The Rate of Learning-by-Doing: Estimates from a Search-Matching Model

Julien Prat*

April 2006.

Abstract

We construct and estimate by maximum likelihood an equilibrium search model where wages are set by Nash bargaining and idiosyncratic productivity follows a geometric Brownian motion. The proposed framework enables us to endogenize job destruction and to estimate the rate of learning-by-doing. Although the range of the observations is not independent of the parameters, we establish that the estimators satisfy asymptotic normality. The structural model is estimated using Current Population Survey data on accepted wages and employment durations. We show that it captures almost perfectly the joint distribution of wages and job spells. We find that the rate of learning-by-doing has an important positive effect on aggregate output and a small impact on employment.

THEME : Macroeconomics of unemployment and inequality.
KEYWORDS : Job Search, Human Capital, Uncertainty, Structural Estimation.
JEL-CODE : J31, J64.

*I am especially grateful to Giuseppe Bertola and Christopher Flinn for helpful comments. Department of Economics, Vienna University. E-mail : julien.prat@univie.ac.at

1
1 Introduction

The question of whether and to what extent wages increase with seniority has been the subject of a long-lasting debate among labor economists. The interest in this question is partly motivated by the potential interactions between labor market policies and the rate at which on the job learning takes place.\(^1\) Given the proliferation of active labor market programmes in both US and Europe, a large body of empirical research has focused on estimating the rate of learning-by-doing (LBD hereafter).\(^2\) Yet, due to the lack of structural approaches, the task of quantifying the aggregate impact of public policies remains elusive. This paper attempts to contribute to such an objective by estimating the rate of LBD in an equilibrium set-up.

The main aim of early empirical work on equilibrium search models was to capture the cross-sectional features of the data such as wage dispersion. Accordingly the seminal econometric model of Flinn and Heckman (1982) and the ensuing literature typically assumed that productivity on the job and wages remain constant.\(^3\) Only recently has the literature begun to address the observed pattern of wage dynamics. One way to reconcile the evidence and theory can be found in the new line of research (Cahuc et al., 2006; Dey and Flinn, 2005) where workers bring alternative employers into Bertrand price competition with their current employer. Although the game of offers and counter-offers effectively generates upward sloping wage profiles, this prediction is not due to increases in output but to the gradual appropriation of the job’s rent by the worker. This paper focuses instead on the mechanism prevailing in the equilibrium theory of unemployment whereby changes in job’s productivity determine wage dynamics.

More precisely, the proposed model is an “estimable” version of the canonical Mortensen and Pissarides (1994) framework. To our knowledge, this paper is the first to estimate by maximum likelihood the Mortensen-Pissarides model, despite the fact that it has become

\(^1\) See for example Cossa et al. (2003) for an evaluation of the Earned Income Tax Credit. They show that the analysis is highly model-dependent and that results are sensitive to different assumptions concerning skill-accumulation (on-the-job training versus learning-by-doing).

\(^2\) The related literature is too extensive to be comprehensively reported. An arbitrary sample includes the seminal paper by Jovanovic and Mincer (1981) and more recent contributions by Altonji and Shakotko (1987), Topel (1991), Altonji and Williams (2005), Dustmann and Meghir (2005).

\(^3\) See Eckstein and Wolpin (1995) for an early estimation of an equilibrium search model in a deterministic environment with symmetric Nash-bargaining and Flinn (2006) for a more recent analysis of the minimum wage effects.
the standard framework of analysis for aggregate labor markets. In order to render the model suitable for empirical implementation, we modify the stochastic process that changes the job’s output: instead of considering Poisson processes, we introduce geometric Brownian motions. Thus the job’s idiosyncratic productivity follows a random walk with constant mean growth rate. The deterministic trend captures the average rate at which workers accumulate job-specific human capital through LBD. To preserve the aggregation properties that are required for equilibrium analysis, we follow Mortensen and Pissarides in assuming that productivity and thus human capital are purely match-specific. We also consider that firms and workers cannot commit so that wages are set by Nash bargaining.\(^4\)

Notwithstanding these simplifying assumptions, the empirical analysis raises several challenges. First of all, the rate of LBD cannot be estimated in a deterministic set-up. When workers regularly progress along the learning curve, the likelihood of observing an individual close to the reservation wage goes to zero as tenure accumulates. Given that the data contains such observations, the introduction of uncertainty is a prerequisite to the estimation of the rate of LBD. Idiosyncratic shocks allow us to endogenize job separation. This feature distinguishes our approach from previous structural estimations since most of them were based on the premise that job destruction is induced by an exogenous process. But endogenous separations also greatly complicate the derivations because we have to deduce all the sample paths that breach the reservation threshold. We show that the convenient analytical properties of Brownian motions allow us to address this potentially daunting problem and consequently to express the joint distribution of wages and job spells in closed-form.

The other main difficulty is due to the non-standard properties of the likelihood function. More precisely, the reservation wage and consequently the support of the data is a function of the estimated parameters. This peculiarity is well know since Flinn and Heckman (1982). In order to circumvent it, they proposed to evaluate the likelihood function in two steps. First of all the reservation wage is set equal to the lowest wage observed in the sample. Since

\(^4\)The Nash-bargaining solution does not take into account the difficulty of relating wages to job-specific human capital. As explained in Felli and Harris (1996), wages increase with human capital to the extent that workers are able to appropriate some of the return. As specific human capital enhances the worker’s productivity only in its current working place, it is not clear why the worker should receive any of the return on it. We do not address this issue and instead follow the typical practice of assuming that each party receives a fixed share of the expected surplus at any point in time.
the lowest wage is a super-consistent estimator, one can treat the estimated reservation wage as being equal to its true value when evaluating the remaining parameters. This estimation procedure yields consistent estimates for deterministic search-marching models. When job destruction is endogenous, however, workers and firms separate precisely at the reservation wage. As a result the likelihood of observing the reservation wage is equal to zero and so the lowest reported wage is not anymore a super-consistent estimator.

Thus we have to rely on a different estimation method than the two-step approach proposed by Flinn and Heckman (1982). Our problem bears similarities to the estimation of optimal production frontiers. Optimal frontiers models also imply that the range of the observations changes with the parameters being estimated. Moreover, they share with our model the additional implication that agents are never exactly on the optimal frontier. As firms cannot perfectly counteract random perturbations, they remain within the neighborhood of the optimal combination of input without ever achieving it perfectly. Given that the estimation of optimal frontiers is one of the most popular area of applied econometrics, great attention has been devoted to the econometric solutions for this kind of problem. In an influential paper, Greene (1980) showed that when the likelihood of observing the actual boundary of the distribution is equal to zero, standard regularity conditions need not be satisfied in order to produce standard asymptotic distribution results. We adapt Greene’s proof to our set-up and establish that, despite the appearance, endogenous separation actually simplifies the analysis since it allows to estimate the likelihood function as if it were completely standard.

After having analyzed the equilibrium of the economy and derived the properties of the likelihood function, we estimate the model using data from the January 2004 supplement of the Current Population Survey. We restrict our attention to workers without tertiary education because the estimates do not capture the accumulation of general human capital which is known to be much more significant for skilled workers. The estimation procedure returns estimates for the rate of LBD of around 2% per year. We assess the ability of the model to fit the joint distribution of wages and job spells and find that it reproduces the data surprisingly well given its parsimonious specification. Then we use the estimates to

\footnote{See for example Dustmann and Meghir (2005) for evidence according to which the acquisition of general skills is important for skilled workers whereas unskilled workers benefit primarily from being attached to a particular firm.}
characterize the impact of the rate of LBD. We show that it shifts to the right the wage distribution and significantly increases its dispersion. The model also predicts that positive changes in the rate of LBD yield important increases in aggregate output.

The rest of the paper is organized as follows. The proofs of the propositions are collected in the Appendix. Section 2 lays out the set-up and characterizes the equilibrium. The econometric procedure and the asymptotic properties of the estimates are detailed in Section 3. Section 4 describes the data and discusses the estimation results. In section 5 we introduce an aggregate matching function to close the model and evaluate the impact of LBD on the equilibrium. Section 6 concludes.

2 The model

We consider a labor market with search frictions where jobs’ output are subject to random fluctuations. The set-up differs in three respects from the one proposed by Mortensen and Pissarides (1994): firstly we allow initial productivities to differ, secondly we assume that output follows a geometric Brownian motion and finally we introduce LBD. Given that the Current Population Survey (CPS hereafter) does not contain information on the number of posted vacancies, the data will not allow us to estimate the parameters of the matching function. Thus we take as given the rate of contact between searchers and firms and postpone the introduction of the aggregate matching function to section 5.

2.1 The production process

Consider a market in which homogenous workers, who live forever, are either employed or looking for a job. Each competitive firm has one job which can be either filled or vacant. Firms use only labor to produce a unique multi-purpose good. When an unemployed worker meets a firm with a vacant job, they sample a positive output for their match. The initial productivity is a random draw from the exogenous distribution $G(\cdot)$, which is assumed to be continuously differentiable. In the remainder of the paper, we will refer to $G(\cdot)$ as the sampling distribution.

