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Abstract

This is a web appendix with supplementary material for the paper “A New Parametrization of

Correlation Matrices” by Archakov and Hansen (2020). Here, we present four sets of results: 1) The

finite-sample properties of γ̂ when C has a Toeplitz structure. 2) The finite-sample properties of

γ̂ when C has general (randomly generated) structure. 3) The Jacobian ∂%/∂γ for two correlation

matrices. One with a Toeplitz structure, and one based on the empirical correlation matrix for

returns on 10 industry portfolios. 4) Software implementations of C(γ), that reconstructs C from γ

for Julia, Matlab, Ox, Python, and R.
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1 Finite-sample properties of γ̂ when C has a Toeplitz structure

Consider the following Toeplitz structure for the correlation matrix,

C =



1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

...
...

... . . . ...

ρn−1 ρn−2 ρn−3 · · · 1


. (W.1)

The structure in C is here regulated by a single parameter, ρ ∈ (−1, 1). The variables are uncorrelated

when ρ = 0, and the pairwise correlation increases as ρ increases from 0 to 1. The correlation matrix

becomes near-singular for ρ close to 1.

We simulate Xt ∼ iidNn(0, C), t = 1, . . . , T , where C is given from (W.1) and T is a sample

size. We then use Xt, t = 1, . . . , T , to compute Ĉ, from which we obtain the vector of correlations,

%̂ = veclĈ, the corresponding vector of Fisher transformed correlations, φ̂, and γ̂ = γ(Ĉ). Figure

W.1 shows the finite-sample distributions for the first elements of these vectors, %̂1, φ̂1, and γ̂1, when

n = 3. The Figure is based on 100,000 simulated samples of size T = 40 where ρ = 0.9. The left

panels illustrate the well-known results that the finite-sample distribution of the empirical correlation

is poorly approximated by a Gaussian distribution, especially if the true correlation is close to one.

In this case, %1 = 0.9. The middle panels present the analogous results for the vector of element-wise

Fisher transformed correlations, φ̂1, and the right panels present the results for γ̂1. The finite-sample

distribution of both φ̂1 and γ̂1 are well approximated by the Gaussian distribution. This was expected

for the Fisher transformation, φ̂1, but somewhat unexpected for γ̂1. In fact, the Q-Q plots indicate

that the Gaussian approximation is slightly better for γ̂ than for φ̂. A plausible explanation for this

discrepancy is that the individual Fisher transformed correlations are subject to cross restrictions.
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Figure W.1: The finite-sample distribution (upper) and Q-Q-plots (lower) of the first elements of the vectors
%̂, φ̂, and γ̂. Results for the marginal distributions of %̂1, φ̂1, and γ̂1, are in the left, middle, and right panels,
respectively. The simulation design has Ĉ computed from T = 40 independent vectors that are distributed
as N3(0, C), where C has the Toeplitz structure, (W.1), with ρ = 0.9. The results are based on 100,000
simulations. The Q-Q plots are the quantiles of the standardized empirical distribution plotted against quantiles
of the standard normal distribution.

In Figure W.2, we compare the finite-sample variance and skewness of %̂1, φ̂1, and γ̂1 computed

using 100,000 simulated samples of sizes T = 40 and T = 100, for ρ ∈ [0, 1). The upper panels show

that the new parametrization does not preserve the variance-stabilizing property for the entire range

of ρ, but it does appear to eliminate skewness, as shown in the lower panels.
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Figure W.2: The finite-sample variance (upper panels) and finite-sample skewness (lower panels) of the empirical
correlations for each of the elements of:

√
T (%̂−%), (dotted grey lines),

√
T (φ̂−φ) (dash-dotted violet lines), and√

T (γ̂ − γ) (solid amethyst lines) for T = 40 (left column) and T = 100 (right column), as a function of ρ. The
results are based on (3 × 3) sample correlation matrices, computed from Xt ∼ iidN3(0, C), t = 1, . . . , T , where
C has the Toeplitz structure give in (W.1). The results are based on 100,000 simulations.

Figures W.1 and W.2 suggest that the marginal distributions of γ̂ are well approximated by a

Gaussian distribution. Next, we focus on the interdependence between the elements within the vectors %̂,

φ̂, and γ̂. Based on the same simulation design, we present the three bivariate distributions that emerge

from the three empirical correlations, the corresponding three Fisher transformed correlations, and the

three elements of γ̂. Contour plots (non-parametrically estimated) for these bivariate distributions are

given in Figure W.3. The dependence between empirical correlations (left column) is evident, and this

cross dependence carries over to the element-wise Fisher transformed correlations (middle column).

