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1 Monte Carlo Evidence on Local Autocorrelation Tests

1.1 Monte Carlo Design

We explore whether the evidence of persistent autocorrelation regimes may be an artifact of

MMN or price jumps in the high-frequency return series through simulations based on a standard

one-factor stochastic volatility model used in prior studies, e.g., Huang and Tauchen (2005),

Barndorff-Nielsen et al. (2008), and Goncalves and Meddahi (2009).

Normalizing a day to t ∈ [0, 1], the efficient log-price, y(t), evolves according to,

dy(t) = µy dt + σy(t) dWy(t) + dJ(t) ,

σy(t) = σd(t)σs(t) ,

σs(t) = exp
(
β0 + β1τ(t)

)
,

dτ(t) = α τ(t)dt + dWτ ,

where Wy(t) and Wτ (t) are correlated Brownian motions with corr(dWy, dWτ ) = ρ.
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We rely on the following parametrization: µy = 0.03, β1 = 0.125, α = −0.025, and

ρ = −0.3. Following Barndorff-Nielsen et al. (2008), we set β0 = β2
1/(2α) to normalize the

integrated variance, ensuring that E[σ2
s(t)] = 1.

The efficient price volatility, σy(t ), has a two-component multiplicative structure. Beyond

the stochastic component σs(t), we introduce a deterministic component σd(t) to capture the

empirically documented diurnal J-shape volatility pattern. We model it as an exponential

polynomial, along the lines of Hasbrouck (1999) and Andersen et al. (2012),

σd(t) = C + Ae−at + Be−b(1−t) ,

with parameters set to A = 0.75, B = 0.25, C = 0.88929198, and a = b = 10. The

specification ensures a sensible normalization of the diurnal effect, implying
∫ 1

0 σd(t)dt = 1.

Jumps are introduced through a sum of two compound Poisson processes, J(t) = Js(t) +

J`(t), independent of Wy(t) and Wτ (t). Js refers to small frequent jumps and J` to large

jumps. If a small jump occurs at time t, its size depends on spot volatility, as it is drawn from,

N
(
0, 25σ2(t)∆t

)
with ∆t = 1/23400 or one second. The intensity of small jump arrivals is

one per three minutes, while large jumps occur on average once a week, and each large jump

contributes 25% of the expected daily integrated variance.

Letting the efficient log-price be contaminated by noise, u(t), the observed mid-quote is,

p(t) = y(t) + u(t) .

The noise component is i.i.d. N
(
0, 0.1σ2(t)∆t

)
at time t, whenever p(t) is observed.

This standard specification generates an MA-structure for the observed returns, with a negative

autocorrelation and a noise-to-signal ratio that varies with the sampling frequency.

Using an Euler discretization scheme, we simulate daily price series on a second-to-second

basis, generating T=23,400 recorded mid-quotes. To align the setting with our empirical analysis,

we simulate 61 trading days and break them into sequences of intraday intervals. We then

compute the first-order autocorrelations within each local interval and repeat the statistical tests

applied to the individual stock price series in Section 2in the main manuscript. We repeat this

procedure 1,000 times and report the percentage of local intervals for which the null hypotheses

is rejected.

1.2 Simulation Results

Table 1 reports the same statistics as Table 1 in the main manuscript, but based on simulated data.

In the scenario without jumps and microstructure noise (top panel), the tests using the average
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absolute or signed autocorrelations tend to over-reject the null hypothesis of zero autocorrelation.

The size distortion is most prevalent for short local intervals and low sampling frequencies.

Conversely, for longer intervals and higher sampling frequencies, the test size approaches its

nominal value. This suggests that the size distortion arises from a finite-sample bias; the tests

eventually behave as prescribed by the Kokoszka and Politis (2011) asymptotic approximation.

The second panel reports on a simulation scenario with jumps. The jumps do not induce

serial dependence in the returns, but they can seriously affect the distribution of ρ̂k and, conse-

quently, the statistical properties of the test. In fact, we observe a slight increase in the rejection

rates compared to the scenario with no jumps. Again, this size distortion tends to vanish when

considering combinations of T and ∆ implying a higher number of observations. Finally, we

note that, in the absence of microstructure noise, the simulated price series generates an equal

proportions of local intervals with positive and negative estimated return autocorrelations.

The two bottom panels provide results based on scenarios with MMN. The presence of (in-

dependent) noise induces negative return autocorrelation. Accordingly, for sampling frequencies

of 2 seconds and 3 seconds, nearly all tests reject the null hypothesis across all simulation de-

signs. When the test is applied to the subset of intervals with exclusively positive or exclusively

negative estimated autocorrelations then, as expected, the (one-sided) tests correctly reject the

null only for the negative correlation regimes (columns (I−)).

Table 2 is the counterpart to Table 2 in the main manuscript, reporting results for Wald-

Wolfowitz run tests on simulated data. Since none of the scenarios introduces any dependence

structure in the return autocorrelations, we expect test size to be satisfactory. In fact – even in

the presence of noise and jumps – the rejection rates are well aligned with their nominal values

for all designs, interval lengths and observation frequencies. However, rejections from the left

tail occur slightly more often than from the right, suggesting that the test statistic is mildly

skewed in small samples.