Both parties instantaneously observe the initial productivity. Then, the firm can decide whether or not to make a job offer. If the firm “passes” on the applicant, it does not incur
any specific cost for doing so and it continues to keep its vacancy open to other workers. Similarly, the worker can choose to refuse the job offer if he prefers to search for a better opportunity.

In the case where both parties decide to match, they immediately start to produce and output begins to fluctuate. We do not consider aggregate shocks so that stochastic fluctuations are uncorrelated across jobs. The stochastic process that changes the idiosyncratic output is a geometric Brownian motion. Thus its law of motion is given by

$$\frac{dP_t^i}{P_t^i} = \zeta dt + \sigma dB_t^i$$

(1)

where dB_t^i is the increment of a standard Brownian motion. The subscript i indexes jobs. In the remainder of the text we will neglect it when not necessary. According to (1), the expected output at time $t + T$ of a job with current output P_t is equal to $P_t e^{\zeta T}$. Hence ζ is the rate at which productivity increases. The acquired skills are purely job-specific since workers become identical when they return to the unemployment pool. The parameter σ reflects dispersion: the higher it is, the faster output fluctuates. We also introduce an exogenous source of uncertainty such that jobs are forced out of business when hit by random shocks that arrive at the Poisson rate δ.

The introduction of Brownian motions contrasts with the standard practice of considering Poisson processes. Whereas Brownian motions have continuous sample paths, Poisson processes are by definition discontinuous. It is explained in Prat (2006) why Brownian motions deliver more accurate predictions about the rate of job turnover and the shape of the wage distribution. It is also shown in Prat (2006) how most of the statistics of interest can be derived in closed-form using stochastic calculus. As we will see in section 3, the convenient analytical properties of Brownian motions are crucial for the empirical implementation of the model.

We also assume that workers do not receive alternative job offers while employed. Thus we do not consider on-the-job search so that trade in the labor market is completely separated from production. This restriction is imposed due to technical reasons as it is notoriously involved to combine idiosyncratic uncertainty with on-the-job-search. Actually, it is shown in Nagypál (2005) that the wage distribution cannot be expressed in closed-form when workers search on the job and uncertainty is modelled using a diffusion process.
These difficulties partly explain why empirical models of employers competition typically assume away idiosyncratic uncertainty.6 We make the converse assumption and leave to further research the task of devising a comprehensive model.

2.2 Optimal job separation

Because trading in the labor market is a costly process, matched pairs have to share a quasi-rent. We assume a Nash-bargaining rule whereby each party obtains a constant share of the job’s surplus $S(P_t)$ at each point in time. The rent of each party is defined as the difference between the asset value obtained by participating in the match and the disagreement outcome of continued search. Since the two rents remain proportional, it cannot be the case that one is positive and the other negative. In other words workers and firms always separate by common agreement.

Let U denote the steady-state expected value of search by an unemployed worker. The search effort costs the worker s and he meets at the flow rate λ a firm with an open vacancy. The contact leads to a match if the initial output drawn from the sampling distribution $G(\cdot)$ is at least as great as the reservation output R. Under the assumption that workers are risk-neutral and that they discount the future at rate r, U satisfies the following equation

$$rU = -s + \lambda \int_{R}^{+\infty} \beta S(P) dG(P)$$

where β denotes the worker’s bargaining power. As opposed to the labor force whose size is fixed and normalized to one, new firms enter the market until arbitrage opportunities are exhausted. Thus free-entry ensures that the firm’s outside option is equal to zero and the total surplus of the match can be decomposed in the following way

$$rS(P_t) = P_t - rU - \delta S(P_t) + \frac{E}{dt} [dS(P_t)]$$

where it is assumed that firms discount the future at the same rate than workers. The

6A notable exception is the recent paper by Postel-Vinay and Thuron (2005). They estimate a model with i.i.d. productivity shocks, on-the-job search and wage renegotiation by mutual consent. Given the complexity of their set-up, they do not incorporate human capital accumulation and take job separation as exogenous. Nevertheless, the likelihood function of the model cannot be analytically characterized so they have to rely on Optimal Minimum Distance estimation.
term \(\delta S(P_t) \) corresponds to the loss incurred by both parties when the job is hit by an exogenous destruction shock. Notice also that the surplus evolves through time due to output fluctuations. In the deterministic case one can immediately solve for \(S(P_t) \) by combining equations (2) and (3). In the stochastic case we have to solve the partial differential equation satisfied by \(S(P_t) \) as explained in the Appendix.

Proposition 1 The expected surplus of a match with current output \(P \) and reservation output \(R \) is given by

\[
S(P; R) = \frac{P}{r + \delta - \zeta} - \left(\frac{1}{r + \delta} \right) rU - \left[\frac{R}{r + \delta - \zeta} - \left(\frac{1}{r + \delta} \right) rU \right] \left(\frac{P}{R} \right)^\alpha
\]

where \(\alpha \) is the negative root of the following quadratic equation

\[
\alpha^2 \sigma^2 + \alpha \left(\zeta - \frac{\sigma^2}{2} \right) - r - \delta = 0
\]

One can solve for the optimal reservation output using a standard first-order condition with respect to \(R \). The resulting solution is homogenous of degree zero in \(P \), so that \(R \) is identical across matches, as one should expect. Its optimal value is given by

\[
R = \left(\frac{\alpha}{\alpha - 1} \right) \left(\frac{r + \delta - \zeta}{r + \delta} \right) rU
\]

From the definition of \(\alpha \), it is easily seen that \(R \) is upper-bounded by the opportunity cost of employment \(rU \). Within the neighborhood of \(R \), output is too low to cover costs but the job might turn profitable again thanks to future shocks. Therefore the worker and the firm procrastinate up to the point where the value of waiting equals the operational losses. On the contrary when productivity is constant, there is no labor-hoarding and the reservation output is equal to the opportunity cost of employment.

2.3 The equilibrium

This section characterizes the equilibrium rate of unemployment and the joint distribution of job spells and wages. It will be shown in section 3 that these statistics have closed-form solutions when the sampling distribution is lognormal. But for the moment we keep the
analysis as general as possible by not imposing any parametric assumption. First of all, we notice that the Nash-bargaining problem is satisfied if and only if wages are such that

\[w(P_t) = \beta P_t + (1 - \beta) rU \tag{6} \]

The wage follows from output by a location transformation. So the discussion can be restricted, without loss of generality, to the output distribution. The derivations are based on the premise that the labor market is in steady state so that job flows are constant and balance at all time.\(^7\) The statistics of interest are derived using a progressive approach: starting from the most informative one, namely the joint distribution of job spells and output, we aggregate it step by step in order to obtain the rate of unemployment.

Proposition 2 The joint density of output \(x\) and tenure \(T\) is given by

\[v(x, T) = u\lambda \left(\int_R^{+\infty} \psi(x, T; P) dG(P) \right) \tag{7} \]

where \(u\) denotes the rate of unemployment. For \(x \in [R, +\infty)\), the function \(\psi(x, T; P)\) is

\[\psi(x, T; P) = \left(\frac{e^{-\delta T}}{x} \right) \left(e^{-\frac{1}{2} \left(\frac{\ln(x) - \ln(P) - \mu T}{\sigma \sqrt{2\pi T}} \right)^2} - \left(\frac{R}{P} \right)^{2\mu} e^{-\frac{1}{4} \cdot \left(\frac{\ln(x) + \ln(P) - 2\ln(R) - \mu T}{\sigma \sqrt{2\pi T}} \right)^2} \right) \tag{8} \]

where \(\mu = \zeta - \frac{\sigma^2}{2}\).

The first term on the right hand side of (7) measures the number of contacts between searchers and firms. The function \(\psi(x, T; P)\) is the conditional joint density of current output and tenure given initial output. From the set of sample paths starting from \(P\) and reaching \(x\) after tenure \(T\), it deduces all those that breach the separation threshold \(R\).\(^8\) Given that initial productivities are drawn from the sampling distribution, the unconditional joint density is obtained integrating \(\psi(x, T; P)\) with respect to \(G(P)\). The sampling distribution is integrated from \(R\) up to infinity because contacts lead to matches solely

\(^7\)Although conventional for obvious technical reasons, the steady-state assumption is actually quite restrictive. We refer to Jolivet et al. (2004) for empirical evidence in its favor.

\(^8\)Notice that an econometrician who observes the workers’ wages at different points in time of their jobs spells could use equation (8) to compute the likelihood of their sample paths.
when P is above R. The density of jobs with a given current output is readily obtained from (7) after having integrated tenure from 0 up to infinity. The following proposition shows that the resulting integral can be expressed analytically.

