
population with respect to the entry of some mutant. In this section we
analyze the long run outcomes of two behavior contests. We will say that a
revision behavior survives if it does not vanish in the long run for some entry

proportions.
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Definition 7 For a given two-armed bandit and given x°,y° € A ({1,2})
we will say that a behavior Y playing y° survives in a two behavior con-
test with X playing x° if for every ¢ > 0 there exists 6 > 0 such that
(01 (0,25 (0) 41 (0) 15 (0)) = (1 — &) 25, (1 — &) 5, ey, i) implies yy (1)-+
ya (t) > 6 forallt > 0.2

At first we compliment Proposition 4 and characterize the class of mutant
rules that survive in a two behavior contest with a strictly payoff increasing
rule that is playing the efficient action. Mutants that survive under such
circumstances never switch away from the efficient action without reason
and do not stubbornly adhere to the inferior action when the efficient action

is only being played by the incumbent.

Proposition 6 Consider a two-armed bandit ({1,2} , P) where m > my. Let
X be a strictly payoff increasing revision behavior and let z°,y° € A ({1,2}).
Then'Y playing y° survives in the two behavior contest with X playing x° if
and only if i) Gy = G§, = 0 and i) if 27 > 0 = y§ then Gy, + G5y +Gjjy > 0.

Proof. (see appendix).

It follows from Proposition 6 that any imitating rule that does not ignore
better actions (Ffj > 0 whenever 7; > 7;) will survive in a two behavior
contest against any strictly payoff increasing rule. Reproduction eliminates
the inferior action from the population at a stronger rate than any rule might
be biased towards the inferior action (as long as the efficient action is initially
played). Hence one might argue that the incumbent "teaches” the mutant
which action is better. Especially, following Propositions 4 and 6, selection
pressure is not strong enough for an evolutionarily stable behavior to exist,
i.e., one that is neutrally stable and where no mutant playing a different rule
than the incumbent can survive.

We conjecture that a revision behavior Y that violates the ‘if” condition
in the above proposition will be driven out when starting at any initial pro-
portion (less than 1) of players using Y. Our proof only shows this statement

when the proportion of individuals using the rule Y is sufficiently small. It

2In the dynamics systems literature this condition is called persistence.
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is conceivable that the population state enters a cycle if there are initially a
large fraction of individuals using Y.

Above we saw that it is quite easy to survive in a population where the
other behavior is strictly payoff increasing; the incumbent rule will show
which action is better and “tagging” along is sufficient. It turns out that it
is much more difficult to survive in any two behavior contest. Only payoft
increasing revision behaviors (that do not always stubbornly adhere to the

inferior action) are able to survive in any two behavior contest.

Proposition 7 Let p* € (0,1] be fized and consider a two-armed bandit in
which 1 > m9. Then Y playing y° survives in a two behavior contest with
X playing x° for any revision behavior X, any z° € A ({1,2}) and any 0 <
p < p*if and only if Y is payoff increasing and y; > 0 if G+ G+ Gy = 0.

Proof. (in the appendix).

In the proof of the above proposition we showed a slightly stronger state-
ment, namely that a behavior Y that is not payoff increasing is driven out
by some other behavior X even if initially the majority is using Y. Further-
more, notice that we used a stubborn rule X to drive out an imitating but

non payoff increasing rule Y.

Corollary 3 Consider a two-armed bandit in which m > mo. If X s not
payoff increasing then there exists a behavior Y such that xy (t) + x4 (1) — 0
as t — oo when starting in (z1(0), 29 (0), 41 (0),y2(0)) such that zq(0) +
xy (0) < 1.

Especially this means that the rule ‘imitate if better’, even when used by
the majority, can be driven out by appropriately choosing mutant behavior
and payoff distribution.

Analogue to Section 4.2 one may be interested in rules that survive for any
initial actions against any other rule in any two-armed bandit. Such a rule
will then always survive if the two-armed bandit is subject to rare changes
(see scenario described at the end of Section 4.2). Analog to Corollary 2 we

obtain from Proposition 7 the following result:
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Corollary 4 Y playing any y° € A ({1,2}) survives in a two behavior con-
test with any X playing any z° € A ({1,2}) for any reproduction rate 0 <
< 1 and for any two-armed bandit ({1,2} , P) if and only if Y is improving

but not the rule ‘never switch’.