Finally, Table 3 mimics Table 3 in the main manuscript, reporting on the persistence in

the sign of the autocorrelation regimes. The noise has a small, yet notable, impact on the

rejection patterns. We observe a moderate over-rejection in the transition rate from intervals

with positive autocorrelation (left panel) and, conversely, an under-rejection from intervals with

negative autocorrelations (right panel). Since the noise process induces negative autocorrelation,

the simulations generate only a few instances of (estimated) positive serial correlation and,

as a result, p̂00 and p̂11 are imprecisely estimated, rendering size distortions more common.1

Nonetheless, rejections occur equally often in the left and right tail, so the test (correctly) does

1This conjecture is corroborated by the fact that size distortions grow more pronounced for higher frequencies and
longer intraday intervals. In these settings, we obtain even more negative estimates for ρ̂k, further reducing the
number of transitions between different regimes.
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T = 10 min T = 15 min T = 20 min

(I) (I+) (I−) (I) (I+) (I−) (I) (I+) (I−)

∆ %5%%1%%5%%1%%5%%1% π+ %5%%1%%5%%1%%5%%1% π+ %5%%1%%5%%1%%5%%1% π+

Simulation design without jumps and noise

2 sec 7.2 1.9 7.1 2.1 5.5 1.6 0.50 5.5 1.5 5.1 0.6 5.4 1.2 0.50 4.7 0.7 4.7 1.0 4.5 0.9 0.50
3 sec 10.6 2.6 8.6 1.8 8.1 2.3 0.50 7.0 1.7 6.3 1.8 6.8 1.5 0.50 6.6 1.3 5.5 1.6 5.3 1.3 0.50
5 sec 15.8 4.7 11.8 3.3 10.7 2.9 0.50 9.7 2.2 8.5 1.9 8.2 1.8 0.50 7.2 1.4 6.4 1.4 7.0 1.0 0.50

Simulation design with jumps, but without noise

2 sec 12.9 3.3 10.0 2.1 11.0 3.1 0.50 10.2 2.3 7.7 2.0 10.5 2.3 0.50 7.8 1.2 6.2 1.2 7.2 1.9 0.50
3 sec 17.3 5.6 12.9 2.9 14.6 4.2 0.50 12.2 2.9 8.9 2.4 10.6 3.1 0.50 10.1 2.4 7.7 1.9 7.7 1.9 0.50
5 sec 23.6 7.8 16.2 4.3 15.9 3.8 0.50 12.6 3.9 10.3 3.0 9.5 2.4 0.50 9.8 2.4 7.3 1.6 9.3 2.4 0.50

Simulation design without jumps, but with i.i.d. noise

2 sec 100 100 0.0 0.0 100 100 0.22 100 100 0.0 0.0 100 100 0.17 100 100 0.0 0.0 100 100 0.13
3 sec 100 100 0.0 0.0 100 100 0.33 100 100 0.0 0.0 100 100 0.29 100 100 0.0 0.0 100 100 0.27
5 sec 63.2 38.2 0.0 0.0 100 99.8 0.42 64.3 38.3 0.0 0.0 99.9 99.9 0.40 67.3 44.9 0.0 0.0 99.9 99.5 0.38

Simulation design with jumps and i.i.d. noise

2 sec 100 100 0.0 0.0 100 100 0.25 100 100 0.0 0.0 100 100 0.20 100 100 0.0 0.0 100 100 0.17
3 sec 100 99.8 0.0 0.0 100 100 0.35 100 100 0.0 0.0 100 100 0.32 100 100 0.0 0.0 100 100 0.30
5 sec 63.5 34.7 0.0 0.0 99.9 99.1 0.43 57.3 29.0 0.0 0.0 99.9 99.0 0.41 57.7 30.5 0.0 0.0 99.8 98.0 0.40

K = 2379 K = 1586 K = 1159

Table 1: Significance of first-order return autocorrelations for local intervals with simulated returns of length T =
10, 15, and 20 minutes. Columns %5% and %1% report the percentage rejections for null hypothesis at the 5% and
1% significance level, respectively. Columns marked by (I) refer to the test based on all simulated intervals, while
the columns labeled (I+) and (I−) refer to results from intervals with only positive or only negative autocorrelations,
respectively. Columns π̄+ provide the fraction of intervals with a positive return autocorrelation in the full sample of
K simulated intervals (K is given in the bottom of the table). The tests are conducted for 1000 simulations, each
containing 61 trading days to mirror the empirical test design from Section 2.1 in the main manuscript.

not indicate persistence or anti-persistence in the autocorrelation regimes.

In summary, our tests possess reasonable statistical properties. The size distortions differ by

an order of magnitude from the test outcomes in Sections 2.1 and 2.2 in the main manuscript,

suggesting that the empirical evidence on the variability, significance and persistence of local

autocorrelation regimes is not spurious, but rather driven by structural features of the price

formation process.

2 Estimation

Define Y as the vector of observed returns, Y := (r1, . . . , rT ) and θ = (σ2
∗, σ

2
ε , α, γ)′ as the

vector of parameters to be estimated. By assuming that εi and ε∗i are i.i.d. jointly (for the local

interval) Gaussian with variance σ2
ε and σ2

∗ , the log likelihood function is (up to the constant

T ln(2π)/2) given by the log density of the corresponding T -dimensional zero-mean normal
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T = 10 min T = 15 min T = 20 min
∆ %2.5 %97.5 %0.5 %99.5 π+ %2.5 %97.5 %0.5 %99.5 π+ %2.5 %97.5 %0.5 %99.5 π+

Simulation design without jumps and noise

2 sec 3.2 1.9 0.9 0.3 0.50 1.1 2.5 0.5 0.3 0.50 2.8 1.5 0.6 0.2 0.50
3 sec 2.7 3.0 0.4 0.3 0.50 2.3 2.2 0.4 0.3 0.50 2.7 2.3 0.1 0.4 0.50
5 sec 3.5 2.6 0.6 0.3 0.50 2.7 2.4 0.5 0.6 0.50 1.8 3.9 0.2 1.2 0.50