Proposition 3 The density of output x is given by

$$
u(x) = u \lambda \left(\int_R^{+\infty} \varphi(x; P) dG(P) \right)$$

where the function $\varphi(x; P)$ is

$$\varphi(x; P) = \begin{cases}
P^{-1} \left(\frac{x}{P} \right)^{\frac{\mu^2 + 2\delta}{\sigma^2} - 1} \left(1 - \left(\frac{x}{P} \right)^{\frac{2\gamma}{\sigma^2}} \right); & \text{if } x > P \\
P^{-1} \left(\frac{x}{P} \right)^{\frac{\mu + \gamma}{\sigma^2} - 1} \left(1 - \left(\frac{x}{P} \right)^{\frac{2\gamma}{\sigma^2}} \right); & \text{if } x \in [R, P] \\
0; & \text{otherwise}
\end{cases}$$

and $\gamma = \sqrt{\mu^2 + 2\delta\sigma^2}$.

In a similar way, the aggregate rate of employment follows integrating equation (9) from R up to infinity. Again the calculation leads to a closed-form expression that is given in Proposition 4. The expression is reminiscent of the equilibrium rate of unemployment under certainty. Actually, when uncertainty vanishes so that σ goes to zero, the term $(R/P)^{\mu + \gamma/\sigma^2}$ becomes negligible and the expression of u converges to the standard one.

Proposition 4 The equilibrium rate of unemployment is equal to

$$u = \frac{\delta}{\delta + \lambda \int_R^{+\infty} \left(1 - \left(\frac{P}{x} \right)^{\mu + \gamma/\sigma^2} \right) dG(P)}$$

In this section we have presented the statistics that will be useful for the econometric estimation. Next section details the econometric procedure and analyzes the property of the likelihood function.
3 Estimation procedure

We now discuss how to estimate the model’s parameters. The searching costs parameter \(s \) is not identified because it enters the likelihood function only through its impact on \(R \). As explained below, we will treat the reservation output as if it were an endogenous parameter to be estimated. After all the parameter estimates have been obtained, the equilibrium conditions can be used to retrieve the implied searching costs. Conversely, the values of \(r \) and \(\beta \) have to be fixed prior to the estimation. While not so problematic for \(r \) since it has been estimated with precision in other research, the calibration of \(\beta \) is more unsettling. Although the bargaining power is theoretically identified due to the highly non-linear likelihood function, trials show that in practice the model fails to pin it down. In the absence of informations on firm profits, it is not surprising that the dataset does not allow us to recover both sizes and allocations of the jobs’ surpluses. This difficulty has been recognized since a long time and is now gradually overcome by research based on matched employer–employees data (see Cahuc et al., 2006). Given the one-sided nature of the CPS data, we stick to the usual practice of assuming symmetric bargaining.

3.1 The likelihood function

Following these preliminary steps, the likelihood of the sample can be expressed as a function of the remaining set of parameters. We slightly restrict the generality of the problem by assuming that the sampling distribution \(G(\cdot) \) can be completely parametrized in terms of a finite-dimensional vector \(\Omega \) so that the set of estimated parameters \(\Theta = \{\zeta, \delta, \sigma, \Omega, R, \lambda\} \).

The likelihood of the sample is computed as follows. Let \(Y \) denote the set of observations, so that \(Y = \{y_1, y_2, ..., y_n\} \) where \(n \) is the total number of workers in the sample. The individual observations are defined using three variables: \(w^i, T^i, \tau^i \). The variables \(w^i \) and \(T^i \) report the current hourly wage and job tenure respectively. In the case where worker \(i \) fails to report the length of his job spell, \(T^i \) is obviously ignored. If worker \(i \) is currently searching for a job, \(y^i \) is set equal to the unemployment duration \(\tau^i \). The likelihood function is therefore made of three distinct components. The individual contribution of a job searcher is equal to the density associated with an on-going unemployment spell of length
\[f(\tau, u) = f(\tau \mid u)u = \left(\lambda \bar{G}(R)e^{-\lambda \bar{G}(R)\tau} \right) u = \frac{\delta \lambda \bar{G}(R)e^{-\lambda \bar{G}(R)\tau}}{\delta + \lambda \int_{R}^{+\infty} \left(1 - \left(\frac{R}{P} \right)^{\frac{\mu+\gamma}{\alpha^{2}}} \right) dG(P) } \]

where \(\bar{G}(R) = 1 - G(R) \). The likelihood of observing an employed worker paid wage \(w \) is given by \(v(x(w)) \). The expression can be further decomposed reinserting (11) into (9) to obtain

\[f(w, e) = v(x(w)) = \frac{\delta \lambda \left(\int_{R}^{+\infty} \varphi(x(w); P) dG(P) \right)}{\delta + \lambda \int_{R}^{+\infty} \left(1 - \left(\frac{R}{P} \right)^{\frac{\mu+\gamma}{\alpha^{2}}} \right) dG(P) } \]

Notice that output is defined as a function of the observed wage. Its implicit value follows from combining (5) with (6). Similarly, the joint likelihood of observing a worker paid wage \(w \) with a job tenure equal to \(T \) is given by

\[f(w, T, e) = v(x(w), T) = \frac{\delta \lambda \left(\int_{R}^{+\infty} \psi(x(w), T; P) dG(P) \right)}{\delta + \lambda \int_{R}^{+\infty} \left(1 - \left(\frac{R}{P} \right)^{\frac{\mu+\gamma}{\alpha^{2}}} \right) dG(P) } \]

Putting together these three components, the log likelihood for the observed sample reads

\[\ln L(\Theta, Y) = n \left(\ln(\lambda) + \ln(\delta) - \ln \left(\delta + \lambda \int_{R}^{+\infty} \left(1 - \left(\frac{R}{P} \right)^{\frac{\mu+\gamma}{\alpha^{2}}} \right) dG(P) \right) \right) \]

\[+ n_U \ln(\bar{G}(R)) - \lambda \bar{G}(R) \sum_{i \in U} \tau^{i} + \sum_{i \in W} \ln \left(\int_{R}^{+\infty} \varphi(x(w^{i}); P) dG(P) \right) \]

\[+ \sum_{i \in H} \ln \left(\int_{R}^{+\infty} \psi(x(w^{i}), T^{i}; P) dG(P) \right) \]

where \(n_U \) is the number and \(U \) is the set of indices of job searchers in the sample, \(W \) is the set of indices of employees who only report their current wage and \(H \) is the set of indices of employees who report both wage and job spell. Despite being absent from the analytical expression of the likelihood function, the parameters \(\zeta \) and \(\Omega \) are implicitly identified. Whereas \(\zeta \) determines the values of \(\mu, \gamma, \varphi(\cdot) \) and \(\psi(\cdot) \), the parametric vector
\(\Omega \) obviously influences \(G(\cdot) \). Notice that the reservation output is treated for the sake of the estimation as a primitive parameter of the model.

The likelihood function is continuously differentiable and its parameters belong to a compact support. Nevertheless, it does not satisfy all the standard requirements for a well-behaved likelihood function since the support of the distribution of the data is a function of the parameters. Furthermore, the likelihood of observing the reservation wage is equal to zero. As explained in the introduction, this feature implies that we cannot use the smallest observed wage as a super-consistent estimator. Yet next proposition shows that, under very mild requirements, the estimators satisfy asymptotic normality.

Proposition 5 Suppose that (i) The parameter space \(\Gamma \) is compact and contains an open neighborhood of the true value \(\Theta_0 \) of the population parameter; (ii) The sampling distribution \(G(P) \) is continuously differentiable. Then the maximum likelihood estimator

\[
\hat{\Theta} = \arg \max_{\Theta \in \Gamma} \ln L(\Theta, Y)
\]

converges in probability to \(\Theta_0 \) so that \(\sqrt{n} \left(\hat{\Theta} - \Theta_0 \right) \xrightarrow{d} N \left(0, H^{-1}JH^{-1} \right) \) where \(H \) is the Hessian of the likelihood function and \(J \) is the information matrix.

The proof of Proposition 5 relies on the fact that \(f(w(R), e) \) and \(f(w(R), T, e) \) are both equal to zero. As shown in Greene (1980), this property justifies the interchange of the order of integration and differentiation so that the asymptotic property of the estimator can be characterized by linear approximation. Our problem is slightly less standard than the one considered by Greene because the derivatives of the density functions with respect to \(\Theta \) are not equal to zero when evaluated at the reservation output. Thus the interchange of the order of integration and differentiation is justified solely for the first derivative. This is why the hessian matrix \(H \) is not equal to \(-J\) so that the asymptotic covariance matrix cannot be simplified and set to \(J^{-1} \). But, as explained in Newey and McFadden (1994), the information matrix equality is not essential to asymptotic normality. The only complication is technical and due to the more intricate form of the asymptotic variance.
3.2 Lognormal sampling distribution

We have characterized the estimation procedure for general sampling distributions. The econometric implementation of the model requires to narrow the analysis to a particular family of distributions. Accordingly we will hereafter assume that \(G(\cdot) \) is lognormal. Lognormal distributions are commonly assumed because they satisfy the “recoverability condition” defined by Flinn and Heckman (1982), meaning that their location and scale parameters can be recovered from truncated observations. The class of functions which satisfy the “recoverability condition” also encompasses among others gamma distributions.\(^9\) Thus lognormality is eventually justified by its good fit of the data. In our case this assumptions has a more crucial role. Given the intricate expression of the likelihood function, there is little hope to derive it in closed-form. But when initial productivities are lognormally distributed in the population, the likelihood function has an analytical expression so that approximation errors due to numerical integrations can be avoided. Given its length, we do not include the expression of \(L(\Theta) \) in the body of the paper.\(^10\)

Proposition 6 Under the assumption that the initial productivities are drawn from a lognormal distribution, so that

\[
dG(P) = e^{-\frac{1}{2}(\ln(P) - \Sigma)^2} dP
\]

the likelihood functions \(L(\Theta) \) has a closed-form solution. The resulting expression is reported in Appendix.

