q-Chebyshev polynomials

Johann Cigler
Fakultät für Mathematik, Universität Wien
johann.cigler@univie.ac.at

Abstract

We give a short elementary introduction to q–Chebyshev polynomials.

1. The classical Chebyshev polynomials

In [4] I considered some polynomials related to the Al Salam and Ismail – polynomials introduced in [1] which can be interpreted as q–analogues of the Chebyshev polynomials. In this note I want to give a short direct approach to these polynomials.

The (classical) Chebyshev polynomials of the first kind $T_n(x)$ are characterized by the recurrence

$$T_n(x) = 2x T_{n-1}(x) - T_{n-2}(x)$$

(1.1)

with initial values $T_0(x) = 1$ and $T_1(x) = x$.

They have the determinant representation

$$T_n(x) = \det \begin{pmatrix} x & -1 & 0 & \cdots & 0 & 0 \\ -1 & 2x & -1 & \cdots & 0 & 0 \\ 0 & -1 & 2x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2x & -1 \\ 0 & 0 & 0 & \cdots & -1 & 2x \end{pmatrix}$$

(1.2)

The (classical) Chebyshev polynomials of the second kind $U_n(x)$ satisfy the same recurrence

$$U_n(x) = 2x U_{n-1}(x) - U_{n-2}(x)$$

(1.3)

but with initial values $U_{-1}(x) = 0$ and $U_0(x) = 1$, which gives $U_1(x) = 2x$.

Their determinant representation is
These polynomials are related by the identity

\[
\left(x + \sqrt{x^2 - 1} \right)^n = T_n(x) + U_{n-1}(x)\sqrt{x^2 - 1},
\]

which in turn implies

\[
T_n(x)^2 - (x^2 - 1)U_{n-1}(x)^2 = 1.
\]

Remark 1.1

For \(x = \cos \theta \) identity (1.5) becomes

\[
\cos n\theta + i \sin n\theta = (\cos \theta + i \sin \theta)^n = T_n(\cos \theta) + iU_{n-1}(\cos \theta) \sin \theta
\]

or equivalently

\[
T_n(\cos \theta) = \cos n\theta
\]

\[
U_n(\cos \theta) = \frac{\sin(n+1)\theta}{\sin \theta}.
\]

Identity (1.6) reduces to

\[
\cos^2 n\theta + \sin^2 n\theta = 1.
\]

It would be nice to find a \(q \) – analogue of this trigonometric definition.

The Chebyshev polynomials are orthogonal polynomials. A sequence \((p_n)_{n \geq 0} \) of polynomials with \(p_0 = 1 \) and \(\deg p_n = n \) is called orthogonal with respect to a linear functional \(\Lambda \) on the vector space of polynomials if \(\Lambda(p_m p_n) = 0 \) for \(m \neq n \). The linear functional is uniquely determined by \(\Lambda(p_0) = 1 \) and \(\Lambda(p_n) = 0 \) for \(n > 0 \) which as usual we abbreviate with \(\Lambda(p_n) = [n = 0] \). The values \(\Lambda(x^n) \) are called moments of \(\Lambda \).

For the polynomials \(T_n(x) \) the corresponding linear functional \(L \) is given by

\[
L(p(x)) = \frac{1}{\pi} \int_{-1}^{1} \frac{p(x)}{\sqrt{1-x^2}} dx.
\]

For

\[
\frac{1}{\pi} \int_{-1}^{1} T_n(x) dx = \frac{1}{\pi} \int_{0}^{\pi} \cos(n\theta) d\theta = [n = 0].
\]
The corresponding moments are

\[L(x^{2n}) = \frac{1}{\pi} \int_{-1}^{1} \frac{x^{2n}}{\sqrt{1-x^2}} = \frac{1}{2^n} \left(\begin{array}{c} 2n \\ n \end{array} \right) \] (1.9)

and \(L(x^{2n+1}) = 0 \).

