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Chapter 1

Preface

The aim of this paper is to study some interpolation theorems of operators on LP-spaces.
The idea of interpolation is in broad outline the following: given numbers a and b such
that a < b and a certain condition holds with respect to a and b, then the same condition
holds with every x in an interval between a and b. Thus, using interpolation, we are able
to broaden our knowledge about certain conditions even to uncountable sets using only
estimates proven in finite sets. Interpolation is widely used in mathematical analysis.

First we prove the Riesz-Thorin interpolation theorem for linear operators on LP-spaces
by using simple real analytic principles. We well see that the proof makes mainly use of
Holder’s inequality and the density of simple functions in LP-spaces. Especially we avoid
completely complex analytical arguments, which the proof of this theorem is traditionally
based on.

Then we prove the Marcinkiewicz interpolation theorem for subadditive operators on
spaces consisting of functions which can be split into LP-functions. Thus we can give up
the assumption of linearity and consider operators that satisfy slightly weaker conditions.

As a prerequisite, the rudiments of real analysis, especially measure theory, as well as
basic topology is assumed. A good understanding of linear algebra is also desirable. How-
ever, the finite-dimensional inner product spaces appearing in the theorems can always
be replaced by Euclidean spaces.

In this paper the following source materials are used: The proofs of the interpolation
theorems are based on [1|. Most of the definitions and proofs used in the second chapter
are based on [2] and [3|. The proof of Lemma 2.15 can originally be found in [4].



Chapter 2

Definitions and prerequisites

First we define some basic concepts related to LP-spaces.

Definition 2.1. Let (€, 1) be a measure space. Let E C € be an arbitrary zero-
measurable set. Measure pu is complete if every F' C E is u-measurable.

If the measure p is complete, we also say that the corresponding measure space (€2, 1)
is complete. By defining this, we want to ensure that we have the concept p-measurable
almost ewerywhere by which we denote that some property is valid except for a zero-
measurable set.

Definition 2.2. Let (€2, 1) be a complete measure space, V a finite-dimensional inner
product space and 1 < p < co. We define

LP(Qu) ={f: Q2 — V| f measurable and/ |f|Pdu < oo},
Q

1/p
11l = ( / !flpdu> .

We would like to have normed vector space (LP(€2, p), | - ||,). However, the condition
| fll, = 0 does not always lead to f = 0. For example, if we have ) = R with Lebesgue
measure 4 = m and f is the characteristic function of zero, f = Xy, the condition
Il fll, = 0 holds. Thus we define the following equivalence relation:

and denote

Definition 2.3. Functions f,g € LP(2, u) are equivalent, f ~ g, if f = g almost every-
where.



We denote equivalence classes by

N=F={gelQp:g~f}
and define ) .
LP(Qp) ={f: fel(Qu}
If LP(Q, 1) is a real vector space, then is also LP(€, 1) with
(af +bg] = alf] +blg] = af + b3, a,b € R, f,g € LX(Q, ).

We set 5
1 fllp = 11 f1lps

which is well-defined by the definition of the equivalence relation ~.

From now on we identify all functions which are equal almost everywhere. Hence we
can write LP(S, ) = LP(Q), ). Now we are ready to prove that LP(Q, i) is a real vector
space with the norm || - ||,. For that we need various theorems.

Lemma 2.4. (Young’s inequality) If a,b >0, a,f >0 and a+ =1, then
a®t? < aa + Sb.

Proof. As a = 0 or b = 0, the proposition trivially holds. Assume a,b > 0. The
function x +— Inz is concave for all x > 0, i.e. for all z,y > 0

In(tz + (1 —t)y) >t Inz + (1 — ¢)lny
for any ¢ € [0,1]. Thus
In(a®b’) = alna + Blnb < In(aa + Bb).
Because natural logarithm function is increasing, the claim follows. O

Theorem 2.5. (Holder’s inequality) If p1,ps > 1, pil + p%z =1, f € L (Qpu) and
g € LP*(Q, 1), then

fge LX) and ||fglle < [ fllpillgllpe-

Proof. The cases || f||,, = 0 and ||g||,, = 0 are clear. Hence we can assume || f||,,, || g||p, >
0. Now we fix x € 2 and write

_ W@ @l 1 s L

R el T P2
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We apply Young’s inequality to get
[f@)g(@)] o 1 If@)P 1 gl
< — e b S
[fllps Ngllpe = o1 [If1 22 llglles

Since f and g are measurable, f € LP(Q,u), g € LP*(Q, ) and the integral of non-
negative functions over {2 is monotonous, we get

1 £glls LIflEE 1 llglz 11
S e oo +
1l llgllpe — 2o LfIE P2 llgllz oo P2
Thus fg € L' and

