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Abstract

We extend the popular dynamic Nelson-Siegel framework (Diebold et al. (2006)) by introducing time-varying
volatilities in the factor dynamics and incorporate realized measures to estimate the latent volatility process more
accurately. The new model is able to effectively describe the conditional variance dynamics of the term structure
of futures prices and can still be readily estimated with the Kalman filter. We apply our framework to model
the crude oil futures prices. Using more than 150,000,000 intra-daily transaction prices we construct realized
volatility measures corresponding to the latent Nelson-Siegel factors, estimate the model at daily frequency and
evaluate it by forecasting the conditional variance and density of futures prices. We document that the time-
varying volatility specification suggested in our model strongly outperforms the constant volatility benchmark.
In addition, the use of realized measures provides moderate, but systematic gains in forecasting.
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1 Introduction

Throughout the last decade commodities have become a popular asset class among investors. The commodity
markets have experienced a rapid growth in both trading activity and volume due to large inflows of investment
capital. Such financialization has directly affected commodity price dynamics and volatility1 and, as a consequence,
has emphasized the role of interactions between commodity prices and macroeconomic variables.2 Furthermore,
the financial crisis spurred investors interest in commodities since they provide a natural alternative for financial
securities.3 Analyses of commodity prices have, therefore, become increasingly important both from an academic
perspective and for practitioners.

The predominant amount of literature related to modeling and forecasting commodity prices focuses on point
forecasts, which are informative only about the central tendency of predictions. In contrast to that, density forecasts
provide rich information about uncertainty around the central tendency and allow to invoke many additional
useful statistics such as interval predictions, upside and downside risk assessments, etc. This appealing feature
recently caused a burst of interest in density forecasting of economic and financial variables among researchers and
policymakers (see e.g. Hall and Mitchell (2007), Clark (2011)). The density dynamics is of special interest when
dealing with commodity markets. The poor point predictability of commodity spot and futures prices enhances the
importance of having reliable density forecasts. To accurately evaluate uncertainty associated with point forecasts
is of great practical value for risk management purposes and might also be useful for central bankers who are
interested in relations between the dynamics of commodity prices and macroeconomic variables.

In this paper, we analyze the role of time-varying volatility in modeling commodity futures prices from the
standpoint of forecasting. For this purpose we develop a class of models that allow us to capture the futures
price dynamics for the full spectrum of maturities. These models perform well both in and out of sample and
simultaneously account for the time-varying volatility. The latter is the key element in our framework that allows
capturing changes in the second moment of distribution dynamics. We examine to what extent time-varying
volatility is able to improve the uncertainty prediction and whether we gain from the use of realized measures of
volatility.

Commodities are by nature very different from financial securities. The vast majority of trading in commodities
happens through exchange traded futures contracts. Analyzing commodity prices therefore often involve modeling
the whole term structure of futures prices. A standard approach for modeling the term structure is to specify
a dynamic model for the underlying spot price4 and derive the futures price based on no arbitrage arguments
(see Brennan and Schwartz (1985), Schwartz (1997), Geman (2005), etc.). In this paper, we make use of another
approach. Instead of building a model based on the spot price dynamics, we explicitly assume a functional form
for the term structure curve.

We apply the dynamic Nelson-Siegel (DNS henceforth) factor approach of Diebold and Li (2006). The approach
is based on a dynamic version of the classical Nelson-Siegel interest rate model, which is specifically suited for
forecasting yield curves. The data on commodity futures share many similarities with interest rate data. Hence, the
DNS framework can be directly applied to commodity markets. In this case, the Nelson-Siegel approach is based on
the assumption that the futures prices can be described by three unobserved factors interpreted as the level, slope,

1Empirical evidence on the impact of the commodity market financialization on the prices is given in Buyuksahin and Robe (2014),
among others. An analysis of such impact from the theoretical perspective is suggested in Basak and Pavlova (2015) (see also references
therein).

2The links between commodity prices and a real economic activity are discussed in Kilian (2008), Kilian (2009), Collier and Goderis
(2012) as well as in many other papers.

3An attractive diversification potential of commodities was pointed out in Gorton and Rouwenhorst (2006), for example. However,
recent empirical studies provide a cautious assessment of such diversification and hedging abilities identifying an increasing integration
between commodity and equity markets around the financial crisis episode (see Ravazzolo and Lombardi (2012), Hansen et al. (2014),
Bhardwaj et al. (2015), etc.).

4In addition, modeling commodity prices potentially involves specifying a certain stochastic variable, which reflects benefits/costs to
the holder coming from the possession of a commodity. For example, the net convenience yield is a usual interpretation of such variable.
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and curvature of the futures curve. The factors are assumed to follow particular dynamics that allow forecasting
the whole term structure of futures prices.

The futures returns of the majority of commodities show a clear sign of time-varying volatility. The turbulence
of energy prices around the financial crisis and the recent oil price downfall provide fresh examples of periods with
excess volatility. The volatility dynamics of many commodity prices also tend to cluster, that is demonstrating a
cyclical behavior where the moderately volatile time intervals alternate with the periods of high price variation.

We introduce time-variation directly into the conditional variance of the three dynamic factors. Therefore, both
the conditional mean vector and the conditional covariance matrix of the futures term structure are determined by
the time-varying mean and volatility components of the Nelson-Siegel factors respectively. This factor approach
effectively reduces the dimensionality of the problem and allows to parsimoniously model the joint dynamics of
highly multivariate futures prices. Moreover, such parsimonity likely benefits the forecasting performance of the
model. Compared with the constant volatility frameworks, time-varying aspects allow to assess more accurately
an increased degree of the forecast uncertainty throughout the periods of price turbulence and not to overestimate
such uncertainty during the calm periods. We note that an additional challenge comes from the fact that we model
the volatility of unobserved variables (Nelson-Siegel factors) opposed to the more standard frameworks (e.g., VAR
models with time-varying volatility) where only the volatility is unobserved.

Furthermore, we introduce realized measures of volatility into the model. While doing this we closely follow the
Realized GARCH framework of Hansen et al. (2012). Namely, we not only insert the realized measures directly
into the conditional dynamics of the volatility components, but also “close” our model by adding measurement
equations for the realized measures. The use of precise volatility information extracted from high frequency data
often provides a better signal about the current level of volatility than what could otherwise be extracted from the
lower frequency data. Hence, models that exploit realized measures should be better at “catching up” with the
hidden volatility dynamics and therefore more suited to periods where the volatility changes rapidly.

We apply our modeling framework to the futures prices of the most traded commodity from the energy sector -
WTI light sweet crude oil. We demonstrate that time-varying volatility significantly improves variance and, more
generally, distribution forecasting of the oil futures prices. On top of that, the use of realized volatility measures
provides moderate in magnitude, but systematic improvements. We also find that including several dynamic
components to control the conditional variance of the DNS factors is preferable to using just a single factor.

The rest of the paper is organized as follows. In the remaining part of this section we provide a brief review
of the related literature. In Section 2 we introduce our main modeling framework. In Section 3 we describe the
futures data used in the empirical analysis. We discuss the choice and construction of realized volatility measures
from the high frequency intra-daily price observations in Section 4. We outline the model evaluation strategy in
Section 5 and Section 6 provides the corresponding results. Section 7 concludes and all supplementary materials
are found in the Appendices.

1.1 Related Literature

Our paper refers to several strands of the literature. First of all, it relates to the area of modeling and forecasting
term structure curves with dynamic factor models. Pioneered by Diebold and Li (2006) and Diebold et al. (2006)
DNS models have become a popular framework for modeling and forecasting term structures of interest rates. The
original models primarily focused on point forecasting and assumed a constant conditional variance for the term
structure curve.

Recently, several versions of the DNS model with time-varying volatility have been proposed in the literature.
Koopman et al. (2010) added a time-varying volatility component to the idiosyncratic conditional variances of the
term structure. Alternatively, Bianchi et al. (2009), Hautsch and Ou (2012), Shin and Zhong (2015) introduced
stochastic volatility directly into the dynamics of the common Nelson-Siegel factors. Applied to the interest rate
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yield dynamics, these models confirmed the usefulness of a time-varying volatility for in-sample fit and revealed some
gains for point and density predictability. In our paper, we suggest a modification of the DNS modeling framework,
which introduces an observation driven5 conditional volatility into the Nelson-Siegel factors and exploits intra-daily
realized volatility measures.

The DNS model has previously been applied to commodity markets. Karstanje et al. (2015) examine comove-
ments in different commodities by assuming that the factors of each commodity can be decomposed into a market,
sector, and idiosyncratic components. Hansen and Lunde (2013) analyze futures prices on oil by modeling the
factors using a GARCH model with Normal Inverse Gaussian innovations within a copula framework. The method
provides a flexible model suitable for matching heavy tails in the conditional density of the commodity prices.
Although we rely on a conditionally Gaussian density, we note that by simply allowing the volatility of the factor
innovations to be time-varying the model may also replicate some of the heavy-tailed aspects of futures returns.
The procedure in Hansen and Lunde (2013) demands extracting the latent factors in a first step and subsequently
treating them as if they were observable. This method becomes problematic when the cross-sectional dimension of
the futures data is sparse. In our approach the factors are extracted directly using the Kalman filter. Thus, while
filtering the latent factors, we effectively exploit both cross-sectional and time-series dimensions of the data.

Secondly, we add to the spacious and still growing area of volatility models that exploit realized measures as
an extra source of information about the latent volatility level. The idea originates from Andersen and Bollerslev
(1998) where the realized variance based on intra-daily asset returns was used as an ex-post return variance proxy
to assess the performance of the ARCH-type dynamic models. Shortly thereafter, realized variance measures based
on high frequency data were directly introduced into the volatility dynamics in (G)ARCH models (Engle (2002))
and stochastic volatility models (Barndorff-Nielsen and Shephard (2002)). The more accurate estimation and the
forecasting gains associated with the inclusion of realized measures into the modeling frameworks inspired a rapidly
growing research activity in this area.6

The way of volatility modeling suggested in this paper is closely related to the Realized GARCH model of Hansen
et al. (2012). We also incorporate realized measures into the GARCH dynamics of the latent conditional volatility
and use measurement equations to directly establish a link between realized measures and the volatility process.
Loosely speaking, our framework can be considered as a multivariate version of the Realized GARCH where the
state-space DNS factor model plays a role of the return equation linking the dynamic volatility components with
the conditional distribution of the low frequency price vector. Naturally, the presented framework can be easily
extended for the case of a more general dynamic factor model in a place of the return equation.7

A closely related paper from a methodological perspective is Shin and Zhong (2015). They incorporated realized
measures into the DNS framework with stochastic volatility and documented the corresponding gains for bond
yield density prediction. Similarly to their framework, we introduce a time-varying conditional volatility into the
Nelson-Siegel factor dynamics and link it with realized measures of volatility obtained from observations of a higher
frequency. Our modeling strategy, however, is different in several aspects. Opposed to the prevailing practice in the
literature, we model the conditional volatility dynamics not as a stochastic volatility process, but in an observation
driven manner. The stochastic volatility models often lead to non-linear non-Gaussian state space models and
thereby complicate the estimation dramatically. In contrast, our observation driven specification can be estimated

5According to the classification in Cox (1981) (see also a related discussion in Koopman et al. (2015)), an observation driven
specification of a time-varying parameter implies that its current realization is a deterministic function of its lagged realizations and
lagged observable variables (the most notable examples include (G)ARCH, ACD and Dynamic Conditional Score (DCS) models). In
contrast, a parameter driven specification suggests that a time-varying parameter is driven by its own stochastic innovations (as in
unobserved component models, stochastic volatility models, etc.).

6Some selected examples related to asset return modeling include observation driven MEM of Engle and Gallo (2006), HEAVY model
of Shephard and Sheppard (2010) as well as parameter driven (stochastic volatility) models of Takahashi et al. (2009), Koopman and
Scharth (2012), etc.

7From this perspective, our model is a hybrid of the Realized GARCH of Hansen et al. (2012) and the framework of Harvey et al.
(1992) (or the Factor GARCH of Engle et al. (1990) where the common factors are latent and have to be extracted).
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straightforwardly by maximum likelihood via the Kalman filter. Moreover, we suggest the use of direct realized
volatility measures for the latent Nelson-Siegel factor innovations to avoid imposing structural non-linear relations
between the vector of term structure realized volatility measures and the three volatility components related to the
Nelson-Siegel factors, as in Shin and Zhong (2015).

Finally, we contribute to the empirical literature on the forecasting of commodity futures prices. In doing so, we
apply our modeling framework to the prices of futures contracts and evaluate how well the model is able to predict
the conditional density for the whole range of maturities. So far, the literature related to density forecasting of
commodities is scarce and the corresponding findings are not very conclusive. Using the DNS framework Hansen
and Lunde (2013) found some improvements from the time-varying volatility for the point forecasts of crude oil
futures prices and for the corresponding value-at-risk forecasts. Lunde and Olesen (2014) used the Realized GARCH
framework and documented only slight gains in the forecasting of return densities of univariate electricity forwards
from the use of realized volatility measures. Despite that our framework comprises certain elements from these
two settings, it differs from both. On one hand, we complement to Hansen and Lunde (2013) by focusing on the
implications of time-varying volatility on the variance prediction and by integrating realized volatility measures
into the framework. On the other hand, although we also exploit realized measures and invoke Realized GARCH
dynamics in our study, we model the joint multivariate conditional distribution of the whole term structure, but
not only the univariate dynamics of the shortest contract as in Lunde and Olesen (2014).

2 Modeling Strategy

2.1 Nelson-Siegel Framework

We model the term structure of futures contracts within a dynamic Nelson-Siegel framework. In their original paper
Nelson and Siegel (1987) suggested a parsimonious and flexible three-component polynomial approximation for the
term structure of Treasury bond yield curves. The choice of polynomial functions was associated with the solution
to a second-order differential equation and provided an ability to fit a range of shapes typically revealed by yield
curves including monotonic, hump-shaped and inverted hump-shaped patterns.