Simulation design with jumps, but without noise

2 sec 2.6 2.6 0.3 0.7 0.50 2.5 1.2 0.3 0.1 0.50 3.3 2.5 0.6 0.2 0.50
3 sec 3.0 1.2 0.2 0.2 0.50 2.6 1.7 0.7 0.2 0.50 2.1 3.1 0.4 0.8 0.50
5 sec 2.5 2.2 0.6 0.1 0.50 2.5 2.5 0.5 0.3 0.50 2.5 1.7 0.3 0.1 0.50

Simulation design without jumps, but with i.i.d. noise

2 sec 2.2 2.4 0.1 0.4 0.22 3.4 1.2 1.2 0.3 0.17 4.3 1.0 1.0 0.2 0.13
3 sec 2.8 2.7 0.4 0.6 0.33 2.0 2.4 0.2 0.3 0.29 3.4 1.8 0.4 0.7 0.27
5 sec 3.7 2.2 0.6 0.7 0.42 2.6 3.3 0.4 0.5 0.40 1.7 1.3 0.3 0.1 0.38

Simulation design with jumps and i.i.d. noise

2 sec 3.0 2.2 0.3 0.5 0.25 3.1 1.8 0.5 0.4 0.20 3.8 1.8 0.9 0.3 0.17
3 sec 1.8 1.6 0.3 0.8 0.35 2.6 1.6 0.5 0.6 0.32 2.5 1.8 0.8 0.1 0.30
5 sec 2.6 2.6 0.8 0.5 0.43 2.6 2.6 0.7 0.3 0.41 3.1 1.9 0.7 0.1 0.40

K = 2379 K = 1586 K = 1159

Table 2: The table reports on Wald–Wolfowitz runs tests applied for local intervals with simulated returns of
length T = 10, 15, and 20 minutes. The null hypothesis asserts that the occurrence of positive vs. negative return
autocorrelation regimes follows an independent random sequence. We test the null hypothesis at 5% and 1%
significance levels. The rejection frequency for the null hypothesis is given in the columns labeled %2.5, %0.5 (left
tail rejections) and %97.5, %99.5 (right tail rejections). π̄+ indicates the fraction of intervals with positive return
autocorrelations in the full sample of K simulated intervals (K is reported in the bottom of the table). The tests are
conducted for 1000 simulations, each spanning 61 trading days to mirror the test design in Section 2.2 in the main
manuscript.

distribution with covariance matrix Σ,

`(Y, θ) = − ln |(Σ)|/2 − Y ′Σ−1 Y/2, (1)

where the diagonal and off-diagonal elements of Σ are given, respectively, by,

Σii = σ2
∗(1 + 2/(2− α)Fα(γ, λ)), (2)

Σij = −σ2
∗Fα(γ, λ)ψ(|i− j| − 1) . (3)

Under the standard regularity conditions for ML inference, we have for the ML estimates θ̂,

T 1/2(θ̂ − θ) d→ N(0, I−1
1 ),

with I1 = T−1I = −T−1E[∂2`(Y, θ)/∂θ∂θ′]. DefineDC as themn×q matrix ∂vec(C)/∂θ′,

where C is a m× n matrix depending on a q × 1 parameter vector θ. Then, ∂`(Y, θ)/∂θ′ and
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Persistence of positive regimes (H0: p11 = p) Persistence of negative regimes (H0: p00 = 1− p)

10 min 15 min 20 min 10 min 15 min 20 min
∆ %2.5 %97.5 π+ %2.5 %97.5 π+ %2.5 %97.5 π+ %2.5 %97.5 π− %2.5 %97.5 π− %2.5 %97.5 π−

Simulation design without jumps and noise

2 sec 2.2 3.1 0.50 2.7 1.2 0.50 1.8 2.6 0.50 2.3 2.9 0.50 3.0 1.0 0.50 1.9 2.1 0.50
3 sec 3.1 2.4 0.50 2.5 2.3 0.50 3.0 2.2 0.50 3.2 2.3 0.50 2.7 2.0 0.50 3.4 2.3 0.50
5 sec 3.0 3.4 0.50 2.6 2.6 0.50 4.4 1.4 0.50 3.6 3.1 0.50 3.3 2.4 0.50 4.6 1.2 0.50

Simulation design with jumps, but without noise

2 sec 3.1 2.0 0.50 1.8 2.6 0.50 3.0 2.9 0.50 3.2 2.1 0.50 2.1 1.8 0.50 3.6 2.4 0.50
3 sec 1.5 2.3 0.50 2.2 2.7 0.50 3.3 1.9 0.50 1.8 1.9 0.50 2.2 2.2 0.50 3.7 1.4 0.50
5 sec 2.7 2.5 0.50 2.9 2.3 0.50 1.9 2.6 0.50 3.2 2.1 0.50 3.0 2.2 0.50 2.7 1.8 0.50

Simulation design without jumps, but with i.i.d. noise

2 sec 14.7 14.9 0.22 17.2 18.9 0.17 20.3 23.8 0.13 0.0 0.0 0.78 0.0 0.0 0.83 0.0 0.0 0.87
3 sec 8.7 9.1 0.33 9.9 9.2 0.29 13.4 11.5 0.27 0.5 0.1 0.67 0.0 0.0 0.71 0.2 0.1 0.73
5 sec 4.7 5.7 0.42 6.9 5.2 0.40 5.2 5.3 0.38 1.4 0.8 0.58 1.6 0.4 0.60 0.3 0.1 0.62