1fglle < 1 fllpllgllpe- O
Theorem 2.6. (Minkowski’s inequality) If f,g € LP(Q, ), then f+ g € LP(Q, u) and

LF+glly < 171l + llgllp-

Proof. 1f p =1, we have

Hf+gH1—/Q!erg\duS/Q(\fIHngu— 11+ gl

Assume p > 1 and ¢ = %. Then % + % = 1. If a,b > 0, we have the estimate
(a+b)? < (2max(a,b))? < 2P(a? 4+ 0P).
Using this estimate for every x € (2 we get

((f +9)@)[" < ([f (@) + [g(@)])? < 2°([f (@) + lg(2)]").

Thus
f+geLP(Qpu).

Now using triangle inequality we have further estimate
[f+glP =1f +gllf + 9P <IfIf + gl +gllf +gl7
Because f + g € LP(Q, u) and (|f + g|P~1)? = | f + g|P, we have
f + 9Pt € LUQ, ).

We note that p and ¢ are Holder conjugates, so by previous observations and Hélder’s
inequality we get

I+l = / 1+ gPdu < / I+ g du+ / gl1f + gl dp
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1/q 1/q
<1l ( [ +g\p-1>wu) +llgll, ( [ +9|”_1)"du)

1/q 1/q
— 7l ( / \f+g!pdu) ol ( [ f+g]pdu)

= (1£llp + NgllIIF + glly® = (1F 1o + lgllp)Lf + gllp ™"

Hence
1f+agll, < I fll, + gl B

By definition of | - ||,, [|f]|, > 0 for all f € LP(Q, ). If a € R and f € LP(2, p), we

have U U
||af||p=(/Q Iaflpdu) =<|a|p>1/p(/Q Ifl”du) = lallf,

Moreover, by the prior identification of equivalent LP-functions, ||f|l, = 0 if and only if
f =0. Combining these observations with Minkowski’s inequality we finally get:

Theorem 2.7. The space (LP(2, 1), || - ||p) is a normed vector space. O

Let (X, d) be a metric space. We say that a sequence (z;) in X is a Cauchy sequence
in X if for every € > 0 there is j. € N so that d(z;,z;) < € for all 4,j > j.. The metric
space X is complete, if every Cauchy sequence in X converges to some point of X. We
use the name Banach space for a complete normed vector space.

Theorem 2.8. (Riesz-Fischer) The space LP(Q, u) is a Banach space if 1 < p < oc.

Proof. Let (f;) be a Cauchy sequence in LP(2, ). For each k£ € N there is j, € N
such that

1 i . . . )
Hfi_fj|’p<? if 4,7>jr and 1 <ja<---.

We define an increasing sequence of real-valued functions g; on €2 by setting

k
gk = ’fj1| + Z |sz+1 - sz"
=1

Applying Minkowski inequality &k times we get

k k
lgully = M1F5l + D1 i = Falle < Wil + D W faes = fallo
=1 =1



k o0
1 1
< fiullp + Z@ < ||fj1||p+Z§ = [|fullp+1
P =1

for every k € N. Because the sequence (g ) is increasing, there is a function g = limy_, oo gx-
Since every g is measurable, we deduce by monotone convergence theorem and the pre-
vious estimate

[ adn = [ ity =i [ e =il < (163 + 17 < o
Q Q Q

Thus g(z) < oo almost everywhere in . Hence the series | f; (z)[+ 22, | fii,, (2) — fj, (@)]
is convergent for almost every x € €, which means that the series f;, (z)+>_,°,(fj., (z) —
fj,(x)) converges as an absolutely convergent series. We denote the sum of this series
pointwise by f(x) and set f(z) = 0 in the set where the series is not convergent. Now we
have a function f : Q — V such that f;,., = fi, + Sory (fir, (z) — f5.(x)) — f almost
everywhere in €2, as k — oo.

We prove that f € LP(S2, ) and || fr — fl|, — 0 if K — oco. Let € > 0. Because (f) is
a Cauchy sequence, there is i € N such that || f; — f;||, < € if 7,7 > i.. We will integrate
non-negative measurable functions, and thus by Fatou’s lemma we get

/ o — flPdp = / limp o fi — 3, [Pdpt = / lim infy | fi — f [Pd
0 Q (9]

< lim infkﬁ‘x’/ |fZ - fjk‘pd:u = lim infkﬁoo”fi - f]k”g <
Q

if ¢ > 4. This means that f; — f € LP(Q,u) and ||f; — fll, < e if i > i.. Hence
f=Ffi—(fi—f) € LP(p) and f; — fin LP(Q, p). O

Definition 2.9. A function ¢ : 2 — V is simple if ¢ is measurable and gets only finite
amount of different values.