For the polynomials \(U_n(x) \) we get the functional \(M \) with \(M(p_n) = \frac{2}{\pi} \int_{-1}^{1} p(x) \sqrt{1-x^2} \, dx \) since

\[\frac{2}{\pi} \int_{-1}^{1} U_n(x) \sqrt{1-x^2} \, dx = \frac{2}{\pi} \int_{0}^{\pi} \sin((n+1)\theta) \sin \theta \, d\theta = [n = 0]. \]

The corresponding moments are

\[M(x^{2n}) = \frac{2}{\pi} \int_{-1}^{1} x^{2n} \sqrt{1-x^2} \, dx = \frac{1}{2^n} \frac{1}{n+1} \left(\begin{array}{c} 2n \\ n \end{array} \right) \] (1.10)

and \(M(x^{2n+1}) = 0 \).

Instead of the classical Chebyshev polynomials of the first kind we will consider the \textit{bivariate Chebyshev polynomials} \(T_n(x,s) \) of the first kind which satisfy the recurrence

\[T_n(x,s) = 2x T_{n-1}(x,s) + s T_{n-2}(x,s) \] (1.11)

with initial values \(T_0(x,s) = 1 \) and \(T_1(x,s) = x \).

Then of course \(T_n(x) = T_n(x,-1) \).

They have the determinant representation

\[T_n(x,s) = \det \begin{pmatrix} x & s & 0 & \cdots & 0 & 0 \\ -1 & 2x & s & \cdots & 0 & 0 \\ 0 & -1 & 2x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2x & s \\ 0 & 0 & 0 & \cdots & -1 & 2x \end{pmatrix}, \] (1.12)

In the same way we consider the \textit{bivariate Chebyshev polynomials of the second kind} \(U_n(x,s) \) which satisfy the same recurrence

\[U_n(x,s) = 2x U_{n-1}(x,s) + s U_{n-2}(x,s) \] (1.13)
but with initial values $U_0(x,s) = 1$ and $U_1(x,s) = 2x$.

Their determinant representation is

$$ U_n(x,s) = \det \begin{bmatrix} 2x & s & 0 & \cdots & 0 & 0 \\ -1 & 2x & s & \cdots & 0 & 0 \\ 0 & -1 & 2x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2x & s \\ 0 & 0 & 0 & \cdots & -1 & 2x \end{bmatrix}. \quad (1.14) $$

Both polynomials are connected via

$$ \left(x + \sqrt{x^2 + s} \right)^n = T_n(x,s) + U_{n-1}(x,s)\sqrt{x^2 + s}. \quad (1.15) $$

This also implies

$$ T_n(x,s)^2 - (x^2 + s)U_{n-1}(x,s)^2 = (-s)^n. \quad (1.16) $$

2. q-analogues

We assume that $q \neq 1$ is a real number. All q–identities in this paper reduce to known identities when q tends to 1. We assume that the reader is familiar with the most elementary notions of q–analysis (cf. e.g. [3]). The q–binomial coefficients

$$ \binom{n}{k} = \frac{[1][2] \cdots [n]}{[1][k] \cdots [n-k]} \quad \text{with} \quad [n] = \frac{1-q^n}{1-q} $$

satisfy the recurrences

$$ \binom{n}{k} = q^k \binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n-1}{k} + q^{n-k} \binom{n-1}{k-1}. \quad (2.1) $$

We also need the q–binomial theorem in the form

$$ p_n(x,y) = (x + y)(q x + y) \cdots (q^{n-1} x + y) = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}. \quad (2.2) $$
Definition 2.1

The polynomials

\[
T_n(x,s,q) = \det \begin{pmatrix}
x & qs & 0 & \cdots & 0 & 0 \\
-1 & (1 + q)x & q^2s & \cdots & 0 & 0 \\
0 & -1 & (1 + q^2)x & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & (1 + q^{n-2})x & q^{n-1}s \\
0 & 0 & 0 & \cdots & -1 & (1 + q^{n-1})x \\
\end{pmatrix}
\]

will be called \(q\)-Chebyshev polynomials of the first kind.

The first terms are \(1, x, [2] x^2 + qs, [4] x^3 + q[3] sx, \cdots\).