Simulation design with jumps and i.i.d. noise

2 sec 13.9 13.6 0.25 14.7 14.2 0.20 16.8 17.3 0.17 0.1 0.0 0.75 0.0 0.0 0.80 0.0 0.1 0.83
3 sec 7.7 5.1 0.35 9.4 8.8 0.32 11.3 9.9 0.30 0.9 0.1 0.65 0.3 0.0 0.68 0.1 0.3 0.70
5 sec 5.2 3.8 0.43 5.7 4.7 0.41 4.4 4.9 0.40 1.4 1.0 0.57 1.2 0.9 0.59 0.8 0.8 0.60

K = 2379 K = 1586 K = 1159 K = 2379 K = 1586 K = 1159

Table 3: The table reports the number of rejections for the null hypothesis of independent transitions between
autocorrelation regimes across simulated local intervals. On the left, we test for persistence in positive autocorrelation
regimes under H0: p11 = p, and on the right, we test for persistence in regimes with negative autocorrelation under
H0: p00 = 1 − p. The fraction of rejections of the null hypothesis at the 2.5% and 97.5% level is given in the
columns labeled %2.5 and %97.5. Columns π+ and π− indicate the fraction of intervals with positive and negative
return autocorrelations in the total sample of K simulated intervals, with K reported at the bottom of the table. The
tests are conducted for 1000 simulations, each containing 61 trading days to mirror the test design in Section 2.2 in
the main manuscript.

∂2`(Y, θ)/∂θ∂θ′ can be computed as,

∂`(Y, θ)/∂θ′ = −1

2

(
vec′[Σ−1(IT − yy′Σ−1)]DΣ

)
(4)

∂2`(Y, θ)/∂θ∂θ′ =− 1

2

{
−DΣ′((IT − Σ−1yy′)Σ−1 ⊗ Σ−1)DΣ

+DΣ′(Σ−1 ⊗ Σ−1yy′Σ−1)DΣ
}
, (5)

where ⊗ denotes the Kronecker product. Then, E[∂2`(Y, θ)/∂θ∂θ′] is given by,

E[∂2`(Y, θ)/∂θ∂θ′] = −1

2

{
DΣ′(Σ−1 ⊗ Σ−1)DΣ

}
. (6)

The computation of DΣ is straightforwardly obtained based on the derivatives of equation (2)

and (3) with respect to θ. ML inference provides a standard
√
T convergence rate for fixed ∆

and T →∞.

The computation of `(Y, θ) is challenging because expressions for Σ−1 generally are not
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available in closed form. However, if α = 1, Σ reduces to a tri-diagonal matrix, as Σij = 0 for

|i− j| > 1. In this scenario, Σ−1 may be computed using results by Usmani (1994). If α = 1

and γ = 1, the autocovariance structure of ri is governed by an MA(1) process, and convenient

expressions for Σ−1 are readily available, see Hamilton (1994). Ait-Sahalia et al. (2005) exploit

this formulation to derive a tractable approximation to E[∂2`(Y, θ)/∂θ∂θ′] for T →∞.

In the general case, such simplifications are not applicable. Σ attains a special Toeplitz form

for which the inverse of Σ is not available in closed form. Then, it is more convenient to specify

the log likelihood through a prediction error decomposition, see, e.g., Harvey (1989),

`(Y, θ) = −1

2

T∑
i=1

ln(si) −
1

2

T∑
i=1

ν2
i

s2
i

, (7)

where νi denote (optimal) linear predictions of ri given past returns (ri−1, . . . , r1), and s2
i

denotes the conditional variance s2
i = E[ν2

i |ri−1, . . . , r1].

Given the normality for εi and ε∗i , `(Y, θ) can be readily computed by the Kalman filter

based on a reformulation of the model in terms of a linear state-space system. Denote Xi as a

state vector at i with Xi = (µi, µi−1, ε̃i)
′. Then, the return dynamics takes the form,

ri = FXi,

Xi = GXi−1 + wi,

with F = (0,−α, 1), and,

G :=


(1− α) 0 0

1 0 0

0 0 0

 .

The error term vector is given by wi = (εµi , 0, ε̃i) with covariance matrix,

Σw =


(γ − 1)2σ2

∗ + σ2
ε 0 σ2

∗[γ(γ − 1) + λ]

0 0 0

σ2
∗[γ(γ − 1) + λ] 0 γ2σ2

∗ + σ2
ε

 .

To capture the covariance structure between εµi and εi , we treat εi and µi−1 as separate latent

components of Xi. Accordingly, the system contains three state equations.

The Kalman filter (Kalman (1960), Kalman (1963)) generates optimal forecasts of the latent

variables Xi, given observations up to time i−1, and thus optimal predictions ri,i−1 minimizing

the mean-squared error si, see Hamilton (1994). Given the linear Gaussian state space model,
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the Kalman filter therefore enables us to compute the exact log-likelihood function yielding

(asymptotically) efficient inference. In particular, given the state space formulation in Section 2,

we have,

∂`(Y, θ)/∂θ′ = −1

2

T∑
i=1

{
(s−2
i (1− ν2

i s
−2
i ))Ds2

i + 2νis
−2
i Dνi

}
(8)

∂2`(Y, θ)/∂θ∂θ′ = −1

2

T∑
i=1

{
−(Ds2

i )
′((1− ν2

i /s
2
i )s
−4
i )Ds2

i − 2(Ds2
i )
′s−4
i νiDνi

+ (Ds2
i )
′s−6
i ν2

iDs
2
i + 2(νis

−2
i ⊗ I3)∂2νi/∂θ∂θ

′

−2 (νis
−2
i ⊗ (Dνi)

′s−2
i )Ds2

i + 2(Dνi)
′s−2
i Dνi

}
, (9)

yielding

E[∂2`(Y, θ)/∂θ∂θ′] = −E[2(Dνi)
′s−2
i Dνi − (Ds2

i )
′s−4
i Ds2

i ]. (10)