4 Empirical results

4.1 Data

Whereas most surveys systematically ask unemployed workers to report the time they have been searching for a job, employees are rarely asked the length of their job spells. As a result, data on job durations are scarcer than data on unemployment durations. A notable

\(^9\)See Flinn (2006) for a careful discussion of the class of functions which satisfy the “recoverability condition”.

\(^10\)The derivation of an analytical expression for the likelihood function is made possible by the fact that geometric Brownian motions are also lognormally distributed.
exception is the January/February supplement of the Current Population Survey. The CPS is structured as a rotating panel with 4 months of participation, 8 months without interviews, and 4 more months of participation after which the household is taken out of the panel. In January or February, the current wages and job spells of the Outgoing Rotation Groups\footnote{In our case, the Outgoing Rotation Groups are composed of the households that entered the panel in October 2002 and 2003.} are collected. More precisely, employees are asked the following question: “How long have you been working continuously for your present employer?”.

Hence the job tenure supplement provides data on both job spells and wages for a supposedly random sample of one fourth from the January 2004 CPS. We use data on males and females with an age between 20 and 65 years. Since our model does not include a state of non participation to the labor market, we have restricted our sample to individuals who indicated that they were currently employed or actively searching for a job. For the same reason, we have excluded individuals observed as self-employed, working part time or employed in the non-civilian labor force. After excluding observations with missing wage data, we restricted the sample to workers with a high school graduation diploma or less. Finally we have trimmed the sub-sample by excluding observations below the bottom percentile of the wage distribution. The trimming is particularly important for the estimation of the reservation wage since it allows us to avoid implausibly low estimates due to measurement errors.\footnote{The trimming of the data is especially useful given the nature of the observations. For the workers which are not paid on an hourly basis, we have divided their gross weekly wage by their usual hours of work per week in order to impute their hourly wage. This computation obviously interacts potential measurement errors and for some observations leads to extremely low hourly wages.}

Descriptive statistics are reported in Table 1. It contains statistics for jobs with a reported tenure below one year. Their wage distribution will be very close to the estimated sampling distribution because the estimation procedure approximates the latter using observations with short job spells. This points to potential bias since the distribution of wages among job entrants has a lower mean than the distribution of wages among workers with less than one year of tenure.\footnote{We are able to identify individuals entering the employment pool by excluding from the set of workers with less than year of tenure those that were working a year ago.} This feature of the data is easily explained by on-the-job search as employees select offers which are above their current wage. Given that our model excludes on-the-job search, the job-ladder effect is ignored and consequently our estimates
of the location and scale parameters of the sampling distribution will be biased upwards. This will lead to downward biases for the estimate of the rate of LBD as shown in section 4.3 where we analyze the robustness of the estimation procedure.

TABLE I

DESCRIPTIVE STATISTICS

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>40.475(11.403)</td>
<td>39.841(11.316)</td>
<td>41.358(11.407)</td>
</tr>
<tr>
<td>Working week (hours)</td>
<td>41.411(5.750)</td>
<td>42.324(6.720)</td>
<td>40.163(3.723)</td>
</tr>
<tr>
<td>Average spells (months)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>4.537(5.011)</td>
<td>4.438(4.956)</td>
<td>4.704(5.117)</td>
</tr>
<tr>
<td>Job</td>
<td>92.586(97.160)</td>
<td>96.773(101.926)</td>
<td>86.601(89.604)</td>
</tr>
<tr>
<td>Hourly wage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All jobs</td>
<td>13.777(6.982)</td>
<td>14.932(7.458)</td>
<td>12.199(5.922)</td>
</tr>
<tr>
<td>Entrants</td>
<td>10.301(4.486)</td>
<td>11.059(5.140)</td>
<td>9.439(3.436)</td>
</tr>
<tr>
<td>Labor Market Position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>413</td>
<td>260</td>
<td>153</td>
</tr>
<tr>
<td>Employed</td>
<td>4336</td>
<td>2504</td>
<td>1832</td>
</tr>
<tr>
<td>Reported job spells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number</td>
<td>3676</td>
<td>2163</td>
<td>1513</td>
</tr>
<tr>
<td>Job spell<1 year</td>
<td>535</td>
<td>319</td>
<td>216</td>
</tr>
<tr>
<td>Entrants</td>
<td>154</td>
<td>82</td>
<td>72</td>
</tr>
<tr>
<td>Sample size</td>
<td>4749</td>
<td>2764</td>
<td>1985</td>
</tr>
</tbody>
</table>

* Standard Deviations in Parenthesis.

The non-parametric kernel density estimates of the three wage distributions are reported in Figure 1. As expected, the distribution of wages among job entrants is located to the left and exhibits slightly less dispersion than the distribution of wages among workers with less than one year of tenure. On the contrary, the dispersion of the aggregate wage
distribution is much higher. This feature fits well the model since Brownian motions are diffusion processes, meaning that their distributions become more and more dispersed as time elapses.

4.2 Estimates

The estimated parameters and their standard deviations are reported in Table 2. We also estimate the deterministic model using the procedure devised by Flinn and Heckman (1982). Table 2 makes clear that their approach is nested into the one proposed in this paper. Notice that, in addition to the rate of LBD ζ and the variance parameter σ, the model also allows us to estimate the value and standard deviation of the reservation wage w_r. Conversely, the value reported for the deterministic model corresponds to the lowest wage in the sample so that its standard deviation is not well defined.

The estimates of Σ and ξ imply that the mean and dispersion of the sampling distributions are higher in the deterministic model than in the stochastic model. This result is intuitive since the deterministic model is based on the premise that the sampling distribution and the aggregate distribution are one and the same. To the opposite, the estimation of the stochastic model sets the parameters Σ and ξ so as to fit the distribution of wages among jobs with a short tenure and so yields smaller values for both parameters.
Conversely, the exogenous rate of job destruction δ is similar. This is somewhat surprising since the stochastic model generates endogenous separations. Thus one might expect that the rate of exogenous job destruction would be significantly lower in a stochastic environment. For the very small estimate of the variance parameter, however, endogenous separation is a marginal phenomenon. Accordingly the separation rates are quite similar in both models with an estimated average length of a job close to 90 months.

The estimated values of λ imply that job searchers receive a job offer every 6 months. Although the model over-estimates the average unemployment duration, the predicted unemployment rate is equal to 6.4% whereas its value in the data is 8.7%. These opposite biases suggest that the sample does not completely satisfy the stationarity assumption, most probably because of a significant and recent entry of workers into the labor force.

\begin{table}[h]
\centering
\caption{Model Estimates*}
\begin{tabular}{llll}
\hline
Parameters & \multicolumn{2}{c}{$\beta = 0.5$} & \multicolumn{2}{c}{$\beta = 0.4$} \\
\hline
& Stochastic & Deterministic & Stochastic & Deterministic \\
w_r & 3.76 (0.180) & 4.11 (-----) & 3.60 (0.213) & 4.11 (-----) \\
ζ & 0.0204 (0.001) & ----- & 0.0207 (0.001) & ----- \\
σ & 0.0350 (0.006) & ----- & 0.0267 (0.012) & ----- \\
δ & 0.133 (0.002) & 0.133 (0.002) & 0.133 (0.002) & 0.133 (0.002) \\
Σ & 2.86 (0.018) & 3.01 (0.008) & 3.05 (0.023) & 3.19 (0.008) \\
ξ & 0.488 (0.008) & 0.526 (0.006) & 0.506 (0.008) & 0.550 (0.006) \\
λ & 1.95 (0.073) & 1.95 (0.081) & 1.94 (0.073) & 1.95 (0.085) \\
\hline
$\ln L$ & -28874 & -29045 & -29837 & -30000 \\
\hline
\end{tabular}
\end{table}

* Standard Errors in Parenthesis.

We now turn our attention to the estimates that are specific to the stochastic model. First of all, we notice that the variance parameter σ is quite low. With a standard deviation close to 3.5%, the model predicts that the sample paths are nearly deterministic. Nonetheless, one cannot set σ to zero and at the same time estimate ζ. In a deterministic
environment the lower-bound of the joint distribution is an increasing function of tenure and consequently the likelihood of observing a worker with a seniority equal to T and a wage inferior to $e^{\zeta T} w_{r}$ is zero. Given that the sample contains such observations as long as ζ significantly differs from zero, the deterministic model necessarily collapses to the case where the sampling and aggregate wage distributions are indistinguishable. Thus there is a fundamental link between the introduction of uncertainty and the estimation of the LBD rate, the former being necessary to implement the latter.

