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Chapter 1

Preface

The aim of this paper is to study some interpolation theorems of operators on Lp-spaces.
The idea of interpolation is in broad outline the following: given numbers a and b such
that a < b and a certain condition holds with respect to a and b, then the same condition
holds with every x in an interval between a and b. Thus, using interpolation, we are able
to broaden our knowledge about certain conditions even to uncountable sets using only
estimates proven in �nite sets. Interpolation is widely used in mathematical analysis.

First we prove the Riesz-Thorin interpolation theorem for linear operators on Lp-spaces
by using simple real analytic principles. We well see that the proof makes mainly use of
Hölder's inequality and the density of simple functions in Lp-spaces. Especially we avoid
completely complex analytical arguments, which the proof of this theorem is traditionally
based on.

Then we prove the Marcinkiewicz interpolation theorem for subadditive operators on
spaces consisting of functions which can be split into Lp-functions. Thus we can give up
the assumption of linearity and consider operators that satisfy slightly weaker conditions.

As a prerequisite, the rudiments of real analysis, especially measure theory, as well as
basic topology is assumed. A good understanding of linear algebra is also desirable. How-
ever, the �nite-dimensional inner product spaces appearing in the theorems can always
be replaced by Euclidean spaces.

In this paper the following source materials are used: The proofs of the interpolation
theorems are based on [1]. Most of the de�nitions and proofs used in the second chapter
are based on [2] and [3]. The proof of Lemma 2.15 can originally be found in [4].
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Chapter 2

De�nitions and prerequisites

First we de�ne some basic concepts related to Lp-spaces.

De�nition 2.1. Let (Ω, µ) be a measure space. Let E ⊂ Ω be an arbitrary zero-
measurable set. Measure µ is complete if every F ⊂ E is µ-measurable.

If the measure µ is complete, we also say that the corresponding measure space (Ω, µ)
is complete. By de�ning this, we want to ensure that we have the concept µ-measurable
almost ewerywhere by which we denote that some property is valid except for a zero-
measurable set.

De�nition 2.2. Let (Ω, µ) be a complete measure space, V a �nite-dimensional inner
product space and 1 ≤ p <∞. We de�ne

Lp(Ω, µ) = {f : Ω→ V | f measurable and

∫
Ω

|f |pdµ <∞},

and denote

‖f‖p =

(∫
Ω

|f |pdµ
)1/p

.

We would like to have normed vector space (Lp(Ω, µ), ‖ · ‖p). However, the condition
‖f‖p = 0 does not always lead to f ≡ 0. For example, if we have Ω = R with Lebesgue
measure µ = m and f is the characteristic function of zero, f = χ{0}, the condition
‖f‖p = 0 holds. Thus we de�ne the following equivalence relation:

De�nition 2.3. Functions f, g ∈ Lp(Ω, µ) are equivalent, f ∼ g, if f = g almost every-
where.
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We denote equivalence classes by

[f ] = f̃ = {g ∈ Lp(Ω, µ) : g ∼ f}

and de�ne
L̃p(Ω, µ) = {f̃ : f ∈ Lp(Ω, µ)}.

If Lp(Ω, µ) is a real vector space, then is also L̃p(Ω, µ) with

[af + bg] = a[f ] + b[g] = af̃ + bg̃, a, b ∈ R, f, g ∈ Lp(Ω, µ).

We set
‖f̃‖p = ‖f‖p,

which is well-de�ned by the de�nition of the equivalence relation ∼.

From now on we identify all functions which are equal almost everywhere. Hence we
can write Lp(Ω, µ) = L̃p(Ω, µ). Now we are ready to prove that Lp(Ω, µ) is a real vector
space with the norm ‖ · ‖p. For that we need various theorems.

Lemma 2.4. (Young's inequality) If a, b ≥ 0, α, β > 0 and α + β = 1, then

aαbβ ≤ αa+ βb.

Proof. As a = 0 or b = 0, the proposition trivially holds. Assume a, b > 0. The
function x 7→ lnx is concave for all x > 0, i.e. for all x, y > 0

ln(tx+ (1− t)y) ≥ t lnx+ (1− t)lny

for any t ∈ [0, 1]. Thus

ln(aαbβ) = αlna+ βlnb ≤ ln(αa+ βb).

Because natural logarithm function is increasing, the claim follows. �

Theorem 2.5. (Hölder's inequality) If p1, p2 > 1, 1
p1

+ 1
p2

= 1, f ∈ Lp1(Ω, µ) and

g ∈ Lp2(Ω, µ), then

fg ∈ L1(Ω, µ) and ‖fg‖1 ≤ ‖f‖p1‖g‖p2 .

Proof. The cases ‖f‖p1 = 0 and ‖g‖p2 = 0 are clear. Hence we can assume ‖f‖p1 , ‖g‖p2 >
0. Now we �x x ∈ Ω and write

a =
|f(x)|p1
‖f‖p1p1

, b =
|g(x)|p2
‖g‖p2p2

, α =
1

p1

and β =
1

p2

.
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We apply Young's inequality to get

|f(x)|
‖f‖p1

|g(x)|
‖g‖p2

≤ 1

p1

|f(x)|p1
‖f‖p1p1

+
1

p2

|g(x)|p2
‖g‖p2p2

.

Since f and g are measurable, f ∈ Lp1(Ω, µ), g ∈ Lp2(Ω, µ) and the integral of non-
negative functions over Ω is monotonous, we get

‖fg‖1

‖f‖p1‖g‖p2
≤ 1

p1

‖f‖p1p1
‖f‖p1p1

+
1

p2

‖g‖p2p2
‖g‖p2p2

=
1

p1

+
1

p2

= 1.

Thus fg ∈ L1 and
‖fg‖1 ≤ ‖f‖p1‖g‖p2 . �

Theorem 2.6. (Minkowski's inequality) If f, g ∈ Lp(Ω, µ), then f + g ∈ Lp(Ω, µ) and

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. If p = 1, we have

‖f + g‖1 =

∫
Ω

|f + g|dµ ≤
∫

Ω

(|f |+ |g|)dµ = ‖f‖1 + ‖g‖1.

