Elliptic and g-analogs of the Fibonomial numbers 1

Elliptic Fibonomial numbers

An elliptic function is a function defined over the complex numbers that is meromorphic and
doubly periodic. Elliptic functions can be obtained as quotients of modified Jacobi theta func-
tions. These are defined as
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where x,21,...,2¢ # 0 and |p| < 1.
The elliptic analog of the Fibonacci number is
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For m,n € N; the elliptic analog of the Fibonomial number is defined as
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where [F,]} ;. 0p = 1li=1[F¥)abqp is the elliptic Fibonacci analog of n!.
Similarly as before, the elliptic Fibonomial number counts path-domino tilings of an m x n
rectangle according to certain elliptic weights. For T' € Ty, »,, the elliptic weights of the possible

tiles in T are defined as follows:
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where (7, j) denotes the coordinate of the top-right corner of the tile, the shaded vertical domino
represents a special vertical domino touching the path from below, and
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are defined in terms of the following expression:
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