In contrast, the dependence between the elements of γ̂ is much weaker (right column). The contour

plots for the bivariate distributions of γ̂ resemble those of a bivariate Gaussian distribution with little

correlation between the two variables. This highlights an unanticipated and, potentially very useful,

property of the new parametrization. We investigate this dependence between the elements of γ̂ in
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greater details next.
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Figure W.3: Contour plots of the bivariate distributions. The left panels are those for the empirical correlations,
%̂, the middle panels are for the element-wise Fisher transformed correlations, φ̂, and the right panels are those
for the new parametrization of the correlation matrix, γ̂. The contour plots are based on 100,000 random draws,
where each of the correlation matrices were based on T = 40 i.i.d. variables distributed as N3(0, C), where C
has the structure in (W.1) with ρ = 0.9.

Now we study the finite-sample dependencies across elements of φ̂ and γ̂ for matrices of higher

dimensions. Namely, we consider the finite-sample correlation matrices for φ̂ and γ̂,

Rφ,T (ρ) = corr(φ̂) and Rγ,T (ρ) = corr(γ̂),
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and we will compute measures of dependence from Rφ,T (ρ) and Rγ,T (ρ). The largest eigenvalue of

the correlation matrix, R, represents an indicator of aggregate dependence between variables. Thus,

λmax(R) = 1 is the lowest possible value achieved if and only if R = I, when all correlations are zeroes.

In the other extreme, when all variables are nearly perfectly correlated, λmax(R) approaches its upper

limit. A natural measure of dependence can be formulated as

ψ(R) = (λmax(R)− 1)/(d− 1),

because λmax(R) ' 1+(d−1)r̄, where r̄ is the average correlation of R, see Morrison (1967), who derived

the approximation when the correlations are non-negative and similar in value, and see Friedman and

Weisberg (1981) for a more general interpretation.

For simulations, we consider Toeplitz correlation matrices of dimensions, n = 10, 20, and 40, and

with ρ ranging from 0 to 0.99. For each configuration of n and ρ, we simulate 10,000 realizations of φ̂

and γ̂ using the sample size T = 100 and compute their corresponding correlation matrices, Rφ,T (ρ)

and Rγ,T (ρ). The dimension of these correlation matrices are given by 45 × 45 (n = 10), 190 × 190

(n = 20), and 780× 780 (n = 40), since d = n(n− 1)/2. Finally, we are able to obtain the measures of

dependence, ψ(Rφ,T (ρ)) and ψ(Rγ,T (ρ)), for each given n and ρ.

The results are reported in Figure W.4. Results for the element-wise Fisher transforms, φ̂, are in

the left panels, and the corresponding results for the new parametrization, γ̂, are in the right panels.

The black solid lines present the eigenvalue-based measure of dependence, ψ(Rφ,T (ρ)) and ψ(Rγ,T (ρ)),

as a function of ρ. Besides reporting ψ(Rφ,T (ρ)) and ψ(Rγ,T (ρ)), we also report the smallest and largest

correlation elements from Rφ,T (ρ) and Rγ,T (ρ) as well as their 10% and 90%-quantiles, to get a sense of

the overall dispersion of the corresponding correlation coefficients. The lightly shaded regions display

the range of correlations in Rφ,T (ρ) and Rγ,T (ρ) from smallest to largest, whereas the darker shaded

regions are defined by the 10%-quantile and 90%-quantile of all the off-diagonal elements in Rφ,T (ρ)

and Rγ,T (ρ).
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Figure W.4: The solid line is the eigenvalue-based measure of dependence in Rφ,T (ρ) (left panels) and in Rγ,T (ρ)
(right panels), as a function of ρ. The upper, middle, and lower panels are for the case where Ĉ is an 10 × 10,
20× 20, and 40× 40, respectively. The lightly shaded regions display the full range of correlations, whereas the
darker shaded regions are defined by the 10%-quantile and 90%-quantile of the off-diagonal elements in Rφ,T (ρ)
and Rγ,T (ρ). Evidently, the elements of γ̂ are far less correlated than are the element-wise Fisher correlations,
φ̂.