Especially we find that copy-cats (i.e., the rule ‘always switch’) always
survive.
Proof. Since y° is arbitrary, ¥ must be an improving rule such that
ng > 0 whenever m; > ;. These are precisely the improving rules such
that G, (i,p, j,q) > 0 whenever ¢ > p, a property that any improving rule

other than the rule ‘never switch’ has. H

In Proposition 5 we saw that a majority of the population using a strictly
improving rule causes the entire population to adapt the superior action
(provided that it is initially been chosen by someone). In the following we
will see that this is no longer necessarily true when only a minority is play-
ing such a rule. In a population in which the majority of the individuals
stubbornly choose the inferior action, whether the superior action survives
in the population depends on whether the mutant behavior has a tendency
to play the superior action even the rest of the world is not, i.e., it depends
on the existence of a “genetic” bias towards this action. Especially, a strictly
improving behavior will survive but, due to its imitative nature, in the long

run it will end up choosing the inferior action.

Proposition 8 Consider a two-armed bandit with m > 9. Assume that
individuals using X stubbornly choose the inferior action, i.e., Xo (-) = 1. If
Y is such that Gy, + Gy = 0 then X remains in the majority and y1 — 0 as
t — oo. If Y is biased towards action 1 when no one else is choosing action

one, i.e., if Gyy + Gy > 0 then yy — 1 ast — oo.
Proof. Assume that G}, + G}, = 0. Then it follows that

By = —pA(m —m2) 2oy
— (1 = 1) Gyys + oy [+ (22 + y2) A (w1 — )]
— (1 — p) Y1y + payy

v

Y2

v
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and hence 7, increases for sufficiently large x,. Consequently, all we are left
to show is that 1o increases at a larger rate than xy decreases. Given ¢ €
(L)
T —T2) ]
2 <—c< -1
)
if and only if
pxe [L—cX(m —m)] > (1 —p)ya,

which holds when x5 is sufficiently large. Hence, for every unit that x,
decreases, 15 increases at least by ¢ > 1 units which means that y,; converges
to 0 as ¢ goes to infinity. Especially x9 () remains arbitrarily large as long
as Zy (0) is sufficiently large.

Assume now that G3, + Gj, > 0. Assume that ¢ — 0 as ¢ — oo. Since
&9 < 0 there exists ¢ > 0 such that ys (£) > ¢ for all t. However, since ¢; > 0
when y; = 0 and 79 > 0, we obtain a contradiction to the fact that y; — 0.
Since ¥ is bounded away from 0, x5 > 0 implies 9 < 0 and hence x93 — 0

ast—o00. W

5 Experimentation

In this section we allow for an alternative mechanism for obtaining informa-
tion about the two-armed bandit. Instead of sampling an individual may
experiment with an action before he chooses his next action. Ezperimenta-
tion will mean, in contrast to sampling, to select an action according to some
fixed probability distribution (that may depend on the current action) and to
realize one payoff with this action. After experimentation, as with sampling,
the individual chooses his future action according to some revision behavior
(that belongs to the same class of revision behaviors allowed under sampling).
Consequently this leads to switching probabilities FZ’;, i,7,k € {1,2} ,where
FZ’; is independent of j. (Here we assume that entering individuals do not
experiment.)

Notice that including experimenting rules in our model requires no new

computations since the switching behavior associated to an experimenting
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rule is already incorporated. Experimenting rules behave just like sampling
rules that induce switching probabilities with Ff = FZ’; for all 4,5 € {1,2}.
Especially, there is no non-trivial experimenting behavior that is improving
(only the degenerate experimenting behavior ‘never switch’ is improving).
Following Proposition 4 and Corollary 2 we see that there is no experimenting

behavior that is neutrally stable in all two-armed bandits.

