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Abstract.
We give an elementary account of generalized Fibonacci and Lucas polynomials whose
moments are Narayany polynomials of type A and type B.

Introduction

g

fn—j _
Consider the Fibonacci polynomials F, (x) = Z(—l)J ( j JJX“‘ and the corresponding Lucas

j=0
{EJ . n n— J .

polynomials L, (X) :Z(—l)‘—_( j jx”‘z‘ and let L be the linear functional defined by
=0 n-—|j

L(F,(x))=[n=0] and M be the linear functional defined by M (L,(x))=[n=0]. Then the

n

2n
moments L(xz”)= C, are Catalan numbers and the moments M (in)= M =( j are
n

central binomial coefficients. An analogous situation holds by replacing the Catalan numbers

C, by the Narayana polynomials C_(t) = Z ¢ K ﬁt and the central binomial
k=0 +

2
n n )
coefficients M by the polynomials M, (t) = Z[ j t!, which are sometimes called

j=0
Narayana polynomials of type B.

In this survey article I give an elementary and self-contained account of the corresponding
polynomials and the associated Catalan-Stieltjes matrices. | want to thank Dennis Stanton and
Jiang Zeng for helpful remarks and references to the literature.

1. 1. Background material on Fibonacci polynomials and Catalan numbers

The basic facts about Fibonacci and Lucas polynomials are very old and well known (cf. e.g.
[5D).

n-1
. . . =z n-1-k
The Fibonacci polynomials f,(x,s)= >’ )

Jx”“"sk satisfy the recursion
k=0



f.(x,s) =xf _,(x,s)+sf, ,(x,s) with initial values f;(x,s)=0 and f(x,s)=1.

We will consider the special Fibonacci polynomials F,(x) = f, ,(x,-1). If U (x) denotes a

Chebyshev polynomial of the second kind then we can equivalently write F (x)=U, (gj

The first terms of the sequence (F,(x)) , are

1, x, -1+x2, —2x+x3, 1-3x2+x4, 3x-4x3+x5,

Remark

Let me recall some well-known facts about orthogonal polynomials (cf. [4], [13],[17]). These
are polynomials (pn(x)) _, satisfying a recursion of the form

nx

P, (X)=(X=s,,)P,,(X)—t ,p,,(X) with initial values p_,(x)=0 and p,(x)=1. The
corresponding Catalan-Stieltjes matrix (a(n,k)) (cf. [13]) consists of the uniquely

determined numbers a(n,k) which satisfy x" =Za(n,k) p, (X).

It satisfies

a(n,k)=a(n-Lk-1)+sa(n-1k)+ta(n-Lk+1) (1.1
with a(0,k) =[k =0] and a(n,-1) =0 because
3 a(n,K)p () = XX =3 (-1 K)xp, ()= 3" a1~ LK) P (45, B () +4 1, ()
k:_oz a(n-1,k-1)p,(x) +Zkzoska(n -1,k)p, (x)+ gtka(n -1 k+1)p, (X).

The numbers s, and t, uniquely determine both the polynomials p,(x) and the
corresponding Catalan-Stieltjes matrix.

Let L be the linear functional defined by L( pn) =[n=0]. Here we use lverson’s convention

[P]1=1 if property P istrue and [P]=0 else. The polynomials satisfy moreover
L(p,p,,) =0 for m=n, i.e. they are orthogonal with respect to L. But we shall not use this

property.

The numbers L(x”) are called moments of the sequence (pn(x)).
If all s, =0 then P,(X)=p,, (\&) satisfies

Pl(x) =X _tO and I:>n (X) = (X _th—l _th) Pn—l(x) _t2nt2n+lpn—2 (X)

Panes (V)

and Qn (X) = T SatiSfieS Qn (X) = (X _t2n _t2n+l)Qn—1(X) _t2n+1t2n+2Qn—2 (X)



This splitting is equivalent with the odd-even trick in [6].

For the Fibonacci polynomials F, (x) the numbers a(n,k) satisfy
a(n,k)=a(n-Lk-1)+a(n-1,k+1) (1.2)

with a(0,k) =[k =0].

Thus a(n,k) can be interpreted as the number of elements of the set of n— letter words
w,w, ---w, in the alphabet {-1,1} that add up to k, and all whose partial sums are non-
negative because for w, =1 the word w,w, ---w, , adds up to k-1 and for w, =-1 to k +1.

These so-called ballot numbers are well known and satisfy
2n+k 2n+k
a(2n+k,k) = - : (1.3)
n n-1

or equivalently

NS

X" = H[(U—(kilnﬁﬂ (x). (1.4)

Let L be the linear functional defined by L(Fn):[n:O]. Here [P]=1 if property P is true
and [P]=0 else. Then (1.4) implies

ay_[2M) (20 )_ . (20} 1
L(x )_(nJ (n—lj_c”_(anﬂ (1.9)

is a Catalan number and L(xz””) -0.

The first terms of the sequence (C,)  are

1,1, 2,5, 14, 42, 132, 429, 1430, 4862,

Let us compute the generating functions f, (z) = Za(n, k)z". Then (1.2) translates into

f(2)= Z( fia(2)+ fk+1(z)) (1.6)
and
f,(2) =1+ zf,(2). 1.7)

k+1

The uniquely determined solution of these equations is f, (z) = z*f (z)*** if we set

f(2)=1,(2).

This can easily be verified by comparing coefficients.



By (1.7) f(z) satisfies f(z)=1+2z°f(z)> which implies the well-known result

[ 2
f(z)= chzzn :ﬂ.

n>0 222

Let us also consider the polynomials

k
P,(0) = Fan (VX) = Z( )" [”;k ]
and

F2n+l \/; k 1
Q.0 - f()Z (n;(;;}(k

2o

Let L, denote the linear functional defined by L, (P,)=[n=0].

By (1.4) we get

Then we get for the moments

Analogously we get

S

Let L, denote the linear functional defined by L, (Q,)=[n=0].