Subsequently, Diebold and Li (2006) interpreted the Nelson-Siegel framework as a factor model where the factor
loadings are defined by the Nelson-Siegel polynomials and are treated as latent dynamic factors. Such extension
made it possible to filter the dynamically evolving latent Nelson-Siegel factors and to produce out-of-sample forecasts
of the entire yield curve. The class of dynamic Nelson-Siegel factor models has been then successfully applied to
modeling and forecasting different types of assets and financial instruments with a term structure embedded.

We denote the logarithmic price at time period t of a contract with τ periods until expiration by yt(τ). Assume
that at time t there are nt types of contracts in the market that differ in their times until expiration: τt,1 < τt,2 <

... < τt,nt . Note that nt likely changes with t since the number of contracts available for trade is varying from day
to day. We also introduce the nt × 1 vector yt(τt), which collects the futures prices for all nt contracts traded at
time t, yt(τt) = (yt(τt,1), yt(τt,2), ..., yt(τt,nt))′. In accordance with the dynamic Nelson-Siegel framework, a scalar
log-price component yt(τ) for some given τ obtains the following factor representation8

yt(τ) = fl,t +
(

1− e−λτ

λτ

)
fs,t +

(
1− e−λτ

λτ
− e−λτ

)
fc,t (1)

where fl,t, fs,t and fc,t are latent dynamic factors and λ > 0 is a parameter of the Nelson-Siegel factor loadings.9

8In equation (1) we use a slightly reparametrized version of the original Nelson-Siegel curve, as it is suggested in Diebold and Li
(2006).

9We note that parameter λ can be considered as a time dependent parameter, λt. In most of related studies, however, λ is treated
as a constant parameter. Although being convenient for estimation, such assumption is quite restrictive, especially if the time span of
the analyzed period is sufficiently long. There are several papers where time-varying λt was examined in the context of term structure
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The model in (1) links futures prices with the maturities by means of the three common factors and the associated
factor loadings. The loadings to the first factor fl,t are constant across the whole range of maturities and a change
in fl,t translates to the same change for all prices in yt. Factor fl,t is therefore usually interpreted as a level of the
term structure curve. The second factor, fs,t, has loadings which are monotonically decreasing as time to maturity
τ grows, so it is commonly interpreted as a slope of the term structure. Parameter λ regulates the steepness of this
slope. The higher λ is, the faster decay is exhibited by the loading function. The loadings to the factor fc,t also
depend on τ and λ. They converge to 0 for τ → 0 and τ →∞ and reach a maximum at some intermediate value of
τ . Parameter λ governs the location of the extremum. When λ gets larger, the peak of the loading function shifts
towards lower values of τ . This hump-shaped loading function associated with fc,t leads to an interpretation of
this factor as the curvature of the term structure. Whereas a change in the level factor fl,t affects all the contracts
in yt uniformly, an increase in the slope factor fs,t imposes an effect mainly on short-term contract prices and an
increase in the curvature factor fc,t increases prices for mid-term contacts.

The dynamic Nelson-Siegel framework treats factors as time-varying processes, which explain the variation in the
term structure. Most of the related literature, however, is focused exclusively on the dynamics of the conditional
mean of the factor process. As a consequence, an associated analysis is usually limited to modeling a dynamic
location of the term structure variable and its point forecasting, so the uncertainty around the extracted and
predicted term structure curves is left uncovered. This paper shifts the focus to the dynamic conditional variance
of the factors. Such aspect naturally allows to model and forecast the conditional density dynamics of the term
structure curve, which is implied by the conditional density dynamics of Nelson-Siegel factors.

2.2 Dynamic Nelson-Siegel Model with Time-Varying Volatility and Realized Mea-
sures

2.2.1 Dynamics of Conditional Mean

Following Diebold et al. (2006) we cast the dynamic Nelson-Siegel model from (1) in a state-space representation.10

The observation equation in a matrix form is

yt = Λtft + εt (2)

where ft = (fl,t, fs,t, fc,t)′ is a 3× 1 vector of dynamic latent factors, εt = (εt,1, εt,2, ..., εt,nt)′ is a nt × 1 vector of
idiosyncratic components, and Λt = Λt(λ; τt,1, τt,2, ..., τt,nt) is nt × 3 matrix of factor loadings

Λt =


1 1−e−λτt,1

λτt,1
1−e−λτt,1
λτt,1

− e−λτt,1

1 1−e−λτt,2
λτt,2

1−e−λτt,2
λτt,2

− e−λτt,2

: : :
1 1−e−λτt,nt

λτt,nt

1−e−λτt,nt
λτt,nt

− e−λτt,nt

 (3)

The state equation describes the dynamics of latent factors. We suggest a simple random walk specification11

modeling of interest rates (see Creal et al. (2008) (section 4.1.3), Koopman et al. (2010)). Nevertheless these studies do not provide an
unambiguous answer on whether the gains from time-varying λt are significant for the model fit and forecasting. Due to the different
focus of the present paper, we will treat λ as a constant parameter as it is common in the literature on term structure modeling.

10State-space representation of a dynamic Nelson-Siegel model is closely related to the traditional factor model representation (see
Stock and Watson (2011) for a related survey). According to the factor model interpretation, as it is conventional in the literature,
term Λtft from (2) is called a common component and εt is an idiosyncratic component. A part of variation in yt explained by the
common component is due to the latent factors ft which are common for all variables in yt. The idiosyncratic component is a zero
mean stationary process, which comprises variable specific variation of yt that is not explained by the common factors and absorbs
measurement errors.

11Note that a more general VARMA process (with proper identification restrictions) can be used to model transition dynamics within
a linear state-space framework. In particular, a popular choice is to assume a first-order autoregressive process as in Diebold et al.
(2006).
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ft = ft−1 + ηt (4)

where ηt is a 3× 1 shock to the state vector ft orthogonal to εt. We select a random walk for several reasons. At
first, it is an appealing choice due to its parsimony and is a pretty suitable assumption in our context, since we
mainly focus on the time-varying volatility of the futures term structure and not on the dynamics of its conditional
mean. Such simple specification not only facilitates the estimation process, but is also less prone to overfitting that
may have an adverse effect on the out-of-sample model performance. At second, the Nelson-Siegel factors extracted
from commodity futures prices on a daily basis are, in fact, close-to-unit-root processes (see Hansen and Lunde
(2013) for an empirical evidence).

We assume that the idiosyncratic component εt is an autoregressive process which reads

εt = βCtεt−1 + wt (5)

where Ct is a selection matrix of dimensions nt × nt−1 filled with zeros and ones. An entry (i, j) of matrix Ct is
equal to 1 if some contract that is traded at t−1 (with maturity τt−1,j) is also traded at t (with maturity τt,i which
is equal to τt−1,j − 1). If otherwise, an entry (i, j) of matrix Ct is equal to 0. Parameter β ∈ (0, 1) is a constant
scalar that determines the persistence of the price misspecification generated by the model. We then suppose that
wt ∼ i.i.d.N(0,Σt), where Σt is a constant diagonal matrix with time-dependent dimensions nt × nt. We use a
simple parametrization Σt = σ2

wInt , where Int is the identity matrix of size nt.12

The conditional mean dynamics of the futures prices suggested in this subsection have an appealing and intuitive
interpretation. The common Nelson-Siegel term Λtft from (2), which is governed by the random walk factors, can be
treated as a persistent long-run dynamic component of the futures price vector yt. The autoregressive idiosyncratic
component εt, in turn, can be related to the transitory short-run fluctuations in yt. As a result, our model implies
that the futures prices are mean-reverting to its long-run (equilibrium) dynamics.13

2.2.2 Dynamics of Conditional Variance

Time-varying volatility is a central element in our analysis. We introduce it directly into the dynamics of the
Nelson-Siegel factors

ηt
∣∣Ft−1 ∼ N(0,Ωt) (6)

where Ωt is a 3×3 time-varying conditional covariance matrix of the factor increment ∆ft = ηt and Ft is a filtration
that contains all the relevant observable information up to day t inclusively. This way of modeling imposes a factor
structure on the conditional variance of the multivariate price process, yt

Var
(
yt
∣∣ft−1;Ft−1

)
= ΛtΩtΛ

′

t + Σt (7)

Thus, the large nt×nt conditional covariance matrix of the whole term structure of futures prices Var
(
yt
∣∣ft−1;Ft−1

)
is fully characterized by the deterministic matrices Λt and Σt as well as the small scale 3×3 time-varying conditional
covariance matrix Ωt.

A similar approach was used in Bianchi et al. (2009) and Hautsch and Ou (2012) among others, where stochastic
volatility was introduced directly into the dynamics of the Nelson-Siegel factors. Koopman et al. (2010) pointed

12We note that the time dependence in Λt, Ct, and Σt is related to the number of contracts nt traded at a given day t and their
maturities {τt,1, τt,2, ..., τt,nt}. Since this information is exogenous in our model, matrices Λt, Ct and Σt change with time in a
deterministic way.

13From this perspective our specification is conceptually similar to the modeling framework of Schwartz and Smith (2000).
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out that this approach is somewhat restrictive since in this case the Nelson-Siegel loading matrix Λt serves as a
weighting matrix for both conditional mean and variance of elements in yt. As an alternative, they suggested to
endow a covariance matrix of idiosyncratic components Σt with a time-varying volatility factor, so each element
from yt has a time-varying volatility component.

We, nonetheless, maintain the assumption from (6) and incorporate time-varying conditional volatility in the
factor dynamics. In doing so, we are motivated by the argument that the total variation of the term structure
variable yt is mainly explained by the common factor dynamics ft and only to a little extent by the idiosyncratic
component εt. Therefore, uncertainty associated with the futures prices yt is largely incorporated in ft. As a result,
we may expect that time-varying volatility of the factors is more relevant for density modeling and forecasting than
time-varying volatility in the idiosyncratic term εt. Moreover, these two approaches have been compared in Shin
and Zhong (2015) in a similar study in the context of bond yield density prediction. Their results confirm that
whereas time-varying volatility in factor dynamics helps to sufficiently improve the model performance, dynamic
components in the variance of the idiosyncratic term do not seem to play a significant role.

We use a constant conditional correlation (Bollerslev (1990)) structure to parametrize Ωt and treat the condi-
tional factor volatilities as time-varying processes. Thus, the conditional variance matrix can be decomposed as
follows

Ωt = HtRHt = Ht

 1 ρls ρlc

ρls 1 ρsc

ρlc ρsc 1

Ht (8)

where R is a constant correlation matrix and Ht is a diagonal matrix with conditional volatilities of the factor
increments ∆ft on the main diagonal. Therefore, the dynamics of Ωt is fully driven by the dynamics of the 3 × 3
diagonal matrix Ht. We will suggest two alternative dynamic specifications for Ht - with one and three time-varying
parameters.

One of the key features of our framework is that we use realized measures of variance based on intra-daily
high frequency data while formulating the dynamics for the time-varying parameters from Ωt. The use of realized
measures of volatility is commonly motivated by the precise information content of the high frequency data (e.g.,
Dobrev and Szerszen (2010)). We, thus, expect that the realized signals of the futures price volatility will help
to formulate and extract the latent conditional variance dynamics more accurately and to improve the predictive
performance of the model.

We incorporate realized measures into the model along the lines of Realized GARCH of Hansen et al. (2012).
Thus, we formulate a transition (GARCH) equation that links the latent volatility with own lags and lagged realized
measures. The realized measures, in turn, are linked to the latent volatility through the specially formulated
measurement equation. The measurement equation provides a contemporaneous relationship between the latent
dynamic variable and its realized proxy allowing for a stochastic measurement error. The role of such measurement
equation, therefore, is to directly relate the latent volatility process to the corresponding measures and, thus, to
incorporate the precise information about the conditional factor variance Ωt into the model. Apart from that, this
equation may account for a systematic measurement bias and can be accommodated with some stylized features of
financial data, such as the leverage effect.

Note that another possibility could be to specify the dynamics for all six distinct elements of the 3 × 3 matrix
Ωt, thus reflecting a time variation in both conditional variances and correlations.14 However, an approach with
fully specified dynamics of Ωt is hardly implementable in our application due to the difficulties with the extraction

14For example, a proper dynamics for all elements from Ωt (which preserves a positive definiteness of Ωt) can be formulated along
the lines of Chiriac and Voev (2011) or Golosnoy et al. (2012). In the former case, the vector of Cholesky elements of Ωt is modeled
and then these elements can be related to the corresponding realized measures. In the latter case, Ωt is treated as a matrix process and
the realized measures of Ωt are assumed to be distributed as a Wishart matrix random variable.
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of a full realized matrix of Nelson-Siegel factor covariances at intra-daily frequency. We describe these challenges
in details in the section related to the construction of realized volatility measures.

2.2.3 One-component Specification for the Conditional Variance Matrix

We start with a simple parametrization of the conditional covariance matrix Ωt. We assume that the diagonal
volatility matrix Ht from (8) depends on a single time-varying parameter controlling the volatilities of all 3 factors

Ht =


√

exp(ht) 0 0
0

√
as + bs exp(ht) 0

0 0
√
ac + bc exp(ht)

 (9)

where as, bs, ac, bc are non-negative scaling coefficients and ht is a scalar time-varying parameter. Therefore,
the variances of all three Nelson-Siegel factors are linear functions of the single time-varying variance component
exp(ht). Note that for identification we directly set exp(ht) equal to the variance of the level factor. An exponential
transformation simplifies the formulation of the transition and measurement equations for ht since for any real
values of ht the positivity of the factor variances is preserved. Closely following the specification of the Realized
GARCH model we set up the transition (GARCH) equation as an autoregressive process15

ht = γ0 + γ1st−1 + γ2ht−1 (10)

where st is an appropriately chosen realized measure for ht. The measurement equation is formulated as

st = ξ + φht + δ(zt) + ut (11)

where ut ∼ N
(
0, σ2

u

)
is a stochastic measurement error, ξ and φ are constant parameters which determine the sys-

tematic bias of the realized measure st, δ(·) is the so-called leverage function that introduces a dependence between
variance and returns of futures prices, zt is a suitable Ft-measurable variable that reflects the price movement
occurred at day t. We discuss the choice of zt below.