6 Discussion

The Success of Imitation. We consider competition among memory-less
rules, thereby including many rules that are not purely imitative. Similar
to the bounded rational approach of Schlag [16] we find that individuals’ in-
ability to aggregate individual information favors imitative behavior. Here is
some intuition behind this result. If no one else plays the efficient action then
there is no selection pressure for me to play the efficient action. If someone
else has found the efficient action then by observing his performance I will
be able to learn that this is the efficient action, provided that I employ the
right kind of imitative behavior. On the other hand, by following a behavior
that does not rely solely on imitation, I may be punished by experimenting
with a suboptimal action that no one else uses and thus create a selective
disadvantage for my rule. A more sophisticated behavior would be necessary
to be able to always profit from experimenting. Does this mean that the only
reason that imitative behavior is selected is because it only competes against
stupid rules? Notice that for a given bandit we allow for a mutant rule that
(by chance) always plays the efficient action. Even if all the incumbents are
playing the worse action before the mutation occurs, as long as they all follow
the same strictly improving rule, the mutant can not take over a substantial
proportion of the population. Thus, we have shown that individuals that are
without any knowledge about the underlying situation, who follow a very
simple behavior (e.g., the proportional imitation rule) can hold off extremely
knowledgable (or lucky) entrants. We do not want to argue that the assump-

tions made in our model are typical. Often individuals have more information
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about the environment and employ more sophisticated behavior based on a
richer memory. The objective of this paper is merely to demonstrate that

sophisticated simple behavior can already be very effective.

Evolutionary verses Bounded Rational Approach. Although the bounded
rational approach of Schlag [16] might be intuitive, bounded rational objec-
tives are always subject to criticism due to their subjective nature (e.g., the
uniform prior assumption in [16]). Under the evolutionary approach, once
the population dynamic is defined, the criteria for the analysis are easily de-
rived from the dynamical systems literature and classical evolutionary game
theory (neutral stability and survival). Criticism can thus focus on the under-
lying population assumptions. Especially we provide an explicit (although
admittingly simplified) story of a changing environment to justify why we
are interested in a rule that is neutrally stable in any two armed-bandit (see
remark made after Corollary 2). The analogue assumption in the bounded
rational setting is mainly justified by the fact that the individual has no
knowledge about the underlying payoff distributions in the bandit.

Schlag [16] obtains a unique optimal behavior in both a bounded rational

and in a population oriented approach. This behavior is the proportional

imitation rule with rate ¢ = 7rH£7rL which is of course a specific strictly im-
proving rule. The mentioned population oriented approach, a preliminary
analysis to this paper, considers the adaptive dynamics of a single behav-
ior population dealt with in Section 3. Schlag [16] shows that this specific
proportional imitation rule generates the highest growth rates among the
improving rules. How does this rule perform in our setting? It can be shown
that among all improving rules this proportional imitation rule gives up the
least proportion of the population to an entering mutant that stubbornly uses
the efficient action. We conjecture that this statement is also true for any
behavior of the entering mutants. Of course, in a given two-armed bandit,
the overall highest growth rate after the mutation is achieved by the lucky

rule that stubbornly uses the efficient action.
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Related Literature. To our knowledge, this is the first paper that deals
analytically with the evolutionary selection of behavioral rules for social
learning. In a closely related evolutionary setting Rogers [12] investigates the
trade-off between individual and social learning. Individual learning refers to
the act of incurring a cost and then learning which action is efficient. Social
learning means that the action of a random individual from the population
is imitated (payoffs are not observable). In a specific example of a constantly
changing environment the evolutionarily stable proportions of individual and
social learning are calculated.

In our analysis, an evolutionarily stable rule fails to exist because evo-
lutionary selection pressure sometimes eliminates the inferior action before
sufficient selection has occurred among the revision behaviors. The survival
of various learning rules that behave similarly is a common phenomenon. In
a model of Nelson and Winter [10], profit maximizers survive in the long run
along with firms that act like profit maximizers. Schlag [15] studies the evo-
lution of automata (which are in some sense rules) in the repeated Prisoners’
Dilemma. A unique stable component is selected where both Tat-for-Tit and
automata that imitate Tat-for-Tit when matched against Tat-for-Tit survive.