Figure W.4 also shows that there is far less dependence across the elements of γ̂ than is the case

for the element-wise Fisher transformed variables, φ̂, for all values of ρ. While the correlations between

elements of φ̂ are substantially different from zero when ρ approaches one, the correlations between

elements of γ̂ are small and centered about zero. The darker shaded regions include 80% of the corre-
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lations, and Figure W.4 shows that the large majority of correlations for γ̂ are very close to zero, even

as ρ approaches 1, whereas the dispersion of the correlations related to φ̂ is much larger. Interestingly,

for this design, we see that the correlations between elements of γ̂ are increasingly concentrated near

zero, as the dimension of C increases. The darker shaded region is barely visible for γ̂ when n = 40.

For both φ̂ and γ̂ we observe that the extreme correlations, (the smallest and largest), are similar for

n = 10, n = 20, and n = 40.

2 Finite-sample properties of γ̂ when C has arbitrary (random) struc-

ture

The Toeplitz structure used in the previous section is obviously a very particular structure. So it is

possible that some of the simulation results are specific to this structure. For this reason, we also

consider a design where C has an arbitrary structure. We generate correlation matrices with a random

structure by drawing a random vector, γ ∈ Rn(n−1)/2, where each element of γ is drawn independently

from the uniform distribution on [−b, b] and compute C from γ. The constant b will be chosen to

generate C matrices with a desired range of characteristics, specified below.

First we generate 1,000 random 25×25 correlation matrices with b = 2. So each element of γ ∈ R300

is drawn independently from the uniform distribution on [−2, 2]. For reference, the pre-image of [−2, 2]

is approximately [−.964, .964] for the Fisher transformation. For each of these 1,000 matrices, we

compute the asymptotic covariance matrix, avar(γ̂) = Ωγ ∈ R300×300, under the assumption that Ĉ

is computed from i.i.d. vectors with correlation matrix C and finite fourth moments. Under these

assumptions, the expression for Ω = avar(Ĉ) is given in Neudecker and Wesselman (1990, theorem

2). In addition, we denote the asymptotic correlation matrix, acorr(γ̂) = Ω̃γ , which can be directly

obtained from Ωγ .

We compare the asymptotic expression for Ωγ with the finite-sample variance matrix of γ̂, when Ĉ

is computed from Gaussian distributed random vectors, Xt ∼ iidN25(0, C), t = 1, . . . , T . The finite-

sample variance matrix, Ω̂γ,T , is computed using 5, 000 simulations, i.e. 5,000 realizations of Ĉ, where

each Ĉ is based on either T = 100 or T = 500 observations of Xt.

We focus on the diagonal elements of Ωγ and the off-diagonal elements of Ω̃γ , separately. The former

indicate the extent to which the transformation γ(C) is variance-stabilizing, element-by-element, and

the off-diagonal elements of Ω̃γ concern the dependence between the elements of γ̂. In the previous

section, the structure of C was given by a single parameter, ρ. The situation is obviously more complex
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when C has an arbitrary structure. Fortunately, we find that the key properties of Ωγ , are closely tied

to the smallest eigenvalue of C, denoted λmin. We therefore present our results stratified by λmin. For

reference, in case of an equicorrelation matrix, where all correlations have the same value ρ ≥ 0, the

smallest eigenvalue of C is (1− ρ), regardless of the dimension, n ≥ 2.

The left panels of Figure W.5 show the range (smallest and largest values) for avar(γ̂i), i = 1, . . . , 300

as well as the corresponding finite-sample ranges, based on T = 100 in the upper panels and T = 500

in the lower panels. The right panels in Figure W.5 present the corresponding results for asymptotic

correlations between the elements of γ̂, acorr(γ̂i, γ̂j), i, j = 1, . . . , 300, i 6= j, as well as for the finite-

sample correlations. Since γ ∈ R300, the asymptotic covariance matrix, Ωγ , has 300 diagonal elements

and 44,850 distinct off-diagonal elements. When the smallest eigenvalue is not too small the diagonal

elements of Ωγ are all fairly close to one and the off-diagonal are fairly close to zero. The range of

variance becomes more disburse as C approaches singularity (as λmin gets smaller). The finite-sample

variances have a tendency to be slightly larger than the asymptotic variances when T = 100, whereas

there is no obvious bias for T = 500.
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Figure W.5: For each correlation matrix C ∈ R25×25, we compute the corresponding Ωγ = avar(γ̂) and
Ω̃γ = acorr(γ̂). The left panels present results related to avar(γ̂i) (diagonal elements of Ωγ) and the
right panels present results related to acorr(γ̂i, γ̂j) (off-diagonal elements of Ω̃γ). The asymptotic range
(defined by the smallest and largest elements) is shown with red dots. The corresponding ranges, based
on the finite-sample covariance matrix for γ̂, are presented with blue or gray dots.