Assume p > 1 and q = p
p−1

. Then 1
p

+ 1
q

= 1. If a, b ≥ 0, we have the estimate

(a+ b)p ≤ (2max(a, b))p ≤ 2p(ap + bp).

Using this estimate for every x ∈ Ω we get

|(f + g)(x)|p ≤ (|f(x)|+ |g(x)|)p ≤ 2p(|f(x)|p + |g(x)|p).

Thus
f + g ∈ Lp(Ω, µ).

Now using triangle inequality we have further estimate

|f + g|p = |f + g||f + g|p−1 ≤ |f ||f + g|p−1 + |g||f + g|p−1.

Because f + g ∈ Lp(Ω, µ) and (|f + g|p−1)q = |f + g|p, we have

|f + g|p−1 ∈ Lq(Ω, µ).

We note that p and q are Hölder conjugates, so by previous observations and Hölder's
inequality we get

‖f + g‖pp =

∫
Ω

|f + g|pdµ ≤
∫

Ω

|f ||f + g|p−1dµ+

∫
Ω

|g||f + g|p−1dµ
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≤ ‖f‖p
(∫

Ω

(|f + g|p−1)qdµ

)1/q

+ ‖g‖p
(∫

Ω

(|f + g|p−1)qdµ

)1/q

= ‖f‖p
(∫

Ω

|f + g|pdµ
)1/q

+ ‖g‖p
(∫

Ω

|f + g|pdµ
)1/q

= (‖f‖p + ‖g‖p)‖f + g‖p/qp = (‖f‖p + ‖g‖p)‖f + g‖p−1
p .

Hence
‖f + g‖p ≤ ‖f‖p + ‖g‖p. �

By de�nition of ‖ · ‖p, ‖f‖p ≥ 0 for all f ∈ Lp(Ω, µ). If a ∈ R and f ∈ Lp(Ω, µ), we
have

‖af‖p =

(∫
Ω

|af |pdµ
)1/p

= (|a|p)1/p

(∫
Ω

|f |pdµ
)1/p

= |a|‖f‖p.

Moreover, by the prior identi�cation of equivalent Lp-functions, ‖f‖p = 0 if and only if
f ≡ 0. Combining these observations with Minkowski's inequality we �nally get:

Theorem 2.7. The space (Lp(Ω, µ), ‖ · ‖p) is a normed vector space. �

Let (X, d) be a metric space. We say that a sequence (xj) in X is a Cauchy sequence
in X if for every ε > 0 there is jε ∈ N so that d(xi, xj) < ε for all i, j ≥ jε. The metric
space X is complete, if every Cauchy sequence in X converges to some point of X. We
use the name Banach space for a complete normed vector space.

Theorem 2.8. (Riesz-Fischer) The space Lp(Ω, µ) is a Banach space if 1 ≤ p <∞.

Proof. Let (fj) be a Cauchy sequence in Lp(Ω, µ). For each k ∈ N there is jk ∈ N
such that

‖fi − fj‖p <
1

2k
if i, j ≥ jk and j1 < j2 < · · · .

We de�ne an increasing sequence of real-valued functions gk on Ω by setting

gk = |fj1|+
k∑
l=1

|fjl+1
− fjl |.

Applying Minkowski inequality k times we get

‖gk‖p = ‖|fj1|+
k∑
l=1

|fjl+1
− fjl |‖p ≤ ‖fj1‖p +

k∑
l=1

‖fjl+1
− fjl‖p
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≤ ‖fj1‖p +
k∑
l=1

1

2l
≤ ‖fj1‖p +

∞∑
l=1

1

2l
= ‖fj1‖p + 1

for every k ∈ N. Because the sequence (gk) is increasing, there is a function g = limk→∞gk.
Since every gk is measurable, we deduce by monotone convergence theorem and the pre-
vious estimate∫

Ω

gpdµ =

∫
Ω

(limk→∞g
p
k)dµ = limk→∞

∫
Ω

gpkdµ = limk→∞‖gk‖pp ≤ (‖fj1‖p + 1)p <∞.

Thus g(x) <∞ almost everywhere in Ω. Hence the series |fj1(x)|+
∑∞

l=1 |fjl+1
(x)−fjl(x)|

is convergent for almost every x ∈ Ω, which means that the series fj1(x)+
∑∞

l=1(fjl+1
(x)−

fjl(x)) converges as an absolutely convergent series. We denote the sum of this series
pointwise by f(x) and set f(x) = 0 in the set where the series is not convergent. Now we
have a function f : Ω → V such that fjk+1

= fj1 +
∑k

l=1(fjl+1
(x) − fjl(x)) → f almost

everywhere in Ω, as k →∞.
We prove that f ∈ Lp(Ω, µ) and ‖fk − f‖p → 0 if k →∞. Let ε > 0. Because (fk) is

a Cauchy sequence, there is iε ∈ N such that ‖fi − fj‖p < ε if i, j ≥ iε. We will integrate
non-negative measurable functions, and thus by Fatou's lemma we get∫

Ω

|fi − f |pdµ =

∫
Ω

limk→∞|fi − fjk |pdµ =

∫
Ω

lim infk→∞|fi − fjk |pdµ

≤ lim infk→∞

∫
Ω

|fi − fjk |pdµ = lim infk→∞‖fi − fjk‖pp ≤ εp

if i ≥ iε. This means that fi − f ∈ Lp(Ω, µ) and ‖fi − f‖p ≤ ε if i ≥ iε. Hence
f = fi − (fi − f) ∈ Lp(Ω, µ) and fi → f in Lp(Ω, µ). �

De�nition 2.9. A function φ : Ω → V is simple if φ is measurable and gets only �nite
amount of di�erent values.