By expanding this determinant with respect to the last column we get

Proposition 2.1

The \(q\)-Chebyshev polynomials of the first kind satisfy the recurrence

\[
T_n(x,s,q) = (1 + q^{n-1})xT_{n-1}(x,s,q) + q^{n-1}sT_{n-2}(x,s,q)
\] (2.3)

with initial values \(T_0(x,s,q) = 1\) and \(T_1(x,s,q) = x\).

Here \(T_0(x,s,q)\) is not defined by the determinant. But if we set \(T_0(x,s,q) = 1\) then (2.3) gives

\[
T_2(x,s,q) = (1 + q)xT_1(x,s,q) + qsT_0(x,s,q) = (1 + q)x^2 + qs = \det \begin{pmatrix}
x & qs \\
-1 & (1 + q)x \\
\end{pmatrix}
\]

Definition 2.2

The polynomials

\[
U_n(x,s,q) = \det \begin{pmatrix}
(1 + q)x & qs & 0 & \cdots & 0 & 0 \\
-1 & (1 + q^2)x & q^2s & \cdots & 0 & 0 \\
0 & -1 & (1 + q^3)x & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & (1 + q^{n-1})x & q^{n-1}s \\
0 & 0 & 0 & \cdots & -1 & (1 + q^n)x \\
\end{pmatrix}
\]

will be called \(q\)-Chebyshev polynomials of the second kind.

Proposition 2.2

The q–Chebyshev polynomials of the second kind satisfy the recurrence

\[U_n(x,s,q) = (1 + q^n)xU_{n-1}(x,s,q) + q^{n-1}sU_{n-2}(x,s,q) \] \hspace{1cm} (2.4)

with initial values \(U_0(x,s,q) = 1 \) and \(U_{-1}(x,s,q) = 0 \).

It remains to verify that \(U_1(x,s,q) = (1 + q)x \) and \(U_2(x,s,q) = (1 + q)(1 + q^2)x^2 + qs \), which follows immediately from (2.4).

In [2] and [5] a tiling interpretation of the classical Chebyshev polynomials has been given. This can easily be extended to the \(q \)–case. As in the classical case it is easier to begin with polynomials of the second kind.

We consider an \(n \times 1 \)–rectangle (called \(n \)–board) where the \(n \) cells of the board are numbered 1 to \(n \). As in [2] and [5] we consider tilings with two sorts of squares, say white and black squares, and dominoes (which cover two adjacent cells of the board).

Definition 2.3

To each tiling of a board we assign a weight \(w \) in the following way: Each white square has weight \(x \). A black square at position \(i \) has weight \(q^ix \) and a domino which covers positions \(i−1, i \) has weight \(q^{i−1}s \). The weight of a tiling is the product of its elements.

The weight of a set of tilings is the sum of their weights.

Each tiling can be represented by a word in the letters \(\{a, b, dd\} \). Here \(a \) denotes a white square, \(b \) a black square and \(dd \) a domino.

For example the word \(abbdaddaabd \) represents the tiling with white squares at positions 1,6,9,10, black squares at 2,3,11 and dominoes at \(\{4,5\} \) and \(\{7,8\} \). Its weight is \(x \cdot q^2x \cdot q^3x \cdot q^4s \cdot x \cdot q^7s \cdot x \cdot x \cdot q^{11}x = q^27s^2x^7 \).

Theorem 2.1

The weight \(w(V_n) \) of the set \(V_n \) of all tilings of an \(n \)–board is \(w(V_n) = U_n(x,s,q) \).

Proof

This holds for \(n = 1 \) and \(n = 2 \). Each \(n \)–tiling \(u_n \) has one of the following forms:

\(u_{n−1}a, u_{n−2}b, u_{n−2}dd \).