Then we get for the moments
Ll(x“)— 2n+1) (2n+1 _c
n n—l n+l*

1.2. Narayana polynomials as moments

The Catalan numbers are special cases for t =1 of the Narayana polynomials

o7 Jees

for n>0 and C,(t) =1. (cf. [14]).

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)



The first terms of (C, (t))  are
2 2 3 2 3 4
1 2o 24+ € L +3E+E; 1 +6CE+6E"+ 1 +210TC+ 207+ 10" £,

For t =2 they reduce to the little Schroeder numbers (C,(2))  =(11,3,11,45,197,.--), OEIS
[12], AO0L003.

Let 7,,(t)=1and z,,,,(t)=t. Define polynomials F,(x,t) by the recursion
F(68) = XF, , (x1) ~ 7, ,(OF, (1 (1.16)
with initial values F(x,t)=1 and F (x,t)=x.

The first terms of the sequence (F,(x,t))  are

4 5

1, =x, —1+x2, —x—tx+x3, 1 -2ttt ax r srtgas -2 2t % .

Their generating function is

1+ xz +tz°
F (x,t)z" = .
; (x0)2 1—(x2—1—t)22+tz4

(1.17)

Then we get
Theorem 1 ([1],[3], [11], [13], [16],[17])

Let L be the linear functional defined by L(F,(x,t))=[n=0]. Then the moments satisfy
L(x*")=C,(v),
(1.18)

L(X2n+1) =0.

Remark

By starting with C_(t) it is easy to guess (1.16) in the same manner as | have done in [4].

In order to guess explicit formulae for F_ (X,t) it is convenient to consider the polynomials
with odd and even degrees separately. To this end we consider the polynomials

F2n+l(\/;’t)
P.(x,t)=F,, Jx,t) and LX) = ——re——=.
(D) = By (Vi) and Q,(6t) =——=
Then (1.32) and (1.21) can be summarized to give the formula
{EJ & E_J‘ n_—l_k+j_72k
F(t)=>(-D>| |2 2 Txn2k, (1.19)
k=0 j=0 .

k-] i



1.2.1. The polynomials Q, (x,t).
The polynomials Q,(x,t) satisfy the recurrence
Q,(x,1) = (x=1-1)Q,, (x, 1) ~1Q, , (x,1) (1.20)

with initial values Q,(x,t) =1 and Q,(X,t) = x-1-t.

n+l _ pon+l
Thus Q,(x,t) = f,,,(x—1-t,—t). Binet’s formula gives Q,(x,t) _e h

X—1-t+4(x—1-t)" -4t x—1-t—(x—1-t)" -4t
and g =p(x,t)= :

with a = a(X,t) =
a =a(X,t) 5 5

A more general class of polynomials has been considered in [1].

By induction we get Q,(x,t) = > (-1)""q,, (t)x" with
k=0

qn,k(t)=nZ_k‘,(n; jj[kf jjt". (1.21)

J
n+k+1

From (1.10) we see that q,, (1) = :

‘ 2k +1
The first terms of g, (t) are
1
1+t ]
1l+t+t 2+2¢t 1
1+t+t?+¢t? 3+4t+3¢t2 3+3¢t 1
1+t+t2+t?+tt 4+6t+6t?2+4¢3 6+9t+6t? 4+4t
1+t+t2+td+t%+¢3 5+8t+9t?2+8¢t3+5¢t4 10+18t+18t2+10¢3 10+16t+10t? 5+5t 1

Note that the polynomials g, (t) are palindromic.

Let B, ,(t) be the uniquely determined polynomials such that

X" =2 B, (DQ(x.1). (1.22)
k=0
The recursion of Q,(x,t) implies that
B.«(t)=B, ., t)+A+)B ,, () +tB, ,, ,(t) (1.23)

with B, (t)=[k =0] and B, ,(t) =0.

The first terms of the sequence (B, , (t), B, (t), -, B, ,(t))  are
6



1

1+t il
1+3t+t? 242k 1
1+6t+6t2+¢t3 3+8¢t+3t2 3+ 3¢t 1

1+10t+20€2+10t3+¢2 4+20t+20t%2+4+t3 6+15t+ 6t? 4+4t 1

By induction we can verify that

Son+l (n+lk+1 n n+1 ~ n+1 n j
SR NN -0 (1 A i P
(1.24)

For k=0 we get
Bn,O (t) = Cn+1(t)' (125)

From (1.13) we see that B_, (1) 2n+1 2n+1 2k +2 (2n+1
A3) w _ _ _ |
" n-k ) \n-k-1) n+k+2{n-k

This gives the Catalan triangle OEIS[12], A039598

1T B @0
2z 1 D
5 4 1
14 14 ©

0
0
i
42 48 27 8

= o OO O

For the little Schroeder numbers the corresponding triangle is OEIS [12], A110440,

1 0 0O 0 0)
3 1 0O 0 O
14 6 i @ ©
45 31 9 1 0O

197 156 B0 T2 1

There is a nice interpretation in terms of weighted NSEW-paths. A NSEW-path is a path
consisting of North, South, East and West steps of length 1. (Cf. [9] and [10]). We consider
only NSEW- paths which start at (0,0) and end on height k >0 and never cross the x — axis.

B, « (1) is the weight of all those NSEW-paths with n steps which end on height k, if the
weight is defined by w(N) =w(E) =1 and w(S) = w(W) =t. This follows immediately from
(1.23) because there are 4 possibilities to reach a point of height k. For k =0 this reduces to

Bn,o (t) = (1+ t) Bn—l,O (t) + tBn—l,l (t)

For example for n=2 and k=0 we get w(EE) =1 w(NS + EW +WE ) = 3t, w(WW ) =t°.
7



For k =1 we get w(NE)+Ww(EN) =2 and w(NW )+ w(WN) = 2t.

Let y>0 and let w,(x,y) be the number of NSEW-paths from (0,0) to (x,y) which do not
cross the x — axis. It has been shown in [9] that

w( NPT k)— n n n n B n+1 n+1\k+1
" PO ki) Uim) k1) T k14§ Jnen

A purely combinatorial proof has been given in [10] and can be considered as another proof
of (1.24).