We restrict attention to two behavior contests to simplify the analysis. An
alternate way of handling the typically very complex dynamical systems that
arise when analyzing the evolution of learning rules is to employ simulations.
Dixon et al. [4] simulate the evolution of rules for playing an infinitely re-
peated Cournot Duopoly game. In their setup a rule is a linear function that
determines future output level based on their opponents output in the last
round. In their simulations (the ones without noise) a unique rule survives,
it is essentially the joint profit maximizing behavior.

Finally, Banerjee [1] finds that imitative behavior can also be justified on
rational grounds, provided that there is the possibility that some agents are

more informed than others.
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A  Proofs

A.1 Neutral Stability

Let F' ((7) be the switching probabilities related to the revision behavior X
(V) for a given two-armed bandit. Let a =
We then have

T2 Yo
x1+x2’ Yy1+y2

and ¢ = z1 + 2.

0 = @:_G_M)‘PF%
tp|(b—a)(1—c) = Fly(ac+b(1— )| [\ (m —m) (b —a) (1 —¢) + 1]

and with

Up = [1—a)e+(1—-0)(1—¢)] [F;la—Ffl(l—a)]c
+ac+b(1—c)] {F;Qa — F%(1— a)} ¢
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we obtaln

@ = (1-pl-a)fl-a)et(1-b)(1—c)FY (16)
+(1=p) (1= a) [ac (Fg — F3y) +b(1 - ¢) I
—(1—p)a|(ac+b—be) Fyy+ (1—b) (1 —c) Fy)]
+p | (bR, — a) (1= ¢) = Fiyae| (A (m — 1) (b—a) (1 = ¢) + 1]
+uFg [l —ac—b(1—c)][A(m —m) (b—a)(l—c)+1] .

Similarly,
c=pA(m —my)e(l—c)(b—a).

In the following we will establish some lemmata for a two-armed bandit
in which m; > my. The first lemma states that the proportion of individu-
als playing the inferior action among the individuals using a strictly payoff
increasing behavior X decreases as long as sufficiently many individuals are

using X.

Lemma 1 If F' is strictly payoff increasing then 3 a continuous decreasing
function @ : (0,1] — R such that a(1) =0 and @ < 0 if a(c) < a < 1.

Proof. The first and fifth line in (16) are equal to zero since Fjj; = F7; =0,
using the fact that b(1 — ¢) F, < 1 — ¢ in the second line and dropping the

third line, we obtain

@ < (1—p)|—a"Fy+ (1 —a)ac(Fy— Fy) + (1 —a)(1—¢)]
+u [2 (1—¢c)— F&Qac} :

and hence the statement is true. W

The next lemma states that the proportion of individuals using a strictly
payoff increasing behavior X does not decrease much while it decreases when

almost all of the individuals are using X.

Lemma 2 If F' is strictly payoff increasing and p is sufficiently small then
there exists a function s : (0,1) — (0,1) such that ¢(0) > 1 — s (=) implies
c(t) > 1—c aslong as ¢ < 0, i.e., for anyt € [0,T) where T € RyU {co}
satisfies ¢ (t) < 0Vt € [0,T).
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Proof. Let vy := y; + y5 and assume m; > my. Consider a trajectory with
0 <c(0) <1andlet T € RJU{oo} satisfy ¢ () < 0Vt € [0,T). Assume
that Fy, — F' > 0, then
1 > 1 (g +yo) 21 + J (o — 2172) , (17)
where
= (1—p) (F} = F}) > 0and
J = (1= p) By +p[l=X(m —m) (@ +y1)] > 0.

Note that ¢ < 0 (& ¢ > 0 - by definition) implies x9y; > 21ys and hence
#1>0and g >0forallt €[0,7).

In the following we will put an upper bound on how much y can grow
by time T for given x; (0) and y (0). Only interested in an upper bound and

since &1 > 0 it is enough to consider only trajectories with z; (0) = 0.