Therefore

\[w(V_n) = \sum_{u_n} w(u_n) = \sum_{u_{n−1}} w(u_{n−1})x + \sum_{u_{n−1}} w(u_{n−1})q^n x + \sum_{u_{n−2}} w(u_{n−2})q^{n−1}s \]

\[= w(V_{n−1})(1 + q^n)x + w(V_{n−2})q^{n−1}s \]

which implies Theorem 2.1.
The same reasoning as above gives

Proposition 2.3

Let \(u(n,k,s) \) be the weight of all tilings on \(\{1, \ldots, n\} \) with exactly \(k \) dominoes. Then

\[
 u(n,k,s) = u(n-1,k,s)(1 + q^n)x + u(n-2,k-1,s)q^{n-1}s
\]

with initial values

\[
 u(n,0,s) = (1 + q)(1 + q^2) \cdots (1 + q^n)x^n
\]

and

\[
 u(1,0,s) = (1 + q)x \quad \text{and} \quad u(1,k,s) = 0 \quad \text{for} \quad k > 0.
\]

It is now easy to verify

Theorem 2.2

The weight \(u(n,k,s) \) of the set of all tilings on \(\{1, \ldots, n\} \) with exactly \(k \) dominoes is

\[
 u(n,k,s) = q^k \left[\frac{n-k}{k} \right] (1 + q^{k+1}) \cdots (1 + q^{n-k})s^kx^{n-2k}
\]

for \(0 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor \) and \(u(n,k,s) = 0 \) for \(k > \left\lfloor \frac{n}{2} \right\rfloor \).

Proof

The initial values coincide and by induction

\[
 u(n-1,k,s)(1 + q^n)x + u(n-2,k-1,s)q^{n-1}s = q^k \left[\frac{n-k-1}{k} \right] (1 + q^{k+1}) \cdots (1 + q^{n-k-1})s^kx^{n-2k}
\]

\[
 + q^{(k-1)^2} \left[\frac{n-k-1}{k-1} \right] (1 + q^k) \cdots (1 + q^{n-k-1})q^{n-1}s^kx^{n-2k}
\]

\[
 = q^k (1 + q^{k+1}) \cdots (1 + q^{n-k-1})s^kx^{n-2k} \left[\frac{n-k-1}{k} \right] (1 + q^n) + q^{n-k}(n-k-1)q^{n-2k}(1 + q^k)
\]

\[
 = q^k (1 + q^{k+1}) \cdots (1 + q^{n-k-1})s^{k}x^{n-2k} \left[\frac{n-k-1}{k} \right] (1 + q^{n-2k}) + q^{n-k}(q^k \left[\frac{n-k-1}{k} \right] + \left[\frac{n-k-1}{k-1} \right])
\]

\[
 = q^k (1 + q^{k+1}) \cdots (1 + q^{n-k-1})s^kx^{n-2k} \left[\frac{n-k}{k} \right] (1 + q^{n-k}).
\]

Here we used the recurrence relations for the \(q \)–binomial coefficients (2.1).
Remark 2.1

Formula (2.6) is the product of
\[q^k \binom{n-k}{k} s^k x^{n-2k} \text{ and } (1 + q^{k+1}) \cdots (1 + q^{n-k}) \text{.} \]

The first term is the weight of all tilings without black squares. It would be nice to find a combinatorial model from which this product representation becomes obvious.

We have thus proved

Theorem 2.3

\[U_n(x, s, q) = \sum_{k=0}^{\lfloor n/2 \rfloor} q^k \binom{n-k}{k} (1 + q^{k+1}) \cdots (1 + q^{n-k}) s^k x^{n-2k} \text{.} \quad (2.7) \]

For the \(q \)–Chebyshev polynomials of the first kind the situation is somewhat more complicated. Here we get

Theorem 2.4

\(T_n(x, s, q) \) is the weight of the subset of all tilings of \{1, \cdots, n\} whose last block is either a white square or a domino.

Therefore for \(n > 0 \)

\[T_n(x, s, q) = x U_{n-1}(x, s, q) + q^{n-1} s U_{n-2}(x, s, q) \text{.} \quad (2.8) \]

Theorem 2.5

The \(q \)–Chebyshev polynomials of the first kind are given by

\[T_n(x, s, q) = \sum_{k=0}^{\lfloor n/2 \rfloor} q^k (1 + q^{k+1}) \cdots (1 + q^{n-k-1}) \frac{n}{n-k} \binom{n-k}{k} s^k x^{n-2k} \text{.} \quad (2.9) \]

Proof of Theorems 2.4 and 2.5

Consider the subset of all tilings of an \(n \)–board whose last block is not a black square. Let \(t(n, k, s) \) be the weight of all these tilings with exactly \(k \) dominoes.