An empirical usefulness of the leverage component introduced in such way was confirmed in Hansen et al. (2012)
and Hansen and Huang (2016) in the context of modeling the conditional variance dynamics of asset returns. A
standardized asset return plays the role of variable zt there, so the measurement equation explicitly establishes the
link between the conditional variance and price shocks. The specification for the leverage component δ(·) suggested
in Hansen et al. (2012) is the following polynomial function

δ(zt) = δ1zt + δ2(z2
t − 1) (12)

where δ1 and δ2 are constant parameters. Such functional form is convenient for several reasons. As long as zt
is a standardized random shock, the leverage component δ(zt) has zero mean. It, therefore, does not induce an
additional bias for st in the measurement equation (11). Also, the quadratic specification in (12) allows to capture
asymmetry effects in the volatility responses to the price shocks.

The one-component specification of the conditional variance matrix Ωt given by (8) and (9) implies that

Var
(
yt|ft−1;Ft−1

)
= ΛtH(ht)RH(ht)Λ

′

t + Σt (13)

Particularly, it means that conditional variances of all futures contracts are driven by the single dynamic volatility
component ht. As a consequence, we may expect that the realized variances of the futures prices can serve as good

15In this paper, we consider only the parsimonious (1,1) specification for lags. The lag order can be extended if needed.
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signals about the unobservable volatility state and, thus, can be related to ht. More specifically, for some selected
τ ∈ {τt,1, τt,2, ..., τt,nt}16

st ≡ logRV
(
∆yt(τ)

)
' logVar

(
yt(τ)|ft−1;Ft−1

)
(14)

For such choice of st we suggest the following choice of variable zt to establish a dependence between volatility
component ht and the futures price change

zt =
∆yt(τ)− E

(
∆yt(τ)|ft−1;Ft−1

)√
Var
(
∆yt(τ)|ft−1;Ft−1

) (15)

so zt is a conditionally standardized Ft-measurable Gaussian random variable, which represents a price shock to
the contract τ .

Summarizing, equations (9), (10), and (11), where st and zt are defined as in (14) and (15) respectively, constitute
the one-component dynamic specification for the conditional covariance matrix Ωt.

2.2.4 Three-component Specification for the Conditional Variance Matrix

We also suggest a richer dynamic parametrization for Ωt where three time-varying parameters are introduced. We
link these dynamic components with the three conditional variances of the level, slope and curvature. The matrix
Ht reads

Ht =


√

exp(hl,t) 0 0
0

√
exp(hs,t) 0

0 0
√

exp(hc,t)

 (16)

where hl,t, hs,t and hc,t are the three time-varying logarithmic conditional variances of the 3-variate shock ηt to the
dynamic factor process ft. We denote a 3× 1 vector of dynamic volatility components as ht =

(
hl,t, hs,t, hc,t

)′ and
note that exp(ht) = diag

(
Ωt
)
. Similar to the previous specification, we write the transition equation as

ht = Γ0 + Γ1st−1 + Γ2ht−1 (17)

where st =
(
sl,t, ss,t, sc,t

)′ is a 3 × 1 vector of the proper realized measures for ht and Γ0, Γ1, Γ2 are constant
parameter matrices of suitable dimensions. The measurement equation is defined as

st = ζ + Φht +D(zt) + ut (18)

where ut ∼ N
(
0,Σu

)
is a 3 × 1 vector of measurement errors, D(·) is a multivariate leverage function, zt is a Ft-

measurable 3×1 vector and ζ, Φ are constant matrices of proper dimensions. The leverage function in a multivariate
version has the following form

D(zt) = D1zt +D2(zt ◦ zt − ι3) (19)

where D1, D2 are 3× 3 parameter matrices and ι3 is the 3× 1 vector of ones.
We attempt to directly extract realized measures st of the latent factor variances from intra-daily data by

exploiting the recent advances in high frequency volatility estimation. The description of the estimation procedure
16Note that several realized measures related to distinct contracts τ ∈ {τt,1, τt,2, ..., τt,nt} can be used to extract ht. In this case,

in analogy with Hansen and Huang (2016), several measurement equations (11) which correspond to different realized measures st(τ)
have to be formulated.
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is referred to the next section. Thus, signals st in this case are the realized variance measures for Nelson-Siegel
factor increments ∆ft

si,t ≡ logRV
(
∆fi,t

)
' logVar

(
∆fi,t|ft−1;Ft−1

)
, i ∈ {l, s, c} (20)

We define the corresponding 3× 1 vector zt, which is required for the leverage function, as

zt = Var
(
E
(
ft|Ft

)
−E
(
ft−1|Ft−1

)
|Ft−1

)− 1
2
(
E
(
ft|Ft

)
−E
(
ft−1|Ft−1

))
(21)

so zt is a conditionally standard Normal random vector.
As a result, the three-component specification for the conditional covariance matrix Ωt is represented by equa-

tions (16), (17) and (18) with st and zt specified in (20) and (21) respectively. In our empirical analysis we stick to
the parsimonious model parametrization. In particular, matrices Γ1, Γ2, Φ, D1, D2 from (18)-(20) are assumed to
be diagonal.

2.3 Estimation

Suppose that we observe futures prices yt and realized measures st within a sample period t = 1, ..., T . The joint
conditional density function of observable variables for some given trading day t can be factorized as follows

p(yt, st|Ft−1; θ) = p(yt|Ft−1; θ)p(st|yt,Ft−1; θ) (22)

where Ft = σ(yt, st, yt−1, st−1, ...) is a σ-field generated by all observables up to t and θ is a vector of model
parameters.

The first term in the decomposition, p(yt|Ft−1; θ), is the conditional density of observed futures prices. Equation
(2) and the dynamic Nelson-Siegel specification imply that this conditional density is Gaussian and can be evaluated
by means of the Kalman filter17 given the sequence {Ωr, r ≤ t}. The time-varying covariance matrix Ωt = Ω(ht)
from the state equation (6) is a Ft−1-measurable variable as it follows from the assumptions of GARCH dynamics
for ht in (10) and (17). Therefore, for every t we have that p

(
yt|Ωt,Ft−1; θ

)
= p

(
yt|Ft−1; θ

)
and the Kalman filter

can be applied to evaluate the density p(yt|Ft−1; θ).
The second term in the factorization (22), p(st|yt,Ft−1; θ), relates to the conditional density of the realized

measures st. From (11) and (18) it follows that such density is Gaussian. According to (15) and (21), the leverage
variable zt = zt(yt,Ft−1; θ) for all t is expressed through the variables from the Kalman forward recursions applied
to p(yt|Ft−1; θ), so the conditional densities for st satisfy p(st|yt, ht, zt,Ft−1; θ) = p(st|yt,Ft−1; θ).

Finally, the log-likelihood function of the model can be written as

log p(y, s|θ) =
T∑
t=1

log p
(
yt|Ft−1; θ

)
+

T∑
t=1

log p
(
st|yt,Ft−1; θ

)
(23)

The function in (23) is effectively a sum of conditional Gaussian log-densities. It can be maximized by means
of standard numerical optimization routines and the corresponding quasi-maximum likelihood (QML) parameter
estimates, θ̂, can be obtained. While estimating the model we rely on the QML argument in sense of White (1982).
In particular, in case of certain distribution misspecifications we refer to (23) as to the quasi-likelihood function, so
the corresponding QML estimator is supposed to retain its consistency.

17See comprehensive material on the state-space models and estimation in Harvey (1991), Durbin and Koopman (2012).
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2.4 Discussion

Conceptually our modeling framework consists of two blocks. The first block relates to the observed term structure
of futures prices. It is described by the dynamic Nelson-Siegel model with time-varying volatility imposed on the
factor dynamics. The Nelson-Siegel factors govern the dynamics of the futures price vector yt and the time-varying
volatility embedded in these factors allows to explicitly model the uncertainty associated with yt. The second block
is auxiliary to the dynamic Nelson-Siegel model and links the latent time-varying factor volatility to the realized
measures extracted from the high frequency data. This part of the model is unusual in the literature on term
structure modeling and we expect that it improves the identification and forecasting the conditional volatility of
factors.

The time-varying volatility component ht is modeled as an observation driven process and fully determines dy-
namics of the factor conditional variance matrix Ωt. Important to note that the process ht incorporates information
from both blocks of the framework, i.e. from both low and high frequency data. First, the daily increments of the
latent Nelson-Siegel factors ∆ft (which are extracted from the daily prices yt) can provide (noisy) signals about the
latent conditional variance of ft. Second, the realized measures st (based on intra-daily price observations) directly
contribute information about the latent factor variance and these signals are expected to be more precise.

3 Data description

3.1 Transaction data

The raw dataset is obtained from Tick Data Inc. It consists of transactions on light crude oil (CL) futures traded
on the Chicago Mercantile Exchange (CME). The data is analyzed using a period ranging from August 9, 2004 to
January 16, 2015.

All futures trading are managed by the CME group and through their clearing house they act as a counterpart to
all transactions. The transactions are made through a fully electronic trading system that allows market participants
to trade around the clock Monday-Friday except for a 45 minutes trading break each day from 5:15p.m.-6.00p.m.
EST. A special feature of these futures contracts is that the settlement at maturity is not by cash but via physical
delivery. However, the vast majority of contracts never go to delivery. Most are canceled beforehand by taking the
offsetting position. This allows for a huge amount of transactions to take place since it is possible to be a market
participant without taking part in the physical delivery of the commodity. The availability of large amounts of
transactions data facilitates computation of intra-daily measures, which form the basis of our analysis on volatility
of oil futures.

Table 1 presents statistics for the transaction data. Generally the number of transactions has been increasing
through most of the sample period. The average number of transactions per contract shows a similar pattern
suggesting that the increase in transactions is not solely due to the introduction of additional contracts. The
majority of the transactions are in futures with a short time to maturity while contracts with medium and long
time to maturity are less traded.

The raw data series are cleaned using the algorithm in Barndorff-Nielsen et al. (2009). Specifically we delete
the observation if the transaction price is more than five mean absolute deviations from a rolling centered median
of the 25 preceding and the 25 subsequent observations. On rare occasions observations may also be reported with
a time stamp that is not consistent with the corresponding trading day. These observations are also deleted. In
total we delete 732,881 out of 153,883,976 transactions corresponding to nearly 0.5% of the initial sample.
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Table 1: Average number of transactions

Average number of transactions
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Total

Shortest 4,892 5,130 7,865 23,348 33,002 33,341 35,396 85,002 98,906 102,910 88,186 49,907
Medium 33 78 85 415 844 674 718 8,662 13,399 16,847 13,855 5,406
Longest 0 10 15 167 1,152 321 258 2,747 5,803 6,228 4,752 2,084
All 4,926 5,217 7,964 23,931 34,998 34,336 36,373 96,412 118,108 125,984 106,794 57,398

Average number of transactions per contract
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Total

Shortest 699 735 1,148 3,343 4,700 4,741 5,048 12,046 13,951 14,586 12,494 7,080
Medium 10 15 23 80 153 112 125 884 1,322 1,666 1,373 560
Longest NaN 9 13 51 269 97 40 211 411 450 364 200
All 480 395 652 1,548 2,042 2,072 1,902 3,348 3,776 4,063 3,494 2,273
The first part of the table presents the average number of transactions per day for each year in the sample period (rounded
to nearest integer). Shortest refers to all futures contracts with time to maturity less than 149 business days. Medium
contracts have between 149 and 360 business days to maturity and Longest refers to all contracts with time to maturity
larger than 360. The second part shows the average number of transactions per contract per day (rounded to nearest
integer). The year 2014 includes the period January 1, 2014 to January 16, 2015.

3.2 Daily data

The cleaned high-frequent transaction data is used to construct a dataset with daily observations. For all available
contracts the closing price, assumed to be the last transaction of the day, is used as the daily futures price. This
procedure results in a daily panel dataset consisting of 56,412 observations.

Table 2 presents some descriptive statistics for the constructed dataset. The futures prices are all reported as
per barrel of oil. The number of traded contracts pr. day generally increases throughout the sample period. The
dataset is therefore an unbalanced panel where the cross-sectional dimension varies with time. As evident from the
statistics on time to maturity, the increase in the cross-sectional dimension generally comes from the introduction
of new contracts with a very long time until expiration. The Vol. columns show that the volatility of the futures
returns is generally decreasing with time to maturity. This effect is known as the Samuelson effect (Samuelson
(1965)). The argument is that the arrival of news will have a direct impact on the shortest futures while long-term
contracts tend to remain unchanged since adjustment of fundamentals is likely to take place before the contracts
come to delivery at maturity.

Figure 1 presents the daily dataset visually. There are two types of plots. In both types each dot represents
an observation. The first plot shows the evolution of all the futures prices as a function of time. The next plot
shows the evolution of the corresponding time to maturity (measured in business days). The diagonal “lines” in the
maturity plot represent specific contracts and arise since the time to maturity decreases linearly with time. The
holes in the “lines” represent days where the contract is not traded and are more common for long contracts.

Generally it seems there are a lot of observations in the short end, while observations in the very long end are
more scarce and generally not present before 2010. The long contracts are typically also issued with a longer time
span between them, reflected by the longer distance between the diagonal “lines” in the maturity plots.

We divided the dataset into three periods. The first 100 days represent an initialization period used to initialize
the Kalman filter (August 9, 2004 to December 30, 2004). The second period is the estimation period (January
3, 2005 to December 31, 2013) and the third period is used for forecasting (January 2, 2014 to January 16, 2015).
The three periods are separated by vertical dashed lines in figure 1.