If we decompose Ω into n mutually disjoint µ−measurable sets, Ω =
⋃n
k=1 Ωk, we write

φ =
n∑
k=1

αkχΩk ,

where αk ∈ V. If µ(Ωk) = ∞ for some k ∈ {1, .., n}, we assume that αk = 0 and say
0 ·∞ = 0. For each decomposition, we denote the set of such simple functions by L(Ω, µ).
Clearly L(Ω, µ) ⊂ Lp(Ω, µ), φ + ψ ∈ L(Ω, µ) and aφ ∈ L(Ω, µ) as well as 0 ∈ L(Ω, µ)
for all φ, ψ ∈ L(Ω, µ), a ∈ R and 1 ≤ p < ∞. Therefore L(Ω, µ) is a �nite-dimensional
subspace of Lp(Ω, µ), (χΩ1 , . . . , χΩn) being a basis.
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De�nition 2.10. If X is a topological space and A ⊂ X, we say that A is dense in X if
A = X.

Suppose F is a subspace of a normed vector space (E, ‖ · ‖). In that case, F is dense
in E if for every x ∈ E there is a sequence (xi)i∈N so that ‖xi − x‖ → 0 if i→∞.

Lemma 2.11. The set of simple functions is dense in Lp(Ω, µ).

Proof. Let f ∈ Lp(Ω, µ). We construct a sequence (φj) of simple functions φj : Ω→ V
such that limj→∞φj = f . We assume that V is an n-dimensional inner product space.
Thus, let (v1, . . . , vn) be an orthonormal basis of V. If x ∈ Ω, we can write f(x) =
f1(x)v1 + · · ·+ fn(x)vn, where f1, . . . , fn are real-valued component functions.

Let Ai = {x ∈ Ω : fi(x) ≥ 0} and Bi = {x ∈ Ω : fi(x) < 0} for �xed i ∈ {1, . . . n}.
Now fi = fiχAi + fiχBi . Since fi is a measurable real-valued function (as a component
function of measurable function f) for every i ∈ {1, . . . , n}, by elementary measure theory,
there is an increasing sequence (φAij ) of non-negative simple functions such that fiχAi =

limj→∞φ
Ai
j . In the same way, there is a decreasing sequence (φBij ) of non-positive simple

functions such that fiχBi = limj→∞φ
Bi
j . Now we de�ne φij = φAij + φBij , which is a

well-de�ned simple function, since φAij = 0 in Bi and φBij = 0 in Ai. By the prior
consideration, we have fi = limj→∞φ

i
j. We de�ne φj = φ1

jv1 + · · ·+ φnj vn for every j ∈ N.
Now f = limj→∞φj.

Since

|φj(x)| = 〈φj(x), φj(x)〉1/2 = 〈
n∑
i=1

φij(x)vi,
n∑
i=1

φij(x)vi〉1/2

=

√√√√ n∑
i=1

φij(x)2 ≤

√√√√ n∑
i=1

fi(x)2 = |f(x)|

for every j ∈ N and x ∈ Ω, we have

|f(x)− φj(x)|p ≤ (|f(x)|+ |φj(x)|)p ≤ 2p|f(x)|p,

where 2p|fp| is integrable because f ∈ Lp(Ω, µ). In addition, the function x 7→ |f(x) −
φj(x)| is a measurable real-valued function since it is a composition of measurable function
x 7→ f(x)− φj(x) and the continuous norm function. Therefore we can apply Lebesgue's
dominated convergence theorem to get

‖f − φj‖pp =

∫
Ω

|f(x)− φj(x)|pdµ −→ 0

if j →∞. �
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De�nition 2.12. A measure space (Ω, µ) is sigma-�nite, if

Ω =
⋃
j∈N

Ωj and µ(Ωj) <∞ for all j ∈ N,

where Ωj is measurable for all j ∈ N.

De�nition 2.13. Let g : I → R be a function de�ned on an open interval I ⊂ R. The
function g is convex on I if for any x, y ∈ I and t ∈ [0, 1]

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y).

Lemma 2.14. If I ⊂ R is an open interval, g : I → R convex and f : R→ R convex and
increasing, then f ◦ g is convex.

Proof. Let x, y ∈ I and t ∈ [0, 1]. Since g is convex on the interval I, we have
g(tx+(1−t)y) ≤ tg(x)+(1−t)g(y). Hence, under the monotone and convexity assumptions
of f ,

(f ◦ g)(tx+ (1− t)y) = f(g(tx+ (1− t)y)) ≤ f(tg(x) + (1− t)g(y))

≤ tf(g(x)) + (1− t)f(g(y)) = t(f ◦ g)(x) + (1− t)(f ◦ g)(y). �

Lemma 2.15. If g : I → R is convex, then g is Lipschitz-continuous in every closed
interval [a′, b′] ⊂ I.

Proof. Let α, β, γ ∈ I such that α < β < γ. Now, since β ∈ ]α, γ[, we can write
β = tα + (1− t)γ, where t = (γ − β)/(γ − α). As g is convex, we have

g(β) = g(tα + (1− t)γ) ≤ tg(α) + (1− t)g(γ) = tg(α) + g(γ)− tg(γ).

Using this inequality, we get

g(β)− g(α)

β − α
≤ (1− t)(g(γ)− g(α))

β − α
=
β − α
γ − α

· g(γ)− g(α)

β − α
=
g(γ)− g(α)

γ − α
.

Similarly,

g(γ)− g(β)

γ − β
≥ t(g(γ)− g(α))

γ − β
=
γ − β
γ − α

· g(γ)− g(α)

γ − β
=
g(γ)− g(α)

γ − α
.

Hence

(2.16)
g(β)− g(α)

β − α
≤ g(γ)− g(α)

γ − α
≤ g(γ)− g(β)

γ − β
.
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Let [a′, b′] ⊂ I be a closed interval and x, y ∈ [a′, b′]. Let a, b, c, d ∈ I be such that
a < b < x < y < c < d. By applying (2.17) repeatedly we get

g(b)− g(a)

b− a
≤ g(y)− g(a)

y − a
≤ g(y)− g(x)

y − x
≤ g(d)− g(x)

d− x
≤ g(d)− g(c)

d− c
.

Thus,
g(b)− g(a)

b− a
(y − x) ≤ g(y)− g(x) ≤ g(d)− g(c)

d− c
(y − x).

By choosing M = max{|g(b)−g(a)
b−a |, |g(d)−g(c)

d−c |} we get

|g(y)− g(x)| ≤M |y − x|.