All these polynomials are palindromic and gamma-nonnegative, i.e. they have a
representation of the form Z 7n jtj(1+t)“’2j where y, ; are non-negative integers. (Cf. [14]

for this notion).

More precisely we have

"o
B, (t) = z( + Ij k+1 [Ziik}i(l+t)n_k_2i’ (1.26)

= I i+k+1

which for k=0 reduces to

5
Coa® =Zc{;}i<1+t>“-”. (L.27)

i=0

In order to prove this we modify a method developed in [15]. Let
f(N)=1f(S)=-1f(E)=f(W)=0.

To each non-negative NSEW- path u, ---u, with u, € {N,S,E,W} whose endpoint is on

height k we associate the n— letter word f(u,)f(u,)--- f(u,) inthe alphabet {-1,1,0} that
adds up to k, and all whose partial sums are non-negative.

For each such sequence there are i terms f(u;)=-1and i+k terms f(u;)=1 for some i.

On the other hand we can choose 2i+k places where u; =N or u; =S, i.e. f(u;)==11in

n
(Zi k) ways. By (1.3) we can order the signs in such a way that the corresponding path is
+
.. (k+2i K+ 2i kK+2i) k+1 . .
non-negative in -] = . |- ways. In the remaining n—2i—k
i i—-1 I Ji+k+1
places we can arbitrarily put W or E. The weight of all such paths is therefore

k 2 i n-k-2i
R R L
2i+k i i+k+1




If we define the linear functional L, by Ll(Qn(x,t)) =[n=0] we get from (1.27) that

L (X")=C,a(®). (1.28)

Let us compute the generating functions f, (z,t) = Z B, (t)z". As above we see that they
satisfy -

fo(z,t)=z(f (2. t)+@+t)f (z,t) +tf,(z,1)) with f(z,t) =1+ (@A+t)zf(z,t) +1tzf,(2,1).
The unique solution is

f (z,t) = 2" f (z,t)""" where f(z,t) satisfies 1—(1—(1+1t)z) f (z,t) +tz*f (z,1)* = 0.

This implies

fzt)=> Co.t)z"= 1-(Lrt)z—(L-(+t)2)* 4tz

o7 (1.29)
n>0

Since 1- (1-(1+t)z) f (z,t) +tz*f (z,t)> =0 we get

-1, 1 K Kilpk+d k w | _ f(z,1) t _ 1
Zk:B“’k(t) -1 _t—1(zk“Z Fzy™ Zk:Z fz) j_ t—1 (1—tzf(z,t) 1—zf(z,t)j
() (t—1) f(z,1) f(z,1) 1

T t-1 (1A @) (I-tuf () 1-@ ) @)+ f ()7 f(z)-20+0)2f () 1-2(+t)z
This implies
Y B O (Lt +tF) = (2t +2)". (1.30)
k=0
A combinatorial proof of (1.30) has been given in [2], proof of identity 1, in a somewhat
different context which we will translate into our terminology.

The right-hand side of (1.30) is the weight of all NSWE-paths of length n.

Let B, be the set of all non-negative NSWE-paths of length n which end on height k.

For peB,, we define k+1 different paths ¢,(p), 0<i <k, of length n such that
w(g,(p))=t'w(p).

To this end define the last ascent to height i of pto be the last step N from height i—1 to i.
Let @ (p) denote the path obtained by changing each of the last ascents to heights 1,2,---,i
to downsteps S. For i =0 let ¢,(p) = p. Then all ¢ (p) are different and for i >0 not non-
negative. The height of ¢,(p) is k—2i and the weight is w(g, (p))=t'w(p).



Let on the other hand g be a path with height j, which crosses the x —axis. Then it has a set

of premier descents below the x —axis, i.e. the first (from left to right) down steps S from
height m to m—1 for m=0,-1,---. Suppose q has i premier descents below the x— axis.

Then changing each of these S to upsteps N gives a new path p which is non-negative and
ends on height j+ 2i. Itis clear that ¢, (p)=q and w(¢;(p))=t'w(p).

For example
B(2,0) ={EE, EW,WE, NS,WW },

B(2,2) = {NE,NW,EN,WN}, ¢, (B(2,2)) = {SE,SW,ES,WS},

B(2,2)={NN}, ¢,(B(2,2))={SN}, ¢,(B(2,2))={SS}.

1.2.2. The polynomials P, (x,t).
The polynomials P, (x,t) satisfy the recurrence
P.(x,t)=(x-0o,,(t)P,,(x,t)-tP, ,(x,t)
with initial values P,(x,t) =1 and P(x,t) =x-1,
where o,(t) =1 and o, (t) =1+t for n>0.
We have for n>0
P (1) = Q, (X, 1) +1Q, 4 (x,1). (1.31)

For (1.31) holds for n=1 and n=2 and for n >3 both sides satisfy the same recursion.

Letus set P, (x,t)=> (-1)"p,, (t)x".

k=0
Then we get
ok n—j)(k=1+ )
pn,k(t)=2[ J( . }‘. (1.32)
AL J

The first terms of the sequence

(pno(t) :qn,O(t)_qn—l,O(t)’ pnl(t) = qn,l(t)_qn—l,l(t)"“’ pn,n (t) :qn,n(t)_qnfl:”(t))nzo are

1

1 1

1 2+t 1

1 3+2t+t? 3+2¢t 1

1 4+3t+2t%2+1t3 6+6t+3t? 4+3t 1

1 S+4t+3t2+2¢t%+td 10+12t+9t2+4+t3 10+12t+ 6t2 5+4t 1

10



Let A () be the uniquely determined polynomials satisfying

X" = i A, (OP(x,1). (1.33)
Then
Ah,k )= Ah—l,k—l (t)+ Oy ) A]—l,k (t)+ tA1—l,k+1 (t) (1.34)

with Ay, (t)=[k =0] and A, ,(t)=0.