Then

\[t(n, k, s) = u(n-1, k, s)x + u(n-2, k-1)q^{n-1}s \text{.} \quad (2.10) \]

We first show that
\[t(n,k,s) = q^{k^2} \left(1 + q^{k+1} \right) \cdots \left(1 + q^{n-k-1} \right) \left[\frac{n}{n-k} \right] \left[\frac{n-k-1}{k} \right] s^k x^{n-2k}. \] \hspace{1em} (2.11)

This is true for \(n = 1 \) and \(n = 2 \). By induction we get

\[
t(n,k,s) = u(n-1,k,s) + u(n-2,k-1) q^{n-1} s
\]

\[= q^{k^2} \left[\frac{n-k-1}{k} \right] \left(1 + q^{k+1} \right) \cdots \left(1 + q^{n-k-1} \right) s^k x^{n-2k} + q^{n-1} q^{k^2-2k+1} \left[\frac{n-1-k}{k-1} \right] \left(1 + q^k \right) \cdots \left(1 + q^{n-k} \right) s^k x^{n-2k} \]

\[= q^{k^2} \left(1 + q^{k+1} \right) \cdots \left(1 + q^{n-k-1} \right) \left[\frac{n-k-1}{k} \right] + q^k \left[n-1-k \right] \left[k-1 \right] s^k x^{n-2k} \]

\[= q^{k^2} \left(1 + q^{k+1} \right) \cdots \left(1 + q^{n-k-1} \right) + q^k \left[n-1-k \right] \left[n-1-k \right] s^k x^{n-2k} \]

\[= q^{k^2} \left(1 + q^{k+1} \right) \cdots \left(1 + q^{n-k-1} \right) \left[\frac{n}{n-k} \right] \left[\frac{n-k-1}{k} \right] s^k x^{n-2k}.
\]

It remains to verify that the recurrence (2.3) holds.

This recurrence is equivalent with

\[t(n,k,s) = (1 + q^{n-1}) xt(n-1,k,s) + q^{n-1} st(n-2,k-1,s) \] \hspace{1em} (2.12)

for all \(k \).

For \(k = 0 \) this gives \(t(n,0,s) = x^1 \prod_{j=1}^{n-1} (1 + q^j) \), which coincides with (2.11).

\[t(n,k,s) = 0 \text{ for } n < 2k \text{ and } t(2n,k,s) = q s \cdot q^3 s \cdots q^{2k-1} s = q^{k^2} s^k. \]

If (2.11) holds for \(k-1 \) and for \(k \) and \(n-1 \) then

\[t(n,k,s) = (1 + q^{n-1}) q^{k^2} \left(1 + q^{k+1} \right) \cdots \left(1 + q^{n-k-2} \right) \left[\frac{n-1}{n-k-1} \right] \left[\frac{n-k-1}{k} \right] s^k x^{n-2k} + q^{n-1} q^{(k-1)^2} \left[\frac{n-2}{n-k-1} \right] \left[\frac{n-k-1}{k-1} \right] s^k x^{n-2k} \]

\[= q^{k^2} \left(1 + q^{k+1} \right) \cdots \left(1 + q^{n-k-2} \right) s^k x^{n-2k} \left[\frac{n-1}{n-k-1} \right] \left[\frac{n-k-1}{k} \right] \left(1 + q^{n-1} \right) + q^{n-2k} \left(1 + q^k \right) \left[\frac{n-2}{n-k-1} \right] \left[\frac{n-k-1}{k-1} \right] \left[n-k-1 \right] \left[k-1 \right]. \]
For $q = 1$ the polynomial $T_n(x,s)$ can also be interpreted as the weight of the set T_n of all tilings which begin with a domino or with a white square since in this case the weights of the words $c_1 \cdots c_n$ and $c_n \cdots c_1$ coincide.