From (15) and (17) we obtain

8&71 j?l < I. Kl 1 J > T —|-ﬂ
=l > a2t 7
y y T opA(m—ma)yn pA(m — o) )

where o = m > 1and 8 = p(l —A(m —my)) > 0. The smaller the

fraction %l is, the more y will grow relative to ;. Hence, in order to find an
upper bound on y when y (0) = s and x; (0) = 0 it is sufficient to find an
upper bound on § = §(s) where p(q) =1, p(s) =0 and

Op _ p

— =a—+ 0. 18

2~ % (18)
The solution to (18) given p(s) =0 is

v = () 1),

Consequently, for any given ¢ > 0 there exists s = s(g) € (0,£) such that

g (s) = e. Therefore, 0 < y(0) < s(¢) implies y(t) < ¢ for all ¢ < T which
completes the proof for F); — FZ, > 0.

Assume now that F); = F. Since F is strictly payoff increasing, Fy, > 0
or F@12 > 0 must hold. Hence,

By < = (22)” [(L = 1) iy + ) — T (wn — 213)
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where J = (1— ) F + 1 [L+ A (w1 — m) Ff, (w2 + )] > 0. Then i < 0

and y > 0 for all t € [0,7). With o = —%@ <0and = _7r1i7r2

0 we obtain

ﬁéaﬂ%—ﬂ.
Y Y

Hence we will search for an upper bound on § = §(s) where p(g3) = 0,

p(s) =1— s and p = p(q) satisfies (18). It follows that

p -1 (509 0) (&) -0).

Consequently, for any given ¢ > 0 there exists s = s(g) € (0,£) such that

g(s) = and p(g(s)) = 0. Therefore, 0 < y(0) < s(=) implies y(t) < ¢ for
allt <T. W
Next we show that when either a or b is small, along any trajectory there

will be at most one switch from ¢ decreasing to ¢ strictly increasing, or vice

versa.

Lemma 3 Let F' be payoff increasing. Then there exists v > 0 such that
either

i) b > a whenever 0 < a="0 <~y or

i) b < & whenever 0 < a =1b < .

Especially, if G, > 0 or G§, > 0 then i) holds.

If 0 < ¢ < 1then ¢ > 0if and only if b > a. Hence, as long as either a or
b is less than =, if i) holds then only a switch from ¢ < 0 to ¢ > 0 is possible,
if i1) holds then only a switch from ¢ > 0 to ¢ < 0 is possible.
Proof. Consider allocations where a = b. Then the proof follows directly
using the fact that

o= (- o) (- B - Ry B (19
and

b= (1-p) {(1 —a)’GY +a(l—a) (G%Q - G%l) - GQG%Q}
+u [G(%l (1—a)"— Géﬂﬂ : (20)
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Next we show that the inferior action vanishes when the fraction of indi-

viduals using the incumbent rule always strictly increases.

Lemma 4 If F is payoff increasing and ¢ (t) > 0 for allt > 0 then a — 0

and b(l —c) — 0 ast — oo.

Proof. If ¢(t) > 0 for all ¢ > 0 then ¢ — ¢* as ¢t — oo for some ¢* < 1. If
¢* =1 then following Lemma 1, a — 0 as t — oo and the claim is proven.
Assume that ¢* < 1. Let (a/,V',¢*) be an w limit. Since ¢ — 0 as t — oo
it follows that o’ = ¥/. Assume that @’ > 0 and let T, := {(1 — a)b < a < b}.
For any a > 0 the trajectory eventually stays in T, U {b < o} for ever.
Moreover, following (19), there exists o/ > 0 such that ¢ < 0 in Ta/ﬂ{a > %}
This contradicts the fact that (a/,',¢*) is an w limit and hence a — 0 and

b—0ast—oo. N

Using the above lemmata, we are now able to present the proof of state-
ment ii) in Proposition 4.

Proof. (of statement ii) in Proposition 4) Let X be strictly payoff increasing.
Let € > 0 be given. Consider the dynamic in the space a := m—lsfg, b:= EfLyg
and ¢ := 1 4+ x9. Let v > 0 be given from Lemma 3.