This means that A, (t) can be interpreted as the weight of all NSEW - paths of length n
which end on height k and which have no W-step on height 0.

For example let n=3. For k=0 we have w(EEE)=1, w(NSE +ENS +NES)=3t and
W(NWS):IZ. For k=2 we have w(NNE + ENN + NEN) =3 and w(NNW + NWN) = 2t.

The first terms of the sequence (A, (t), A, (1), -, A, ()  are

1

il 3t

1+t 2 3+t 1

14+3€ 4+ E2 3+5t4 £? 3+2% 1

1+6ts 6t2 4¢3 4+ 1A%t % 9¢£2 +£3 64+11%+312 A3t )

From (1.31) we get A, +tA ., =B, .

In general we get for n>0
S(n-1y N kn+n—j
-5 iy
AO=2"5 s i fo pieeie

:([nj_lj(kﬁilj_@(k:]+J}

For k =0 this reduces to

(1.35)

Ao (t)=C, (). (1.36)

For t =1 we get the triangle OEIS [12], A039599,

11



1 0 0 00O
1 1 0 00O
2 3 1 0 0
5 9 5 1 0
14 28 20 7 1.,
For t =2 we get OEIS [12], 172094,
1 0 0 © 0
1 & @© ¢ 9
3 4 1 0 O
i B S 2 A < T O
45 76 40 10 1
From (1.33) we get
DAL O F, (X 1) = X", (1.37)
k=0
Applying the linear functional L gives
L(x*") = A,o(t) =C,(t). (1.38)

By (1.22) we get "™ =>"B,  (t)F,,.,(x,t) which implies L(x*"*")=0 and thus proves
k=0
Theorem 1.

If we define the linear functional L, by L (P,(xt))=[n=0] then we get

L (x")=C, (). (1.39)

Let us also compute the generating functions f,(z,t) = Z A (()z". They satisfy

n>0

fo(z,t)=z(f (2. 0)+@+1) f, (z,1) +tf, (2,1)),

fo(2,1) =1+ 2( fy(z,1) +1f,(z.1)). (1.40)

Let f(z,t) satisfy f(z,t)=1+(1+t)zf (z,t)+tz*f(z,t)% Then f (z,t)=2z"f,(z,t) f (z,t)"
satisfies the first equation in (1.40). From the second equation and (1.29) we get the well-
known formula (cf. e.g. [14])

f,(2) :C(t,z)=ZC (t)z" :l+ Z(t_:l-)—\/]-—ZZ(t+:|_)+22(1;_]_)2 |

1.41
n>0 2tz ( )

12



Remarks

In terms of C(t,z) we get

S A2 =C(t,2)(C(t,2)-1)",

3B, (1)2" = (Ct, Z)—l)k”. (42

n>0 z

For t =1 it is well known that (F,(1,1))=(1,1,0,-1,-1,0,1,1,0,-1,-1,0,---) is periodic with

period 6 because a(1,1) :_1+—2\/__3 and A(L1) =_1_—2\/__3 satisfy (1,1)° = A(1,1)° =1.
For t=2 and t =3 an analogous situation obtains: «(1,2) =-1+i and £(1,2) =-1-i satisfy
a(L2)® =B12)° =2 and «(l,3) =‘3’+—2‘/‘_3 and A(13) =‘3"—2‘/‘_3 satisfy

12 12 6 P ; F (1| 2) ; FPRE ; ;
a(l,3)" = B(L,3)° =3". This implies that the sequence | ——— is periodic with period

‘JEJ n>0
16 and the sequence Llng) is periodic with period 24.
2717

We get | (1]; . (11,0,-2,-2,2,4,0,-1,-1,0,2,2,-2,-4,0,-)
4{5J n>0
and
Fy (i;? = (1, 1,0,-3,-3,6,9,-9,-18,9,27,0,-1,-1,0,3,3,-6,-9,9,18,-9,-27,0, - - )
27 L n>0

2.1. Background material on Lucas polynomials and central binomial coefficients

e

. n—k . .
The Lucas polynomials I (x,s) = —k( y ]skx”‘2k satisfy the recurrence relation
k=0 N—

I,(x,8) =xI._,(x)+5sl,_,(x) with initial values I,(x,s)=2 and I,(x,s) = X.

13



Let us consider the special Lucas polynomials L, (x) defined by L, (x)=1_(x,-1) for n>0
and L,(x) =1.

Then L, (x) satisfies the recursion
I‘n (X) = XLn—l(X) ) I—n—2 (X) (21)

with 7, =2 and 7z, =1 for n>0.

The first terms of (L,(x)) . are

n>0

4 5

1, x, -2+x2, —3x+x3, 2-4x%+x R 5X-5x%x° +X P

Note that L, (x) = 2T, (g) for n>0 if T (x) is a Chebyshev polynomial of the first kind.

Let (a(n,k)) be the corresponding Catalan-Stieltjes matrix.

Then we get
a(n,k)=a(n-1L,k-1)+a(n-1Lk+1) for k>0 and a(n,0) =2a(n-11).

Thus a(n, k) is the weight of all non-negative NSEW-paths of length n whose endpoints are
on height k where all weights w(E) = w(N) =w(W ) = w(S) =1except that w(S) =2 if the
endpoint of S is on the x— axis.

The first terms are OEIS [12], A 108044,

1 0 0 O0O0O0DO
0O 1 0 00 0 0
2 0 1 09000
g0 32 0 1. 99 0
6 0 4 01 0O
0 190 © 5 90 10
20 O 15 0 6 0 1

- 2n 2n+1 )
This gives a(2n,2k) = K and a(2n+1,2k +1) = y and all other terms vanish.