Up to initializations Ds2
i and Dν2

i can then be computed based on the Kalman filter

recursions (e.g., Kalman (1960), Kalman (1963))

νi = ri − FXi|i−1 (11)

Xi|i−1 = GXi−1|i−2 +Ki−1νi−1 (12)

Ki = GPiF
′s−2
i (13)

Pi = GPi−1L
′
i−1 + Σw (14)

s2
i = FPiF

′ (15)

Li = G−KiF (16)
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with derivatives

Dνi = −Xi|i−1DF − FDXi|i−1 (17)

Ds2
i = (F ⊗ F )DPi + 2(FPi)DF (18)

DKi = (s−2
i FPi)DG+ (s−2

i F ⊗G)DPi

+ (s−2
i ⊗GPi)DF − (s−2

i ⊗GPiF
′s−2
i )Ds2

i (19)

DXi|i−1 = GDXi−1|i−2 + (Xi−1|i−2 ⊗ I3)DG+Ki−1Dνi−1 + (νi−1 ⊗ I3)DKi−1 (20)

DLi = DG− (F ′ ⊗ I3)DKi − (I3 ⊗Ki)DF (21)

DPi = (Li−1 ⊗G)DPi−1 + (Li−1Pi−1 ⊗ I3)DG

+ (I3 ⊗GPi−1)K33DLi−1 + 2N3(Σ1/2
w ⊗ I3)DΣ1/2

w , (22)

where Σw = Σ
1/2
w (Σ

1/2
w )′. Moreover, Nm = 1

2(Im2 +Kmm) and Kmn is defined as commuta-

tion matrix satisfying Kmnvec(C) = vec(C ′) with C denoting a m× n matrix.

If the errors ε∗i and εi (and state vector Xi) are not normally distributed, equation (7)

admits the interpretation of a quasi maximum likelihood function. Under non-normality, the

linear predictions of the state variables Xi (implied by the Kalman filter algorithm) are not

optimal among all prediction functions, but remain the best linear ones. This argument renders

the (linear) Kalman filter applicable in a quasi maximum likelihood setting, as discussed in

Gourieroux et al. (1984). A formal proof of the consistency of the Kalman-filter based (Q)ML

estimator in a non-Gaussian linear state space system is given by Schlemm and Stelzer (2012).

Alternatively, the system could be estimated directly from the unconditional moment

restrictions implied by the model following the standard GMM procedure of Hansen (1982).

3 Proof of Lemma 2

We first establish a few initial covariance relations.

From Section 3.2.1 in the main manuscript, recall that log-return may be written, ri =

−αµi−1 + (ε∗i + εµi ). Hence,

Cov(ri , ri−h ) = α2 Cov(µi , µi−h ) − αCov(µi , ε
µ
i−h+1 + ε∗i−h+1 ).

The AR(1) representation Eq. (12) in the main manuscript implies that µi takes the form,

µi = µi−h +
h−1∑
k=0

(1− α) k εµi−k , for any integer h ≥ 1.

It follows readily that,

9



Cov(µi , µi−h ) = (1−α)hV(εµi−k) =
(1− α)h

α (2− α)
[ (γ−1)2 +λ ]σ2

∗ , for any integer h ≥ 1.

The remaining covariance term equals,

Cov(µi , ε
µ
i−h+1 + ε∗i ) = (1− α)h−1 [ (γ − 1) γ) + λ ]σ2

∗ , for h ≥ 1.

Substituting into the return covariance result above, using the definition for ψ(h − 1), and

rearranging terms yields,

Cov(ri , ri−h ) = ψ(h−1) [ (1−α) [ (γ−1)2 + λ ] − (2−α) [ (γ−1)2 + γ + λ − 1 ] ]σ2
∗ .

Straightforward computations now verify equation (20) in the main manuscript of Lemma 2,

Cov(ri , ri−h ) = ψ(h− 1) [− (γ2 + λ) − α (1 − γ) + 1 ]σ2
∗ .

10



3.1 Additional Tables and Figures

Parameter Mean Std. Skew. Ex.Kurt. Q0.05 Q0.25 Q0.50 Q0.75 Q0.95

Liquidity group 1 (20 most liquid assets from NASDAQ 100)

α 0.902 0.095 -1.501 12.637 0.772 0.852 0.904 0.957 1.040
σ2
∗ (×10−8) 2.332 4.426 6.408 58.953 0.204 0.520 1.052 2.286 8.385
Fα(γ, λ) -0.009 0.138 3.266 31.820 -0.178 -0.081 -0.018 0.049 0.166

corr(rt+1, rt) 0.014 0.088 -0.201 1.470 -0.133 -0.042 0.015 0.070 0.156
γmax 0.988 0.107 0.930 6.658 0.832 0.925 0.984 1.046 1.151
λmax 0.295 0.120 8.459 100.714 0.201 0.248 0.282 0.320 0.391

Liquidity group 2

α 0.907 0.101 -1.321 12.594 0.769 0.856 0.910 0.964 1.052
σ2
∗ (×10−8) 2.163 4.598 6.834 64.933 0.156 0.404 0.847 2.015 8.018
Fα(γ, λ) 0.002 0.154 3.424 29.002 -0.180 -0.074 -0.009 0.059 0.190

corr(rt+1, rt) 0.006 0.093 -0.273 2.552 -0.148 -0.050 0.007 0.064 0.157
γmax 0.997 0.116 1.094 7.302 0.830 0.931 0.992 1.055 1.172
λmax 0.304 0.139 7.604 76.942 0.200 0.252 0.287 0.326 0.406