Since x, y ∈ [a′, b′] were arbitrary, g is Lipschitz on [a′, b′]. �
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Chapter 3

The Riesz-Thorin interpolation theorem

In this chapter we present �rst of the main theorems of this paper.

Theorem 3.1. Let (Ω, µ) be a sigma-�nite measure space. Let p1, p2 ∈ R be such that
1 ≤ p1 ≤ p2 <∞. Suppose that we have a linear operator

T : Lp1(Ω, µ) ∩ Lp2(Ω, µ)→ Lp1(Ω, µ) ∩ Lp2(Ω, µ)

with respect to Lp1- and Lp2-norms such that the conditions

‖φ‖p1 ≤ ‖T ‖p1‖φ‖p1 and ‖T φ‖p2 ≤ ‖T ‖p2‖φ‖p2

hold for every φ ∈ Lp1(Ω, µ) ∩ Lp2(Ω, µ). Then for every p, p1 ≤ p ≤ p2, T extends as a
bounded linear operator

T : Lp(Ω, µ)→ Lp(Ω, µ).

In addition, we have the uniform estimate

(3.2) ‖T f‖p ≤ ‖T ‖αp1‖T ‖
β
p2
‖f‖p

for every f ∈ Lp(Ω, µ), where α and β are determined from the relations

1

p
=
α

p1

+
β

p2

, α + β = 1.

First we prove that the intersection Lp1(Ωµ) ∩ Lp2(Ωµ) is contained in Lp(Ω, µ) for
p ∈ [p1, p2].

Lemma 3.3. If 1 ≤ p1 ≤ p ≤ p2 <∞, then

Lp1(Ω, µ) ∩ Lp2(Ω, µ) ⊂ Lp(Ω, µ).
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Proof. Suppose f ∈ Lp1(Ω, µ) ∩ Lp2(Ω, µ). We make the decomposition Ω = A ∪ B,
where

A = {x ∈ Ω : |f(x)| > 1} and B = {x ∈ Ω : |f(x)| ≤ 1}.

Now this union is disjoint, and we have |f(x)|p ≤ |f(x)|p2 if x ∈ A and |f(x)|p ≤ |f(x)|p1
if x ∈ B. Thus∫

Ω

|f |pdµ =

∫
A

|f |pdµ+

∫
B

|f |pdµ ≤
∫
A

|f |p2dµ+

∫
B

|f |p1dµ ≤
∫

Ω

|f |p2dµ+

∫
Ω

|f |p1dµ <∞.

Hence f ∈ Lp(Ω, µ). �
Proof of the Riesz-Thorin theorem. For each disjoint decomposition Ω =

⋃n
k=1 Ωk of

measurable sets Ωk we have the �nite-dimensional subspace of simple functions

L(Ω, µ) ⊂ Lp1(Ω, µ) ∩ Lp2(Ω, µ) ⊂ Lp(Ω, µ).

By Lemma 2.11, the union ∪L(Ω, µ) is dense in Lp(Ω, µ) if p1 ≤ p ≤ p2. We consider the
operator

T |(∪L(Ω, µ)) : ∪L(Ω, µ)→ Lp(Ω, µ).

Since Lp(Ω, µ) is complete as a range and Lp(Ω, µ) = cl(∪L(Ω, µ)), elementary metric
topology tells us that if T |(∪`(Ω, µ)) is uniformly continuous, then it extends continuously
to Lp(Ω, µ). Hence we need only to show that the uniform estimate (3.2) holds for an
arbitrary φ ∈ ∪L(Ω, µ).

Now we �x the decomposition Ω =
⋃n
k=1 Ωk. Let p ∈ [p1, p2] and S(0, 1) ⊂ L(Ω, µ)

be the unit sphere of L(Ω, µ). We assume that T is not a zero mapping and consider the
function

φ 7→ ‖T φ‖p : S(0, 1)→ R,

where

φ =
n∑
k=1

akχΩk .

We de�ne mappings

E : S(0, 1)→ Vn, E

(
n∑
k=1

akχΩk

)
= (a1, . . . , an),

prj : Vn → V, prj(a1, . . . , an) = aj

and
| · | : V→ R, aj 7→ |aj|
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for every j ∈ {1, . . . , n}. Now the mappings |prj ◦ E| are continuous as compositions
of continuous functions. Since S(0, 1) is compact, there is a maximum for every map
|prj ◦ E|. Thus, there is

a = max{maxφ∈S(0,1)|prj ◦ E(φ)| : j ∈ {1, . . . , n}}.

Now, by writing gk = T χΩk ∈ Lp1(Ω, µ)∩Lp2(Ω, µ) ⊂ Lp(Ω, µ) andM = maxk=1,...,n‖gk‖p,
and using the linearity of T , we deduce

‖T φ‖p = ‖
n∑
k=1

akgk‖p ≤
n∑
k=1

‖akgk‖p =
n∑
k=1

|ak|‖gk‖p ≤ naM <∞

for every φ ∈ S(0, 1). Hence the function φ 7→ ‖T φ‖p restricted to S(0, 1) is continuous.
Therefore, since S(0, 1) is compact, there is

Ap = max {‖T φ‖p : φ ∈ L(Ω, µ) and ‖φ‖p = 1} .

Now we have
‖T φ‖p ≤ Ap if φ ∈ L(Ω, µ) and ‖φ‖p = 1,

which is equivalent to
‖T φ‖p ≤ Ap‖φ‖p if φ ∈ L(Ω, µ).

This condition states that T |L(Ω, µ) is a bounded linear map. Therefore we can set

Ap = max

{
‖T φ‖p
‖φ‖p

: φ ∈ L(Ω, µ)

}
.