With other words we get the identities

14



2.2)
Let M be the linear functional defined by M (L,)=[n=0]. Then

[an
(2.3)
n

Let now f,(z) :Za(n,k)z”. Then we have f, (z)=f, ,(z)+ f,,,(z) for k>0 and

n>0

is a central binomial coefficient and M ( 2””)

f,(z) =1+2zf (z). Thenwe get f, (z)=2"f,(z)f(2)* with f(z):Zannzl_zﬁ
n>0 z
by (1.8). This gives f,(z)=1+2zf,(z) f(z) or
2n 1
f(2)=M(z)= 2" = . 2.4
(D=M@) Z(nj — 24)
Let us also consider the polynomials
2n (n+k
R,(X)=L " 2.5
200 = Ly, (Vx )Z() n+k[2kj (2.5)
and
L, +1(\/;) 2n+1 (n+k+1
S, (X) = B : 2.6
L T lstoes P e
Let M, be the linear functional defined by M, (R, )=[n=0]. Then (2.2) gives
M (x”)—(znj—m (2.7)
o =, |= M :
If M, is the linear functional defined by M, (S,)=[n=0] then we get
2n+1) 1(2n+2) M
M, (x")= == =D 2.8
() [ n ] 2[ n+4.j 2 (28)
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2.2. The Narayana polynomials of type B as moments

The central binomial coefficients are the special case for t =1 of the Narayana polynomials
2
n(n
M, (t) = t* of type B.
2(0) g[k] yp

For t =2 we get the central Delannoy numbers (M, (2))

A

=(1,3,13,63,321,1683,---). Here

n>0

Let
7,(t) =1+t,
l+tn+l
7, (1) = for n>0, 2.9
Zn( ) 1+tn ( )
t(1+t“)

TZn+1t = 1+tn+1 '

Thus the sequence 7, (t) satisfies ,,(t) =1+t—z,,,(t) and 7,,,,(t) L with initial

Ton
values 7,(t)=1+t and = (t)—i
0 14t
Define polynomials L, (x,t) by the recurrence
L, (x,t) =xL,, (%, t) =7, , (t)L, , (X, 1) (2.10)

with initial values Ly(x,t) =1 and L (x,t) = X.

The first terms of the sequence (L,(x,t))  are

n>0

x(1+4t+t2—x2—tx2)

1, x, -1-t+x?%, - ,1+t?2-2x%2-2tx%+x4,

1+t
Itis clear that L, (x,1) = L,(x).
Let now
R, (6 t) = Ly, (VX ). (2.11)
These polynomials satisfy
R, (x,t) =(x-1-t)R _,(x,1) - T, , ()R, , (X, 1) (2.12)

with

16



T.(t)=t for n>0,

T, (t) = 2t. (2.13)

Then we get
R,(x,1) =Q,(x,1) ~tQ, ,(x.1) (2.14)
forn>2 and R,(x,t)=1and R (X,t)=x-1-t.

For n>0 we get

(m i —1J
R (%) = (<1’ (1+t”)+i(—1)”” [2] x"i(njgj(%lti. (2.15)
5

We also have R, (x,t)=a"+ " for n>0. This means that R (x,t) are the Lucas
polynomials corresponding to Q, (X, t).

If we set R,(x,t) =2 then the sequence (R, (1,1)) , =(2,-1,-1,--) is periodic with period 3,

R, (1,2

(24 )L?J

the sequence =(2,-2,0,4,-8,8,0,-16,--) is periodic with period 8, and the

n=0

R,(13)

(3 )LZJ

sequence

= (2, -3,3,0,-9,27,-54,81,-81,0,243,-729,---) is periodic with

n>0

period 12.

Let D, (t) be the uniquely determined polynomials such that

X" = Zn: D, (DR (x,1). (2.16)
They satisfy
D, x (t)= D, 11 (t)+@+t) D, 1k () +T.(t) D,k ® (2.17)

with D, (t)=[k =0] and D, ,(t) =0.
This implies that

D, (1) =[x ](1+ @+t)x+1*)". (2.18)

17



Let a(n,k) = [x“*k](1+(1+t)x+tx2)n. Since (1+1th+ xzj is palindromic we have

Jt

[xzn’j ](l+ (1+t)x+tx2)n =t [xj ](1+ (1+t)x+tx2)n and thus

n-1

[x"](1+ (1+t)x+tx2)n_l =t X" ](1+ @+ t)x+1x°)

For k >1 we have

n-1

a(n,k) = [x”"‘](1+ (l+'[)x+'[x2)n = [x”’k](l+ (1+t)x+tx2)(l+ (1+t)x+tx2)

n-1

=[x (14 (L X+t )n_l + (L[ X (1+ @+ )x+ )H [ XD (14 (L )X +1X°)
=a(n-Lk-1)+@+t)a(n-Lk)+ta(n—-1k +1).

For k =0 we get

a(n,0) =[ x" |(1+ (1+t)x+tx2)n

n-1

= [x”](1+ (1+'[)x+tx2)IH + (1+t)[x”’1’°](1+ (1+t)x+tx2)IH + Zt[x”’l’“)](u L+ 1)x+0¢)
=ta(n-Lk-1)+@1+t)a(n-1,0)+ta(n-11)=(1+t)a(n-1,0)+ 2ta(n-1,2).

Another formula for n>0 is

Dn,k(t)=§[r;j[kz Jti. (2.19)

n

n ny. . i . -
This follows from (1+x+tX(1+X)) = Z[ _}‘x’ (L+x)™ by considering the coefficient of
i\ J

Xn—k

By (2.17) the polynomials D, (t) can also been interpreted as the weight of all NSEW-paths

of length n and whose endpoint is on height k with weights w(E) =w(N) =1, w(W) =t,
w(S) = 2t if the endpoint of S is on the x —axis and w(S) =t else.

Let for example n=2 and k =0. Then we have w(EE) =1, wWW) =t*, w(NS)=2t,
W(EW)=w(WE) =t. For n=2 and k =1 we get w(NE)=w(EN) =1 and
WWN) =w(NW) =t.