The estimated rate of LBD is close to 2%. This translates into a smaller wage growth of around 1.75% per year because the constant outside option accounts for a substantial share of the wages. The model predicts that ten years of tenure raises the average wage by about 18.8% so that our estimate of the cumulative returns to tenure lies in the range separating the low returns obtained by Altonji and Williams (2005) from the high returns obtained by Topel (1991). Notice that given the low value of the variance, non-random selection in who acquires seniority is not a source of important bias.

Table 2 also contains the estimates when β is equal to 0.4 instead of 0.5. A bargaining power of 0.4 is in the range of the estimates obtained by Flinn (2006) using wage-share informations for CPS sample members between 16 and 24 years of age. Of all the estimates, the most sensitive to the change in β are the parameters determining the shape of the sampling distribution of output. A lower value of β implies that the worker receives a smaller share of the job’s output, so the observed dispersion of wages must result from a higher degree of productivity dispersion. This is why both Σ and ξ substantially increase. Conversely, the estimate of ζ is quite robust to variations in the bargaining power. It slightly increases because workers must learn at a higher rate to benefit from a given pay raise. Finally, one can also observe that the likelihood of the sample significantly decreases. Yet this information should not be used as an argument in favor of a higher bargaining power. Simulations show that the likelihood is an increasing function of β so that further information about the demand side of the market is necessary to identify its actual value.

We now consider the ability of the model to fit the sample information. Of most interest to our analysis are its predictions about the joint distribution of wages and job spells. The data for jobs with a tenure below 1, 5 and 10 years as well as the aggregate distribution are reported against their simulated counterparts in Figure 2. The panels illustrate the ability of the model to fit almost perfectly the gradual increase in dispersion of the cross-sectional
distributions. Yet, careful inspection shows that the simulation tends to be a little bit less responsive to changes in tenure. More precisely, the mean of the wage distribution among workers with less than one year of tenure is slightly higher than in the data. Next section proposes an alternative estimation procedure which reduces this discrepancy and evaluates its impact on ζ. We also notice that the model matches very well the right tails of the distributions. This a classical test for models of wage dispersion due to the “heavy tail” property of the data. As explained in Prat (2006), the cross-sectional distribution aggregates underlying distributions with right-tails of Pareto functional form. Therefore it is not surprising that the model easily fits the wage distribution at high quantiles.

Since we have excluded on-the-job-search, one may wonder whether the fit of the wage distribution is achieved at the expense of the turnover process. To address this potential concern, we report in Figure 3 the actual distribution of job spells together with the structural estimation. While not as convincing than for wages, the simulation is still reasonably close to the data. Given that endogenous separations are quite rare, the stochastic and deterministic models have very similar predictions about the distribution of job spells. Thus the hazard rate of job separation is almost flat. This result is somewhat disappointing since
it is shown in Prat (2006) that the framework estimated in this paper has the potential to fit the hump-shaped hazard rate of job separation that is observed in the data. Unfortunately this would require to set the idiosyncratic variance σ to a higher value than the one resulting from the estimation.

4.3 Robustness

In this section we assess the robustness of the estimation procedure. We focus on the biases induced by the exclusion of on-the-job search. Obviously a complete evaluation would require to devise a comprehensive model but such a project is beyond the scope of this paper. Nevertheless we are able to partly control for the impact of the job ladder effect on the estimation of the sampling distribution. By focusing on employees who were unemployed a year ago, we can infer the actual wage distribution among job entrants. Thus we can set $\Omega = \{\Sigma, \xi\}$ so as to fit the entrants distribution for every given value of the vector of remaining parameters $\Theta_1 = \{\zeta, \delta, \sigma, R, \lambda\}$ and then maximize the sample likelihood with respect to Θ_1.

Figure 3: Job spells distribution.
The resulting estimators are not “two-step” estimators as the optimal parametric vector \(\Omega = \{ \Sigma, \xi \} \) changes with \(\Theta_1 \). In other words, we cannot estimate \(\Omega \) independently because the mapping between wages and productivity depends on \(\Theta_1 \). Instead we define \(\Omega (\Theta_1, Y_1) \) as a function of \(\Theta_1 \) and of the sub-set of observations \(Y_1 \subseteq Y \) used to infer the shape of the sampling distribution. The procedure shares some formal similarities with concentrating the likelihood function but it is substantially different since we do not set \(\Omega (\Theta_1, Y_1) \) to maximize the likelihood of the sample but instead to approximate available informations about the sampling distribution. This approach is particularly justified if one suspects that the model is not correctly specified. Then it is well known that full-information estimation can be a source of significant bias. By constraining \(\Omega \) to fit the entrants distribution and imposing its value afterwards, we are able to reduce the size of the bias.

We call the values resulting from this procedure restricted estimates. They are reported in Table 3 for the two distinct restrictions where \(Y_1 \) contains either the wages of job entrants or the wages of workers with less than one year of tenure. In the first case, the experiment gives us a sense of how estimates are biased by the job-ladder effect. As expected, both \(\Sigma \) and \(\xi \) significantly decrease. This leads to noticeable increases in both \(\zeta \) and \(\sigma \): given that the wage distribution among job entrants has a lower mean and dispersion than the one resulting from the full-estimation, the fit of the sample information is achieved through a higher rate of LBD and more idiosyncratic uncertainty. The estimated value of 3.4\% for \(\zeta \) should be interpreted as an upper-bound since the job-ladder effect is excluded from the sampling distribution but not from the aggregate distribution. Accordingly a complete evaluation would require to explicitly model on the job search and the restricted estimation suggests that this would lead to substantial adjustments of the estimates.

In the second case \(\Omega (\Theta_1, Y_1) \) fits the distribution of wages among workers with less than one year of tenure. As can be seen from Figure 2, this restriction is motivated by the fact that the full-estimation uses \(\Omega \) to improve the fit of the aggregate distribution at the cost of

\[Var \left(\hat{\Omega} \right) = \left(\frac{\partial \Omega (\Theta_1, Y_1)}{\partial \Theta_1} \right)_{\Theta_1 = \hat{\Theta}_1} \left(H^{-1} J H^{-1} \right) \left(\frac{\partial \Omega (\Theta_1, Y_1)}{\partial \Theta_1} \right)_{\Theta_1 = \hat{\Theta}_1} \]

\[^{14}\text{Notice that when } Y_1 \text{ is equal to } Y, \text{ the restricted estimation is equivalent to concentrating the likelihood function so that it coincides with the full estimation procedure.}\]

\[^{15}\text{Since the properties used in the proof of Proposition 5 are satisfied, the estimators are still consistent and normally distributed although not efficient. The asymptotic variance of } \hat{\Omega} \text{ is derived using the delta method so that}\]

22
slightly over-estimating the mean of the wage distribution among jobs with a tenure below one year. Controlling for this bias leads to small but noticeable increases in ζ.

TABLE III

RESTRICTED ESTIMATES*

<table>
<thead>
<tr>
<th>Parameters</th>
<th>$\beta = 0.5$</th>
<th>$\beta = 0.4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_r</td>
<td>3.79 (0.398)</td>
<td>3.58 (0.129)</td>
</tr>
<tr>
<td></td>
<td>3.58 (0.115)</td>
<td>3.48 (0.115)</td>
</tr>
<tr>
<td>ζ</td>
<td>0.034 (0.005)</td>
<td>0.034 (0.001)</td>
</tr>
<tr>
<td></td>
<td>0.0223 (0.001)</td>
<td>0.0228 (0.006)</td>
</tr>
<tr>
<td>σ</td>
<td>0.059 (0.002)</td>
<td>0.055 (0.001)</td>
</tr>
<tr>
<td></td>
<td>0.0271 (0.002)</td>
<td>0.0276 (0.003)</td>
</tr>
<tr>
<td>δ</td>
<td>0.132 (0.005)</td>
<td>0.132 (0.003)</td>
</tr>
<tr>
<td></td>
<td>0.133 (0.002)</td>
<td>0.133 (0.002)</td>
</tr>
<tr>
<td>Σ</td>
<td>2.67 (0.037)</td>
<td>2.86 (0.014)</td>
</tr>
<tr>
<td></td>
<td>2.84 (0.032)</td>
<td>3.02 (0.010)</td>
</tr>
<tr>
<td>ξ</td>
<td>0.477 (0.019)</td>
<td>0.491 (0.007)</td>
</tr>
<tr>
<td></td>
<td>0.514 (0.016)</td>
<td>0.531 (0.005)</td>
</tr>
<tr>
<td>λ</td>
<td>1.94 (0.082)</td>
<td>1.93 (0.073)</td>
</tr>
<tr>
<td></td>
<td>1.96 (0.076)</td>
<td>1.96 (0.075)</td>
</tr>
<tr>
<td>$\ln L$</td>
<td>-29009</td>
<td>-29974</td>
</tr>
<tr>
<td></td>
<td>-28892</td>
<td>-29856</td>
</tr>
</tbody>
</table>

Discount rate: $r = 5\%$

* Standard Errors in Parenthesis.