If we decompose 2 into n mutually disjoint g—measurable sets, Q = [ J,_, Q, we write

¢ = Z AR Xy
k=1

where ai, € V. If u(Qx) = oo for some k € {1,..,n}, we assume that o = 0 and say
0-00 = 0. For each decomposition, we denote the set of such simple functions by £(€, u).
Clearly £(2, 1) C LP(pn), ¢+ € L(Q,pn) and ap € L(Q, u) as well as 0 € L(, p)
for all ¢,¢ € L(Q,p), a € Rand 1 < p < co. Therefore L£(€2, 1) is a finite-dimensional
subspace of LP(, i), (xq,,---,Xq,) being a basis.
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Definition 2.10. If X is a topological space and A C X, we say that A is dense in X if
A=X.

Suppose F' is a subspace of a normed vector space (E, || - ||). In that case, I is dense
in F if for every z € E there is a sequence (z;);en so that ||z; — z|| — 0 if i — oc.

Lemma 2.11. The set of simple functions is dense in LP($2, u).

Proof. Let f € LP(2, 1). We construct a sequence (¢;) of simple functions ¢, : Q@ — V
such that lim; ,..¢; = f. We assume that V is an n-dimensional inner product space.
Thus, let (vq,...,v,) be an orthonormal basis of V. If z € , we can write f(x) =
fi(z)vy + -+ - + fu(x)v,, where fi,... f, are real-valued component functions.

Let A; ={x € Q: fi(x) >0} and B; = {z € Q: fi(z) < 0} for fixed i € {1,...n}.
Now f; = fixa, + fixs,. Since f; is a measurable real-valued function (as a component
function of measurable function f) for every i € {1,...,n}, by elementary measure theory,
there is an increasing sequence (gbj‘) of non-negative simple functions such that fixa, =
limjﬁoo@/-‘i. In the same way, there is a decreasing sequence (qﬁf ") of non-positive simple
functions such that f;xp, = limjﬁooqbfi. Now we define gbj- = gbf" + qﬁf", which is a
well-defined simple function, since gb;li = 0 in B; and gbf * = 0in A;. By the prior
consideration, we have f; = lim;_,o.¢}. We define ¢; = ¢jv; + - - - + ¢fjv,, for every j € N.
Now f = lim,_,.0;.

Since

65()| = {03(a). 652 = (3 gyl 3 6} (o)

=D i@ < D fi@)2=|f(2)]
i=1 i=1
for every j € N and = € ), we have

[F (@) = &;(2)[” < ([f(2)] + |5 (2) )" < 2°[f (2)[7,

where 2P|fP| is integrable because f € LP(Q, ). In addition, the function = — |f(z) —
¢;(x)| is a measurable real-valued function since it is a composition of measurable function
x> f(x) — ¢;(x) and the continuous norm function. Therefore we can apply Lebesgue’s
dominated convergence theorem to get

W—%%:LUW—@@WW—Ao

if j — oc. O



Definition 2.12. A measure space (2, u) is sigma-finite, if

Q= and p(Q) < oo for all j €N,
jEN
where ), is measurable for all j € N.

Definition 2.13. Let ¢ : I — R be a function defined on an open interval I C R. The
function g is conver on I if for any x,y € I and t € [0, 1]

gltr + (1 —t)y) <tg(x) + (1 —t)g(y).

Lemma 2.14. If I C R is an open interval, g : I — R conver and f : R — R convezr and
increasing, then f o g is conver.

Proof. Let xz,y € I and t
g(tz+(1-t)y) < tg(x)+(1-t)g(y
of f,

€ [0,1]. Since g is convex on the interval I, we have
). Hence, under the monotone and convexity assumptions

(fog)(tr + (1 —=t)y) = f(g(tz + (1 —t)y)) < f(tg(z) + (1 —t)g(y))
<tf(g(x)+ 1 —=t)f(9(y) =t(fog)(x)+ (1 —t)(fog)(y). O

Lemma 2.15. If g : [ — R s convex, then g is Lipschitz-continuous in every closed
interval [a' V'] C I.

Proof. Let «a, 3,7 € I such that « < < 7. Now, since € Ja, [, we can write
g =ta+ (1 —1t)y, where t = (v — B)/(y — «). As g is convex, we have

9(B) = glta+ (1 —t)y) <tg(a) + (1 —t)g(v) = tg(a) + g(v) — tg(v).