The first terms of the sequence (Dn,0 (t),D,,(),--,D,, (t))n>0 are

1

1+t I

ot BE L £ 2 MW 2 1

1+9t+9t2+¢t3 3+9¢ +312 3+3¢t 1

1+ 16 t+36t2+ 1613+t 44+24t+24t2+41¢3 6+16t+6t2 4+4t 1

18



1
2
6
20 EHS
T0 56 28

For t =2 we get OEIS [12], A118384,

1

2n
Fort=1 D, (t) reducesto D,, (1) :[ j and we get the triangle OEIS [12], A094527,
0
1
4
0
3 i
13 6

n—k
63 33

321 180 62 A2

0 O
0 O
1 0
6 1
8

o O OO

0
0
1
9

| > I o B < )
OO o O

The polynomials D, (t) are gamma -nonnegative. More precisely we have
{L;I(J 2j+k n j k2
D, (@)= 1+t)" 2.20
03[0 by e
The proof is analogous to the corresponding proof of (1.26).

For each non-negative NSEW- path u,---u, with u, € {N,S,E,W} whose endpoint is on
height k there are i terms f(u;) negative and i+k terms f(u;)=1 for some i. We can

choose 2i+k places where u; =N or u; =S in [ J ways. By (2.2) for t =1 the weight

n
2i+k
: . (k+2i . : _ :
of all non-negative paths is ( : ] The remaining n—2i—k places can arbitrarily be filled

with W or E. Therefore for arbitrary t the weight of all such paths is

KNG T

Let M, be the linear functional defined by M, (R, (x,t))=[n=0]. Then (2.16) and (2.19)
imply
M, (X") =M, (t). (2.21)

This result can be found in [1] and [13] and is implicitly contained in [17].
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Formula (2.16) implies x*" =>" D, ()L, (x,t) and therefore
k=0
M (X*") =D, ,(t) = M, (1). (2.22)

n
In the same way there are rational functions E, (t) such that x*™* =>"E,, (t)L,.,(x.t)
k=0

which implies M (x*"*) = 0. This gives

Theorem 2 ([1], [13], [17])

Let M be the linear functional defined by M (Ln(x,t)):[n =0]. Then the moments satisfy

M (x*") =M, (1),

(2.23)
M (X2n+l) — O.
Let us now compute the generating functions f,(z,t) = z D, (Dz".
n>0
We get f,(z,t) =z( f,(z,t)+Q+1) f (z,t) +tf, .. (z,1)) for k>0 and
f,(z,t) =1+ L+ t)zf,(z,t) + 2tzf (z,1).
This gives f, (z,t) =z"f,(z,t) f (z,t) with
PO e R Ja 2(1+t)z) 4 _CUD-L o0 Ths
2tz z
1 1
f.(z,t) = = :
’ 1-(+0)z-227F(2,t)  J1-@A+1)2)? —4tz?
This gives
1
M(t,z)=) M (t)z" = (2.24)
Z: JA-(1+1)2)% - 4tz2
and
3D, (2" =M(t,2)(C(t, z)-1)". (2.25)

n>0
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Corollary

Let

i

with c,(m,t) =1be the m—fold convolution of C_(t) with itself (cf. (3.2)).

Then for m>1

1 n am n-m -
= Z( 0 Dn,k(t)]Rk(X,t) = Cppj(M)X, (2.26)
[Ty =\
j=0
Proof
By (3.4) we have

o" Z Dn+m,k (t) 7" = C(t1 Z)mz Dn,k (t)Zn.

ot" n>0 (n+m)"'(n+1) n>0

Therefore the left-hand side of (2.26) is the coefficient of z"™™ of the power series

C(t, z)mzzn: D, (DR (x,1)z" =C(t,2)" > x"z" =D ¢, (m,t)z' Y X'z’

n>0 k=0 n>0 i>0 >0

n—-m
and the coefficient of z"™ is > c, . (m,t)x’.
j=0

et S B () > e )

(2.26) for t =1 implies

Z(Z:Jr m]sz(X) ZC (m, x> = nZ s (mfzjsz‘”‘m‘”-

k=0 om+2] J

For m =1 this reduces to

n-1/92n-1 n-1 1 1+2J 1 n-1 L
L X) = - . X(nlj): sz(nlj).
kz( j%() Zl+21[ j j 2.°

=l n+k )
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It seems that there are also similar extensions of (1.22) and (1.33).

Conjecture 1

n-m-1

Z[ aat: Aq,k(t)]Pk(x,t) =ﬁ(n ) Z (j+D)xc, ., (mt), (2.27)

n
k=0

Z“:(aat_“; B, () QX 1) = ﬁ(” +1- J')If(i +1)x’c, . (m,). (2.28)

k=0 j

Let me only mention one special case for m=1.

. 0B, (k,t 2n+1
Since #Ll = (k +1)[n e _J we get

n 2n+1 IS ,
Z(k‘”-)(n_k _:Jszﬂ(X) =Z(J +1)Cn—1—jX21 g
k=0 j=0

L2n+l(\/;’t)
X

1+ 4t +t? 1+t"™ | 14t"
Let o, (t) =————— and o, (t) = .
1+t 1+t" 1+t

2.3. The polynomials S (x,t) =

The polynomials

S, (x t):m (2.29)
n\ " \/; :

satisfy the recursion
t(1+t"2)(1+1")
(1+t”‘1)2

1+ 4t +t?
1+t

S,(x,t) =(x—o(n-1,1))S (1) - S, _,(x,t)

with initial values S,(x,t) =1 and S,(x,t) = x—

Theorem 3

The polynomials S, (x,t) are explicitly given by

5,001 =—— 3 (-1)"*G, , ()" (2.30)

1+t" &
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with

j+k)n-j-1
nk(J; J[nkilj(mk+n—j) | |
Gnk(t):j=0 <aD (t+ 12, (2.31)
for k >0 and
Gmx0=%2n+nﬂ+§iﬂ. (2.32)

The first terms of the sequence (G, ,(t),G,,(t),-,G,,(t))  are

2
1+4t+t? 1+t
1+t+6t2+t3+tt 2+3t+3t2+2¢3 1+ t2

1+t+t2+8t3+t4+t%+1t5 3+5t+6t2+6t3+5t%+3¢t5 3+4t+4t3+3¢t 1+ t3

To prove this observe that by (2.10) we get
xS, (x,t) =R, (x,t)+z(2n,t)R, (X,1).
This is equivalent with

[Xkﬂ((ht" )R (6, 1) +(1+t™)R, (X,t)) =(-D""G,, (®).