5 **The effect of learning-by-doing**

In this section we introduce an aggregate matching function to close the model and evaluate the impact of the rate of LBD on labor market outcomes. We assume that the matching process is similar to the one described in Pissarides (2000). Since the matching function has become the workhorse for the study of equilibrium unemployment, the exposition can be brief. Firms post vacancies that are randomly matched and incur a flow cost equals to c. The number of job matches per unit of time is a function of the number of vacancies and workers that seek employment. When the aggregate matching function is homogenous of degree one, the rate at which a vacancy meets a worker only depends on the unemployment rate u and on the ratio v of vacant jobs divided by the size of the labor force. The transition rate for vacancies is given by a function $q(\theta)$ where the labor market tightness parameter θ denotes the ratio (v/u). Similarly, jobs seekers meet firms at the rate $\theta q(\theta)$.

23
As opposed to the labor force whose size is fixed and normalized to one, new firms enter the market until arbitrage opportunities are exhausted. Therefore the Free-Entry condition is given by

\[c = q(\theta) \int_{\mathbb{R}}^{+\infty} (1 - \beta) S(P)dF(P) \] (14)

Similarly we can replace in (2) the exogenous contact rate \(\lambda \) by \(\theta q(\theta) \) to obtain

\[rU = -s + \theta q(\theta) \int_{\mathbb{R}}^{+\infty} \beta S(P)dG(P) \]

Reinserting (14) into the previous equation allows us to solve for the asset value of being unemployed as a function of the labor market tightness

\[rU = -s + c\theta \left(\frac{\beta}{1-\beta} \right) \]

The job’s surplus follows from replacing the previous equation into (3). Accordingly the Optimal Separation rule is such that

\[R = \left(\frac{\alpha}{\alpha - 1} \right) \left(\frac{r + \delta - \zeta}{r + \delta} \right) \left(-s + c\theta \left(\frac{\beta}{1-\beta} \right) \right) \] (15)

The equilibrium values of the two endogenous variables \(\theta \) and \(R \) are determined by the equilibrium conditions (14) and (15).\(^{16}\) Given that the aggregate matching function defines a one-to-one mapping between \(\lambda \) and \(\theta \), a parametric assumption allows us to retrieve the values of the labor market tightness and searching costs using the estimates reported in the previous section. As it is common in the literature, we assume that the matching function is Cobb-Douglas. We further restrict our attention to the case where the allocation is efficient and consequently use the “Hosios condition” to set the elasticity of the matching function equal to \(\beta \), so that \(q(\theta) = \theta^{-1/2} \).

Table 4 contains the implied costs of search and equilibrium labor market tightness for the deterministic and stochastic models as well as for the restricted estimation procedures. The high values of the equilibrium tightness is unreasonable if interpreted as the ratio of

\(^{16}\)We refer the reader to Prat (2006) for a proof of the existence and uniqueness of the equilibrium when the sampling distribution \(G(\cdot) \) is degenerate.
vacancies to job seekers. Thus one should interpret θ as measuring the ratio of recruitment effort to search effort. The relatively high searching costs are required to offset the important surpluses of the matches in the right tail of the sampling distribution.

TABLE IV

<table>
<thead>
<tr>
<th>POINT ESTIMATES OF REMAINING VARIABLES*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Tightness</td>
</tr>
<tr>
<td>θ</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Flow Costs of Search</td>
</tr>
<tr>
<td>s</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* Standard Errors in Parenthesis.

By keeping the values of the environmental parameters constant and varying the rate of LBD, we can simulate its impact on labor market outcomes. The results of this exercise are reported in Figure 4. The deformation of the aggregate wage distribution is reported in the upper-left panel. Not surprisingly, a higher rate of LBD increases the mass in the right-tail. But this does not necessarily lead to higher inequality because the left tail of the wage distribution is truncated by the increase of the reservation wage. The ratio of standard deviation to average wage reported in the upper-right panel shows that the latter effect dominates when the rate of LBD is close to zero.

The unemployment rate as a function of ζ is reported in the lower-left panel. As expected, the function is decreasing but its elasticity is probably below what one's intuition might suggest. To understand why this is the case, it is useful to recall that the opportunity cost of employment \(rU \) is equal to \(-s + cθβ / (1 - β) \). This implies that, for the estimated value of the recruitment costs, the impact of θ on the worker’s outside option is amplified by more than one order of magnitude. As a result, small adjustments of the labor market tightness have drastic effects on jobs’ surpluses so that unemployment remains remarkably stable.

The lower-right panel contains a plot of the aggregate output as a function of the LBD rate. The model predicts that an increase of the LBD rate from 0 to 5% leads to a jump
in output of around 58%. These gains arise due to three reinforcing effects: (i) the direct impact of LBD obviously leads to a higher average output for a given job spell, (ii) the increase of the reservation wage implies that, ceteris paribus, ongoing job relationships have a higher average productivity, (iii) the higher rate of employment mechanically raises aggregate output. Decomposing the relative importance of these effects show that the first one accounts for nearly 96.5% of the total gains whereas the increase in the reservation wage explains most of the remaining 3.5%.

To conclude, the search-matching model suggests that policies designed to support the accumulation of job-specific skills are likely to yield substantial returns. This conclusion stands in contrast with the simulated effect of wage or employment subsidies. Experiments, which are not reported in this paper for brevity, indicate that employment and wage subsidies have a very small impact on unemployment and therefore aggregate output. The model predicts that, given the high returns to search, small adjustments of the job finding rate are sufficient to offset the subsidies. Thus policies that distort prices without having any direct effect on productivity are likely to bring more costs than benefits.
6 Conclusion

It has been shown in this paper how the production side of the Mortensen and Pissarides (1994) framework can be estimated by maximum likelihood using cross-sectional data. The analysis establishes that the parsimoniously specified model convincingly fits the joint distribution of wages and job spells once LBD is taken into account. A concrete contribution of the analysis is to identify the rate of LBD in an equilibrium set-up, whereas the estimates available in the literature are typically based on “reduced-form” estimations. Introducing an aggregate matching function allows us to close the model. We find that the rate of LBD has an important positive effect on aggregate output and a small impact on employment.

As we have deliberately tipped the balance in favor of tractability over realism, the model lends itself naturally to several theoretical extensions. We conclude by briefly discussing some of these. The most obvious refinement would be to introduce general human capital. Although not so demanding at the conceptual level, we suspect that this extension will come at the cost of closed-form solutions. More interesting is the introduction of on-the-job search since it would connect the model with the burgeoning econometric literature based on employers competition. Until recently, uncertainty and on-the-job search have been considered in isolation. But, as attested by a series of recent papers (Nagypál, 2006; Postel-Vinay and Thuron, 2005; Yamagushi, 2006), the interest of combining both dimensions is now widely recognized. Such a research project raises serious technical challenges and for the moment available estimates are based on indirect inference methods. This paper suggests that stochastic calculus might help to alleviate some of the difficulties. Finally, we also hope that the derivations of the asymptotic properties of the estimators would be of some use to researchers interested in other areas than labor economics since our result should apply to a wide class of models with endogenous exit.
Appendix

• **Proof of Proposition 1:** We guess that R does not depend on current output. Then the Bellman equation satisfied by the surplus within the continuation region follows by Ito’s Lemma

$$(r + \delta)S(P_t^i, R) = P_t^i - rU + \zeta P_t^i S_1(P_t^i, R) + \frac{(P_t^i \sigma)^2}{2} S_{11}(P_t^i, R)$$

where number subscripts denote the partial derivatives of the function. It is well known that the general solution of this partial differential equation is of the form

$$S(P_t^i, R) = C(R) \left(\frac{P_t^i}{R} \right)^{\alpha} + D(R) \left(\frac{P_t^i}{R} \right)^{\eta} + E_{P_t^i} \left[\int_t^{+\infty} e^{-(r+\delta)(\tau-t)} (P_{\tau}^i - rU) \, d\tau \right]$$

where C and D are some constants of integration which do not depend on the current state P_t^i, while α and η are respectively the negative and positive roots of the quadratic equation

$$\sigma^2 \chi (\chi - 1) + \chi \zeta - r - \delta = 0$$

We impose the following boundary conditions on the solution of (16)

$$\left\{ \begin{array}{l}
\lim_{P_t^i \to +\infty} S(P_t^i, R) = \frac{P_t^i}{r+\delta} - (\frac{1}{r+\delta}) \, rU \\
\lim_{P_t^i \to R} S(P_t^i, R) = 0
\end{array} \right.$$

The first boundary condition implies that we can set $D(R)$ equals to zero in order to eliminate the positive root η. The solution proposed in (4) satisfies both differential equation and boundary conditions. The optimal reservation productivity is set so as to maximize the surplus. Since current revenues are independent of the reservation productivity, it can be shown that $\frac{\partial S(P_t^i, R)}{\partial P_t^i} = 0$ when\(^{17}\)

$$\left. \frac{\partial S(P_t^i, R)}{\partial P_t^i} \right|_{P_t^i=R} = 0$$

\(^{17}\)See Merton(1973), p.171.
It is commonly referred to equation (17) as the smooth-pasting condition. Its solution reads

\[R = \left(\frac{\alpha}{\alpha - 1} \right) \left(\frac{r + \delta - \zeta}{r + \delta} \right) r U \tag{18} \]

which is equivalent to (5) and verifies our guess that \(R \) is independent of \(P_t^i \).

