Elliptic Fibonomial numbers

An elliptic function is a function defined over the complex numbers that is meromorphic and doubly periodic. Elliptic functions can be obtained as quotients of modified Jacobi theta functions. These are defined as

$$
\theta(x ; p):=\prod_{j \geq 0}\left(\left(1-p^{j} x\right)\left(1-\frac{p^{j+1}}{x}\right)\right), \quad \theta\left(x_{1}, \ldots, x_{\ell} ; p\right)=\prod_{k=1}^{\ell} \theta\left(x_{k} ; p\right),
$$

where $x, x_{1}, \ldots, x_{\ell} \neq 0$ and $|p|<1$.
The elliptic analog of the Fibonacci number is

$$
\left[F_{n}\right]_{a, b ; q, p}:=\frac{\theta\left(q^{F_{n}}, a q^{F_{n}}, b q, \frac{a}{b} q ; p\right)}{\theta\left(q, a q, b q^{F_{n}}, \frac{a}{b} q^{F_{n}} ; p\right)}
$$

For $m, n \in \mathbb{N}$, the elliptic analog of the Fibonomial number is defined as

$$
\left[\begin{array}{c}
m+n \tag{1}\\
n
\end{array}\right]_{\mathcal{F}_{a, b ; q, p}}:=\frac{\left[F_{m+n}\right]_{a, b ; q, p}^{!}}{\left[F_{m}\right]_{a, b ; q, p}^{!} \cdot\left[F_{n}\right]_{a, b ; q, p}^{!}}
$$

where $\left[F_{n}\right]_{a, b ; q, p}^{!}:=\prod_{k=1}^{n}\left[F_{k}\right]_{a, b ; q, p}$ is the elliptic Fibonacci analog of $n!$.
Similarly as before, the elliptic Fibonomial number counts path-domino tilings of an $m \times n$ rectangle according to certain elliptic weights. For $T \in \mathcal{T}_{m, n}$, the elliptic weights of the possible tiles in T are defined as follows:

$$
\widetilde{\omega}(\boxed{\bullet})=1, \quad \widetilde{\omega}(\boxed{\bullet \bullet})=\omega_{1}(i, j), \quad \widetilde{\omega}\binom{\bullet \bullet}{\bullet}=\omega_{1}(j, i), \quad \widetilde{\omega}\left(\begin{array}{l}
\bullet \\
\bullet \\
\hline
\end{array}\right)=\omega_{2}(i, j)
$$

where (i, j) denotes the coordinate of the top-right corner of the tile, the shaded vertical domino represents a special vertical domino touching the path from below, and

$$
\begin{align*}
& \omega_{1}(i, j):=v_{a, b ; q_{j} F_{j}}\left(F_{i}, F_{i-1}\right), \tag{2}\\
& \omega_{2}(i, j):=v_{a, b ; q, p}\left(F_{i+1} F_{j}, F_{i} F_{j-1}\right), \tag{3}
\end{align*}
$$

are defined in terms of the following expression:

$$
\begin{equation*}
v_{a, b ; q, p}(m, n):=\frac{\theta\left(a q^{2 m+n}, b, b q^{n}, \frac{a}{b} q^{n}, \frac{a}{b} ; p\right)}{\theta\left(a q^{n}, b q^{m}, b q^{m+n}, \frac{a}{b} q^{m}, \frac{a}{b} q^{m+n} ; p\right)} q^{m} . \tag{4}
\end{equation*}
$$