Using this inequality, we get

9(8) —g(a) _ A =t)(g(v) —g(a)) _ B-a g(v) —g9(®) _ 9(v) —g(a)

f—a S —a v -« f—a y—a
Similarly,

9() —9(B) _ () —9(@) _ v =8 9(z) —g(e) _ g(v) = g(a)

y=68 = =8 y—a oy —=p V-«
Hence
9(B) —g(e) _ g(v) —g(e) _ g(v) —9(B)

(2.16) B—a = 7—a = 7B



Let [@/,b/] C I be a closed interval and =,y € [a/,0]. Let a,b,c,d € I be such that
a<b<z<y<c<d Byapplying (2.17) repeatedly we get

9(b) —9(a) _ g(y) —9(a) _ g(y) —g(z) _ 9(d) —g(z) _ g(d) — g(c)
b—a ~— y—a ~— y—x ~— d—x ~ d-c
Thus,
—g(b()) - z(a) (v —2) < g(y) —g(z) < g(dc)l - "Z(c) (y —x)

By choosing M = max{|g(b2:g(“) |, ]g(dc)l:i’(c) |} we get

l9(y) — g(z)| < M|y — z|.

Since x,y € [a/, V'] were arbitrary, ¢ is Lipschitz on [a/,']. O

10



Chapter 3

The Riesz-Thorin interpolation theorem

In this chapter we present first of the main theorems of this paper.

Theorem 3.1. Let (Q, ) be a sigma-finite measure space. Let p1,ps € R be such that
1 < p; < py < 0. Suppose that we have a linear operator

T o L (S, p) NLP2(Q, p) — LPH(Q, p) N LP2 (K, )
with respect to LP'- and LP>-norms such that the conditions

Pllpe <N T Npullollp,  and ([T Gllp, < (T llp,ll¢llp,

hold for every ¢ € LP*(Q2, ) N LP2(Q, ). Then for every p, p1 < p < pa, T extends as a
bounded linear operator

T LP(Q, 1) — LP(Q, ).

In addition, we have the uniform estimate
(3.2) 1T Flle < ITU5 Tl £1L
for every f € LP(Q, n), where a and [ are determined from the relations

1 «Q
—:——f—é, a+ =1

P P11 P2

First we prove that the intersection LP*(Qu) N LP?(Qu) is contained in LP(Q, u) for
p € [p1, pa].

Lemma 3.3. If1 < p; <p <py < 0, then

LPH(Q2, ) O L7 (Q, p1) C LP(2, ).

11



Proof. Suppose f € LP*(Q2, ) N LP2(Q, ). We make the decomposition Q = AU B,
where

A={xeQ:|f(x)]>1}and B={z € Q:|f(z)| < 1}.

Now this union is disjoint, and we have |f(z)|? < |f(x)[P? if 2 € A and |f(z)|P < |f(z)[”
if x € B. Thus

/ [ flrdp = / frdp+ / flrdp < / fPdp+ / P dp < / fPdpe+ / Py < oo.

Hence f € LP(Q, u).
Proof of the Riesz- Thorm theorem. For each disjoint decomposition Q = [J;_; ) of
measurable sets (2, we have the finite-dimensional subspace of simple functions

L(Q, ) C L7 (Q, p) N L7, p) C LP(Q, ).

By Lemma 2.11, the union UL(2, u) is dense in LP(Q, u) if p; < p < py. We consider the
operator
TI(UL(, 1)) UL, ) = LP(Q, )

Since LP(Q, u) is complete as a range and LP(Q, u) = cl(UL(2, 1)), elementary metric
topology tells us that if 7 |(U€(£2, 1)) is uniformly continuous, then it extends continuously
to LP(2, ). Hence we need only to show that the uniform estimate (3.2) holds for an
arbitrary ¢ € UL(Q, u).

Now we fix the decomposition Q@ = (J;_, Q. Let p € [p1,po] and S(0,1) C L(, u)
be the unit sphere of £(£2, ;). We assume that 7 is not a zero mapping and consider the
function

¢ = [|Toll, - 5(0,1) = R,

where .
¢ = wxa,
k=1

We define mappings

E:S50,1)—=V" FE (Z akxgk> =(a1,...,an),

k=1
prj V' =V, pri(a,...,a,) = a;

and
|- V=R, aj—|a

12



for every j € {1,...,n}. Now the mappings |pr; o E| are continuous as compositions
of continuous functions. Since S(0,1) is compact, there is a maximum for every map
|pr; o E|. Thus, there is

a = max{maxyeson|pr;o E(¢)| : j € {1,...,n}}.