Assume that b > 4 whenever 0 < a = b < ~ as in part i) of Lemma 3.
Let 0 < 6§ < ¢ be such that a (1 — é;) < -y where a(-) is given by Lemma 1.
Consider a trajectory starting with a (0) =0 and 1 — 6 < ¢(0) < 1. Then
¢(t) > 0 as long as a(t) < b(t). However the later holds for all ¢, since at
any time ¢ either a(t) < 0 or a(t) < a(c) < . Hence ¢(t) > 1 — ¢ for all
t and hence X is neutrally stable when a (0) = 0. Lemma 4 implies that
To+1yg — 0 as t — oo.

Assume that b < @ whenever 0 < a = b < ~y as in part ii) of Lemma 3.
Let & € (0,2) be such that a(1 —¢') < v and let 6 = s(8') (s(-) given by
Lemma 2). Notice that § < §'. Consider a trajectory starting with a (0) = 0
and 1 > ¢(0) > 1 —6. Let T € R} U {oo} be such that a(t) < b(t) for
all 0 <t < Tand a(T) =b(T)if T < co. Then ¢(t) > 0 and hence
c(t)>1—6>1—cwhilet <T.
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If T'= oo then following Lemma 4 the proof is complete.

Now assume that 7" < co. Then ¢(T) > ¢(0) > 1 — s(¢') and a(T) <
a(c(0)) < 7. Moreover, ¢(t) < 0 and b(t) < a(t) as long as a(t) < 7.
By Lemma 2, ¢(T) > 1 — s(¢') implies ¢(t) > 1 — ¢’ as long as ¢ < 0.
However, ¢ () > 1 — ¢ implies a (t) < a(l — §') <y and hence ¢(t) < 0 and
c(t)y>1—¢>1—cforallt>T. Hence a(t) —b(t) — 0 as t — oo. Since
0 <a=0>b<vyimpliesa <0 we obtaina —0andb—0as?t—oco. M

The next lemma shows that in the long run the majority of the population
will not be playing the efficient action and simultaneously using a non payoff

increasing rule.

Lemma 5 Let X be a revision behavior that is not payoff increasing. Then

there exists o > 0 such that 0 < a < a and 0.5 < c <1 implies a > 0.
Proof. Setting a = 0 in (16) we obtain

@ > (L=p)le+(L=0)(1-c) (21)
+<1_N>b<1_C>F122
+uFg [L=b(1 =) [A(m —m) b (1 —c) +1].

Hence, the proof follows directly the fact that X is not payoff increasing
implies F®21 >0or F?, >00r FL > F),. &
We now prove statement i) of Proposition 4 using Lemma 5.

Proof. (of statement 1) in Proposition 4) Let Y be a rule that induces G}j =
Gy, =1 for i,j € {1,2}. Let o be given by Lemma 5. Consider a trajectory
starting with 0 < 5 (0) < 1 and 0.5 < ¢ (0) < 1. We will show that there exists
t" > 0 such that ¢ (¢') < 0.5 which then implies that X is not neutrally stable.
Assume that ¢ (t) > 0.5 for all t. Since b < —bp[(a — b) e (7 — m) +1] <0
for b > 0, together with Lemma 5 it follows that there exists a finite time T’
such that b(t) < /2 and a(t) > « for all ¢ > T. Hence, ¢ — 0 as t — o0
which contradicts our assumption that ¢ (t) > 0.5 for all t. Consequently, X

is not neutrally stable for any z°. B
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A.2 Neutral Stability in Arbitrary Initial States

The following lemma states that while a is decreasing, ¢ can not decrease

then increase more than twice along the same trajectory.

Lemma 6 Let F' be payoff increasing. Then there is no trajectory such that
a<0for0<t<Ts ¢<0fortel0,Ti)U (TyT5) U (Ty,Ts] and ¢ > 0 for
t e [Ty, Ty U[Ts,T)) where 0 < Ty and T; < Tyyq fori=1,.. 4.

Proof. Using (19) and (20) it is easily shown that a = b and a = b has at
most two solutions d’ # d” such that d’,d” € (0,1), especially any solution
is independent of c¢. Following the same reasoning as in Lemma 3, using the
fact that ¢ < 0 if and only if b < a and 0 < ¢ < 1, the statement is proven.
|

This leads us to the proof of Proposition 5.
Proof. (Proposition 5) ‘if’ statement: In the proof of Proposition 4 we
only considered trajectories starting with a (0) = 0. However we see that the
proof also goes through for a (0) < .