Let us first consider the coefficient of t! with j<n.

Comparing coefficients gives the easily verified identity

PR g v g}
[k+1j[ j j(njlj [k+1j[ j j m

B e

k(k +1)

2n-k-j

Now let us consider the coefficient of t . Here we have to show that

j+k)n-j-1 _
) )[ 1 J(n(k+1)—1)

(nnqﬂkJ%”KRmAx0+mAK0)‘[ k(k+1)
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The left-hand side is

n+1\(n—k\(n—j 1 n \(n-k-1\)(n—j 1

k+1 j k n k+1 j-1 k n-1
K+ j k+j-1

which can be simplified to give the right-hand side.

The coefficients of G, , (t) are related to the numbers g(n, j,k) in OEIS [12] A051340,
A141419, A185874, A185875, A185876.

Theorem 4

The functions E, , (t) which satisfy

SE,, ()5, (6t =X’ (2.33)
are
S n+1 j n+l-j
o e
E,(t)=- T (2.34)

for n>k and E_,(t) =0 else.

As special case note that

n(n\/n+1 i 1)
t) 4t t!
ZU( j ]( ) Z( j j M, ()

E (t)=" == = . 2.35
no(®) 1+t 1+t 1+t (235)

Proof

By (1.1) this follows from

nk(t) an(t)+r(2k+1)Dn k+1(t) z(]](kz J]tj +tfi-:kt+l)

R
el )

24

(s toak

—
I =3
o



Thus the linear functional M, defined by M, (S (x,t))=[n=0] has the moments

Ml(x“):'vll”%lft). (2.36)

The first terms of the triangle ((1+t)En10(t),(1+t2)Enyl(t),---,(1+t”*1)Enyn(t)) e

1+t
1+4¢t+t? 1+t2
1+9t+9t2+¢t3 2+3t+3t2+2¢3 1+t3

1+16t+36t%2+16t%+t* 3+12t+12t2+12t%+3¢t4 3+4t+4t3+3¢t8 1+t

The first terms of the triangle (EnVO(Z), E..(2),-, E”'”(Z))nzo are
1 0 0 0 0 0 0 0
% 1 0 0 0 0 0 0
75 | % 1 0 0 0 0 0
107 2 3 1 0 0 0 0
5 9
561 1272 226 222 1 0 0 0
5 3 17
8989 1453 4510 1970 529 1 0 0
3 9 17 33
16213 8244 3155 1“*15?“ ljfl 1%:6 1 0
265729 233303 57789 103289 46403 14 581 2839 i
3 5 3 17 33 65 129

Note that the first column contains the numbers E_,(2) = M”*Tl(z) By [7], Theorem 5.8, the

Delannoy numbers M (2) are multiples of 3, i.e. E,,,(2) N, ifandonly if the base 3
representation of n contains at least one 1. This is sequence OEIS [12], A081606,
(1,3,4,5,7,9,--).

3. Convolutions of Narayana polynomials.

Finally we want to derive some convolution formulae. By (1.41) we have

_ Lzt —1)—\/1—22(t+1)+ 7% (t-1)*

C(t,z)=).C,(t)z"

n>0 2tz
or equivalently
tzC(t,z)* = C(t,z) —1-zC(t, z) + tzC(t, 2). (3.1)
We will show that
C(t,z)" =Y c,(m)z" (3.2)

n>0

with
25



¢ (m,t)= ni(”iﬂ[m mj m_ (3.3)

k4+m)n+m

and c,(m,t) =1.

tin-1)n+1 tin-1)n
Note that ¢, (L,t) =) Y => B =C, (t).
=k J\k+1)n+1 = k J\k/k+1

It suffices to show that

tzC(t,z)" =C(t,z)" " (1+z(t-1))-C(t,2)"*

holds if we replace C(t,z)" by > c,(m,t)z".

n=>0
The coefficient of z"* is
tc,(m,t)=c,,(m-Lt)+(t-L)c,(m-Lt)—c,,(m-2,1).

The coefficient of t“* is

n-1Yn+m\) m (N n+m m_1+ n-1\Yn+m-1) m-=1
k lk+m/n+m \k+1)lk+m/)n+m k lk+m-1/n+m-1
n-1\(n+m-1\ m-=1 n n+m-1) m=2

k+1 k+m /n+m-1 {(k+1){k+m-1/n+m-1

n-1\(n+m-1
Dividing by( " J(k+m J this gives
+ —

m _n m_1+ m-1 n-k-1n-k m-1 n m-2
k+m k+1k+m n+m-1 k+1 k+mn+m-1 k+ln+m-1

which is easily verified.

More generally we want to show that

o" Z Dn+m,k (t) 7" — C(t, Z)mz Dn,k (t)zn_ (34)

ot" n>0 (n+m)"'(n+1) n>0

The coefficient of z" of the left-hand side is

[n+mj[n+mj[]j
v(n,m,k):i J n:;k M)giem
")

As above it suffices to verify that
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tzC(t,z)">_D,, ()" =C(t,2)"*> D, (t)z" (1+z(t-1))-C(t, 2)"*> D,  (t)"

n>0 n>0 n>0
or
tv(n,m,k) =v(n+1, m-1k)+ (t-1)v(n,m-1,k)-v(n+1,m-2K).

This can easily be verified.

For t =1 formula (3.2) reduces to the well-known formula

1—\/1—4zjm:Z m (2n+mjzn_ 3.5)

C@l)"=|—
&.2) ( 21 ~2n+m n

A well-known convolution formula for the central binomial coefficients is

(2K (2(n—k
Z[kj( (nn_k)}m. (3.6)

A computational proof follows immediately by squaring the generating function (2.4).