Now we have a well-de�ned function p 7→ Ap : [p1, p2]→ R. Let q ∈ [p1, p2] and (pj) be
a sequence in [p1, p2] such that pj → q if j →∞. We denote gk = T χΩk for k ∈ {1, . . . , n}.
For a function φ ∈ L(Ω, µ) we have

|
n∑
k=1

akgk|pj = |
n∑
k=1

akgk|pjχAj + |
n∑
k=1

akgk|pjχBj

≤ |
n∑
k=1

akgk|p1χAj + |
n∑
k=1

akgk|p2χBj ≤ |
n∑
k=1

akgk|p1 + |
n∑
k=1

akgk|p2

for every j ∈ N, where Aj = {x ∈ Ω : |
∑n

k=1 akgk|pj < 1} and Bj = {x ∈ Ω :
|
∑n

k=1 akgk|pj ≥ 1}. We have found an integrable majorant of |φ|pj for every j ∈ N.
Moreover, by continuity of upcoming composition mappings,

|
n∑
k=1

(ak)pjgk|pj → |
n∑
k=1

(ak)qgk|q if j →∞,

13



where the additional lower indice conventions pj and q refer to the coe�cients correspond-
ing the maxima Apj and Aq. Hence, by Lebesgue's dominated convergence theorem,

limj→∞A
pj
pj

= limj→∞

∫
Ω

|
n∑
k=1

(ak)pjgk|pj =

∫
Ω

|
n∑
k=1

(ak)qgk|q = Aqq.

Thus the function p 7→ Ap is continuous.
Let p ∈ [p1, p2] be �xed. Let f ∈ L(Ω, µ) be so that ‖T f‖p = Ap‖f‖p. Now for every

h ∈ L(Ω, µ) and t ∈ R we have ‖T (f + th)‖p ≤ Ap‖f + th‖p, which leads to

(3.4) App

∫
Ω

|f + th|pdµ−
∫

Ω

|T f + tT h|pdµ ≥ 0

by linearity of T . The left-hand side of the inequality (3.4) de�nes a function F : R→ R
of the variable t for �xed p > 1. Since

F (t) = App

∫
Ω

|f + th|pdµ−
∫

Ω

|T f + tT h|pdµ

= App

∫
Ω

(|f + th|2)p/2dµ−
∫

Ω

(|T f + tT h|2)p/2dµ

= App

∫
Ω

〈f + th, f + th〉p/2dµ−
∫

Ω

〈T f + tT h, T f + tT h〉p/2dµ,

we deduce that F is continuously di�erentiable and

d

dt
F (t) = App

∫
Ω

d

dt
〈f + th, f + th〉p/2dµ−

∫
Ω

d

dt
〈T f + tT h, T f + tT h〉p/2dµ

= App

∫
Ω

p

2
(|f + th|2)p/2−1 · 2〈f + th, h〉dµ−

∫
Ω

p

2
(|T f + tT h|2)p/2−1 · 2〈T f + tT h, T h〉dµ

= Appp

∫
Ω

|f + th|p−2〈f + th, h〉dµ− p
∫

Ω

|T f + tT h|p−2〈T f + tT h, T h〉dµ.

We can do the derivation inside the integrals, because the integrands are simple functions
and thus integrals can be considered as �nite sums.

As F has its minimum at t = 0, the derivative must be zero at t = 0. Therefore

Appp

∫
Ω

|f |p−2〈f, h〉dµ− p
∫

Ω

|T f |p−2〈T f, T h〉dµ

= Appp

∫
Ω

〈|f |p−2f, h〉dµ− p
∫

Ω

〈|T f |p−2T f, T h〉dµ = 0.

14



Dividing by p we get the identity

(3.5) App

∫
Ω

〈|f |p−2f, h〉dµ =

∫
Ω

〈|T f |p−2T f, T h〉dµ.

Let r ∈ [p1, p] be such that r(p− 1)/(r − 1) ≤ p2, and

h = |f |
p−r
r−1 f ∈ L(Ω, µ).

Now

〈|f |p−2f, h〉 = 〈|f |p−2f, |f |
p−r
r−1 f〉 = |f |p−2|f |

p−r
r−1 〈f, f〉 = |f |p|f |

p−r
r−1 = |f |

pr−r
r−1 .

Moreover, we have

T h = T (|f |
p−r
r−1 f) = |f |

p−r
r−1T f.

This can be seen as follows: We write

h = |f |
p−r
r−1 f = |

n∑
k=1

akχΩk |
p−r
r−1 f

and decompose h =
∑n

k=1 hχΩk , where hχΩj = |aj|(p−r)/(r−1)fχΩj for every j ∈ {1, . . . , n}.
Now, using the linearity of T , we deduce

T h =
n∑
k=1

T (hχΩk) =
n∑
k=1

T
(
|ak|

p−r
r−1 fχΩk

)
=

n∑
k=1

|ak|
p−r
r−1T (fχΩk)

=
n∑
k=1

|ak|
p−r
r−1 (T f)χΩk =

∣∣∣∣∣
n∑
k=1

akχΩk

∣∣∣∣∣
p−r
r−1

T f = |f |
p−r
r−1T f,

since

T (fχΩj) = T ((
n∑
k=1

akχΩk)χΩj) = T (ajχΩj) = ajT χΩj =

(
n∑
k=1

akT χΩk

)
χΩj = (T f)χΩj

for every j ∈ {1, . . . , n}. Thus by (3.5) we get

App

∫
Ω

|f |
pr−r
r−1 dµ =

∫
Ω

〈|T f |p−2T f, |f |
p−r
r−1T f〉dµ =

∫
Ω

|T f |p|f |
p−r
r−1dµ = ‖|T f |p|f |

p−r
r−1‖1

= ‖|f |
p−r
r−1 |T f ||T f |p−1‖1 = ‖|T h||T f |p−1‖1.

15



Since h ∈ L(Ω, µ) and r ∈ [p1, p2], we have ‖T h‖r ≤ Ar‖h‖r <∞. Thus |T h| ∈ Lr(Ω, µ).
Similarly, since f ∈ L(Ω, µ) and p1 ≤ r(p − 1)/(r − 1) ≤ p2, one can deduce |T f | ∈
Lr(p−1)/(r−1)(Ω, µ), which means |T f |p−1 ∈ Lr/(r−1)(Ω, µ). Moreover,

1

r
+

1
r
r−1

=
1

r
+
r − 1

r
= 1.