Given the above, all we must now check is initial configurations where
a (0) is not small. Following Lemma 1, & < 0 provided that ¢ is sufficiently
large. Using Lemma 2 we know that on sections of the trajectory where ¢
is decreasing, ¢ does not decrease too much. This fact we will use together
with Lemma 6 to prove the statement.

Let £ > 0 be given. Let & > 0 be such that a(0) < 8 and ¢(0) >
1 — 6y implies that ¢(t) > 1 — ¢ for all £. Let 0 < § < é; be such that
a(l—¢) <6 and let 6 = s(s(¢')) where s is given by Lemma 2. Consider
a trajectory starting with ¢(0) > 1 — 6. Let T; be such that ¢ > 0 for
t €0, T)U(Ty, T5)U(Ty, Ts) and ¢ < 0 for t € [T, T U [T5, Ty] where 0 < T}
and T; < T;41 or T; = oo for i = 1,..,4. Similar to previous reasoning we
have in the intervals where ¢ > 0 that @ < 0 or a < a(c¢). In the intervals
where ¢ < 0, @ < 0. Moreover, ¢ > 1 —§ when t € [0,7}), ¢ > 1 — s (&)
when t € [T1,Ty] and also for t € (T3,73), ¢ > 1 — ¢ when t € [T3,T}].
Consequently, for all Ty < ¢t < Ty and hence for all t < T5 we obtain that
c>1—¢>1—6and [a <0ora<a(c) < b Hence, following Lemma
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6, there exists 0 < 7" < Ty such that ¢(T") > 1 — 6; and a(T") < 6;. By
definition of 8 it follows that ¢ (t) > 1 —e for all ¢ which completes the proof.

‘only if’ statement: Proposition 4 implies that X is payoff increasing.
Assume that X is not strictly payoff increasing, i.e., Fy, = F% and I} =
Fy, = F®21 = F@12 = 0. Consider the rule Y that stubbornly plays the efficient
action, assume y, (0) = 0. Then ys (¢) = 0 for all ¢ and following

j’,‘2 = —UTY1 [)\ <7T1 - 7T2) Ty + 1]
91 = pA(m — ) ixe

Yy Increases, &y decreases as long as x9 > 0 and

dQTQ j72 1
- = T = —T9 — .
din hn T — T

(22)

Solving for the path (z1, s, y1,Yy2) as a function of y; that initiates in
(83,1 —a—f,a,0) for some o, 3 > 0 with o + 3 < 1, we obtain

372(y1)=eo‘yl<1_a_ﬂ+ 1 )_ 1

T — e 7Tl_7TQ‘

Let 7; be such that x4 (7;) = 0, then
Gi(@)=a+n((l—a—-0)A(m —m)+1) .

Hence, for very small initial value y; (0) = «, by the time x5 has vanished,
y1 has grown to be approximately In ((1 — 8) A (7, — m2) + 1) > 0 and hence
X is not neutrally stable at (z],25) = (5,1 — ) when < 1. R

A.3 Survival

Proof. (of Proposition 6) Let X be a strictly payoff increasing behavior.
If G = G3, = Gjj, = 0 and yj (0) = 0 then b(t) =1 for all t. Then clearly,
Y does not survive.

If G}, > 0 or Gj; > 0 then following Proposition 4, for large enough
initial ¢, a and b (1 — ¢) go to 0 and ¢ stays close to 1 as ¢ goes to co. Since
b > [ for some 3 > 0 when a and b are sufficiently small, b does not go to

zero which means that (1 — ¢) goes to zero, hence Y does not survive.
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On the other hand, if G}, = G}, = 0 and G}, + G5, + G}, > 0 then
w.l.o.g. we may assume that initially some players using Y are selecting
action 1. Consequently for the ‘only if’ statement all we must show is that
G, = G}, =0 and y; (0) > 0 implies that ¥ survives. Following Proposition
4, for large enough initial ¢, a goes to 0 and ¢ stays close to 1 as ¢ goes to

00. When ¢ = 0 and ¢ = 1 we obtain
b=—b[(1—p) Gl +p(1—bA(m —m))]

and hence b < 0. Hence the tra jectory eventually stays close to (0,0,1).