Now, by writing g, = T xa, € LP'(, p)NLP2 (2, p) C LP(Q, ) and M = maxi—1,..n | gk p,
and using the linearity of 7, we deduce

n n n
1Tl = 1D angully < Y lawgall, = Y laxlllgell, < naM < oo
k=1 k=1 k=1

for every ¢ € S(0,1). Hence the function ¢ — |7 ¢||, restricted to S(0,1) is continuous.
Therefore, since S(0, 1) is compact, there is

Ap = max {[|[Toll, : ¢ € L(Q, u) and [|p[, =1}

Now we have

IT¢ll, < Ap it 6 € L(Q,p) and |[¢]l, = 1,

which is equivalent to

1Tl < Aplloll, if & € L(2, ).
This condition states that 7 |L£(€2, u) is a bounded linear map. Therefore we can set

Ap:max{% : ¢€£(Q,u)}.

Now we have a well-defined function p — A, : [p1, pa] = R. Let ¢ € [p1, p2] and (p;) be
a sequence in [py, po] such that p; — ¢ if j — co. We denote g, = T xq, for k € {1,...,n}.
For a function ¢ € L(€, 1) we have

n n n
| Zak9k|pj = | ZakgﬂijAj + | Zakgk’ijBj
k=1 k=1 k=1

n n n n
<UD angePxa, 1) argelPxm, < 1) argil” + 1) agel?
k=1 k=1 k=1 k=1

for every j € N, where A; = {z € Q : |>;_agu|” < 1} and B; = {z € Q :
| > akge?’ > 1}. We have found an integrable majorant of |¢|P for every j € N.
Moreover, by continuity of upcoming composition mappings,

’Z(ak)pjgk|pj - |Z(ak>qgk‘q it j— o0,
k=1 k=1

13



where the additional lower indice conventions p; and ¢ refer to the coefficients correspond-
ing the maxima A, and A,. Hence, by Lebesgue’s dominated convergence theorem,

lim; o0 A = hmﬁoo/ﬂ|2(ak)pj9k|pj = /Q|Z(ak)qgk!q = Aj.
k=1 k=1

Thus the function p — A, is continuous.
Let p € [p1,pa] be fixed. Let f € L(Q, u) be so that || T f|l, = Apllfll,- Now for every
h € L(, 1) and t € R we have ||T(f +th)|, < A,||f + th||,, which leads to

(3.4) Ag/g\f—i-th\pdu—/Q\Tf—i-tTh]pdu >0

by linearity of 7. The left-hand side of the inequality (3.4) defines a function F': R — R
of the variable ¢ for fixed p > 1. Since

F(t):Ag/ |f—|—th|pdu—/ |Tf+ tThiPdu
Q 0

=y [ (7 + Py~ [ (77 TR
Q Q

2 2
_ Ag/9<f+th,f+m>p/ dji— /Q<7'f+t7'h,7'f+tTh>p/ .
we deduce that F is continuously differentiable and

d d
ZF(t)= AP | = p/2 _/
o () p/th<f+th,f+th> dp

%(Tf +tTh, T f 4+ tThy??du
Q

= Aﬁ/ﬁg(lf + YR 2(f + th, hydp — /Q g(le FETh?PP 2T f + tTh, Thydu

:Agp/ |f +th|P"2(f +th, h)du—p/ T+ tThP~>(Tf+tTh, Th)dpu.
Q Q

We can do the derivation inside the integrals, because the integrands are simple functions
and thus integrals can be considered as finite sums.
As F' has its minimum at ¢ = 0, the derivative must be zero at ¢ = 0. Therefore

A%p / PP Ry — p / T FP2 (T £, Thydy

= A7y / (F1P2f, By — p / (T FIP=2T £, Th)dy — 0.

14



Dividing by p we get the identity

(3.5) Ar / (AF P2 f. hydys = / (T FP>T £, Thydp

Let r € [p1,p] be such that r(p —1)/(r — 1) < ps, and

h=f"1f €L p)

Now

(FP72Fh) = (LFIP72F, LF=0 ) = LFP2 1= f) = PP

Moreover, we have

Th=T(fI"f) = |f|"Tf.

This can be seen as follows: We write

p—r p—r
h=1fI"f =1 arxa,|" 7 f
k=1

and decompose h = Y | hxq,, where hxq, = |aj|(p*’“)/(’“*1)fxgj for every j € {1,...

Now, using the linearity of 7, we deduce

Th=>"Thva) = 2T (Jal ™ fre,) = Y la T ()
k=1 k=1 k=1

,n}.