In the general case this is not true. For example for $n = 2$ the set $T_2 = \{aa, ab, dd\}$ has weight $w(T_2) = x^2 + q^2 x^2 + qs \neq T_2(x,s,q) = x^2 + qx^2 + qs$.

We have instead

Theorem 2.6

$$T_n(x,s,q) = xU_{n-1}(x,q^2s,q) + qsU_{n-2}(x,q^2s,q). \quad (2.13)$$

Proof

It suffices to show that the right-hand side satisfies recurrence (2.3).

\begin{align*}
 \left(1 + q^{n-1}\right)x \left(xU_{n-2}(x,q^2s,q) + qsU_{n-3}(x,q^2s,q)\right) &+ q^{n-2}s \left(xU_{n-2}(x,q^2s,q) + qsU_{n-3}(x,q^2s,q)\right) \\
&= x^2U_{n-2}(x,q^2s,q) + q^{n-2}s^2U_{n-4}(x,q^2s,q) \\
&+ q^{n-1}xU_{n-2}(x,q^2s,q) + q^{n-2}s^2U_{n-3}(x,q^2s,q) \\
&= x \left(\left(1 + q^{n-1}\right)xU_{n-2}(x,q^2s,q) + q^{n-2}s^2U_{n-3}(x,q^2s,q) \right) \\
&+ qs \left(\left(1 + q^{n-2}\right)xU_{n-3}(x,q^2s,q) + q^{n-3}s^2U_{n-4}(x,q^2s,q) \right) \\
&= xU_{n-1}(x,q^2s,q) + qsU_{n-2}(x,q^2s,q).
\end{align*}

In order to find a q – analogue of (1.15) let us first consider this identity in more detail.

\begin{align*}
 \left(x + \sqrt{x^2 + s} \right)^n & = T_n(x,s) + U_{n-1}(x,s) \sqrt{x^2 + s} \\
\text{is equivalent with} & \\
T_{n+1}(x,s) + U_n(x,s) \sqrt{x^2 + s} & = \left(x + \sqrt{x^2 + s} \right)^{n+1} = \left(x + \sqrt{x^2 + s} \right) \left(x + \sqrt{x^2 + s} \right)^n \\
& = \left(x + \sqrt{x^2 + s} \right) \left(T_n(x,s) + U_{n-1}(x,s) \sqrt{x^2 + s} \right) \\
& = T_n(x,s) + \left(x^2 + s \right) U_{n-1}(x,s) + \left(T_n(x,s) + U_{n-1}(x,s) x \right) \sqrt{x^2 + s}.
\end{align*}
Therefore (1.15) is equivalent with both identities

\[T_{n+1}(x,s) = T_n(x,s)x + \left(x^2 + s\right)U_{n-1}(x,s) \] \hspace{1cm} (2.14)

and

\[U_n(x,s) = T_n(x,s) + U_{n-1}(x,s)x. \] \hspace{1cm} (2.15)

To prove identity (2.14) observe that for \(q = 1 \) a tiling of an \((n+1)\)-board which does not end with a black square either ends with two white squares \(aa\) or with a domino and a white square \(dda\). The weight \(w \) of these tilings is \(T_n(x,s)x \). Or it ends with \(ba \) or \(dd \). Their weight is \((x^2 + s)U_{n-1}(x,s)\).

Identity (2.15) simply means that an arbitrary tiling either ends with a black square which gives the weight \(U_{n-1}(x,s)x \) or does not end with a black square which gives \(T_n(x,s) \).

In the general case \(q \neq 1 \) this classification of the tilings implies the identities

\[T_{n+1}(x,s,q) = xT_n(x,s,q) + q^n(x^2 + s)U_{n-1}(x,s,q) \] \hspace{1cm} (2.16)

and

\[U_n(x,s,q) = T_n(x,s,q) + q^n x U_{n-1}(x,s,q). \] \hspace{1cm} (2.17)

But we need another \(q \)-analogue of (2.14):

\[T_{n+1}(x,s,q) = q^n x T_n(x,s,q) + (x^2 + qs)U_{n-1}(x,q^2s,q). \] \hspace{1cm} (2.18)

By (2.13) we have \(T_{n+1}(x,s,q) = xU_n(x,q^2s,q) + qsU_{n-1}(x,q^2s,q) \).