Notice that M = {(0,0,¢),0<e¢ <1} is a set of rest points. More-
over, calculating the eigenvalues at (0,0,1) reveals two strictly negative
(1 —p) (FP — Fyy) — plFjy and — (1 — ) G3; — 1)) and one zero eigenvalue.
The zero eigenvalue is associated to the eigenvector (0,0, 1) , in fact the centre
manifold (e.g., see Wiggins [18]) associated to this eigenvalue is M. Moreover,
trajectories starting in the two dimensional subspace {(a,b,1),a,b € [0,1]}
stay in this set. Hence, trajectories starting close to (0,0,1) with ¢(0) < 1
converge to (0,0,¢) with ¢ < 1.1

A.4 Survival among Arbitrary Behavior

We now present the proof of Proposition 7.
Proof. ‘if’ statement: Let Y be payoff increasing such that 3] > 0 if
Gy + Gy + Gj, = 0. W.lo.g. we may hence assume that 37 > 0. Consider
the trajectories for ¢ = 1. We obtain
a = (1—p) [(1—@)2F121—|—a(1—a) <F122_F211) —a2F212}
+p [(1 —a) Fjy — aFM

and

b= (1—p)[a(1—b)Gh—b(1—a)Gh — abGl)
+1 {a— b— GéQa} [(a —b) (m1 — ma) + 1]

and hence the trajectory starting in (a,b,1) leads to (a*,b* 1) such that
b < a*.
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Assume that Y does not survive, i.e., the trajectory starting in (a,b,c)
converges to (a*,b*,1). If b* < a* then ¢ < 0 in a neighborhood of (a*,0*,1)
when ¢ < 1 which gives a contradiction. Assume that b* = a*. Then (0,0,1)
is an eigenvector to the eigenvalue 0 which implies that ¢ does not converge
to 1 (same arguments as used at the end of the proof of Proposition 6).

‘only if’ statement: Here we will show a bit more than stated in the
proposition, namely that if Y is either not payoff increasing or y; = G, =
G3y = Gjj, = 0 then Y vanishes in a two behavior contest with some X even
if the initial fraction of Y is not small.

If y; = 0 and G} = G5, = G}, = 0 then y; (¢) = 0 for all ¢ and clearly Y
will not survive against ‘never switch’ playing the efficient action, i.e., 2] = 1.
In fact, for any initial 0 < c <1, ¢ — 1 as t — oo.

Similarly, if Y induces switching probabilities such that G3,4+G§; > 0 then
it will not survive against the stubborn rule that always plays the efficient
action. When a = 0 and b is small then b > [ for some 3 < 0. Hence, after
finite time 7', a (t) = 0 < & < b (t) holds for all ¢ > T and hence 0 < ¢(0) < 1
implies ¢ — 1 as t — oo.

Finally, assume that 37 > 0if G}, = G3, = Gj, = 0, that G}, = Gj; =0
but that Y is not payoff increasing, i.e., G2, > G,. If a > b then

b>b[(1—p) [(1-b) (G}, — Ghy) — aGhy| — pGi, ((a = b) ¢ (m1 — ) + 1)

and there exists a* > 0, u* > 0 and # > 0 such that b> fBbfor0<b<a<a*
and 0 < p < p*.
Consider now a revision behavior X such that FQQZ = FZQJ =a* fori,je

{1,2}. Then
b= (@ a) 1=t b= a) (1) (m1 — ) + 1]

Consider a trajectory starting with 0 < ¢(0) < 1. Since 37 > 0 if Gi; =
Gy = 0 we may assume that b(0) > 0. Since b > b when 0 < b < a* and
a — a* as t — 0o, there exists T' > 0 and £ > 0 such that b(t) > a (t) + ¢ for
allt >7T. Hence,c -1l ast —oo. B
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