Figure 2 gives an example of what typical term structures may look like. Each dot represents a futures price
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Figure 1: The daily dataset. Daily futures prices and time to maturity as functions of time. Each dot represents
an observation. For illustration all observations are divided into three groups and colored with respect to time
to maturity. Each group consists of approximately one-third of the observations. The first group represents
observations with a maturity less than 149 business days and is presented in green while observations with a
maturity longer than 360 are colored in red. The second group consists of observations in between and is colored
in yellow.
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Table 2: Descriptive statistics for daily futures data

Shortest futures Median futures Longest futures

Period #Cont. τ Mean Min. Max. Vol. Mean Min. Max. Vol. Mean Min. Max. Vol.
2004 10 108 47.3 40.7 55.2 0.40 43.2 38.6 49.5 0.28 43.2 38.6 49.5 0.27
2005 13 141 56.7 42.2 69.9 0.32 57.5 40.8 69.4 0.24 56.0 39.1 68.2 0.23
2006 12 140 66.3 55.9 77.4 0.27 70.9 64.2 80.8 0.21 70.6 64.5 80.0 0.20
2007 15 168 72.3 50.4 98.3 0.29 72.7 56.1 91.4 0.20 71.4 58.4 88.5 0.18
2008 17 191 99.9 33.2 145.4 0.57 100.8 49.4 146.3 0.40 102.0 64.8 142.2 0.34
2009 16 177 61.9 34.4 81.3 0.51 70.2 48.0 86.0 0.32 77.1 54.3 92.4 0.26
2010 19 205 79.5 69.2 91.4 0.29 84.3 73.9 94.4 0.24 91.5 77.0 100.3 0.18
2011 26 288 95.1 76.4 113.7 0.34 97.7 79.0 114.1 0.28 97.2 87.3 107.1 0.21
2012 31 326 94.2 78.0 109.6 0.25 96.0 81.6 109.2 0.21 87.1 82.0 94.1 0.17
2013 31 325 98.0 86.4 110.2 0.18 93.1 85.5 97.4 0.13 81.5 77.0 86.4 0.11
2014 30 319 91.1 45.7 107.3 0.24 86.4 53.7 98.1 0.18 80.8 66.1 89.8 0.13
Total 19 233 80.4 33.2 145.4 0.35 81.6 38.6 146.3 0.25 80.2 38.6 142.2 0.23

The descriptive statistics are based on the daily data set with sample period August 9, 2004 to January 16, 2015. The
three time series Shortest futures, Median futures, and Longest futures are constructed by each day taking the shortest
contract, the contract with time to maturity closest to 233 (the median number of business days to maturity in the
full sample) and the longest contract respectively. #Cont. refers to the median number of contracts available per day
during the given period. τ shows the median number of business days to maturity for all contracts available. Vol.
measures the annualized volatility of futures return. The returns are calculated by excluding periods where the shortest
contract moves into maturity, a new contract becomes the median contract or a new longest contract is issued.

observation and they are linearly interpolated for a better visualization. All the futures curves are normalized by
the price of the shortest futures. It is clear that the futures curves are able to take very different forms. They can
be both increasing (contango), decreasing (backwardation), hump-shaped, smooth, and irregular.

4 Intra-daily Data and Realized Measures

In the preceding section we built a framework for the term structure modeling that introduces time-varying condi-
tional volatility in the dynamics of the Nelson-Siegel factors. The key element in our approach is the use of realized
volatility measures constructed with intra-daily futures prices to approximate the latent volatility components in
the factor dynamics. In this section, we briefly discuss the features of the high frequency futures data and outline
how we use it to retrieve appropriate realized measures of factor volatility.

4.1 Intra-daily Data and Practical Challenges

For most business days the futures contracts considered in this paper are traded 24 hours with a short break
between 5:15p.m. and 6:00p.m. EST. Thus, we conventionally associate the intra-daily trading period for business
day t with the period between 6:00p.m. of t − 1 and 5:15p.m. of t. Suppose that nt contracts with times until
maturity {τt,1, τt,2, ..., τt,nt} are traded at a given day t. We now assume that there exists nt-variate process
pt(v) =

(
p

(τt,1)
t (v), p(τt,2)

t (v), ..., p(τt,nt )
t (v)

)′, where v ∈ [0, 1] is an intra-daily time index and p
(τ)
t (v) denotes an

intra-daily efficient log-price process of the contract with time to maturity τ ∈ {τt,1, τt,2, ..., τt,nt} (contract τ ,
henceforth). The daily closing price yt(τ) which we consider in our main model is, therefore, associated with
p

(τ)
t (1).18

In practice, an efficient intra-daily price process is never observable. Instead, we observe pt(v) only at the
discrete moments of transactions and these observations are contaminated by microstructural noise. In addition

18Practically, however, we use p(τ)
t (νlast), where νlast is the time of the last observed transaction for the contract τ at day t.
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Figure 2: Different term structures of futures prices.

to the market microstructural effects,19 a multivariate nature of intra-daily futures data suggests several other
challenges. In particular, some of these challenges are illustrated in Figure 3, which provides examples of typical
transaction patterns for the crude oil futures:

• transactions are irregular

• on average, the number of transactions is lower for contracts with higher time to maturity

• transactions are asynchronous across contracts

Active trading mostly occurs within a relatively short intra-daily sub-period (the distributions of intra-daily
trading intensities for the futures contracts are given in Figure 4). As a consequence, transactions appear very
irregularly over the trading day. In particular, between-trade durations range from milliseconds to several hours
depending on the intra-daily period and the time to maturity of the contract.

Another implication of intra-daily transaction data relates to the unbalancedness of observed trades across
contracts with distinct maturities. Short-maturity contracts are the most traded ones, whereas long-maturity
contracts are traded less frequently. This feature is especially pronounced in the first years of our sample. The

19Market microstructural effects are inevitable attributes of financial data observed at high frequency. Among the sources of the
microstructural noise researchers emphasize a bid-ask spread, fixed minimal price increment (tick size), etc. Theoretical and empirical
implications of market microstructural effects on the observed price process and the analysis of the realized variance are considered in
Bandi and Russell (2008) and Hansen and Lunde (2006b).
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Figure 3: Examples of intra-daily transaction data for a 24-hour period which starts at 6p.m. the day before the
date specified in the header and lasts until 6p.m. of the specified date. Plots contain log futures prices observed at
the moments of transactions for 4 selected trading days from the analyzed sample. For expositional convenience we
plot the data for only 5 selected contracts with different times until expiration. Dashed vertical lines correspond to
the start of the trading break at 5:15p.m.
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Figure 4: Intra-daily distributions of transactions observed over the period 01/2005-12/2014. The left plot corre-
sponds to the futures contracts which expire no later than in 148 business days. The middle plot displays contracts
with maturities between 148 and 360 days. The right plot refers to the futures contracts with more than 360 trad-
ing days until maturity. On the vertical axis there is a total number of observed transactions (in millions) for the
specified contracts from the sample period 01/2005-12/2014 computed over 30-minute rolling intra-daily intervals.
Dashed vertical lines correspond to the start of the trading break at 5:15p.m.
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scarcity of transaction data for long-maturity contracts naturally complicates the extraction of realized volatility
signals related to the long end of the term structure.

Transactions on distinct contracts arrive non-synchronously. Partially the asynchronicity can be attributed to
the liquidity issues. Namely, we may expect that the fundamental news associated with the underlying commodity
are getting incorporated into the futures prices not simultaneously, but with the lags for less liquid long contracts.
Another contribution to non-synchronous trading stems from the situations where some information relevant only
in the short run does not lead to the trading of long-maturity contracts and conversely. Such situation is typical
for multivariate high frequency asset prices and leads to the so-called Epps effect (see Epps (1979)) in the context
of covariance estimation.

Irregular, highly unbalanced and asynchronous transaction data substantially complicates the intra-daily analysis
of the multivariate factor structure in the futures contracts as well as the construction of the corresponding realized
measures of factor volatilities. Therefore, the expected degree of improvements in modeling and forecasting the
term structure density from the use of high frequency realized volatility measures should be assessed cautiously. In
the following subsections we discuss our approach to the construction of realized measures related to the conditional
variance of the Nelson-Siegel factors.

4.2 Volatility Measures from Intra-daily Data

The aim of our intra-daily developments is to obtain realized measures st for the time-varying component ht from the
conditional factor variance matrix Var(∆ft|ft−1;Ft−1) = Ωt. As it is outlined in the model description, we consider
two specifications of Ωt based on the one- and three-component dynamic parametrizations. We now suggest and
discuss suitable realized measures for each specification. An empirical justification of using few dynamic volatility
components for modeling Ωt is given in Appendix A.

4.2.1 Realized Measures for the One-component Specification

According to (14) the realized variance of a close-to-close futures return on some contract τ ∈ {τt,1, τt,2, ..., τt,nt} can
serve as a signal of ht, since all contracts yt(τt) contain information about the common latent volatility component
ht. The unbalancedness of trading intensity across contracts with different times until expiration suggests that
the front contract with the shortest time to maturity is the best candidate for measuring ht. Such contract is
systematically traded more frequently than others and, what is more important, the corresponding transactions
appear in the course of the whole trading day. Therefore, the realized variance computed on the basis of intra-daily
transactions on the shortest contract yt(τt,1) is expected to be a more efficient measure of ht rather than a realized
variance computed using some other contract with longer time to maturity. The realized variance of the shortest
contract, thus, can be treated as a state variable which controls all three Nelson-Siegel factor volatilities.

To minimize the influence of microstructural noise effects we suggest to use a sparse sub-sampled 5-minute
realized variance estimator.20 For this purpose we partition a trading period v ∈ [0, 1] with a 1-minute grid. We
denote the set of equidistant gridpoint times as {vi}mi=0, so 0 = v0 < v1 < ... < vm = 1. Although futures contracts
with the shortest maturity τt,1 are liquid enough and traded frequently, they do not necessarily occur exactly at the
moments vi for all i. Thus, we refer to the previous tick interpolating scheme. In particular, let p̃(vi) denote the
transaction price in case we observe it at vi. If we do not observe a transaction at that moment, then p̃(vi) stands

20We prefer model-free realized variance estimator since the almost 24-hours trading span provides sufficiently many sparsely sampled
intra-daily returns. Also, Liu et al. (2015) demonstrated in an extensive empirical study that a sparsely sampled realized variance
estimator exhibits an accuracy which is not significantly outperformed by any of the competing realized estimators. As an alternative,
noise robust estimators of the quadratic variation based on more frequently sampled intra-daily returns can be exploited, such as in
Barndorff-Nielsen et al. (2008), Jacod et al. (2009).
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for the price observed for the nearest transaction prior to vi.21 Then, the sub-sampled 5-minute realized variance
estimator based on intra-daily prices for contract τ reads

RV sst (τ) = 1
5

5∑
j=1

m

m− 4

m−5+j∑
i=j

(
p̃

(τ)
t (v5i)− p̃(τ)

t (v5(i−1))
)2 (24)

and we define a realized measure for the one-component dynamic variance specification as st ≡ logRV sst (τt,1).
The sub-sampled estimator in (24) is essentially an average of realized variances computed for 5 sparse 5-minute

grids shifted by a 1-minute interval with respect to each other. Such sub-sampling of the realized variance was
proposed in Zhang et al. (2005) and later considered in Andersen et al. (2011), Liu et al. (2015), among others22.
The sub-sampling is aimed to improve efficiency of sparsely sampled estimators since more intra-daily information
is used in this case.

The estimator in (24) is consistent for the quadratic variation of an asset return for the open-to-close trading
period. Note, that despite st is linked in (11) with the close-to-close return variance, we do not account explicitly
for the “overnight” (and “overweekend”) variation while specifying st. Firstly, the length of the overnight period for
the considered commodities is very short (45 minutes). Secondly, the specification of the measurement equation (11)
is able to capture a systematic bias in st stemming from the lack of overnight variation embedded in the realized
measures.23

4.2.2 Realized Measures for the Three-component Specification

When we formulate the realized measure for the one-component specification of Ωt, we discard much of the available
intra-daily data. In particular, we use the high frequency price observations of the contract with the shortest
maturity, whereas the intra-daily data from all of the traded contracts is available.

According to the three-component dynamic specification of Ωt, the time-varying elements are the conditional
volatilities of the Nelson-Siegel factors, i.e. the components of ht of the diagonal matrix Ht from (16). We now
suggest a way to retrieve a proxy for ht from the intra-daily data on multiple traded contracts with different
expiration times τ . Namely, we directly assess factor volatilities by evaluating parametrically the dynamic Nelson-
Siegel models intra-daily.

Estimation of the multivariate state-space models with high frequency data closely relates to the recent develop-
ments of Shephard and Xiu (2012) and Corsi et al. (2015) in the parametric QML estimation of realized covariances
in equity prices. In particular, these methods consider an intra-daily multivariate price process as a local level
model and provide consistent QML estimates of the covariance matrix with irregular asynchronous price observa-
tions under weak assumptions on the underlying price process. In our case we treat an intra-daily multivariate price
process pt(v) as a factor (dynamic Nelson-Siegel) model. As a consequence, our intra-daily state-space model has an
additional challenge of latent factor identification. A typical pattern of the observed high frequency futures prices
provides a very harsh field for an intra-daily implementation of such state-space methods. Thus, we reorganize
slightly the structure of high frequency observations and impose several simplified assumptions on the intra-daily
Nelson-Siegel framework.

First of all, similar to case with the one-component measure, we partition a trading day with a 5-minute grid
and define the vector of observed prices as p̃t(vi) =

(
p̃

(τt,1)
t (vi), p̃

(τt,2)
t (vi), ..., p̃

(τt,nt )
t (vi)

)′ for i = 1, ...,m using the
21Previous tick interpolation was introduced in Wasserfallen and Zimmermann (1985). See also a related discussion in Hansen and

Lunde (2006b).
22Note that estimator (24) can also be considered as a case of the realized kernel estimator where Bartlett kernel is used.
23Alternatively, it is possible to combine the open-to-close realized variance and the overnight squared return to obtain a consistent

measure for a close-to-close quadratic variation, as in Hansen and Lunde (2005). This approach was used in Christoffersen et al. (2014)
in a similar context to measure the variation in commodity futures prices.
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previous tick interpolation scheme.24 As a result, we obtain a panel of observed prices {p̃t(vi)}mi=0. The fact that
we use a sparse 5-minute grid is helpful for mitigating microstructural noise effects and the improved balancedness
of an intra-daily observations panel enhances a stability of the model identification and estimation.

We then assume that the intra-daily price dynamics of p̃t(vi) is compatible with the constant volatility dynamic
Nelson-Siegel model. Thus, the intra-daily dynamic Nelson-Siegel model for a trading day t is given by

p̃t(vi) = Λtgt(vi) + εt(vi) εt(vi) ∼ iidN
(
0, σ2

ε Int
)

(25)

gt(vi) = gt(vi−1) + ωt(vi) ωt(vi) ∼ iidN
(

0, 1
m
HtRHt

)
(26)

where gt(vi) is a 3 × 1 vector of the latent intra-daily Nelson-Siegel factors. For any given trading day t the
parameters are fixed and do not depend on the intra-daily index i. Note, that in the intra-daily model specification
we do not endow the idiosyncratic term εt(vi) with the autocorrelation effect as we do it in the daily model.
The model in (25)-(26) is a discrete time linear Gaussian state-space model that can be estimated by means of
the standard Kalman filter. We also note, that the discrete state-space specification (25)-(26) complies with the
Brownian semimartingale assumption for the latent efficient futures prices pt(v) which is a standard assumption in
the high frequency econometrics literature.

