Sampling with derivatives in shift-invariant spaces generated by exponential B-splines

Irina Shafkulovska (joint work with Karlheinz Gröchenig)

We derive sufficient conditions for sampling with derivatives in shift-invariant spaces generated by an exponential B-spline. The sufficient conditions are expressed by a new notion of measuring the gap between consecutive points. As a consequence, we can construct sampling sets arbitrarily close to necessary conditions.

Sampling in shift-invariant spaces

universität wien

We consider shift-invariant spaces: given a generator $\varphi \in L^p(\mathbb{R})$, we

Main contribution (Maximum gap theorem)

Let φ be an EB-spline of order *m* and let $X \subseteq \mathbb{R}$ be a separated set with $\mu_X : X \to \{0, \ldots, m-1\}$. If the multiplicity function satisfies dist $(\{x \in X : \mu_X(x) = m - 1\}, \mathbb{Z}) > 0$ (7)

denote its integer translates by $T_{\ell}\varphi(x) = \varphi(x - \ell), \ \ell \in \mathbb{Z}$ and with $V^p(\varphi) \subseteq L^p(\mathbb{R})$ the subspace

$$V^p(arphi) \coloneqq \Big\{ \sum_{\ell \in \mathbb{Z}} c_\ell T_\ell arphi \in L^p(\mathbb{R}), \ c \in \ell^p(\mathbb{Z}) \Big\}.$$
 (1)

Let $X \subseteq \mathbb{R}$ be a δ -separated set, i.e., $0 < \delta \leq |x - y|$ for all distinct $x, y \in X$, and $\mu_X : X \rightarrow \{0, \ldots, S\}$ its multiplicity function. We call (X, μ_X) a sampling set with multiplicities for $V^p(\varphi)$ if there exist positive constants $0 < A_p \leq B_p$ such that for all $f \in V^p(\varphi)$ holds

$$A_p \|f\|_p^p \le \sum_{x \in X} \sum_{s=0}^{\mu_X(x)} \left| f^{(s)}(x) \right|^p \le B_p \|f\|_p^p.$$
(2)

The aim is to determine sufficient conditions for (X, μ_X) to be a sampling set with multiplicities.

Exponential B-splines

An exponential B-spline (EB-spline) $\mathcal{E}_{m,\alpha}$: $\mathbb{R} \longrightarrow \mathbb{R}$ of order *m* for parameters $\alpha \in \mathbb{R}^m$ is a function of the form

$$\mathcal{E}_{m,\alpha}(x) := \bigotimes_{s=1}^{m} e^{\alpha_s x} \chi_{[0,1)}(x), \qquad (3)$$

and the weighted maximum gap satisfies

$$\mathfrak{mg}(X,\mu_X) := \sup_{j \in \mathbb{Z}} \frac{x_{j+1} - x_j}{1 + \min\{\mu_X(x_j), \mu_X(x_{j+1})\}} < 1,$$
(8)

then (X, μ_X) is a sampling set for $V^p(\varphi)$.

Proof sketch

Weak limits reduce the sampling problem to a uniqueness problem:

A set X with a multiplicity function μ_X is a sampling set with multiplicities for $V^{p}(\varphi)$ if and only if any of its weak limits of integer translates is a uniqueness set for $V^{\infty}(\varphi)$.

Solve the problem locally: On an interval $[M, M + L], M, L \in \mathbb{Z}$, the restriction of a prototypical function $f \in V^{\infty}(\varphi)$ is given by

$$f_{[M,M+L]} = \sum_{\ell=M-m+1}^{M+L-1} c_{\ell} T_{\ell} \varphi, \qquad (9)$$

where (*) denotes the convolution product.

Theorem (Schoenberg-Whitney conditions)

Let φ be an EB-spline of order m. Further let $t_0 \leq t_2 \leq \cdots \leq t_D$ and set

$$d_i := \max \left\{ \ell : t_i = \cdots = t_{i-\ell} \right\}, \quad 0 \le i \le D.$$
 (4)

The collocation matrix

$$M\begin{pmatrix} t_0,\ldots,t_D\ arphi,\ldots,T_Darphi \end{pmatrix} := \left(L_{d_i}T_\ell \varphi(t_i)
ight)_{0\leq i,\ell\leq D}$$

has a non-negative determinant. The collocation matrix is invertible if and only if for all $0 \le i \le D$ holds

$$t_i \in egin{cases} (i,i+m), & d_i < m-1 \ [i,i+m), & d_i = m-1. \end{cases}$$

i.e., it is a linear combination of L + m - 1 *shifts of the EB-spline.*

- Prove that for a sufficiently large L, there are L + m 1 samples (111) available on [M, M + L].
- Prove that these samples satisfy the Schoenberg-Whitney (iv)conditions.
- Recover f on \mathbb{R} by induction. V

Gabor frames

(5)

(6)

A time-frequency shift $\pi(\lambda)$ acts as $\pi(\lambda)f(t) = e^{2\pi i\omega t}f(t-x)$, $\lambda =$ $(x, \omega) \in \mathbb{R}^2$. Given a separated set $\Lambda \subseteq \mathbb{R}^2$, we call the collection

$$\mathcal{G}(\varphi, \Lambda) := \{ \pi(\lambda)\varphi : \lambda \in \Lambda \}$$
(10)

a Gabor frame if there exist positive constants $0 < A \leq B$ such that for all $f \in L^2(\mathbb{R})$ holds

$$A\|f\|_{2}^{2} \leq \sum_{\lambda \in \Lambda} \left| \langle f, \pi(\lambda)\varphi \rangle \right|^{2} \leq B\|f\|_{2}^{2}.$$
(11)

Corollary (Implications for Gabor frames)

Let φ be an EB-spline of order $m \ge 2$. Assume $X \subseteq \mathbb{R}$ is a discrete set with $\mathfrak{mg}(X,0) < 1$. Then $\mathcal{G}(\varphi,(-X) \times \mathbb{Z})$ is a Gabor frame. In particular, $\mathcal{G}(\varphi, a\mathbb{Z} \times \mathbb{Z})$ is a Gabor frame if and only if 0 < a < 1.

Figure: Non-vanishing shifts of $\varphi(x) = \bigotimes_{i=1}^{4} e^{x} \chi_{[0,1)}(x)$ on [0,4]. The sampling points are $x_1 = 0.5$, $x_2 = 3$, $x_3 = 3.9$, with multiplicities $\mu_X(x_1) = \mu_X(x_2) = 2$, $\mu_X(x_3) = 0$. The first sampling point lies in the support of the first three shifts of φ (dot-dashed), the second point is in the support of the next three shifts of arphi(dashed), and the last point - inthe the support of the last shift of φ (solid).

References

- A. Aldroubi and K. Gröchenig, "Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces," J. Fourier Anal. Appl., vol. 6, no. 1, pp. 93–103, 2000, doi.org/10.1007/bf02510120.
- K. Gröchenig, J. L. Romero, and J. Stöckler, "Sharp Results on Sampling with Derivatives in Shift-Invariant Spaces and Multi-Window Gabor Frames," Constr. Approx., vol. 51, no. 1, pp. 1–25, 2019, doi.org/10.1007/s00365-019-09456-3.
- K. Gröchenig and I. Shafkulovska, "Sampling with derivatives in shift-invariant spaces generated by [3] periodic exponential B-splines," In preparation, 2023.
- [4] L. Schumaker, *Spline Functions: Basic Theory*, 3rd ed. Cambridge University Press, 2007, doi.org/10.1017/cbo9780511618994.

FШF