Eliminating \(T_{n+1}(x,s,q) \) we need only show that

\[U_n(x,q^2s,q) = q^n T_n(x,s,q) + x U_{n-1}(x,q^2s,q). \] \hspace{1cm} (2.19)

This means that for each \(k \)

\[xq^{2k}u(n-1,k,s) + q^n t(n,k,s) = q^{2k}u(n,k,s). \] \hspace{1cm} (2.20)

This can easily be verified:
As our \(q \)-analogue of (2.14) and (2.15) we now choose the identities (2.17) and (2.18) which we write in the form

\[
T_n(x,s,q) = q^n x T_n(x,s,q) + (x^2 + qs)\eta^2 U_{n-1}(x,s,q)
\]

\[
U_n(x,s,q) = T_n(x,s,q) + q^n x U_{n-1}(x,s,q).
\]

(2.21)

Here \(\eta \) denotes the linear operator on the polynomials in \(s \) defined by \(\eta p(s) = p(qs) \).

To stress the analogy with (1.15) we introduce a formal square root \(A = \sqrt{(x^2 + s)\eta^2} \) which commutes with \(x \) and real or complex numbers and satisfies \(A^2 = (x^2 + qs)\eta^2 \) and write (2.21) in the form

\[
T_{n+1}(x,s,q) + AU_n(x,s,q) = (q^n x + A)(T_n(x,s,q) + AU_{n-1}(x,s,q)).
\]

(2.22)

Since \((q^j x + A)(q^j x + A) = (q^j x + A)(q^j x + A) \) using the \(q \)-binomial theorem (2.2) we get as analogue of (1.15)

\[
p_n(x,A) = (x + A)(q x + A) \cdots (q^{n-1} x + A) = T_n(x,s,q) + AU_{n-1}(x,s,q).
\]

(2.23)

This gives

Theorem 2.7

For the \(q \)-Chebyshev polynomials the following formulae hold:

\[
T_n(x,s,q) = \frac{p_n(x,A) + p_n(x,-A)}{2} = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} q^{\frac{n-2k}{2}} \left[\begin{array}{c} n \\ 2k \\ \end{array} \right] x^{n-2k} \prod_{j=0}^{k-1} \left(x^2 + q^{2j+1} s \right)
\]

(2.24)

and

\[
U_n(x,s,q) = \frac{p_{n+1}(x,A) - p_{n+1}(x,-A)}{2A} = \sum_{k=0}^{\left\lfloor \frac{n+1}{2} \right\rfloor} q^{\frac{n-2k}{2}} \left[\begin{array}{c} n+1 \\ 2k+1 \end{array} \right] x^{n-2k} \prod_{j=0}^{k} \left(x^2 + q^{2j+1} s \right).
\]

(2.25)
Proof
This follows from (2.2) and the observation that
\[A^{2k} = \left((x^2 + qs) \eta \right)^k = \prod_{j=0}^{k-1} (x^2 + q^{2j+1} s) \eta^{2k}. \]

Remark 2.2
For \(q = 1 \) we get from (1.15)
\[T_n(x, s)^2 - (x^2 + s) U_{n-1}(x, s)^2 = (-s)^n. \]
Since \(A \) does not commute with polynomials in \(s \) we cannot deduce a \(q \) – analogue of this formula from (2.23).