We facilitate the estimation of (25)-(26) by presetting parameter values for λ, σ2
ε and R with the corresponding

estimates from the constant volatility dynamic Nelson-Siegel model evaluated at a daily frequency. Therefore,
only the intra-daily factor covariance matrix Ht = H(ht) is left for estimation in (25)-(26). We then define the
required realized measure as st ≡ ĥt. Vector ĥt here is the corresponding factor variance estimate obtained from the
intra-daily dynamic Nelson-Siegel models (25)-(26), which are evaluated using the high frequency price observations
{p̃t(vi)}mi=0 of contracts traded at day t.

Of course, the realized measure st is hardly a consistent measure of the conditional variances ht of the latent
Nelson-Siegel factors from the daily model at least due to the difference in specifications between the daily and the
simplified intra-daily models (25)-(26). What is important, we suppose that these measures correlate well with the
unobservable factor volatility processes. Thus, they still can be considered as valid and the possible systematic bias
can be captured by the parameters of the measurement equations (18) in the main model. Informally, we will refer
to these measures of factor variance as realized measures.

4.3 Remarks

Table (3) contains descriptive statistics of the estimated realized measures for the one- and three-component model
specifications. Figure (5) provides the corresponding time series plots.

ACF

Realized measure Mean Std. Skew. Kurt. Min Med Max ρ(1) ρ(5) ρ(22)

Shortest contract 0.306 0.163 2.823 16.006 0.048 0.275 2.046 0.857 0.803 0.713
Level factor 0.113 0.078 1.590 6.609 0.007 0.095 0.553 0.556 0.437 0.379
Slope factor 0.184 0.102 1.848 7.858 0.021 0.163 0.784 0.646 0.529 0.444
Curvature factor 0.371 0.272 1.890 8.199 0.031 0.308 2.004 0.631 0.553 0.494

Table 3: Descriptive statistics of the realized measures of volatility (annualized) for the sample period which starts
in January, 2005 and lasts until December, 2014.

The realized measures for the one-component specification based on the non-parametric realized variance estima-
tor demonstrate relatively smooth and highly persistent dynamics. On contrary, parametric volatility measures for

24In addition, if some contract τ that is traded at t was traded at t − 1 with time to maturity τ + 1, we use the close price of the
contract τ + 1 at t− 1 in the interpolation scheme when we obtain p̃(τ)

t (vi) for day t.
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the three-component specification reveal noisy and weakly persistent dynamics, which suggests that these measures
are likely less accurate.
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Figure 5: In the top panel: annualized subsampled 5-min realized volatility for the front futures contracts. In
the 3 bottom panels: annualized volatility measures of the Nelson-Siegel factors estimated parametrically using
intra-daily state-space models for each trading day of the sample. The sample period starts in January, 2005 and
lasts until December, 2014.

There are several potential reasons of why the three-component measures are relatively noisy. First of all, since
high frequency price observations are unbalanced and we usually do not observe a sufficient number of transactions
on long-term contracts, the factor identification in the intra-daily Nelson-Siegel models is weak and unstable.25 We
also have to recognize that the data interpolation may lead to the distortions in the intra-daily estimation of ĥt.
We argue, nonetheless, that an adverse impact from these causes is expected to be limited since we preset factor

25In practical implementation we use the following method to improve the factor identification. When estimating an intra-daily
Nelson-Siegel model for a trading day t we supply it with the interpolated 5-minute prices from 2 consecutive trading days t − 1 and
t, {p̃t−1(vi); p̃(vi)}mi=0. Although only the data related to day t is used for likelihood maximization, additional data from the previous
trading day significantly improves the ability of the model to identify the latent Nelson-Siegel factors. This happens due to the critical
deficit of price observations for the contracts with long maturities if the data from just one trading day is used. In case we obtain a
“suspicious” outlying volatility estimate, we use the data from the two consecutive trading days for likelihood maximization. It helps
to smooth out very noisy estimates coming from the days when the intra-daily observation panel is especially scarse.
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correlation matrix R and only estimate volatilities ht of the latent factors.
This issue points out an interesting trade-off between the use of the one- and three-component dynamic spec-

ifications of the time-varying covariance matrix Ωt. On one hand, the three-component dynamics provides more
flexibility to the term structure volatility, on the other hand the one-component specification suggests a better
precision of the realized measures. Consequently, this trade-off makes it ex-ante unclear which type of approach is
able to better model and predict the density of the futures prices and we relegate this question to our empirical
evaluation.

5 Evaluation Strategy

In this section, we outline the out-of-sample evaluation of our modeling framework. At first, we briefly describe the
set of alternative (benchmark) model specifications. The corresponding state-space model formulations are given
in Appendix B. Then we explain our strategy for the out-of-sample density forecast evaluation.

5.1 Pool of Considered Models

In our empirical evaluation we consider several alternative models along with our baseline framework. The goal is
to investigate whether time-varying volatility and realized measures suggested in our main framework provide im-
provements in the out-of-sample performance compared to the alternative models with no such features. For better
comparison, all the alternative models have the DNS factor dynamics in the conditional mean, have autocorrelated
idiosyncratic components, and the random walk assumption is maintained for the Nelson-Siegel factor dynamics.
In other words, the part described by equations (2)-(6) is common for all considered models and the differences
come in the specification of the factor covariance matrix Ωt. Particularly, we examine alternative specifications a)
with constant volatility and b) with time-varying volatility, but with no use of realized measures.

DNS with constant variance (DNS-CV). This model is the standard state-space DNS framework from
Diebold et al. (2006) where all variance parameters are assumed to be constant. The model is characterized by (2)-
(6) with the constant covariance matrix Ω in (6). The DNS-CV represents a natural constant volatility benchmark
in our analysis.

DNS with GARCH effects (DNS-GARCH). In this class of models we add time-varying volatility com-
ponents to the factor covariance matrix Ωt. We suggest two specifications with one and three dynamic volatility
components, so they possess the same parametrization of Ωt as proposed in our baseline framework. Similarly,
these time-varying components are supposed to have GARCH-type dynamics, but they are not related to any kind
of realized volatility measures. We follow the methodology from Harvey et al. (1992) by incorporating GARCH
effects into a linear Gaussian state-space model. Therefore, instead of realized measures we use the conditional
expectations of the factor innovation shocks in order to specify the updating terms in the GARCH equations for
dynamic volatilities.26 Since these conditional expectations appear explicitly in the forward Kalman recursions, the
models can be estimated directly by means of the Kalman filter. We consider them in order to assess the gains from
introducing time-varying volatility in the Nelson-Siegel factor dynamics. At the same time, we rule out the effect
from the realized measures which is presented in our baseline models.

DNS with GARCH effects and realized measures (DNS-RGARCH). This class of models is our baseline
framework and is described in details in Section 2. We consider specifications of Ωt with the one and three dynamic
volatility components exploiting the information from realized measures of volatility. Therefore, in addition to the
time-varying volatility aspect, these models also incorporate the effect from the use of volatility measures based on
high frequency data. We examine the baseline models with and without leverage effects specified in (12) and (19).

26The use of conditional expectations of factor volatility shocks implies that the model should be seen as an approximation to a
standard GARCH model.
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Model Dynamic covariance Realized measures Leverage effect
components

CV 0 No No

G-1 1 No No
G-3 3 No No

RG-1 1 Yes No
RG-1-lev 1 Yes Yes
RG-3 3 Yes No
RG-3-lev 3 Yes Yes

Table 4: Set of competing models used in the paper. All models are the DNS factor models with the random walk
dynamics of the Nelson-Siegel factors and the autocorrelated idiosyncratic components. In all models correlations
in the factor dynamics are constant.

Table 4 provides the complete list of the models used in our evaluation study.

5.2 Out-of-sample Evaluation

Distinct specifications of the conditional second moment in the models naturally lead to differences in the model-
implied volatility dynamics and, as a consequence, in the model-implied degree of uncertainty around the expected
futures prices. In our evaluation study we aim to investigate the out-of-sample performance of these volatility
specifications. At first, we simply compare variance forecasts of futures prices produced by our models using a
realized variance benchmark. Then, we focus on forecasting uncertainty of futures prices. For this, we employ a
standard density forecasting approach. One key difference between these two schemes is that in case of variance
prediction we use a noisy proxy of an unobservable volatility, whereas the evaluation of density forecasting is based
on perfectly observable futures prices.

Given the fact that we estimate our models with futures prices at a daily frequency, we focus on short-term
forecasting. We consider 8 forecast horizons: 1, 2, 3, 4, 5, 10, 15, and 22 business days ahead. Note that for
commodity futures the maturities of traded contracts τ change from day to day, so we can not observe the same set
of contracts in the course of the forecasting period. Thus, we partition the traded contracts into several maturity
ranges (e.g. 1-3 months, 1-2 years, etc.) and consider an averaged performance across the traded contracts from a
given maturity range.

The forecasting period lasts from January 2, 2014 until January 16, 2015 and contains 255 trading days in
total.27 The oil prices demonstrate very diverse dynamic regimes throughout the forecasting period (see Figure 6).
In particular, it spans both the relatively calm period in the first half of 2014 and the sharp downfall of oil prices
that occurred during the second half of 2014.

As a variance forecasting criterion we use R2 from the Mincer-Zarnowitz regressions. Namely, for each model
m ∈ M and for each maturity range Tτ ∈ T we run the following pooling regression out-of-sample for a given
forecast horizon h

RV sst+h(τt+k,i) = β0 + β1V̂t+k(τt+k,i;m
)
+εt,i, for i : τt+k,i ∈ Tτ (27)

where V̂t+k(τ ;m
)
stands for the k-step ahead daily log-return variance forecast generated by model m conditional

on the information available up to day t. Variable RV sst+k(τt+k,i) is a sub-sampled realized variance estimate which
is defined in (24) and serves as a proxy for the latent variance.

This approach is especially suitable for our analysis for several reasons. Firstly, R2 computed from the Mincer-
Zarnowitz regressions with non-transformed variables provide a robust ranking of models in case a noisy variance

27In our evaluation analysis we delete the days from the out-of-sample period where log predictive likelihoods get extremely large
negative values for all of considered models (14 trading days in total).
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Figure 6: Futures prices during the forecasting period (January 2, 2014 - January 16, 2015)

proxy is used (see Hansen and Lunde (2006a)). Furthermore, regression in (27) accounts for the possible systematic
bias between the levels of realized and model-implied variances (e.g., due to overnight variation that does not
contribute to realized measures).

We use the log predictive likelihood as a criterion for the density forecast evaluation. The comparison of scoring
rules across the pool of competing models to assess their relative ability of producing density forecasts has a long
tradition in empirical studies (see e.g. Diebold and Lopez (1996), Lopez (2001), Geweke and Amisano (2010)). The
log predictive likelihood of a log futures price yt+k(τ) reads

Lmt+k,τ = log p̂t+k,τ
(
yt+k(τ)|Ft,m

)
(28)

where h denotes a forecast horizon and p̂t+k,τ
(
·|Ft,m

)
is a forecast of the probability density function of yt+k(τ)

that is generated by model m conditional on the information Ft available up to day t. As it is evident from (28), the
log predictive likelihood gets a higher value if the corresponding forecasted density assigns a higher probability to the
actual future realization of the predicted variable (yt+k(τ), in our case). Intuitively, the model that systematically
exhibits higher predictive likelihoods has a better performance.

Definitely, a Gaussian distribution, that is used in our model, may inadequately describe certain aspects of
daily futures returns. Nontheless, we treat the density forecasting approach as a valid tool for evaluation of the
predicted uncertainty around point forecasts. Thus, the Normal density in our analisys serves as a weight function
that turns the predicted variance into a loss value conditional on an inaccuracy of a point forecast. Thus, if a price
misprediction is small enough, a model that has predicted a lower uncertainty is credited better. Conversely, if a
price misprediction is large enough, such a model is penalized more heavily.

In order to forecast the variance and density of futures prices from a given model we refer to simulation techniques
(apart from the case of the constant volatility DNS model where the predictions can be derived analytically). More
precisely, to produce k-step ahead variance and density forecasts we simulate S sequences of the variance components
ht and the factors ft of length k, which are initialized at day t given information Ft. While simulating, we use a
stochastic law of motion defined by model m with the pre-estimated parameters. To obtain the variance forecast,
V̂t+k(τ ;m

)
, we take the median terminal value of S simulated variance components ht and use (7) and (8) in order

to convert it into a variance prediction. Using the terminal values of S simulated factor sequences, we obtain S
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simulated prices {ŷst+k(τ)}Ss=1 using (2). Then, we apply a kernel density estimator to get p̂t+k,τ
(
·|Ft,m

)
and

evaluate the log predictive likelihood from (28) at the observable futures price realization yt+k(τ). In our analysis,
we take S = 10, 000 simulations and use the Matlab built-in function ksdensity with Normal kernel smoother and
the corresponding optimal bandwidth.

In order to statistically assess the differences in density forecasting performance between the competing models,
we construct the Model Confidence Set (MCS) of Hansen et al. (2011) that provides a framework for multiple
comparison of the competing models. MCS consists of the models that exhibit significantly superior performance
with respect to a given loss function and is formulated as follows

MCSk,τ =
{
m ∈M : E(Lm

∗

t+k,τ ) ≥ E(Lmt+k,τ ), ∀m ∈M
}

(29)

We use Kevin Sheppard’s MFE Toolbox28 for Matlab in order to obtain the corresponding p-values for MCS of
99, 95, and 90% coverage, while doing so we set the number of stationary bootstrap replications at 10,000 and the
average window length at 12.

6 Empirical Results

6.1 Parameter estimates and factors

Table 5 presents the parameter estimates for the seven different models. Significance at a 5% level is indicated in
bold face.

