q-Fibonacci analog of the Coxeter Catalan numbers

Given a crystallographic Coxeter group W with Coxeter exponents $e_{1}<e_{2}<\ldots<e_{n}$, the rational W-Catalan number is defined as $C_{W}(a)=\prod_{i=1}^{n} \frac{a+e_{i}}{e_{i}+1}$, and this is an integer when a is relatively prime to $e_{n}+1$. The Coxeter exponents for the crystallographic Coxeter groups are:

type of W	$e_{1}, e_{2}, \ldots, e_{n}$
A_{n}	$1,2,3, \ldots, n$
B_{n}	$1,3,5, \ldots, 2 n-1$
D_{n}	$n-1,1,3,5, \ldots, 2 n-3$
E_{6}	$1,4,5,7,8,11$
E_{7}	$1,5,7,9,11,13,17$
E_{8}	$1,7,11,13,17,19,23,29$
F_{4}	$1,5,7,11$
G_{2}	1,5

The classical Catalan number corresponds to type A_{n}. We can now define a q-Fibonacci analog as follows:

$$
C_{W, \mathcal{F}}(a)=\prod_{i=1}^{n} \frac{\left[F_{a+e_{i}}\right]}{\left[F_{e_{i}+1}\right]} .
$$

We have computationally checked that this is a polynomial with positive integer coefficients when a and $e_{n}+1$ are relatively prime, for each type and various values of a. It is interesting to note that although in type A_{n} we have shown that it is a polynomial as long as $\left(F_{a}, F_{e_{n}+1}\right)=1$, for other types we must have the stronger condition $\left(a, e_{n}+1\right)=1$. For example $C_{F_{4}, \mathcal{F}}(2)$ is not a polynomial.