= Z x| (T f)xa, = = || Tf.
since
T(fxe,) Z arXxe,)Xe,) = T(a;xe;) = a;Txa, = (Z akTXQk> xe; = (T f)xa,

for every j € {1,...,n}. Thus by (3.5) we get

A7 / 15 dp = / AT FP>T 1.1 f

= IA=ITANT A = T AT P

15
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Since h € L(Q, 1) and 7 € [py, po], we have ||Th||, < A.||h||, < oo. Thus |Th| € L"(, p).
Similarly, since f € L(Q,pu) and p1 < r(p — 1)/(r — 1) < po, one can deduce |T f| €
LrP=Y/=D(Q) 1), which means |T f|P~! € L/=Y(Q, u). Moreover,

1 1 1 r—1

S+— ==+ =1
T oy T T

Hence we can apply Hélder’s inequality to these functions to get

pr—r

ALl = A / I du

r—1

—UTAIT A= e < TRy = I (7))

= I, (( i

i, = ot ([0 ) (/|f|ﬂdu)l
_”4A&5</Wﬂr1@0 (/Wﬂ

Therefore
(3.6) A, < AP AL
r—1

=1\ p—1
= 1du> ) = I Al T2,

< Aclhll- AL

;m"'r

& 1du> = A, AL I

which is a special case of the inequality (3.2), since with « = 1/p and 8 =1 — 1/p we
have

g_i_ﬁ(r—l)_ozp—oz—i—ﬁr—ﬁz1—1/p+r—r/p—1+1/p:1—1/p:1

r pr—r pr—r pr—r p—1 D

Let I C [p1, p2] be the set consisting of those p € [p1, p2] such that

1
(3.7) A, <A“A52w1th—+£:—anda+ﬁ:1.

pP1 P2 p

First we note that p;,ps € I by choosing either « = 1 or § = 1. Now, let a,b € I and
¢=0b(1—1%)+1. We can assume that @ > 1 and b < a. Now

1 1 1
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Thus ¢ €]b, a[C [p1, p2]. By writing b = (¢ — 1)a/(a — 1), we can apply (3.6) and (3.7) to
get

oy

1/c g1-1/c aa ABa\l/c( pa 1-1/c __ ¢ 20 4oy b 2 +5b** Qe ABe
Ao < AYeATE < (A ADYVe(Age AR = Ay AT e Al

p2?

where «ay, 5, and «y, f, satisfy the condition of (3.8) for a and b. Now

a. B 1 (o, — ap+ ape . — O + OpC 1 o o o
e b (st fom Pt Be) LS B B) (0 B )
P1 D2 c P1 P2 C \ D1 b2 p1 D2 b1 P2

1/1 1 1 1 1

=—(-—-= b(l—-)+1 -

c(a b+b(( )+ )> c
and

Q, . ag + B, op+ 1 1
Oéc‘i‘ﬁc:(?‘f’ab_?) (ﬁ + By — ﬁb) = 2 - bcﬁb+ab+ﬁb=5—]—)+1:1-

C

Hence c € I.

The formula ¢ = b(1 — i) + 1 defines a recursive sequence starting from the points p;
and py. First we choose b = p; and a = py. The formula gives ¢; €|py, po[. For given
t € [p1,p2] we choose the successive elements a and b of the sequence such that ¢ € [b, al.
Because the point ¢ divides the interval [b, a] always in the same ratio and b < ¢ < a, the
chosen sequence converges to t. This means that I is dense in the interval [p1, ps].

Since the function p — A, is continuous on the interval [py, p2], we can easily deduce
I = [p1,po]: Let t € [p1,p2] be arbitrary and € > 0. Since [ is dense in [py, p2], we can
find elements of I arbitrarily close to t. Combining that to the continuity of the function
p — A, we know that there is § > 0 such that

|Ar— Ayl <e as |t—p/<d and pel.
This yields
Ay <Ay +e< A;?Agg + €,

_ pi(p2—p)

where «
N (p Pl)

and 8, =1 —«,. Now € = 0 as p — ¢, and hence

A, < AatAﬁt

p2?

where o, and 3, are defined in the same way as o, and 3,, and thus satisy the conditions

1
——l—&:— and o+ 5 =1.
p1 p2 t
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By the prior deduction, the condition (3.7) holds for every p € [py, po]. By the definition
of A,, that means

1Tl < A7 ARl

for ¢ € L(Q, p). This is the uniform estimate (3.2). O

The Riesz-Thorin theorem states that the linear operator 7 : LP(Q, ) — LP(, p) is
bounded for every p € [p1,ps] with respect to the norm | - ||, as the conditions of the
theorem hold. Therefore we can define the norm of the operator as follows:

Definition 3.8. If 7 : LP(Q,u) — LP(, 1) is a bounded linear operator, we define
[T |lp := supd |7l - f € LP(2, ), [ fllp < 1}

Especially, by homogeneity of the norm, we have the estimate

1T Al < Tl
for every f € LP(Q, ).