Proof of Proposition 2: Consider a match \(i \) that is operational at date \(t \). We define the stopping time \(\tau_1^i \) as the time of arrival of the first exogenous destruction shock and

\[\tau_2^i = \min \{ \tau > t : P_t^i = R \} \]

So \(\tau_2^i \) is the first time at which the job would have been endogenously destroyed. Hence, job \(i \) is operational at time \(t + T \) if and only if \(\tau_1^i \) and \(\tau_2^i \) are both superior to \(t + T \). As destruction shocks and idiosyncratic fluctuations are independent, it follows by complementarity that

\[
\Pr \{ P_{t+T}^i \in A \cap \tau_2^i \leq t+T \mid P_t^i \} = \left(\Pr \{ P_{t+T}^i \in A \mid P_t^i \} - \Pr \{ P_{t+T}^i \in A \cap \tau_1^i \leq t+T \mid P_t^i \} \right) * \Pr \{ \tau_1^i > t + T \} \tag{19}
\]

where the Borel set \(A \subset (R, +\infty) \). These probabilities are more easily computed considering \(\ln(P_{t+T}^i) \) since it is a standard Brownian motion. Thus

\[
\Pr \{ \ln(P_{t+T}^i) \in A \mid P_t^i \} = \int_A e^{-\frac{1}{2} \left(\frac{\ln(x) - \ln(P_{t}^i) - \mu T}{\sigma \sqrt{T}} \right)^2} \frac{1}{\sigma \sqrt{2\pi T}} d\ln(x) \tag{20}
\]

where \(\mu = \zeta - \frac{\sigma^2}{2} \) is the trend of \(\ln(P_{t}^i) \). When \(\mu \) is equal to zero, the expression of \(\Pr \{ \ln(P_{t+T}^i) \in A \cap \tau_2^i \leq t \mid P_t^i \} \) is easily obtained from the reflection principle. The general expression is derived in Harrison (1985) through a change of measure

\[
\Pr \{ \ln(P_{t+T}^i) \in A \cap \tau_2^i \leq t + T \mid P_t^i \} = \int_A \left(\frac{R}{P_t^i} \right)^{2\sigma^2} e^{-\frac{1}{2} \left(\frac{\ln(x) - \ln(P_{t}^i) - 2\ln(R) - \mu T}{\sigma \sqrt{T}} \right)^2} \frac{1}{\sigma \sqrt{2\pi T}} d\ln(x) \tag{21}
\]

Expressing the densities (20) and (21) in terms of \(x \) instead of \(\ln(x) \), substituting the resulting expressions into (19) and multiplying by \(\Pr \{ \tau_1^i > t + T \} = e^{-\delta T} \) implies that...
for all \(x > R \)

\[
\int_{A} \psi(x, T; P) \, dx \equiv \Pr \{ P_{t+T}^{i} \in A \cap \tau^{i}_2 > t + T \cap \tau^{i}_1 > t + T \mid P_{t}^{i} = P \}
\]

\[
= \int_{A} e^{-\delta T} \left(\frac{1}{x} \right) \left(e^{-\frac{1}{2} \left(\frac{\ln(x) - \ln(P) - \mu T}{\sigma \sqrt{2\pi T}} \right)^2} - \frac{R}{P} e^{-\frac{1}{2} \left(\frac{\ln(x) + \ln(P) - 2 \ln(R) - \mu T}{\sigma \sqrt{2\pi T}} \right)^2} \right) \, dx
\]

According to Bayes’ rule, the unconditional density is given by

\[
\Pr \{ P_{t+T}^{i} \in A \cap \tau^{i}_2 > t + T \cap \tau^{i}_1 > t + T \mid P_{t}^{i} = P \}
\]

\[
= \Pr \{ P_{t+T}^{i} \in A \cap \tau^{i}_2 > t + T \cap \tau^{i}_1 > t + T \mid P_{t}^{i} \in B \} \ast \Pr \{ P_{t}^{i} \in B \}
\]

where the Borel set \(B \subset (R, +\infty) \). Therefore, under the assumption according to which the initial output \(P_{t}^{i} \) is drawn from \(G(\cdot) \), the unconditional density is equal to

\[
\Pr \{ P_{t+T}^{i} \in A \cap \tau^{i}_2 > t + T \cap \tau^{i}_1 > t + T \} = \int_{A} \left(\frac{\int_{R}^{+\infty} \psi(x, T; P) \, dG(p)}{1 - G(R)} \right) \, dx
\]

Finally the measure \(\nu(x, T) \) is given by the unconditional density multiplied by the rate of job creation. According to the stationarity assumption, the job creation flow is constant and equal to \(u\lambda (1 - G(R)) \) which yields the expression in Proposition 2.

• **Proof of Proposition 3:** By definition, the mass of jobs with current output equal to \(x \) is given by

\[
\nu(x) \equiv \int_{0}^{+\infty} \nu(x, T) \, dT = u\lambda \int_{0}^{+\infty} \left(\int_{R}^{+\infty} \psi(x, T; P) \, dG(P) \right) \, dT
\]

Reversing the order of the integrals allows us to find an analytical solution for \(\nu(x) \). A few algebra yields

\[
\psi(x, T; P) = P^{-1} \left(\frac{x}{P} \right)^{\mu + \gamma - 1} \left(e^{-\frac{1}{2} \left(\frac{\ln(x) - \ln(P) + \gamma T}{\sigma \sqrt{2\pi T}} \right)^2} - \frac{R}{P} e^{-\frac{1}{2} \left(\frac{\ln(x) + \ln(P) - 2 \ln(R) + \gamma T}{\sigma \sqrt{2\pi T}} \right)^2} \right)
\]

where \(\gamma = \sqrt{\mu^2 + 2\delta\sigma^2} \). Using the result in Leland and Toft (1997) according to which
for positive values of x

$$
\int_0^\tau e^{-\frac{1}{2} \left(\frac{\ln(x) + \gamma T}{\sigma \sqrt{T}} \right)^2} dT = \left(\frac{1}{\gamma} \right) \left(-\Phi\left(\frac{-\ln(x) - \gamma T}{\sigma \sqrt{T}} \right) + x^{-\frac{2}{\sigma^2}} \Phi\left(\frac{-\ln(x) + \gamma T}{\sigma \sqrt{T}} \right) \right)
$$

where $\Phi(\cdot)$ is the standard normal cumulative distribution function, we obtain

$$
\lim_{\tau \to +\infty} \int_0^\tau e^{-\frac{1}{2} \left(\frac{\ln(x) + \gamma T}{\sigma \sqrt{T}} \right)^2} dT = x^{-\frac{2}{\sigma^2}}
$$

Using this limit to integrate $\varphi(x; P) \equiv \int_0^{+\infty} \psi(x, T; P) dT$ and ensuring that the integration is always performed over positive values, yields the expression of $v(x)$ reported in Proposition 3.

• **Proof of Proposition 4:** Given that the size of the labor force has been normalized to one, the rate of employment is equal to the integral of $v(x)$ from R up to infinity. Thus

$$
1 - u = \int_R^{+\infty} v(x)dx
= u\lambda \int_R^{+\infty} \left(\int_R^{+\infty} \varphi(x; P)dG(P) \right) dx = u\lambda \int_R^{+\infty} \left(\int_R^{+\infty} \varphi(x; P)dx \right) dG(P)
$$

Integrating $\varphi(x; P)$ with respect to x is straightforward though tedious. It yields

$$
\int_R^{+\infty} \varphi(x; P)dx = \left(\frac{1}{\delta} \right) \left(1 - \left(\frac{R}{P} \right)^{\frac{\mu + \gamma}{\sigma^2}} \right)
$$

The expression of the unemployment rate u is immediately obtained reinserting this solution into the previous equation and simplifying.