But we can instead consider the matrices
\[A_n = \begin{pmatrix} x & q^n(x^2 + s) \\ 1 & q^n x \end{pmatrix}. \]

We then get

Theorem 2.8
\[\begin{pmatrix} T_n(x, s, q) & (x^2 + s) U_{n-1}(x, qs, q) \\ U_{n-1}(x, s, q) & T_n(x, \frac{s}{q}, q) \end{pmatrix} = A_{n-1} A_{n-2} \cdots A_0. \]

Proof
We must show that
\[\begin{pmatrix} T_{n+1}(x, s, q) & (x^2 + s) U_n(x, qs, q) \\ U_n(x, s, q) & T_{n+1}(x, \frac{s}{q}, q) \end{pmatrix} = \begin{pmatrix} x & q^n(x^2 + s) \\ 1 & q^n x \end{pmatrix} \begin{pmatrix} T_n(x, s, q) & (x^2 + s) U_{n-1}(x, qs, q) \\ U_{n-1}(x, s, q) & T_n(x, \frac{s}{q}, q) \end{pmatrix} \]

or equivalently
\[T_{n+1}(x, s, q) = x T_n(x, s, q) + q^n(x^2 + s) U_{n-1}(x, s, q), \]
\[U_n(x, s, q) = T_n(x, s, q) + q^n x U_{n-1}(x, s, q), \]
\[U_n(x, q^2 s, q) = q^n T_n(x, s, q) + x U_{n-1}(x, q^2 s, q), \]
\[T_{n+1}(x, s, q) = q^n x T_n(x, s, q) + (x^2 + qs) U_{n-1}(x, q^2 s, q). \]

This follows from the recurrences (2.16), (2.17), (2.18) and (2.19).
If we take determinants in (2.27) we get the desired $q -$ analogue of
\[T_n(x,s)^2 - (x^2 + s)U_{n-1}(x,s)^2 = (-s)^n. \]

Theorem 2.9

\[T_n(x,s,q)T_n(x,qs,q) - (x^2 + qs)U_{n-1}(x,qs,q)U_{n-1}(x,q^2s,q) = q^{\binom{n+1}{2}}(-s)^n. \]

(2.28)

In [4] many other identities occur. These follow in an easy manner from the identities obtained above.

Since the $q -$ Chebyshev polynomials satisfy a three-term recurrence they are orthogonal with respect to some linear functionals, i.e. $L(T_n(x,s,q)T_m(x,s,q)) = 0$ and
\[M(U_n(x,s,q)U_m(x,s,q)) = 0 \text{ for } n \neq m. \]
These linear functionals are uniquely determined by
\[L(T_n(x,s,q)) = [n = 0] \text{ and } M(U_n(x,s,q)) = [n = 0]. \]
Of special interest are the moments of these linear functionals, i.e. the values $L(x^n)$ and $M(x^n)$. To find these values it suffices to find the uniquely determined representation of x^n as a linear combination of the $q -$ Chebyshev polynomials.

These have been calculated in [4] for the corresponding monic polynomials. Therefore I only state the results in the present notation:

For the $q -$ Chebyshev polynomials of the first kind we have
\[
 x^n = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{n}{k} a(n-2k)(-qs)^k \frac{T_{n-2k}(x,s,q)}{(1+q) \cdots (1+q^k) \cdots (1+q^{n-k})}
\]
(2.29)

with $a(0) = 1$ and $a(n) = 1 + q^n$ for $n > 0$.

This gives
\[
 L(x^{2n}) = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{n}{k} \frac{(-qs)^n}{n!} \prod_{j=1}^{n} (1+q^j)^2
\]
(2.30)

and $L(x^{2n+1}) = 0$.

For the $q -$ Chebyshev polynomials of the second kind the corresponding formulae are
\[
 x^n = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{n}{k} \binom{n}{k-1} (-s)^k \frac{1+q^{n-2k+1}}{\prod_{j=1}^{k} (1+q^j) \prod_{j=1}^{k-1} (1+q^j)} \prod_{j=1}^{n-2k+1} U_{n-2k}(x,s,q)
\]
(2.31)

and therefore
\[M(x^{2n}) = \frac{1}{[n+1]} \binom{2n}{n} \frac{1+q}{1+q^{n+1}} \prod_{j=1}^{n} \frac{(-s)^n}{(1+q^j)^2} \] (2.32)

and \(M(x^{2n+1}) = 0. \)

References