Corollary 3.9. Under the assumptions of the Riesz-Thorin theorem, the function t —

In||T |1 is convex on the interval [p%, pil]

Proof. Let x1,22 € |-, --] and s € [0,1]. Now

1 11 1 a 8
e [— —]C [p, d =242
STy + (1 . S)I’Q [.IQ 5(71] [pl pQ] an » x_12 I_ll

forp=1/(sx1+(1—s)xs) and @ = 1—s, f = s. Thus the assumptions of the Riesz-Thorin
theorem hold, and by (3.2) we get

sz1+(1—s)zg

1T ey ST
T z9
Since the natural logarithm function is increasing, we get

W7o <I(ITINTIL) = shof| Tl + (A =8| 7). O
T zo

szx1+(1—s)x

Definition 3.10. Function f : I — R, defined on an interval I C R, is locally Lipschitz-
continuous if for every x € I there is an open interval |a,b|C I such that x €la,b| and
fja,p) i Lipschitz-continuous.

Corollary 3.11. Under the assumptions of the Riesz-Thorin theorem, the function t —
[T ||+ is locally Lipschitz-continuous on |py, pa|.
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Proof. By Corollary 3.9, the function ¢ — In||T]]1/; is convex on the interval [.-, --].

Since the exponential map is increasing and convex, Lemma 2.14 tells us that also the

function t — ™17/t = |7,/ is convex on that interval. Let to €]pi,p2[. We can
choose a closed interval [a’,b'] C]py, ps| such that o’ <ty < V. Now & € [+ =] C]p%, pil[,
and the function ¢ — ||T |1/ is Lipschitz-continuous on the interval [, L] by Lemma

2.15. Since the function ¢ ~ } maps the interval [a’,V] onto the interval [, L] and
is continuously differentiable on the closed interval [a/, '], its derivative is bounded and
hence the function is Lipschitz-continuous. As a composition of these Lipschitz-functions,
the function ¢t — || 7|; is Lipschitz-continuous particularly on the open interval Ja’, b'[ 3 .
Hence the claim holds. 0

The Riesz-Thorin theorem is a powerful tool: once we know that an operator is a
bounded linear operator in LP(Q, i) for j € {1,2}, 1 < p; < ps < 00, we know also that
it is bounded with respect to every p in the closed interval defined by p; and ps. This
means, if we are able to prove the boundedness of an operator in two certain points p;
and p, relatively easily, then we get the boundedness in the interval for free. The theorem
is widely used in Fourier analysis, for example.

However, linearity is quite a strict assumption. In addition, even though the linearity
holds, the theorem is useless in many cases in practice: if the boundedness is clear with
respect to two points py, ps, it is that often with respect to any other value of p, too.
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Chapter 4

The Marcinkiewicz interpolation
theorem

In this chapter we present another interpolation theorem. Now we give up the require-
ment of linearity with respect to LP'- and LP?>-norms and consider the case where the
interpolating operator satisfies so called weak-type estimates.

Definition 4.1. If 1 < p; < py < 00, we define the space LP'(Q, u) + LP2(€), 1) consisting
of functions f which can be split as f = f; + fo, where f; € LP for i € {1,2}.

Definition 4.2. Let M be the space of measurable functions on 2. An operator T :
LPU(Q, ) + LP2(Q, ) — M is subadditive if |T(f + g)| < |Tf|+ |Tg| pointwise.

Definition 4.3. Let g : {2 — V be measurable. The function
X1 [0, 00[= [0,00], A(t) = p({z € Q: |g(=)| > 1),
is called the distribution function of g.

Clearly the distribution function is decreasing. Hence, as a monotone function, it is
measurable.

Lemma 4.4. Let f : Q — V be measurable, 0 < p < oo and X be the distribution function

of f. Then .
[uspan=p [~ e-iaae
Q 0

Proof. Since the integrands are measurable non-negative real valued functions, we can
apply the Fubini theorem to change the integrating order. Hence

» / PN dt = p / ! < / X{x:f<x>|>t}<f€)dﬂ> dt
0 0 @
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We present yet another lemma, which will be used in further analysis of the Marcinkiewicz
theorem.

Lemma 4.5. (Chebyshev’s inequality) Let f € LP(Q, ). Then the estimate

Proof. Let t > 0 be fixed. Now

holds for every t > 0.

PAL) = Pu({z € Q: [f(2)] > 1)) = /

vdp < [ 18G)Pdn =111}
{17 (z)[>} L

Dividing by t*, the claim follows. 0
Now we can present and proof the Marcinkiewicz interpolation theorem for sub-
additive operators on LP-spaces.