Liquidity group 3

α 0.915 0.098 -0.883 12.493 0.777 0.865 0.918 0.969 1.055
σ2
∗ (×10−8) 1.388 3.459 10.257 141.462 0.151 0.344 0.618 1.230 4.359
Fα(γ, λ) 0.012 0.152 3.691 31.522 -0.166 -0.063 0.000 0.066 0.193

corr(rt+1, rt) -0.001 0.092 -0.382 4.229 -0.150 -0.056 -0.000 0.055 0.145
γmax 1.006 0.114 1.347 9.665 0.844 0.941 1.000 1.061 1.174
λmax 0.309 0.138 7.540 75.339 0.206 0.257 0.292 0.330 0.408

Liquidity group 4

α 0.920 0.100 -1.067 11.113 0.775 0.871 0.921 0.975 1.063
σ2
∗ (×10−8) 1.251 3.423 11.224 164.292 0.122 0.294 0.547 1.097 3.735
Fα(γ, λ) 0.023 0.166 3.712 28.051 -0.164 -0.055 0.005 0.075 0.214

corr(rt+1, rt) -0.008 0.095 -0.236 3.108 -0.163 -0.063 -0.004 0.047 0.144
γmax 1.015 0.120 1.301 7.749 0.845 0.949 1.005 1.069 1.193
λmax 0.318 0.157 6.952 61.399 0.207 0.262 0.295 0.336 0.421

Liquidity group 5 (20 least liquid assets from NASDAQ 100)

α 0.923 0.092 -0.869 12.505 0.784 0.902 0.920 0.960 1.061
σ2
∗ (×10−8) 1.477 3.485 9.652 129.026 0.122 0.339 0.668 1.352 4.866
Fα(γ, λ) 0.029 0.168 4.445 34.487 -0.146 -0.017 0.000 0.058 0.215

corr(rt+1, rt) -0.012 0.090 -0.243 6.199 -0.165 -0.048 -0.000 0.015 0.130
γmax 1.019 0.117 1.799 11.659 0.862 0.984 1.000 1.053 1.193
λmax 0.321 0.164 7.055 61.352 0.214 0.282 0.292 0.325 0.421

Table 4: The table reports summary statistics for the model parameter estimates (estimated under under γ = 0)
obtained from T = 10 min intervals with intra-interval sampling at ∆= 2 sec frequency. The statistics is based on the
estimates from all intra-daily intervals over the first 61 trading days of 2014. The results are reported separately for
five groups of stocks sorted by the average daily mid-quote revisions. Intervals where parameter estimates of σ2

∗ and
λmax exceed their 99.5th percentiles are excluded from the sample.
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Figure 1: The figure depicts empirical distributions of the model parameter estimates (estimated under restriction
γ = 0) obtained from T = 10 min intervals between 9:30 and 9:40 ET (first ten minutes after market opening) with
intra-interval sampling at ∆= 2 sec frequency. Results are reported for the stocks from 1st, 4th and 5th groups of
stocks sorted by the average number of daily mid-quote revisions (with 20 stocks in each group) for the first 61
trading days in 2014.
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Parameter Mean Std. Skew. Ex.Kurt. Q0.05 Q0.25 Q0.50 Q0.75 Q0.95

Liquidity group 1 (20 most liquid assets from NASDAQ 100)

α 0.917 0.133 -0.135 10.946 0.765 0.853 0.914 0.975 1.093

σ2
∗ (×10−8) 16.687 13.445 1.527 2.385 2.765 6.969 12.481 22.281 43.548

Fα(γ, λ) 0.023 0.196 3.507 26.337 -0.181 -0.077 0.001 0.078 0.258

corr(rt+1, rt) -0.007 0.115 -1.317 6.587 -0.190 -0.065 -0.001 0.067 0.158

γmax 1.013 0.145 1.731 9.534 0.828 0.928 1.001 1.072 1.233

λmax 0.320 0.176 6.054 47.309 0.201 0.251 0.293 0.338 0.449

Liquidity group 2

α 0.925 0.170 1.436 10.860 0.744 0.848 0.915 0.982 1.122

σ2
∗ (×10−8) 18.774 15.512 1.403 1.484 3.227 7.424 13.626 24.893 51.677

Fα(γ, λ) 0.042 0.253 3.186 15.924 -0.197 -0.079 0.003 0.090 0.445

corr(rt+1, rt) -0.016 0.152 -2.075 9.814 -0.226 -0.075 -0.002 0.069 0.174

γmax 1.027 0.188 2.260 10.127 0.813 0.926 1.002 1.082 1.358

λmax 0.338 0.230 4.825 27.025 0.191 0.249 0.293 0.343 0.589

Liquidity group 3

α 0.942 0.185 2.477 11.235 0.758 0.857 0.919 0.986 1.249

σ2
∗ (×10−8) 15.742 14.464 1.790 2.849 2.798 6.149 10.733 18.949 50.559

Fα(γ, λ) 0.059 0.293 3.739 18.339 -0.181 -0.070 0.003 0.091 0.556

corr(rt+1, rt) -0.028 0.176 -2.399 9.867 -0.287 -0.075 -0.003 0.061 0.163

γmax 1.041 0.220 2.924 12.721 0.826 0.935 1.003 1.083 1.395

λmax 0.347 0.251 4.660 24.831 0.197 0.253 0.293 0.344 0.690

Liquidity group 4

α 0.931 0.182 1.550 10.277 0.731 0.854 0.919 0.979 1.187

σ2
∗ (×10−8) 15.899 15.410 1.726 2.494 2.198 5.551 10.206 20.353 53.455

Fα(γ, λ) 0.063 0.296 3.000 12.367 -0.205 -0.073 0.006 0.090 0.555

corr(rt+1, rt) -0.024 0.167 -1.882 8.702 -0.275 -0.075 -0.005 0.063 0.185

γmax 1.040 0.212 2.079 8.168 0.804 0.932 1.006 1.082 1.475

λmax 0.357 0.275 4.258 19.816 0.184 0.251 0.296 0.343 0.793

Liquidity group 5 (20 least liquid assets from NASDAQ 100)