Hence we can apply Hölder's inequality to these functions to get

App‖f‖
pr−r
r−1
pr−r
r−1

= App

∫
Ω

|f |
pr−r
r−1 dµ

= ‖|T h||T f |p−1‖1 ≤ ‖T h‖r‖|T f |p−1‖ r
r−1

= ‖T h‖r
(∫

Ω

|T f |
r(p−1)
r−1 dµ

) r−1
r

= ‖T h‖r

((∫
Ω

|T f |
pr−r
r−1 dµ

) r−1
pr−r
)p−1

= ‖T h‖r‖T f‖p−1
pr−r
r−1

≤ Ar‖h‖rAp−1
pr−r
r−1

‖f‖p−1
pr−r
r−1

= ArA
p−1
pr−r
r−1

(∫
Ω

(|f |
p−r
r−1 |f |)rdµ

) 1
r
(∫

Ω

|f |
pr−r
r−1 dµ

) r−1
r

= ArA
p−1
pr−r
r−1

(∫
Ω

|f |
pr−r
r−1 dµ

) 1
r
(∫

Ω

|f |
pr−r
r−1 dµ

) r−1
r

= ArA
p−1
pr−r
r−1

‖f‖
pr−r
r−1
pr−r
r−1

.

Therefore

(3.6) Ap ≤ A1/p
r A

1−1/p
pr−r
r−1

,

which is a special case of the inequality (3.2), since with α = 1/p and β = 1 − 1/p we
have

α

r
+
β(r − 1)

pr − r
=
αp− α + βr − β

pr − r
=

1− 1/p+ r − r/p− 1 + 1/p

pr − r
=

1− 1/p

p− 1
=

1

p
.

Let I ⊂ [p1, p2] be the set consisting of those p ∈ [p1, p2] such that

(3.7) Ap ≤ Aαp1A
β
p2

with
α

p1

+
β

p2

=
1

p
and α + β = 1.

First we note that p1, p2 ∈ I by choosing either α = 1 or β = 1. Now, let a, b ∈ I and
c = b(1− 1

a
) + 1. We can assume that a > 1 and b < a. Now

p1 ≤ b = b(1− 1

b
) + 1 < b(1− 1

a
) + 1 = c < a(1− 1

a
) + 1 = a ≤ p2.
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Thus c ∈]b, a[⊂ [p1, p2]. By writing b = (c− 1)a/(a− 1), we can apply (3.6) and (3.7) to
get

Ac ≤ A1/c
a A

1−1/c
b ≤ (Aαap1A

βa
p2

)1/c(Aαbp1A
βb
p2

)1−1/c = A
αa
c

+αb−
αb
c

p1 A
βa
c

+βb−
βb
c

p2 =: Aαcp1A
βc
p2
,

where αa, βa and αb, βb satisfy the condition of (3.8) for a and b. Now

αc
p1

+
βc
p2

=
1

c

(
αa − αb + αbc

p1

+
βa − βb + βbc

p2

)
=

1

c

(
αa
p1

+
βa
p2

−
(
αb
p1

+
βb
p2

)
+

(
αb
p1

+
βb
p2

)
c

)

=
1

c

(
1

a
− 1

b
+

1

b

(
b(1− 1

a
) + 1

))
=

1

c

and

αc+βc =
(αa
c

+ αb −
αb
c

)
+

(
βa
c

+ βb −
βb
c

)
=
αa + βa

c
−αb + βb

c
+αb+βb =

1

p
−1

p
+1 = 1.

Hence c ∈ I.
The formula c = b(1− 1

a
) + 1 de�nes a recursive sequence starting from the points p1

and p2. First we choose b = p1 and a = p2. The formula gives c1 ∈]p1, p2[. For given
t ∈ [p1, p2] we choose the successive elements a and b of the sequence such that t ∈ [b, a].
Because the point c divides the interval [b, a] always in the same ratio and b < c < a, the
chosen sequence converges to t. This means that I is dense in the interval [p1, p2].

Since the function p 7→ Ap is continuous on the interval [p1, p2], we can easily deduce
I = [p1, p2]: Let t ∈ [p1, p2] be arbitrary and ε > 0. Since I is dense in [p1, p2]� we can
�nd elements of I arbitrarily close to t. Combining that to the continuity of the function
p 7→ Ap we know that there is δ > 0 such that

|At − Ap| < ε as |t− p| < δ and p ∈ I.

This yields
At < Ap + ε ≤ Aαpp1A

βp
p2

+ ε,

where αp = p1(p2−p)
(p2−p1)p

and βp = 1− αp. Now ε→ 0 as p→ t, and hence

At ≤ Aαtp1A
βt
p2
,

where αt and βt are de�ned in the same way as αp and βp, and thus satisy the conditions

αt
p1

+
βt
p2

=
1

t
and αt + βt = 1.
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By the prior deduction, the condition (3.7) holds for every p ∈ [p1, p2]. By the de�nition
of Ap, that means

‖T φ‖p ≤ Aαp1A
β
p2
‖φ‖p

for φ ∈ L(Ω, µ). This is the uniform estimate (3.2). �
The Riesz-Thorin theorem states that the linear operator T : Lp(Ω, µ) → Lp(Ω, µ) is

bounded for every p ∈ [p1, p2] with respect to the norm ‖ · ‖p as the conditions of the
theorem hold. Therefore we can de�ne the norm of the operator as follows:

De�nition 3.8. If T : Lp(Ω, µ) → Lp(Ω, µ) is a bounded linear operator, we de�ne
‖T ‖p := sup{‖T f‖p : f ∈ Lp(Ω, µ), ‖f‖p ≤ 1}.

Especially, by homogeneity of the norm, we have the estimate

‖T f‖p ≤ ‖T ‖p‖f‖p

for every f ∈ Lp(Ω, µ).

Corollary 3.9. Under the assumptions of the Riesz-Thorin theorem, the function t 7→
ln‖T ‖1/t is convex on the interval [ 1

p2
, 1
p1

].