Theorem 4.6. Let T be a subadditive operator on LP*(Q, p) + LP2(Q, pu) for 1 < p; <
P2 < 00 such that

(.7) UHCTH

holds for every g € LPi(Q2, ), j € {1,2}, where X is the distribution function of Tg and
A; is a constant for j € {1,2}. Then for all p € |p1, pa]

(4.8) ITfllp < Apllfllp, f € L7(Q, ),

where A, is a constant depending on p, A; and p; for j € {1,2}. Moreover, we have the
bound

1 2 /P
pAY pAb )1
4.9 T SA.S( ; +
(4.9) 171 P a'(p—p1) o (p2—p)

for the p-norm of the operator T, where a; are any positive numbers with oq + ag = 1.

Proof. Let f € LP(2, 1) and aag, s be such that a; + ay = 1. For fixed t € |0, oo we
split f = f1 + fo, where

flz) if f(z) >t 0 if f(z) >t
f1(2>:{ 0 iffz)<t 0 fQ(Z)Z{f(z) if f(z2) <t
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Now

[iapda= [ = [ Lpap
0 (21 f(2)|> ) (=&l T

<tp1 _p < pd <
ST PN C e - TR

By similar calculation, [, [f2|P2du < co. Therefore fi € LP(Q, pu) and f, € LP*(Q, ).

Let A be the distribution function of 7 f. By subadditivity of 7 and the assumption
(4.7) we get

At) = p{z € Q- [Tf(2) > 1}) = p({z € Q: [T/ + f2)(2)] > (a1 + az)t})

<p({z € QT L&)+ T f2(2)] > ot + aot})
<pu{z e QT fi(2)] > ait} U{z € Q:|T fa(2)]| > aat})
<p({ze: ITfl )| > aat}) + M({Z € QT fa(2)] > aat})

% / AP+ mtm / ol
A

AR
_ rdn+ S [ fPd
al'te /{z:f(z)|>t} AP [z pe)l<ty

Using this estimate, by Lemma 4.4 and Fubini’s theorem we get

ITFIE = / T fPdu = p / P dt
0

Apl [o.¢] Ap2 o0
<l / -l (/ If!”ldu) dt + 2 / piop (/ !f\deu) dt
of' Jo {z|f(2)|>t} a3’ Jo {=If(2)|<t}
pApl o0 pAp2 o0 L
= azlﬁ /0 tr=iom (/ |FIP X 152 >t}dﬂ) dt+—- i trior Q|f|p2X{z:\f(Z)|<t}d:“ dt

2

pApl APQ o0 L
= /|f|p1 (/0 P Gt )>t}dt> dMJr Q|f|p2 i PTIP pey <ydE ) dp

D1 |f] D2
pA /\f!“ (/ 1 pldt) dyu +pA /\f\” (/ 1= mdt) dp

0 |f]

P1 p—p1 P2 p—p2 pP—p2

e /|f|”1 (Y g 22 g (s (2 VY Y
b —D2 P —D2
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pApl
/ L e / Pdy
pA1171 APZ )
— + p
(Offl(p—pl) ab?(py — p) 7115

pAY! pAY’ )Up
e (L |
177l o' (p—p) o’ (p2—p) 171

Hence we have

which proves the claim. Il

The assumptions of the Marcinkiewicz theorem are slightly weaker than the assump-
tions of the Riesz-Thorin theorem. This can be seen as follows: If 7 is a linear operator
and z € 2, we have

I T(f +9)@)| = [Tf(x) + Tg(e)|] < |[Tf(x)]+[Tg(x)]

by triangle inequality. Thus a linear operator is always subadditive. Clearly, if 1 <
p1 < pe < 00, then LPi(Q, u) C LP(Q, p) + LP*(Q, p) for j € {1,2}, since we can choose
either LP'- or LP?>-part of the function f € LPi (€, u) to be zero. Moreover, Chebyshev’s
inequality shows us that for every ¢ > 0

itz e 7l > ) < ()" < (g, )"

as j € {1,2}. Thus, the estimate (4.7) holds for f € LP*(Q,u) N LP*(2, 1). Hence the
assumptions of the Marcinkiewicz theorem hold.

The Marcinkiewicz theorem guarantees us boundedness of an operator by slightly weak
assumptions. However, this boundedness only holds in an open interval |p;, po[, contrary
to by applying the Riesz-Thorin theorem. All in all, the power of the Marcinkiewicz
theorem is in its weak assumptions, compared to the Riesz-Thorin theorem. Both of the
theorems have proved to be essential in analysis research.
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