The parameter estimates are obtained by numerically maximizing the log-likelihood (23) using data from the
estimation period (January 3, 2005 to December 31, 2013). To start the estimation with appropriate values of the
three Nelson-Siegel factors and the volatility components we make use of the 100 days initialization period (August
9, 2004 to December 30, 2004).29

The parameters λ, σ2
w, β, ρls, ρlc, ρsc are common for all models and their estimates tend to be relatively close

across the models. Hansen and Lunde (2013) fix λ = 0.005, which is slightly smaller than the estimates found
in Table 5. The parameter β is significant and relatively high for all models, which reflects the importance of
incorporating autocorrelation in the idiosyncratic component especially when applying the model to daily data.
The most pronounced correlation parameter is the large negative correlation between the level and the curvature.
Hence, an increase in the overall level of futures prices tends to be offset by a decrease in the prices of the medium
maturity contracts.

The parameter estimates controlling the volatility dynamics in the standard GARCH models are not directly
comparable to their realized counterparts. The volatility dynamics in the GARCH-1 and GARCH-3 models are
linear while the models based on realized measures have a log-linear volatility specification.

If we consider the realized models, we immediately see that the realized measure of the RGARCH-1(-lev) model
is less noisy than the realized measures of the RGARCH-3(-lev) model by comparing the σ2

u parameter estimates.
The parameter γ1l governing the impact on the volatility from the realized measure is also substantially larger in
the RGARCH-1(-lev) model compared to the corresponding parameters in the RGARCH-3(-lev) model.

In the RGARCH-1-lev model we find a negative δ1, which is the common finding in finance literature. Here,
a negative return in the shortest futures often leads to an increase in the volatility of all three factors. In the
RGARCH-3-lev model the sign of the δ1 parameters is not unambiguous and for the level factor we observe an
inverse leverage effect δ1l > 0. All δ1 parameter estimates are, however, insignificant in this model. The δ2

28https://www.kevinsheppard.com/MFE_Toolbox
29In the initialization period the filter is started by assuming the factors are multivariate normal with a mean equal to their empirical

counterparts (see Diebold and Li (2006)) and a high variance equal to the identity matrix. The volatility components are initialized at
their unconditional means.
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parameter is positive in the RGARCH-1-lev, which indicates that large standardized returns of either sign in the
shortest futures often lead to an increase in the general volatility level. For RGARCH-3-lev we find an even more
pronounced effect for all factors.

Figure 7 shows the filtered factors and the annualized volatility series of the different models. Here we only
present the filtered factors for the RGARCH-3 model including its 99% confidence interval. The filtered factors
from the other models are visually identical. In the volatility plots we leave out the volatility series of two models
including leverage since they are visually identical to their non-leverage counterparts.

By comparing the level factor with the data (Figure 1) we may see that the factor tracks the overall tendency of
the futures prices. The slope factor is slightly positive (corresponding to a decreasing futures curve) in the beginning
of the estimation period and rapidly turns negative to reach its lowest values during the financial crisis. After the
financial crisis the slope factor gradually returns to positive values. The curvature is positive in nearly 75% of the
days in the estimation period. A hump-shaped or inverted hump-shaped futures curve may appear if the curvature
is relatively large compared to the slope. Most of the hump-shaped futures curves are observed in late 2005 to 2006
and again in 2012. A few inverted hump-shaped futures curves, with a negative curvature and a relatively small
slope, are observed in late 2007.

The time-varying volatility series of the three factors all share the same pattern. All factors are most volatile
during the financial crisis. The curvature is by far the most volatile factor followed by the slope. The level is
generally the factor with the smallest volatility. It is evident that the volatility series of the RGARCH-3 models
are less “rough” than the series of the competing models. This is consistent with the relatively low estimates of the
γ1 parameters.

6.2 Partial Likelihood Comparison

To evaluate the relative fit of the estimated models we compare the log-likelihood values both in- and out-of-sample.
Since the realized models (RG1, RG1-lev, RG3, RG3-lev) contain an additional contribution to the likelihood
function that stems from the fit of realized measures within the measurement equations, we compare only those
contributions which all of the models share. Namely, our partial likelihoods contain only the contribution from the
fit of daily futures prices that is given by the first term in (23) and in (B.1).
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Figure 8: In-sample (left) and out-of-sample (right) partial likelihood comparison

Figure 8 provides a graphical illustration of the in-sample and out-of-sample log-likelihood comparisons. The
average normalized daily log-likelihood value of the estimated model with constant volatility (CV) is taken as a
benchmark.30 The performance of other models is provided in terms of log-likelihood increments relative to the
benchmark. As we can see from both plots, models with time-varying volatility strongly outperform the constant
volatility benchmark both in- and out-of-sample. Whereas both realized and non-realized models perform similarly
in-sample, an advantage of realized models out-of-sample is clearly pronounced.

30More precisely, we first compute the corresponding log-likelihood values for all the trading days in a given period, then normalize
them by the number of contracts traded at these day and then compute an average normalized daily log-likelihood.
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Figure 7: Filtered factors with 99% confidence intervals and the annualized filtered conditional factor volatilities.

6.3 Forecasting Results

We provide R2 from the Mincer-Zarnowitz regressions in Tables 6-7. The results suggest that both in case of
the one- and three-component modifications, GARCH models augmented with the realized information generally
demonstrate higher R2 than its non-realized counterparts. This is especially pronounced for the models with the
single dynamic variance component. The forecast comparison of one- and three-component specifications reveals
a systematic advantage of the latter. Such an advantage is especially evident for non-realized models. In case of
realized models the situation is a bit more intricate. Namely, the benefits of the three-component specification appear
to be significant only for longer than 3 days ahead forecast horizons. In particular, this may be a consequence of the
relatively more noisy realized measures used in the three-component covariance specification. Thus, an advantage
of the richer three-component volatility structure is deteriorated for 1-2 days ahead forecasts, where the role of the
precision of realized measures is more salient.

The Mincer-Zarnowitz R2 become noticeably smaller with time to maturity. This observation can be explained
not only by the unability of the Nelson-Siegel models to properly capture the variance of the long-term futures
prices. Another reason is the presence of noise in RV estimates which is likely to be higher for the futures with
longer tenors. This fact is a direct consequence of the evidence described in Section 4, that the average number
of intra-daily transactions per trading day for long-term contracts is low. It leads to a higher dispersion of the
RV estimator which makes the variance proxy more noisy and, as a consequence, negatively affects the fit of the
Mincer-Zarnowitz regressions.

Tables 8-9 contain the results of our density forecasting analysis. In addition, we provide density forecasting
results based on the 6 month sub-period (March, 2014 - August, 2014) where the oil prices exhibit relatively stable
dynamics with no long negative or positive trends (see Figure 6). The results are presented in Tables C.3-C.4 in
Appendix C.

The uncertainty forecasting reveals several important implications. First of all, it is evident that models with
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time-varying volatility strongly outperform the constant volatility benchmark.31 This finding is quite natural in
the context of variance prediction. Furthermore, it agrees with the corresponding results on the term structure
density forecasting of interest rates (see Carriero et al. (2014), Shin and Zhong (2015)). As far as the forecasting
horizon increases, the difference between constant and time-varying volatility models reduces. This fact is also
not surprising since in the absence of long-memory effects the GARCH volatility components converge to their
unconditional means relatively fast. We also note that such difference is more pronounced for the futures with short
and medium time to maturity, whereas for the long contracts (more than 4 years until expiration) an advantage of
time-varying volatility is significant only for the very short-term forecasting horizons.

Secondly, we find that the use of realized volatility measures provides not large, but systematic gains. Since
the volatility is persistent, realized measures make an appreciable difference only when the latent volatility state
is rapidly changing. Whereas the standard models can take a while to adjust the volatility process, the use of
realized measures can speed the adjustment up. By comparing DNS-GARCH-1 and DNS-GARCH-3 models to
DNS-RGARCH-1(-lev) and DNS-RGARCH-3(-lev) respectively, we may see that the realized models demonstrate
higher R2 and predictive likelihoods at almost all the considered horizons for the short- and mid-term contracts.
With respect to density forecasting, this finding is qualitatively similar to the results of Shin and Zhong (2015)
who documented significant gains from the use of realized measures in the bond yield density forecasting within a
DNS framework. However, in our case these gains are quantitatively much smaller.32 The “realized” models always
appear in the MCS (for both full and calm out-of-sample periods), which suggest that the gains from realized
measures are systematically significant, though they are not so large. The relative performance of the models with
and without realized measures is getting less discernible as the forecasting horizon increases. This is natural since
the realized information about the current volatility state is more relevant for the short-term volatility (and, hence,
density) predictions rather than for the far ahead forecasts.

Third, the comparison of models with the one and three dynamic volatility components (DNS-(R)GARCH-1(-
lev) to DNS-(R)GARCH-3(-lev)) reveals a significant advantage of the three component specifications in the ability
to produce density forecasts for the short and mid term contracts. This is especially evident from the results based
on the calm forecasting sub-period where for the contracts below 2 years until maturity only 3-component models
appear in MCS at all considered horizons. It may imply that the use of three dynamic volatility components
allows to better control the distribution of the futures term structure than the use of just one dynamic volatility
component. This result conforms with the study of Creal and Wu (2014) who found that one volatility component
is not sufficient to properly capture the distribution dynamics of the interest rate term structure. At the same time,
we may see that for the long-term contracts ( > 4 years until maturity) the one component models provide superior
predictive likelihoods at the horizons above 1 week ahead. The possible explanation of this effect is the following.
The volatility of the level factor implied by the one-component models is systematically more conservative (higher)
than the level volatility in the three factor models. Since the conditional variance of long term futures is mostly
explained by the volatility of the level factor, one-component models provide more conservative density forecasts
for the long-end contracts. Thus, the large mispredictions of the long futures prices at turbulent periods lead to
less severe losses in the corresponding predictive likelihoods for the models with the one volatility component.33

31We note that the constant volatility DNS model produces pretty conservative volatility and density forecasts. This is because the
estimation sample includes the exceedingly volatile Great Recession episode which raises the estimated constant variance parameters.

32For instance, realized models with the one dynamic volatility component, DNS-RGARCH-1(lev), provide about 8% gain in predictive
likelihood compared to its non-realized counterpart DNS-GARCH-1 for the 1-day ahead horizon for the short and mid term futures. The
corresponding gain for the 3-component DNS-RGARCH-3(lev) is much smaller and is about 2.5%. We note, however, that the latter
result can be explained by relatively noisy realized measures used in the 3-component model specifications. The relatively small benefits
from using realized measures in forecasting the oil futures densities resemble the findings of Lunde and Olesen (2014) from the electricity
markets. In particular, they demonstrated that the use of realized volatility measures does not give any significant improvement in the
density predictions of the nearby NOMXC forward returns in the context of the univariate Realized GARCH framework.

33As we can see from the results, for the long-term contracts the gains from the time-varying volatility (and the realized measures)
are small and insignificant for the long enough forecasting horizons (which is especially evident from the results based on the full out-of-
sample period). One possible reason is an inability of the DNS models to appropriately capture the variance dynamics of the long-term
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Finally, we note that the leverage effect does not seem to significantly improve the forecasting performance. We
observe only slight gains from the introduction of the leverage effect presumably for the short-term contracts and
short forecasting horizons.

7 Conclusion

In this paper, we analyze the role of time-varying volatility in modeling commodity futures prices. Our approach is
based on a dynamic version of the classical Nelson-Siegel model. The model effectively reduces the dimensionality
by modeling the whole term structure as a function of three factors: level, slope, and curvature. The dynamic factor
structure allows for direct forecasting of the whole term structure of futures prices. We improve the forecasting
properties of the model by introducing time-varying volatility directly into the conditional variance of the three
unobserved factors. When modeling the volatility we follow the Realized GARCH framework by utilizing precise
volatility information extracted from high-frequency data. The realized measures provide a better signal about the
latent volatility than the daily returns used in conventional GARCH models. The volatility specification is therefore
better suited to periods where the volatility changes rapidly. This makes the model very attractive for forecasting
future volatility and in turn providing superior density forecasts.

Empirically we apply the model to data on light crude oil futures. By an extensive out-of-sample forecasting
exercise we examine to what extent time-varying volatility improves the variance and density predictability and
whether we gain from the use of realized measures. We examine the forecasting performance across different forecast
horizons and different parts of the term structure futures curve. We compare the performance of variance forecasts
using R2 from the Mincer-Zarnowitz regressions and use the log predictive likelihood as a criterion for the density
forecast evaluation.