α 0.958 0.171 1.864 9.320 0.758 0.883 0.935 1.012 1.257

σ2
∗ (×10−8) 14.704 14.093 1.921 3.450 2.004 5.789 9.805 17.316 47.607

Fα(γ, λ) 0.081 0.252 3.488 19.957 -0.167 -0.035 0.030 0.128 0.531

corr(rt+1, rt) -0.048 0.157 -1.947 8.429 -0.314 -0.105 -0.026 0.030 0.147

γmax 1.062 0.192 2.444 11.760 0.843 0.967 1.028 1.117 1.399

λmax 0.359 0.226 4.682 27.520 0.205 0.271 0.309 0.366 0.656

Table 5: The table reports summary statistics for the model parameter estimates (estimated under under
γ = 0) obtained from T = 10 min intervals with intra-interval sampling at ∆= 2 sec frequency. The
statistics is based on the estimates from all intra-daily intervals over the first 61 trading days of 2014. The
statistics is based on the estimates from intra-daily intervals between 9:30 and 9:40 ET (first ten minutes
after market opening) over the first 61 trading days of 2014. The results are reported separately for five
groups of stocks sorted by the average daily mid-quote revisions. Intervals where parameter estimates of
σ2
∗ and λmax exceed their 99.5th percentiles are excluded from the sample.
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Figure 2: The figure depicts empirical distributions of the model parameter estimates (estimated under restriction
γ = 0) obtained from T = 10 min intervals between 15:50 and 16:00 ET (last ten minutes of trading) with intra-
interval sampling at ∆= 2 sec frequency. Results are reported for the stocks from 1st, 4th and 5th groups of stocks
sorted by the average number of daily mid-quote revisions (with 20 stocks in each group) for the first 61 trading
days in 2014.

14



Parameter Mean Std. Skew. Ex.Kurt. Q0.05 Q0.25 Q0.50 Q0.75 Q0.95

Liquidity group 1 (20 most liquid assets from NASDAQ 100)

α 0.912 0.130 -1.010 11.286 0.752 0.856 0.919 0.980 1.074

σ2
∗ (×10−8) 1.415 1.562 5.035 41.219 0.310 0.578 0.996 1.653 3.748

Fα(γ, λ) 0.038 0.239 3.654 20.261 -0.184 -0.067 0.007 0.088 0.256

corr(rt+1, rt) -0.009 0.111 -0.681 5.468 -0.178 -0.073 -0.006 0.058 0.162

γmax 1.021 0.155 1.735 8.910 0.827 0.938 1.006 1.081 1.232

λmax 0.338 0.241 5.471 33.308 0.198 0.256 0.297 0.344 0.446

Liquidity group 2

α 0.922 0.123 -1.455 9.684 0.753 0.863 0.927 0.987 1.085

σ2
∗ (×10−8) 1.608 2.326 6.304 64.191 0.238 0.496 0.896 1.755 5.318

Fα(γ, λ) 0.038 0.206 3.065 19.889 -0.178 -0.062 0.020 0.095 0.264

corr(rt+1, rt) -0.015 0.107 0.159 1.584 -0.188 -0.079 -0.016 0.053 0.157

γmax 1.025 0.142 0.738 5.780 0.833 0.942 1.018 1.087 1.241

λmax 0.332 0.199 5.842 40.306 0.200 0.258 0.303 0.348 0.447

Liquidity group 3

α 0.939 0.116 -0.819 6.782 0.778 0.884 0.944 1.005 1.097

σ2
∗ (×10−8) 1.045 1.309 7.117 76.149 0.232 0.483 0.743 1.171 2.625

Fα(γ, λ) 0.072 0.217 3.495 18.523 -0.134 -0.033 0.039 0.121 0.338

corr(rt+1, rt) -0.037 0.103 -0.334 1.985 -0.206 -0.101 -0.033 0.029 0.117

γmax 1.052 0.142 1.460 5.548 0.874 0.969 1.036 1.111 1.286

λmax 0.357 0.226 5.167 30.733 0.220 0.273 0.315 0.362 0.558

Liquidity group 4

α 0.932 0.121 -0.565 6.768 0.753 0.878 0.935 0.998 1.093

σ2
∗ (×10−8) 0.977 1.147 7.388 85.064 0.226 0.453 0.693 1.146 2.411

Fα(γ, λ) 0.071 0.234 3.255 15.092 -0.156 -0.037 0.029 0.117 0.367

corr(rt+1, rt) -0.032 0.110 -0.291 3.274 -0.200 -0.097 -0.024 0.032 0.142

γmax 1.048 0.152 1.401 4.809 0.851 0.966 1.026 1.107 1.317

λmax 0.360 0.244 4.728 24.834 0.207 0.272 0.309 0.362 0.565

Liquidity group 5 (20 least liquid assets from NASDAQ 100)