• **Proof of Proposition 5:** When $G(\cdot)$ is continuously differentiable, the density functions $f(w, e), f(w, T, e)$ and consequently the likelihood function $L(\Theta)$ are also continuously differentiable. Since

$$
\int_{w_r(\Theta)}^{+\infty} f(w, e; \Theta)dw = 1
$$

31
where $w_r(\Theta)$ is the reservation wage. Leibnitz’s rule implies that

$$\int_{w_r(\Theta)}^{+\infty} \frac{\partial f(w, e; \Theta)}{\partial \Theta} \, dw = \frac{\partial}{\partial \Theta} \int_{w_r(\Theta)}^{+\infty} f(w, e; \Theta) \, dw + f(w_r(\Theta), e; \Theta) \frac{dw_r(\Theta)}{d\Theta},$$

$$= \frac{\partial}{\partial \Theta} \int_{w_r(\Theta)}^{+\infty} f(w, e; \Theta) \, dw = 0$$

The second equality holds because $\varphi(R; P) = 0$ for all P, so that $f(w_r(\Theta), e; \Theta) = 0$. Similarly, since $\psi(R(\Theta), T; P) = 0$ for all P and T, we have $f(w_r(\Theta), T, e; \Theta) = 0$. Thus

$$\int_{w_r(\Theta)}^{+\infty} \frac{\partial f(w, e; \Theta)}{\partial \Theta} \, dw = \int_{w_r(\Theta)}^{+\infty} \frac{\partial f(w, T, e; \Theta)}{\partial \Theta} \, dw = 0$$

Therefore the order of integration can be reversed and the central limit theorem yields

$$\frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} \frac{\partial \ln f(\Theta, y_i)}{\partial \Theta} \right) \xrightarrow{d} N(0, J)$$

where J is the information matrix. Since the estimator $\hat{\Theta}$ is consistent, by the law of large number

$$-\frac{1}{n} \left(\sum_{i=1}^{n} \frac{\partial^2 \ln f(\Theta, y_i)}{\partial \Theta \partial \Theta'} \right) \xrightarrow{p} H$$

where H is the Hessian matrix. Notice, that the Hessian matrix is not equivalent to the information matrix as

$$\int_{w_r(\Theta)}^{+\infty} \frac{\partial^2 f(w, e; \Theta)}{\partial \Theta \partial \Theta'} \, dw = \frac{\partial}{\partial \Theta'} \int_{w_r(\Theta)}^{+\infty} \frac{\partial f(w, e; \Theta)}{\partial \Theta} \, dw + f(\Theta, e; \Theta) \frac{dw_r(\Theta)}{d\Theta} \neq 0$$

Given that the likelihood function satisfies all the other regularity conditions, asymptotic efficiency and asymptotic normality of the maximum likelihood estimator are established.

- **Proof of Proposition 6:** The proof of proposition 6 follows by direct calculation. Given that the algebra is tedious, we decompose the solution in several steps. First consider the integral with respect to $\psi(x, T; P)$. Under the parametric assumption that $G(P)$ is
\[
\int_R^{+\infty} x \psi(x, T; P) \, dG(P) = \int_R^{+\infty} \left(\frac{x \psi(x, T; P)}{e^{-\delta T}} \right) \left(e^{-\frac{1}{2} \left(\frac{\ln(P) - \Sigma}{\xi} \right)^2} \right) \, d\ln(P)
\]

\[
= \left(-\frac{1}{2} \frac{B(x, T) \left(\xi^2 + \sigma^2 T \right)^2}{\xi^2 + \sigma^2 T} \right) e^{2} \sqrt{2\pi} \int_R^{+\infty} \left(-\frac{1}{2} \frac{\ln(P) - \left(A(x, T) \rho^2(T) + \Sigma \left(1 - \rho^2(T) \right) \right)}{\sqrt{(\xi^2 + \sigma^2 T) \rho^2(T) \left(1 - \rho^2(T) \right)}} \right)^2 \, d\ln(P)
\]

\[
-\frac{2n}{\rho^2} \left(-\frac{1}{2} \frac{D(x, T) \left(\xi^2 + \sigma^2 T \right)^2}{\xi^2 + \sigma^2 T} \right) e^{2} \sqrt{2\pi} \int_R^{+\infty} \left(-\frac{2n}{\rho^2} \left(\frac{\xi^2 \sigma^2 T}{\xi^2 + \sigma^2 T} \right) + \left(-\frac{2n}{\rho^2} \right) \left(C(x, T) \rho^2(T) + \Sigma \left(1 - \rho^2(T) \right) \right) \right) * \Phi
\]

\[
\rho^2(T) = \frac{\xi^2}{\xi^2 + \sigma^2 T}
\]

\[
A(x, T) = -\mu T + \ln(x) \quad B(x, T) = -\left(A(x, T) \rho^2(T) + \Sigma \left(1 - \rho^2(T) \right) \right)^2 + A(x, T)^2 \rho^2(T) \left(1 - \rho^2(T) \right)
\]

\[
C(x, T) = 2 \ln(R) + \mu T - \ln(x) \quad D(x, T) = -\left(C(x, T) \rho^2(T) + \Sigma \left(1 - \rho^2(T) \right) \right)^2 + C(x, T)^2 \rho^2(T) \left(1 - \rho^2(T) \right)
\]
Now consider the integral with respect to $\varphi(x; P)$

$$
\int_{R}^{+\infty} \varphi(x; P) dG(P) = \int_{R}^{x} P^{-1} \left(\frac{x}{P} \right)^{\frac{\mu+\gamma}{\sigma^2} - 1} \left(1 - \left(\frac{R}{P} \right)^{\frac{2 \gamma}{\sigma^2}} \right) \left(\frac{e^{-\frac{1}{2} \left(\frac{\ln(P) - \Sigma}{\xi} \right)^2}}{\xi \sqrt{2\pi}} \right) d\ln(P)
$$

$$
+ \int_{x}^{+\infty} P^{-1} \left(\frac{x}{P} \right)^{\frac{\mu+\gamma}{\sigma^2} - 1} \left(1 - \left(\frac{R}{P} \right)^{\frac{2 \gamma}{\sigma^2}} \right) \left(\frac{e^{-\frac{1}{2} \left(\frac{\ln(P) - \Sigma}{\xi} \right)^2}}{\xi \sqrt{2\pi}} \right) d\ln(P)
$$

$$
= \left(\frac{x^{\frac{\mu+\gamma}{\sigma^2} - 1}}{\gamma} \right) e^{\left(\frac{\gamma - \mu}{\sigma^2} \right)^2 \left(\frac{\xi^2}{\sigma^2} \right) + \left(\frac{\gamma - \mu}{\sigma^2} \right) \Sigma} \Phi \left(\frac{\ln(x) - \left(\frac{\gamma - \mu}{\sigma^2} \right) \xi^2 + \Sigma}{\xi} \right)
$$

$$
+ \left(\frac{x^{\frac{\mu+\gamma}{\sigma^2} - 1}}{\gamma} \right) e^{\left(\frac{\gamma - \mu}{\sigma^2} \right)^2 \left(\frac{\xi^2}{\sigma^2} \right) + \left(\frac{\gamma - \mu}{\sigma^2} \right) \Sigma} \Phi \left(\frac{-\ln(x) + \left(\frac{\gamma - \mu}{\sigma^2} \right) \xi^2 + \Sigma}{\xi} \right)
$$

$$
- R \left(\frac{x^{\frac{\mu+\gamma}{\sigma^2} - 1}}{\gamma} \right) e^{\left(\frac{\gamma - \mu}{\sigma^2} \right)^2 \left(\frac{\xi^2}{\sigma^2} \right) + \left(\frac{\gamma - \mu}{\sigma^2} \right) \Sigma} \Phi \left(\frac{-\ln(R) + \left(\frac{\gamma - \mu}{\sigma^2} \right) \xi^2 + \Sigma}{\xi} \right)
$$

(23)

Finally consider

$$
\int_{R}^{+\infty} \left(1 - \left(\frac{R}{P} \right)^{\frac{\mu+\gamma}{\sigma^2}} \right) dG(P) = \int_{R}^{+\infty} \left(1 - \left(\frac{R}{P} \right)^{\frac{\mu+\gamma}{\sigma^2}} \right) e^{\left(\frac{\gamma - \mu}{\sigma^2} \right)^2 \left(\frac{\xi^2}{\sigma^2} \right) + \left(\frac{\gamma - \mu}{\sigma^2} \right) \Sigma} d\ln(P)
$$

$$
= C(R) - R \left(\frac{x^{\frac{\mu+\gamma}{\sigma^2}}}{\gamma} \right) e^{\left(\frac{\gamma - \mu}{\sigma^2} \right)^2 \left(\frac{\xi^2}{\sigma^2} \right) + \left(\frac{\gamma - \mu}{\sigma^2} \right) \Sigma} \Phi \left(\frac{-\ln(R) + \left(\frac{\gamma - \mu}{\sigma^2} \right) \xi^2 + \Sigma}{\xi} \right)
$$

(24)

The closed-form expression of the likelihood function is obtained inserting (22), (23) and (24) into (12). Notice that the unemployment rate also has an analytical solution

$$
\delta = \frac{\delta}{\delta + \lambda \left(C(R) - R \left(\frac{x^{\frac{\mu+\gamma}{\sigma^2}}}{\gamma} \right) e^{\left(\frac{\gamma - \mu}{\sigma^2} \right)^2 \left(\frac{\xi^2}{\sigma^2} \right) + \left(\frac{\gamma - \mu}{\sigma^2} \right) \Sigma} \Phi \left(\frac{-\ln(R) + \left(\frac{\gamma - \mu}{\sigma^2} \right) \xi^2 + \Sigma}{\xi} \right) \right)}
$$
References