We find that the models with time-varying volatility strongly outperform the constant volatility benchmark.
The benefit from time-varying volatility is generally larger for short horizon forecasts and for futures contracts
with short/medium time to maturity. The use of realized measures provides small but systematic gains relative to
standard GARCH volatility. When comparing the one- and three factor specifications of the volatility we find that
the three component specification generally produces better density forecasts except for long maturity contracts at
long forecast horizons. Finally, we found that leverage effects do not seem to improve forecasting significantly.

futures prices. When the time-varying volatility is introduced into the three Nelson-Siegel factors, the variance of the term structure
long-end is regulated by the variance of the level factor solely, whereas the volatilities of the short and mid futures are additionally
explained by the variances of the slope and curvature factors respectively. Since the fraction of the futures with long maturities is
relatively small in our panel, the volatility of the level factor may be not very well adjusted to the volatility dynamics of the long term
futures prices. Therefore, an introduction of an additional volatility factor associated with the long-term futures prices could lead to a
potential improvement in the term structure modeling.
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Table 5: Maximum likelihood parameter estimates

CV GARCH-1 GARCH-3 RGARCH-1 RGARCH-1-lev RGARCH-3 RGARCH-3-lev
λ 103 5.800 5.734 5.829 5.774 5.772 5.770 5.803
σ2
w 105 4.493 4.466 4.471 4.472 4.472 4.467 4.455
β 0.633 0.634 0.632 0.632 0.633 0.633 0.631
ρls 0.030 −0.092 −0.047 −0.113 −0.111 −0.081 −0.097
ρlc −0.504 −0.535 −0.505 −0.531 −0.533 −0.563 −0.537
ρsc −0.139 −0.030 −0.047 −0.005 −0.005 −0.011 −0.003
σ2
l 103 0.168
σ2
s 103 0.351
σ2
c 103 1.132
as 104 1.458 1.274 1.140
bs 0.957 1.006 1.094
ac 107 88.809 0.044 0.000
bc 6.078 5.578 5.571
γ0l 0.000 0.000 −0.023 −0.062 0.147 0.127
γ0s 0.000 −0.068 0.009
γ0c 0.000 −0.033 −0.042
γ1l 0.146 0.093 0.431 0.436 0.135 0.143
γ1s 0.119 0.138 0.156
γ1c 0.347 0.155 0.120
γ2l 0.845 0.907 0.607 0.597 0.860 0.849
γ2s 0.850 0.838 0.828
γ2c 0.629 0.822 0.859
ξl −0.382 −0.414 −2.166 −2.117
ξs −0.537 −1.107
ξc −0.631 −0.478
φl 0.864 0.861 0.913 0.916
φs 1.047 0.981
φc 1.026 1.055
σ2
u,l 0.154 0.138 1.278 1.085
σ2
u,s 0.632 0.538
σ2
u,c 1.082 0.921
δ1l −0.049 0.040
δ1s −0.041
δ1c −0.030
δ2l 0.079 0.232
δ2s 0.190
δ2c 0.191

logL 160,551.5 161,130.2 161,255.1 160,101.6 160,230.1 151,578.7 152,128.9√
250E [Vl] 0.205 0.235 0.195 0.223 0.221 0.224 0.220√
250E [Vs] 0.296 0.299 0.273 0.286 0.286 0.279 0.286√
250E [Vc] 0.532 0.582 0.559 0.526 0.522 0.549 0.487

Maximum likelihood parameter estimates for the seven different models. Significance at a 5% level is indicated in bold
face. For visualization some rows have been scaled by the number given in the second column.
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Specification of factor variance dynamics within DNS model

Maturity Category CV G-1 G-3 RG-1 RG-1-lev RG-3 RG-3-lev

1 day-ahead
< 3 months 0.001 0.490 0.679 0.736 0.738 0.701 0.697
3-6 months 0.000 0.450 0.661 0.699 0.702 0.686 0.681
6-12 months 0.002 0.248 0.360 0.401 0.402 0.398 0.394

1-2 years 0.004 0.076 0.094 0.102 0.102 0.088 0.086
2-4 years 0.000 0.051 0.082 0.076 0.076 0.071 0.072
> 4 years 0.031 0.094 0.106 0.154 0.155 0.169 0.165

2 days-ahead
< 3 months 0.001 0.458 0.600 0.649 0.650 0.660 0.660
3-6 months 0.000 0.426 0.586 0.610 0.613 0.641 0.640

6-12 months 0.002 0.235 0.317 0.365 0.367 0.368 0.365
1-2 years 0.004 0.077 0.083 0.100 0.101 0.087 0.085
2-4 years 0.000 0.048 0.064 0.076 0.076 0.071 0.072
> 4 years 0.031 0.094 0.106 0.150 0.152 0.155 0.153

3 days-ahead
< 3 months 0.001 0.459 0.557 0.584 0.586 0.618 0.628
3-6 months 0.000 0.428 0.548 0.542 0.544 0.608 0.613

6-12 months 0.002 0.235 0.296 0.315 0.317 0.343 0.346
1-2 years 0.004 0.076 0.084 0.087 0.087 0.081 0.081
2-4 years 0.000 0.053 0.068 0.069 0.070 0.071 0.073
> 4 years 0.031 0.098 0.110 0.121 0.122 0.147 0.147

4 days-ahead
< 3 months 0.001 0.469 0.538 0.570 0.571 0.644 0.652
3-6 months 0.000 0.439 0.538 0.530 0.533 0.627 0.632

6-12 months 0.002 0.258 0.298 0.295 0.297 0.348 0.352
1-2 years 0.004 0.079 0.079 0.086 0.086 0.082 0.082
2-4 years 0.000 0.065 0.076 0.068 0.069 0.083 0.084
> 4 years 0.031 0.085 0.102 0.107 0.108 0.142 0.142

Table 6: R2 from Micer-Zarnowitz regressions. Bold values indicate the highest R2 across competing models for a
given maturity range and a forecast horizon.
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Specification of factor variance dynamics within DNS model

Maturity Category CV G-1 G-3 RG-1 RG-1-lev RG-3 RG-3-lev

1 week-ahead
< 3 months 0.001 0.516 0.576 0.557 0.561 0.658 0.667
3-6 months 0.000 0.485 0.577 0.532 0.537 0.643 0.648
6-12 months 0.002 0.286 0.340 0.294 0.297 0.365 0.368

1-2 years 0.004 0.083 0.088 0.083 0.083 0.083 0.084
2-4 years 0.000 0.076 0.084 0.058 0.059 0.077 0.078
> 4 years 0.031 0.088 0.102 0.109 0.111 0.147 0.147

2 weeks-ahead
< 3 months 0.001 0.469 0.607 0.544 0.549 0.661 0.664
3-6 months 0.000 0.456 0.575 0.547 0.554 0.635 0.635
6-12 months 0.002 0.249 0.309 0.313 0.317 0.354 0.355

1-2 years 0.004 0.067 0.077 0.074 0.074 0.081 0.081
2-4 years 0.000 0.063 0.075 0.051 0.052 0.078 0.078
> 4 years 0.031 0.095 0.105 0.129 0.131 0.146 0.143

3 weeks-ahead
< 3 months 0.001 0.470 0.680 0.636 0.637 0.671 0.672
3-6 months 0.000 0.466 0.641 0.603 0.608 0.633 0.631
6-12 months 0.002 0.219 0.365 0.339 0.342 0.367 0.366

1-2 years 0.004 0.052 0.102 0.075 0.076 0.082 0.082
2-4 years 0.000 0.080 0.085 0.097 0.095 0.086 0.086
> 4 years 0.031 0.109 0.114 0.124 0.127 0.131 0.129

1 month-ahead
< 3 months 0.001 0.257 0.523 0.514 0.506 0.567 0.578
3-6 months 0.000 0.277 0.526 0.536 0.531 0.556 0.561
6-12 months 0.002 0.112 0.280 0.304 0.299 0.318 0.319

1-2 years 0.004 0.032 0.073 0.068 0.068 0.073 0.073
2-4 years 0.000 0.047 0.059 0.073 0.073 0.071 0.072
> 4 years 0.031 0.053 0.101 0.123 0.123 0.118 0.116

Table 7: R2 from Micer-Zarnowitz regressions. Bold values indicate the highest R2 across competing models for a
given maturity range and a forecast horizon.
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Specification of factor variance dynamics within DNS model

Maturity Category CV G-1 G-3 RG-1 RG-1-lev RG-3 RG-3-lev

1 day-ahead
< 3 months 2.656 0.174 0.248 0.242 0.249 0.270 0.271
3-6 months 2.784 0.146 0.243 0.237 0.244 0.268 0.272
6-12 months 2.921 0.168 0.257 0.253 0.259 0.285 0.289

1-2 years 3.094 0.148 0.286 0.274 0.277 0.308 0.306
2-4 years 3.126 0.246 0.326 0.322 0.317 0.344 0.326
> 4 years 3.210 0.239 0.247 0.241 0.240 0.272 0.274

2 days-ahead
< 3 months 2.368 0.200 0.249 0.228 0.237 0.265 0.263
3-6 months 2.500 0.191 0.249 0.230 0.237 0.271 0.270
6-12 months 2.633 0.203 0.271 0.254 0.260 0.300 0.301

1-2 years 2.787 0.238 0.308 0.281 0.285 0.327 0.327
2-4 years 2.861 0.261 0.333 0.301 0.300 0.324 0.337
> 4 years 2.884 0.246 0.223 0.245 0.246 0.273 0.275

3 days-ahead
< 3 months 2.176 0.207 0.255 0.233 0.240 0.272 0.269
3-6 months 2.305 0.187 0.250 0.233 0.239 0.275 0.273
6-12 months 2.435 0.196 0.279 0.261 0.266 0.310 0.309

1-2 years 2.585 0.203 0.302 0.291 0.293 0.333 0.339
2-4 years 2.679 0.245 0.307 0.296 0.295 0.331 0.332
> 4 years 2.696 0.248 0.190 0.249 0.247 0.270 0.273

4 days-ahead
< 3 months 2.033 0.200 0.246 0.223 0.226 0.259 0.256
3-6 months 2.157 0.187 0.243 0.224 0.229 0.269 0.266
6-12 months 2.286 0.188 0.267 0.251 0.254 0.299 0.299

1-2 years 2.443 0.211 0.301 0.284 0.286 0.326 0.328
2-4 years 2.528 0.249 0.304 0.299 0.298 0.322 0.322
> 4 years 2.565 0.243 0.137 0.239 0.239 0.247 0.250

MCS coverage 99% 95% 90%

Table 8: Comparison of predictive log-likelihoods across the pool of competing models. In the first column, the mean
predictive log-likelihoods for the constant volatility DNS model are reported. In the remaining columns, we provide
changes in mean predictive log-likelihoods relative to the values reported in the first column. The background color
indicates that the model is in MCS with a coverage 99%, 95%, and 90% depending on the color density.
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Specification of factor variance dynamics within DNS model

Maturity Category CV G-1 G-3 RG-1 RG-1-lev RG-3 RG-3-lev

1 week-ahead
< 3 months 1.916 0.192 0.240 0.219 0.221 0.254 0.253
3-6 months 2.039 0.175 0.234 0.215 0.220 0.254 0.256
6-12 months 2.167 0.179 0.254 0.239 0.243 0.282 0.284

1-2 years 2.321 0.201 0.286 0.275 0.280 0.311 0.311
2-4 years 2.404 0.212 0.272 0.294 0.294 0.294 0.295
> 4 years 2.456 0.228 0.092 0.235 0.235 0.230 0.231

2 weeks-ahead
< 3 months 1.501 0.166 0.222 0.217 0.219 0.264 0.261
3-6 months 1.627 0.147 0.209 0.212 0.212 0.249 0.250
6-12 months 1.763 0.138 0.210 0.222 0.224 0.244 0.249

1-2 years 1.939 0.158 0.218 0.249 0.249 0.240 0.243
2-4 years 2.052 0.167 0.147 0.250 0.249 0.191 0.202
> 4 years 2.154 0.197 -0.104 0.184 0.187 0.146 0.158

3 weeks-ahead
< 3 months 1.256 0.123 0.235 0.240 0.238 0.294 0.295
3-6 months 1.382 0.094 0.217 0.227 0.229 0.270 0.270
6-12 months 1.524 0.075 0.198 0.226 0.231 0.244 0.243

1-2 years 1.710 0.088 0.181 0.239 0.239 0.202 0.203
2-4 years 1.835 0.037 0.063 0.209 0.208 0.111 0.115
> 4 years 1.945 0.138 -0.382 0.138 0.142 0.091 0.102

1 month-ahead
< 3 months 0.925 -0.216 0.232 0.199 0.214 0.272 0.282
3-6 months 1.027 -0.399 0.209 0.183 0.208 0.234 0.242
6-12 months 1.172 -0.434 0.180 0.195 0.211 0.199 0.203

1-2 years 1.371 -0.276 0.107 0.201 0.206 0.105 0.129
2-4 years 1.490 -0.415 -0.238 0.159 0.170 -0.073 -0.000
> 4 years 1.650 -0.003 -1.543 0.090 0.106 -0.072 -0.038

MCS coverage 99% 95% 90%

Table 9: Comparison of predictive log-likelihoods across the pool of competing models. In the first column, the mean
predictive log-likelihoods for the constant volatility DNS model are reported. In the remaining columns, we provide
changes in mean predictive log-likelihoods relative to the values reported in the first column. The background color
indicates that the model is in MCS with a coverage 99%, 95%, and 90% depending on the color density.
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A Realized Variances for a Panel of Contracts

In this appendix, we investigate the co-dynamics of realized variances computed for contracts with different maturi-
ties. The purpose of this inspection is to validate the assumption that the variance of the oil futures term structure
can be adequately captured by means of just few dynamic volatility components.

We consider the period between January 3, 2012 and January 16, 2015, which amounts to 785 trading days.
This period is chosen due to availability of the large cross-section of traded contracts, so we are able to consider
a broad spectrum of maturities. We partition this spectrum into 10 maturity categories: up to 2 month, 2-4, 4-6,
6-9, 9-12, 12-18, 18-24, 24-36, 36-48 and more than 48 months until expiration. For each trading day from the
considered sample period and for each maturity category we compute a subsampled realized variance as in (24)
using high frequency transaction data. If at a given day t we observe several traded contracts that belong to the
same maturity category, we take an average of the corresponding realized variances. As a result, we have a balanced
panel of realized variances that spans 10 maturity ranges and 785 trading days (see Figure A.1).

The matrix of correlations between the log realized variance series of different maturity ranges is provided in
Table A.1. We can see that the realized variances are highly correlated across all maturity categories.





< 2 1.000 0.990 0.961 0.885 0.788 0.766 0.697 0.740 0.703 0.541
2− 4 1.000 0.970 0.892 0.799 0.775 0.702 0.749 0.709 0.551
4− 6 1.000 0.900 0.796 0.758 0.688 0.725 0.692 0.515
6− 9 1.000 0.832 0.726 0.634 0.686 0.657 0.453

9− 12 1.000 0.789 0.647 0.657 0.671 0.492
12− 18 1.000 0.753 0.696 0.678 0.553
18− 24 1.000 0.643 0.588 0.463
24− 36 1.000 0.669 0.508
36− 48 1.000 0.653
> 48 1.000

Table A.1: Correlation matrix of log realized variances computed for distinct maturity categories (January 3, 2012
- January 16, 2015). The maturity range is specified in the left column.

These sample correlations, however, are silent about the co-dynamic properties of the realized variance series
as well as about the presence of some common factors in such dynamics. To gauge the possible co-variation we
implement a principal component analysis. The results are provided in Table A.2.