α 0.922 0.114 -0.487 10.431 0.756 0.890 0.920 0.963 1.078

σ2
∗ (×10−8) 1.237 1.468 4.286 28.755 0.209 0.488 0.812 1.350 3.586

Fα(γ, λ) 0.035 0.211 4.275 29.208 -0.173 -0.028 0.000 0.065 0.269

corr(rt+1, rt) -0.012 0.105 -0.678 4.006 -0.192 -0.055 -0.000 0.024 0.151

γmax 1.022 0.142 1.876 9.733 0.837 0.974 1.000 1.060 1.240

λmax 0.329 0.205 6.253 45.569 0.203 0.276 0.292 0.328 0.455

Table 6: The table reports summary statistics for the model parameter estimates (estimated under under
γ = 0) obtained from T = 10 min intervals with intra-interval sampling at ∆= 2 sec frequency. The
statistics is based on the estimates from all intra-daily intervals over the first 61 trading days of 2014.
The statistics is based on the estimates from intra-daily intervals between 15:50 and 16:00 ET (last ten
minutes of trading) over the first 61 trading days of 2014. The results are reported separately for five
groups of stocks sorted by the average daily mid-quote revisions. Intervals where parameter estimates of
σ2
∗ and λmax exceed their 99.5th percentiles are excluded from the sample.
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Figure 3: The figure depicts empirical distributions of the model parameter estimates (estimated under restriction
γ = 0) obtained from T = 10 min intervals between 9:50 and 15:40 ET (excluding first and last 20 minutes of a
trading session) with intra-interval sampling at ∆= 2 sec frequency. Results are reported for the stocks from 1st, 4th
and 5th groups of stocks sorted by the average number of daily mid-quote revisions (with 20 stocks in each group)
for the first 61 trading days in 2014.
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Parameter Mean Std. Skew. Ex.Kurt. Q0.05 Q0.25 Q0.50 Q0.75 Q0.95

Liquidity group 1 (20 most liquid assets from NASDAQ 100)

α 0.901 0.093 -1.665 12.387 0.773 0.851 0.903 0.955 1.037

σ2
∗ (×10−8) 1.845 2.842 6.410 72.207 0.197 0.499 0.993 2.054 6.148

Fα(γ, λ) -0.012 0.132 2.982 29.679 -0.179 -0.082 -0.019 0.047 0.160

corr(rt+1, rt) 0.015 0.087 -0.081 0.598 -0.129 -0.040 0.016 0.071 0.156

γmax 0.986 0.104 0.748 5.383 0.831 0.924 0.982 1.043 1.146

λmax 0.293 0.113 8.596 107.238 0.200 0.248 0.281 0.319 0.388

Liquidity group 2

α 0.906 0.098 -1.637 11.713 0.770 0.856 0.909 0.962 1.049

σ2
∗ (×10−8) 1.679 2.888 6.504 71.626 0.152 0.388 0.793 1.781 5.965

Fα(γ, λ) -0.000 0.148 3.273 28.591 -0.180 -0.075 -0.010 0.058 0.184

corr(rt+1, rt) 0.008 0.091 -0.064 0.781 -0.144 -0.048 0.008 0.065 0.157

γmax 0.995 0.112 0.899 5.841 0.830 0.930 0.991 1.053 1.166

λmax 0.302 0.133 7.783 82.328 0.200 0.251 0.286 0.325 0.403

Liquidity group 3

α 0.914 0.094 -1.419 10.254 0.777 0.865 0.917 0.968 1.052

σ2
∗ (×10−8) 1.011 1.724 13.343 337.298 0.147 0.332 0.587 1.108 3.082

Fα(γ, λ) 0.009 0.144 3.347 28.886 -0.167 -0.064 -0.001 0.064 0.187

corr(rt+1, rt) 0.000 0.089 0.013 0.982 -0.147 -0.054 0.000 0.055 0.146

γmax 1.003 0.109 0.911 5.824 0.843 0.940 1.000 1.059 1.169

λmax 0.306 0.130 7.755 81.795 0.206 0.257 0.292 0.329 0.404

Liquidity group 4

α 0.919 0.097 -1.410 9.660 0.776 0.871 0.920 0.974 1.061

σ2
∗ (×10−8) 0.885 1.498 14.685 438.713 0.116 0.282 0.515 0.985 2.710

Fα(γ, λ) 0.021 0.160 3.670 28.733 -0.163 -0.055 0.004 0.074 0.208

corr(rt+1, rt) -0.007 0.092 0.002 1.117 -0.160 -0.062 -0.004 0.047 0.143

γmax 1.013 0.116 1.129 6.475 0.846 0.949 1.004 1.068 1.188

λmax 0.316 0.151 7.177 66.409 0.208 0.262 0.295 0.335 0.418

Liquidity group 5 (20 least liquid assets from NASDAQ 100)

α 0.922 0.089 -1.332 10.733 0.786 0.903 0.920 0.958 1.059

σ2
∗ (×10−8) 1.109 1.916 10.889 226.273 0.118 0.324 0.625 1.222 3.361

Fα(γ, λ) 0.027 0.163 4.443 34.739 -0.145 -0.015 0.000 0.055 0.209

corr(rt+1, rt) -0.011 0.087 0.061 4.449 -0.162 -0.046 -0.000 0.013 0.129

γmax 1.018 0.114 1.641 10.345 0.863 0.986 1.000 1.051 1.189

λmax 0.320 0.161 7.187 63.698 0.215 0.283 0.292 0.324 0.421

Table 7: The table reports summary statistics for the model parameter estimates (estimated under under
γ = 0) obtained from T = 10 min intervals with intra-interval sampling at ∆= 2 sec frequency. The
statistics is based on the estimates from all intra-daily intervals over the first 61 trading days of 2014. The
statistics is based on the estimates from intra-daily intervals between 9:50 and 15:40 ET (excluding first
and last 20 minutes of a trading session) over the first 61 trading days of 2014. The results are reported
separately for five groups of stocks sorted by the average daily mid-quote revisions. Intervals where
parameter estimates of σ2

∗ and λmax exceed their 99.5th percentiles are excluded from the sample.
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