For the m—fold convolution we get

. . . m
TOEEDY (zi'lj(zibj...(zi'm]:zt“ ot 3.7)
et =n \_ "1 2 m n

since

N3

Dl SRR 5 el O s

n>0 k k k k

A combinatorial proof has been given in [8].

| want now to compute the corresponding convolutions of the polynomials M (t).

Their generating function is

1
M, (t)X" = . 3.8
Z(; (X J@+A-1)x)? —4x ¢9

Let

( L } =S u, ()X, (3.9)

JA+@A-t)x)?-4x | 3
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Then we get

Theorem 5

r
H

4 (2n+m -1-2j)
U (nt) = Z(Mm j( ];_ £, (3.10)
el =1 A 2k m-1-2j)

J:

Ll k=]

o

To prove these identities by induction observe that
u _(nt)=u_(nt)—@+tu_(n-1t)+1-t)’u_(n-2,1)
holds for all n.

The first 5 terms of u,(n,t),u,(n,t),---,u;(n,t) are

1 1+t 1+4t+t? 1+9t+9¢t?+t3 1+16t+36t2+16t3+tt

1 2+2t 3+10t+3t? 4+28t+28¢t2+4¢3 5+60t+126t2+60t3+5¢tH

1 3+3¢t 6+18t+6t? 10+ 60t +60t2+10t3 15+ 150t + 300 t2 +150t3+15t*
1 4+4t 10 +28 t+ 10 t2 20+108t+108¢t2+20¢t3 35+308t+594t%+308t3+35¢t4
1 5+5¢t 15+40t+15¢t? 35+175t+175t?+35¢° 70 + 560 £t + 1050 t2 + 560 t3 + 70 t*

All these polynomials are palindromic and gamma-nonnegative:

U (n,t) = z(mm 1)(2‘(}( th (L+1)" %, (3.11)

lk_[ m+2|+1
i=0

For the proof we make use of Gauss’s theorem for hypergeometric polynomials

2Fl[a,b’lj: rr-a-b) (3.12)
c I'(c-a)l'(c-b)

By comparing coefficients of t* in (3.10) and (3.11) it suffices to show that

k {ijsznjj(ZJ)“( } ] ]Jk_i2n+m—1_2j)
‘Z; [n] ﬁ (m+2i+1) [](2k+m-1-2j)

k i=0 j=0
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—k,k—n
The left-hand side can we writtenas ,F| m+1 ,1| which by Gauss’s Theorem equals

2

r[m”jr(m”mj TT(2n+m-1-2j)

2 2 -
=1 ,
F(m;1+kjr(m;1+n kj (2k +m-1-2j)

j=0

Ll K =]

Let us finally consider two special cases in detail.

For m=2 we get

: n+2 1 1
500 = Y M, (OM,. (=5 Z[zTJ :Z[nZU Z(aniljtk. (3.13)

kO

For the generating function of u,(n,t?) is

1 1( @+t)? (1-t)?
D u,(n, t7)x" =— —— — |
s (1+(1 t?)x)> —4x  4t\1-(1+t)*x 1-(1-t)°x
This implies
1+t)"™2 —(L-t)*" 1 (2n+2
n’tz :( _= t2k
UZ( ) 4t 2; 2k +1

The right-hand side follows from (1+1)*" - (1-1)" = ((1+1)" + (1-1)" )((@+1)" - (@-1)").

For m=3 we get

PR

It would be interesting to find combinatorial interpretations of these results.

References

[1] Paul Barry, Generalized Narayana polynomials, Riordan arrays, and lattice paths,
J. Integer Sequences 15 (2012), Article 12.4.8

[2] Naiomi T. Cameron and Asamoah Nkwanta, On some (pseudo) involutions in the Riordan
group, J. Integer Sequences 8 (2005), Article 05.3.7

29



[3] M. Vauchassade de Chaumont and Gérard Viennot, Polynomes orthogonaux et problémes
d’énumeration en biologie moléculaire, Sém. Lothar.Combin. B081(1984)

[4] Johann Cigler, How to guess and prove explicit formulas for some Hankel determinants,
Preprint 2010, https://homepage.univie.ac.at/johann.cigler/preprints/simplehankel4.pdf

[5] Johann Cigler, Some nice Hankel determinants, arXiv:1109.1449
[6] Sylvie Corteel, Jang Soo Kim and Dennis Stanton, Moments of orthogonal polynomials
and combinatorics, Recent Trends in Combinatorics, The IMA Volumes in Mathematics

and its Applications 159, 2016.

[7]1 Emeric Deutsch and Bruce E. Sagan, Congruences for Catalan and Motzkin numbers and
related sequences, arXiv:math/0407326

[8] Rui Duarte and Antonio Guedes de Oliveira, New developments of an old identity,
arXiv:1203.5424

[9] Richard K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Sequences 3
(2000),

[10] Richard K. Guy, Christian Krattenthaler and Bruce E. Sagan, Lattice paths, reflections,
and dimension-changing bijections, Ars combin. 34 (1992), 3-15

[11] Dongsu Kim and Jiang Zeng, Combinatorics of generalized Tchebycheff polynomials,
European J. Combin. 24 (2003), no. 5, 499-509

[12] OEIS, http://oeis.org/

[13]Qionggiong Pan and Jiang Zeng, On total positivity of Catalan-Stieltjes matrices,
submitted to EJC

[14] T. Kyle Petersen, Eulerian numbers, Birkhduser 2015
[15] Amitai Regev, Nathaniel Shar, and Doron Zeilberger, A very short (bijective!) proof of
Touchard’s Catalan identity,

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/touchard.pdf

[16] Rodica Simion and Dennis Stanton, Octabasic Laguerre polynomials and permutation
statistics, J. Comput. Appl. Math. 68 (1996), no. 1-2, 297-329

[17]Gérard Viennot, Une Théorie combinatoire des polyndmes orthogonaux généraux”,
UQAM 1983,

[18] Bao-Xuan Zhu, Log-convexity and strong g-log-convexity for some triangular arrays,
Adv. Appl. Math. 50 (2013), 595-606

30