Proof. Let x1, x2 ∈ [ 1
p2
, 1
p1

] and s ∈ [0, 1]. Now

1

sx1 + (1− s)x2

∈ [
1

x2

,
1

x1

] ⊂ [p1, p2] and
1

p
=

α
1
x2

+
β
1
x1

for p = 1/(sx1+(1−s)x2) and α = 1−s, β = s. Thus the assumptions of the Riesz-Thorin
theorem hold, and by (3.2) we get

‖T ‖ 1
sx1+(1−s)x2

≤ ‖T ‖s1
x1

‖T ‖1−s
1
x2

.

Since the natural logarithm function is increasing, we get

ln‖T ‖ 1
sx1+(1−s)x2

≤ ln(‖T ‖s1
x1

‖T ‖1−s
1
x2

) = sln‖T ‖ 1
x1

+ (1− s)ln‖T ‖ 1
x2

. �

De�nition 3.10. Function f : I → R, de�ned on an interval I ⊂ R, is locally Lipschitz-
continuous if for every x ∈ I there is an open interval ]a, b[⊂ I such that x ∈]a, b[ and
f|]a,b[ is Lipschitz-continuous.

Corollary 3.11. Under the assumptions of the Riesz-Thorin theorem, the function t 7→
‖T ‖t is locally Lipschitz-continuous on ]p1, p2[.
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Proof. By Corollary 3.9, the function t 7→ ln‖T ‖1/t is convex on the interval [ 1
p2
, 1
p1

].
Since the exponential map is increasing and convex, Lemma 2.14 tells us that also the
function t 7→ eln‖T ‖1/t = ‖T ‖1/t is convex on that interval. Let t0 ∈]p1, p2[. We can
choose a closed interval [a′, b′] ⊂]p1, p2[ such that a′ < t0 < b′. Now 1

t0
∈ [ 1

b′
, 1
a′

] ⊂] 1
p2
, 1
p1

[,

and the function t 7→ ‖T ‖1/t is Lipschitz-continuous on the interval [ 1
b′
, 1
a′

] by Lemma
2.15. Since the function t 7→ 1

t
maps the interval [a′, b′] onto the interval [ 1

b′
, 1
a′

] and
is continuously di�erentiable on the closed interval [a′, b′], its derivative is bounded and
hence the function is Lipschitz-continuous. As a composition of these Lipschitz-functions,
the function t 7→ ‖T ‖t is Lipschitz-continuous particularly on the open interval ]a′, b′[ 3 t0.
Hence the claim holds. �

The Riesz-Thorin theorem is a powerful tool: once we know that an operator is a
bounded linear operator in Lpj(Ω, µ) for j ∈ {1, 2}, 1 ≤ p1 ≤ p2 <∞, we know also that
it is bounded with respect to every p in the closed interval de�ned by p1 and p2. This
means, if we are able to prove the boundedness of an operator in two certain points p1

and p2 relatively easily, then we get the boundedness in the interval for free. The theorem
is widely used in Fourier analysis, for example.

However, linearity is quite a strict assumption. In addition, even though the linearity
holds, the theorem is useless in many cases in practice: if the boundedness is clear with
respect to two points p1, p2, it is that often with respect to any other value of p, too.
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Chapter 4

The Marcinkiewicz interpolation

theorem

In this chapter we present another interpolation theorem. Now we give up the require-
ment of linearity with respect to Lp1- and Lp2-norms and consider the case where the
interpolating operator satis�es so called weak-type estimates.

De�nition 4.1. If 1 ≤ p1 < p2 <∞, we de�ne the space Lp1(Ω, µ) +Lp2(Ω, µ) consisting
of functions f which can be split as f = f1 + f2, where fi ∈ Lpi for i ∈ {1, 2}.

De�nition 4.2. Let M be the space of measurable functions on Ω. An operator T :
Lp1(Ω, µ) + Lp2(Ω, µ)→M is subadditive if |T (f + g)| ≤ |T f |+ |T g| pointwise.

De�nition 4.3. Let g : Ω→ V be measurable. The function

λ : [0,∞[→ [0,∞], λ(t) = µ({z ∈ Ω : |g(z)| > t}),

is called the distribution function of g.

Clearly the distribution function is decreasing. Hence, as a monotone function, it is
measurable.

Lemma 4.4. Let f : Ω→ V be measurable, 0 < p <∞ and λ be the distribution function
of f . Then ∫

Ω

|f |pdµ = p

∫ ∞
0

tp−1λ(t)dt.

Proof. Since the integrands are measurable non-negative real valued functions, we can
apply the Fubini theorem to change the integrating order. Hence

p

∫ ∞
0

tp−1λ(t)dt = p

∫ ∞
0

tp−1

(∫
Ω

χ{x:|f(x)|>t}(x)dµ

)
dt
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=

∫
Ω

∫ ∞
0

ptp−1χ{x:|f(x)|>t}(x)dtdµ =

∫
Ω

∫ |f(x)|

0

ptp−1dtdµ =

∫
Ω

|f(x)|pdµ. �

We present yet another lemma, which will be used in further analysis of the Marcinkiewicz
theorem.

Lemma 4.5. (Chebyshev's inequality) Let f ∈ Lp(Ω, µ). Then the estimate

λ(t) ≤
(
‖f‖p
t

)p
holds for every t > 0.

Proof. Let t > 0 be �xed. Now

tpλ(t) = tpµ({z ∈ Ω : |f(z)| > t}) =

∫
{z:|f(z)|>t}

tpdµ ≤
∫

Ω

|f(z)|pdµ = ‖f‖pp.

Dividing by tp, the claim follows. �
Now we can present and proof the Marcinkiewicz interpolation theorem for sub-

additive operators on Lp-spaces.

Theorem 4.6. Let T be a subadditive operator on Lp1(Ω, µ) + Lp2(Ω, µ) for 1 ≤ p1 <
p2 <∞ such that

(4.7) λ(t) ≤
(
Aj
t
‖g‖pj

)pj
holds for every g ∈ Lpj(Ω, µ), j ∈ {1, 2}, where λ is the distribution function of T g and
Aj is a constant for j ∈ {1, 2}. Then for all p ∈ ]p1, p2[

(4.8) ‖T f‖p ≤ Ap‖f‖p, f ∈ Lp(Ω, µ),

where Ap is a constant depending on p, Aj and pj for j ∈ {1, 2}. Moreover, we have the
bound

(4.9) ‖T ‖p ≤ Ap ≤
(

pAp11

αp11 (p− p1)
+

pAp22

αp22 (p2 − p)

)1/p

for the p-norm of the operator T , where αj are any positive numbers with α1 + α2 = 1.