PC Variation Total

1 0.690 0.690
2 0.137 0.826
3 0.048 0.874
4 0.038 0.913
5 0.033 0.945
6 0.027 0.972
7 0.019 0.991

Table A.2: Principal component analysis of the log realized variance panel. Seven main principal components appear
in the first column. In the second column there is a percentage of the variation explained by the corresponding
principal components. In the third column we report the cumulative fraction of the explained variation.
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As it can be seen, the first principal component explains roughly two third of the total variation in the joint
dynamics of the log realized variance series, whereas the first 4 explain more than 90% of the total variation.

On one hand, the principal component analysis indicates that the volatility panel reveals a significant degree
of comovement. To a certain extent this finding supports the idea that even only one time-varying component can
describe an appreciable amount of the common realized variance dynamics. Note that the realized variance of the
shortest contract that is used as a volatility state variable in our one-component dynamic volatility specification
has a correlation about 0.9 with the first principal component.

On the other hand, if just a one component is used, a sufficient amount of realized variance dynamics (about
30%) is left unexplained. This motivates to make use of several dynamic components in order to better capture the
conditional second moment of the whole term structure distribution.
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Figure A.1: Dynamics of the log prices (top panel) and the corresponding log annualized realized variances (bottom
panel) for oil futures (January 3, 2012 - January 16, 2015).
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B State space formulations

In the technical appendix we use the following notation inspired by Durbin and Koopman (2012).
The standard linear Gaussian state space system is given by

Observation equation

xt = dt + Ztαt + νt νt ∼ N (0, Vt)

State equation

αt+1 = Ttαt + ct +Wt+1qt+1 qt+1 ∼ N (0, Qt+1)

Where the Kalman filter is defined by the following recursions:

Kalman filter

et = xt − Ztat − dt Ft = ZtPtZ
′

t + Vt

Updating step

at|t = at + PtZ
′

tF
−1
t et Pt|t = Pt − PtZ

′

tF
−1
t ZtPt

Prediction step

at+1 = Ttat|t + ct Pt+1 = TtPt|tT
′

t +Wt+1Qt+1W
′

t+1

where et denotes the one-step ahead forecast error. Ft = Var (et |Ft−1 ) is the conditional variance of the forecast
errors. at|t = E (αt |Ft ) is the filtered states and Pt|t = Var (αt |Ft ) denotes the time t conditional variance of the
states. at+1 = E (αt+1 |Ft ) is the one-step ahead predicted states and Pt+1 = Var (αt+1 |Ft ).

The log-likelihood function of a standard linear Gaussian state space system is given by

log p (x1, ..., xT ) =
T∑
t=1

log p (xt| Ft−1)

where
log p (xt| Ft−1) = −nt2 log (2π)− 1

2

(
log |Ft|+ e

′

tF
−1
t et

)
(B.1)

The next sections contain the specific state space formulations of each model.
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B.1 Constant volatility

The constant volatility dynamic Nelson-Siegel model can be formulated directly in the standard linear Gaussian
state space formulation. Matching the notation of the standard linear Gaussian state space system with the notation
of the constant volatility dynamic Nelson-Siegel model we have that:

State space notation Dynamic NS notation
xt = yt

Zt = (Λtft,−βCtΛt−1)

αt =
(

ft

ft−1

)
dt = βCtyt−1

νt = wt

Tt =
(
I3×3 03×3

I3×3 03×3

)

Wt =
(

I3×3

03×3

)
qt+1 = ηt+1

Qt+1 =

 σ2
l ρlsσlσs ρlcσlσc

ρlsσlσs σ2
s ρscσsσc

ρlcσlσc ρscσsσc σ2
c


ct = 03×1
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B.2 GARCH-1

In the GARCH-1 model we follow Harvey et al. (1992).

State space notation Dynamic NS notation
xt = yt

Zt = (Λtft,−βCtΛt−1, 0nt×1)

αt =

 ft

ft−1

ηt,l


dt = βCtyt−1

νt = wt

Tt =

 I3×3 03×3 03×1

I3×3 03×3 03×1

01×3 01×3 01×1


Wt =

 I3×3

03×3

(1, 0, 0)


qt+1 = ηt+1

Qt+1 = Ht+1RHt+1

ct = 03×1

where

Ht+1 =


√
ht+1,l 0 0
0

√
ht+1,s 0

0 0
√
ht+1,c



R =

 1 ρls ρlc

ρls 1 ρsc

ρlc ρsc 1


ht+1 = γ0l + γ1l

(
a2
t|t,7 + Pt|t 7,7

)
+ γ2lht

Here at|t,7 denotes the 7th element in a2
t|t and Pt|t 7,7 is the (7, 7) element in Pt|t . Since η2

t,l is not directly

observable we use E
(
η2
t,l |Ft

)
= a2

t|t,7 + Pt|t 7,7 as the “signal” in the volatility process. Hence, the model should
be seen as an approximation to a “standard GARCH” model.
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B.3 GARCH-3
State space notation Dynamic NS notation

xt = yt

Zt = (Λtft,−βCtΛt−1, 0nt×3)

αt =

 ft

ft−1

ηt


dt = βCtyt−1

νt = wt

Tt =

 I3×3 03×3 03×3

I3×3 03×3 03×3

03×3 03×3 03×3


Wt =

 I3×3

03×3

I3×3


qt+1 = ηt+1

Qt+1 = Ht+1RHt+1

ct = 03×1

where

Ht+1 =


√
ht+1,l 0 0
0

√
ht+1,s 0

0 0
√
ht+1,c



R =

 1 ρls ρlc

ρls 1 ρsc

ρlc ρsc 1


ht+1,l = γ0l + γ1l

(
a2
t|t,7 + Pt|t 7,7

)
+ γ2lht,l

ht+1,s = γ0s + γ1s

(
a2
t|t,8 + Pt|t 8,8

)
+ γ2sht,s

ht+1,c = γ0c + γ1c

(
a2
t|t,9 + Pt|t 9,9

)
+ γ2cht,c

Here at|t,i denotes the i’th element in at|t and Pt|t i,j is the (i, j) element in Pt|t . Since η2
t,k is not directly

observable we use

E
(
η2
t,k |Ft

)
=


a2
t|t,7 + Pt|t 7,7 for k = l

a2
t|t,8 + Pt|t 9,9 for k = s

a2
t|t,8 + Pt|t 9,9 for k = c

as the “signal” in the volatility process. Hence, the model should be seen as an approximation to a “standard
multivariate GARCH” model.
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B.4 RGARCH-1-lev
State space notation Dynamic NS notation

xt = yt

Zt = (Λtft,−βCtΛt−1)

αt =
(

ft

ft−1

)
dt = βCtyt−1

νt = wt

Tt =
(
I3×3 03×3

I3×3 03×3

)

Wt =
(

I3×3

03×3

)
qt+1 = ηt+1

Qt+1 = Ht+1RHt+1

ct = 03×1

Hence, the standard space formulation is equivalent to the constant volatility model except for the fact that Qt+1

is time-varying and driven by realized measures. Here we have that:

Ht+1 =


√

exp (ht) 0 0
0

√
as + bs exp (ht) 0

0 0
√
ac + bc exp (ht)


with

ht = γ0 + γ1st−1 + γ2ht−1

st =

ξ + φht + δ (zt) + ut with leverage

ξ + φht + ut without leverage

In the Realized models we need to account for st being an observable. Hence, we need to add
log p (st |yt,Ft−1; θ ) = −1

2 log (2π)− 1
2

(
log
(
σ2
u

)
+ u2

t

σ2
u

)
to the NS log-likelihood contribution (B.1).
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B.5 RGARCH-3-lev
State space notation Dynamic NS notation

xt = yt

Zt = (Λtft,−βCtΛt−1)

αt =
(

ft

ft−1

)
dt = βCtyt−1

νt = wt

Tt =
(
I3×3 03×3

I3×3 03×3

)

Wt =
(

I3×3

03×3

)
qt+1 = ηt+1

Qt+1 = Ht+1RHt+1

ct = 03×1

Hence, the standard space formulation is equivalent to the constant volatility model except for the fact that Qt+1

is time-varying and driven by realized measures. Here we have that:

Ht+1 =


√

exp (ht,l) 0 0
0

√
exp (ht,s) 0

0 0
√

exp (ht,c)


with

ht,j = γ0,j + γ1,jst−1,j + γ2,jht−1,j

st,j =

ξj + φjht,j + δj (zt,j) + ut,j with leverage

ξj + φjht,j + ut,j without leverage
for j = l, s, c

In the Realized models we need to account for st being an observable. Hence, we need to add

log p (st |yt,Ft−1; θ ) = −1
2 log (2π)− 1

2

(
log
(
σ2
u,l

)
+
u2
t,l

σ2
u,l

)

−1
2 log (2π)− 1

2

(
log
(
σ2
u,s

)
+
u2
t,s

σ2
u,s

)

−1
2 log (2π)− 1

2

(
log
(
σ2
u,c

)
+
u2
t,c

σ2
u,c

)

to the NS log-likelihood contribution (B.1).
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C Additional Results on Density Forecasting

Forecasting sub-period with relatively mild price dynamics (March 3, 2014 - August 29, 2014)

Specification of factor variance dynamics within DNS model

Maturity Category CV G-1 G-3 RG-1 RG-1-lev RG-3 RG-3-lev

1 day-ahead
< 3 months 2.805 0.290 0.368 0.333 0.345 0.386 0.391
3-6 months 2.947 0.286 0.354 0.327 0.338 0.379 0.382
6-12 months 3.077 0.309 0.373 0.352 0.360 0.406 0.408

1-2 years 3.212 0.349 0.413 0.389 0.394 0.443 0.442
2-4 years 3.305 0.360 0.445 0.395 0.396 0.435 0.433
> 4 years 3.287 0.300 0.325 0.321 0.320 0.331 0.334

2 days-ahead
< 3 months 2.469 0.305 0.398 0.352 0.368 0.417 0.422
3-6 months 2.622 0.305 0.386 0.351 0.363 0.416 0.418
6-12 months 2.756 0.339 0.415 0.388 0.398 0.456 0.459

1-2 years 2.890 0.382 0.457 0.426 0.431 0.494 0.493
2-4 years 2.996 0.412 0.513 0.448 0.448 0.507 0.504
> 4 years 2.963 0.307 0.302 0.319 0.321 0.330 0.336

3 days-ahead
< 3 months 2.282 0.313 0.408 0.362 0.373 0.434 0.439
3-6 months 2.431 0.316 0.393 0.360 0.372 0.425 0.429
6-12 months 2.567 0.352 0.427 0.401 0.411 0.475 0.476

1-2 years 2.707 0.401 0.479 0.445 0.452 0.522 0.521
2-4 years 2.815 0.435 0.543 0.470 0.470 0.539 0.536
> 4 years 2.781 0.313 0.282 0.317 0.315 0.332 0.334

4 days-ahead
< 3 months 2.140 0.309 0.399 0.357 0.369 0.422 0.423
3-6 months 2.288 0.316 0.391 0.359 0.371 0.423 0.426
6-12 months 2.427 0.351 0.427 0.402 0.410 0.475 0.475

1-2 years 2.571 0.410 0.492 0.457 0.460 0.533 0.532
2-4 years 2.684 0.448 0.561 0.482 0.482 0.554 0.553
> 4 years 2.655 0.326 0.255 0.316 0.318 0.324 0.331

MCS coverage 99% 95% 90%

Table C.3: Comparison of predictive log-likelihoods across the pool of competing models. In the first column, the
mean predictive log-likelihoods for the constant volatility DNS model are reported. In the remaining columns,
we provide changes in mean predictive log-likelihoods relative to the values reported in the first column. The
background color indicates that the model is in MCS with a coverage 99%, 95%, and 90% depending on the color
density.
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Forecasting sub-period with relatively mild price dynamics (March 3, 2014 - August 29, 2014)

Specification of factor variance dynamics within DNS model

Maturity Category CV G-1 G-3 RG-1 RG-1-lev RG-3 RG-3-lev

1 week-ahead
< 3 months 2.022 0.307 0.391 0.356 0.362 0.413 0.415
3-6 months 2.172 0.313 0.383 0.356 0.363 0.411 0.413
6-12 months 2.317 0.351 0.422 0.400 0.407 0.467 0.466

1-2 years 2.464 0.413 0.494 0.459 0.463 0.535 0.533
2-4 years 2.580 0.458 0.574 0.492 0.492 0.566 0.563
> 4 years 2.557 0.332 0.240 0.312 0.316 0.332 0.335

2 weeks-ahead
< 3 months 1.680 0.295 0.364 0.344 0.351 0.393 0.391
3-6 months 1.829 0.301 0.357 0.348 0.349 0.388 0.384
6-12 months 1.976 0.343 0.398 0.395 0.399 0.444 0.442

1-2 years 2.133 0.414 0.480 0.468 0.469 0.521 0.518
2-4 years 2.254 0.453 0.546 0.486 0.483 0.531 0.529
> 4 years 2.230 0.312 0.068 0.232 0.242 0.239 0.257

3 weeks-ahead
< 3 months 1.490 0.299 0.371 0.346 0.347 0.405 0.405
3-6 months 1.639 0.302 0.362 0.347 0.347 0.400 0.395
6-12 months 1.786 0.338 0.391 0.388 0.389 0.444 0.437

1-2 years 1.941 0.402 0.464 0.457 0.451 0.507 0.499
2-4 years 2.052 0.422 0.497 0.432 0.425 0.471 0.465
> 4 years 2.017 0.276 -0.197 0.157 0.171 0.160 0.178

1 month-ahead
< 3 months 1.302 0.294 0.380 0.342 0.343 0.405 0.401
3-6 months 1.448 0.290 0.358 0.335 0.335 0.391 0.385
6-12 months 1.602 0.330 0.387 0.381 0.378 0.443 0.436

1-2 years 1.753 0.385 0.443 0.433 0.425 0.487 0.479
2-4 years 1.857 0.380 0.438 0.380 0.376 0.420 0.415
> 4 years 1.814 0.221 -0.477 0.083 0.112 0.088 0.116

MCS coverage 99% 95% 90%

Table C.4: Comparison of predictive log-likelihoods across the pool of competing models. In the first column, the
mean predictive log-likelihoods for the constant volatility DNS model are reported. In the remaining columns,
we provide changes in mean predictive log-likelihoods relative to the values reported in the first column. The
background color indicates that the model is in MCS with a coverage 99%, 95%, and 90% depending on the color
density.
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