Proof. Let f ∈ Lp(Ω, µ) and α2, α2 be such that α1 + α2 = 1. For �xed t ∈ ]0,∞[ we
split f = f1 + f2, where

f1(z) =

{
f(z) if f(z) > t

0 if f(z) ≤ t
and f2(z) =

{
0 if f(z) > t

f(z) if f(z) ≤ t
.
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Now ∫
Ω

|f1|p1dµ =

∫
{z:|f(z)|>t}

|f |p1dµ = tp1
∫
{z: |f(z)|

t
>1}
|f
t
|p1dµ

≤ tp1
∫
{z: |f(z)|

t
>1}
|f
t
|pdµ ≤ tp1

tp

∫
Ω

|f |pdµ <∞.

By similar calculation,
∫

Ω
|f2|p2dµ <∞. Therefore f1 ∈ Lp1(Ω, µ) and f2 ∈ Lp2(Ω, µ).

Let λ be the distribution function of T f . By subadditivity of T and the assumption
(4.7) we get

λ(t) = µ({z ∈ Ω : |T f(z)| > t}) = µ({z ∈ Ω : |T (f1 + f2)(z)| > (α1 + α2)t})

≤ µ({z ∈ Ω : |T f1(z)|+ |T f2(z)| > α1t+ α2t})

≤ µ({z ∈ Ω : |T f1(z)| > α1t} ∪ {z ∈ Ω : |T f2(z)| > α2t})

≤ µ({z ∈ Ω : |T f1(z)| > α1t}) + µ({z ∈ Ω : |T f2(z)| > α2t})

≤ Ap11

αp11 t
p1

∫
Ω

|f1|p1dµ+
Ap22

αp22 t
p2

∫
Ω

|f2|p2dµ

=
Ap11

αp11 t
p1

∫
{z:|f(z)|>t}

|f |p1dµ+
Ap22

αp22 t
p2

∫
{z:|f(z)|<t}

|f |p2dµ.

Using this estimate, by Lemma 4.4 and Fubini's theorem we get

‖T f‖pp =

∫
Ω

|T f |pdµ = p

∫ ∞
0

tp−1λ(t)dt

≤ pAp11

αp11

∫ ∞
0

tp−1−p1
(∫
{z:|f(z)|>t}

|f |p1dµ
)
dt+

pAp22

αp22

∫ ∞
0

tp−1−p2
(∫
{z:|f(z)|<t}

|f |p2dµ
)
dt

=
pAp11

αp11

∫ ∞
0

tp−1−p1
(∫

Ω

|f |p1χ{z:|f(z)|>t}dµ

)
dt+

pAp22

αp22

∫ ∞
0

tp−1−p2
(∫

Ω

|f |p2χ{z:|f(z)|<t}dµ

)
dt

=
pAp11

αp11

∫
Ω

|f |p1
(∫ ∞

0

tp−1−p1χ{z:|f(z)|>t}dt

)
dµ+

pAp22

αp22

∫
Ω

|f |p2
(∫ ∞

0

tp−1−p2χ{z:|f(z)|<t}dt

)
dµ

=
pAp11

αp11

∫
Ω

|f |p1
(∫ |f |

0

tp−1−p1dt

)
dµ+

pAp22

αp22

∫
Ω

|f |p2
(∫ ∞
|f |

tp−1−p2dt

)
dµ

=
pAp11

αp11

∫
Ω

|f |p1
(
|f |p−p1
p− p1

)
dµ+

pAp22

αp22

∫
Ω

|f |p2
(
lima→∞

(
ap−p2

p− p2

− |f |
p−p2

p− p2

))
dµ
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=
pAp11

αp11 (p− p1)

∫
Ω

|f |pdµ+
pAp22

αp22 (p2 − p)

∫
Ω

|f |pdµ

=

(
pAp11

αp11 (p− p1)
+

pAp22

αp22 (p2 − p)

)
‖f‖pp.

Hence we have

‖T f‖p ≤
(

pAp11

αp11 (p− p1)
+

pAp22

αp22 (p2 − p)

)1/p

‖f‖p,

which proves the claim. �
The assumptions of the Marcinkiewicz theorem are slightly weaker than the assump-

tions of the Riesz-Thorin theorem. This can be seen as follows: If T is a linear operator
and x ∈ Ω, we have

|T (f + g)(x)| = |Tf(x) + T g(x)| ≤ |T f(x)|+ |T g(x)|

by triangle inequality. Thus a linear operator is always subadditive. Clearly, if 1 ≤
p1 < p2 < ∞, then Lpj(Ω, µ) ⊂ Lp1(Ω, µ) + Lp2(Ω, µ) for j ∈ {1, 2}, since we can choose
either Lp1- or Lp2-part of the function f ∈ Lpj(Ω, µ) to be zero. Moreover, Chebyshev's
inequality shows us that for every t > 0

µ({z ∈ Ω : |T f(z)| > t}) ≤
(‖T f‖pj

t

)pj
≤
(‖T ‖pj

t
‖f‖pj

)pj
as j ∈ {1, 2}. Thus, the estimate (4.7) holds for f ∈ Lp1(Ω, µ) ∩ Lp2(Ω, µ). Hence the
assumptions of the Marcinkiewicz theorem hold.

The Marcinkiewicz theorem guarantees us boundedness of an operator by slightly weak
assumptions. However, this boundedness only holds in an open interval ]p1, p2[, contrary
to by applying the Riesz-Thorin theorem. All in all, the power of the Marcinkiewicz
theorem is in its weak assumptions, compared to the Riesz-Thorin theorem. Both of the
theorems have proved to be essential in analysis research.
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