3 Relationship between γ and %

While γ depends nonlinearly on all the elements of C, and vice versa, we have observed that variation

in a particular element in logC primarily influences the corresponding element in C. This suggests

that the leading terms in Jacobian ∂veclC/∂vecl logC are the diagonal elements. Indeed, we find this

to be the case for these two correlation matrices, and a very similar structure is observed with other

correlation matrices (not reported in this paper).
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Figure W.6: The Jacobian matrix, ∂%/∂γ, for the 10×10 correlation matrix C, when C has a Toeplitz structure
ρ = 0.9. The value of each element of ∂%/∂γ, indicated with a color code, is ranging from −1 (dark blue)
to +1 (dark red).

Figure W.7: The Jacobian matrix, ∂%/∂γ, evaluated for an empirical correlation matrix C, computed for two
years (2018-2019) of daily returns on 10 industry portfolios (available on the Kenneth R. French data library).
The value of each element of ∂%/∂γ, indicated with a color code, is ranging from −1 (dark blue) to +1
(dark red).
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Figure W.6 presents the ∂%/∂γ when C is a 10× 10 correlation matrix with the Toeplitz structure

with ρ = 0.9. The values of each element in ∂%/∂γ are represented by coloring that ranges from −1

(dark blue) to +1 (dark red). We also compute ∂%/∂γ for an empirical correlation matrix that is based

on two years (2018-2019) of daily returns for ten industry portfolios. The industry portfolio returns

were downloaded from Kenneth R. French data library. The Jacobian, ∂%/∂γ, that corresponds to this

10 × 10 correlation matrix, is presented in Figure W.7, and the structure of the Jacobian turns to be

similar to that based on the Toeplitz structure in Figure W.6.

4 Software implementation of the algorithm for reconstructing C

from γ

Here we provide software implementation of the algorithm for the inverse transformation, which maps

from the real vector space to the space of correlation matrices. The inverse mapping translates any

real vector γ of a proper dimensionality to its corresponding correlation matrix, C(γ), which is unique.

We provide solutions for the following programming languages: Julia, MATLAB, Ox, Python, and R.

The implementations take the vector γ and a tolerance value, δ, as inputs. First, the dimension

of the vector γ is verified as proper (equal to n(n − 1)/2 for some n ≥ 2). Then, a symmetric matrix

A[x] is constructed, where lower and upper off-diagonal parts are filled by the elements of γ, and

x0 = diag(A) = 0 is a vector of starting values for the algorithm. The algorithm iterates over the

diagonal vector until the diagonal elements of eA[x∗] are sufficiently close to one, as defined by the

tolerance level, which implies that eA[x∗] is close to being a correlation matrix. The algorithm terminates

once the vector norm ||x(k)−x(k−1)|| <
√
nδ, where x(k) is a diagonal vector of the matrix A after k-th

iteration.

The implementations return the unique correlation matrix, C = eA[x∗], along with the number of

iterations that were needed for convergence.
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4.1 Julia (version 1.4)

using Base , LinearAlgebra
function GFT(gam :: AbstractArray )

tol_value =1e-8
n = 0.5*(1+ sqrt (1+8* length (gam )))
if (n != floor(n))

println ("Error: Dimension of gamma should be n(n -1)/2 x1")
end
n = Int(n)
diag_ind = Matrix {Bool }(I,n,n)
A = zeros(n,n) # fill matrix A with elements from vector gam
l = 1
for j = 1:n-1

for i = j+1:n
A[i,j] = A[j,i] = gam[l]
l += 1

end
end
x = zeros(n) # initial value for diagonal
dist = n
iter_number = -1
while dist > sqrt(n)* tol_value

Delta = log .( diag(exp(A)))
x = x - Delta
A[ diag_ind ] = x
dist = norm(Delta)
iter_number = iter_number + 1

end
C = exp(A)
C[ diag_ind ] = ones(n) # make diagonal exactly equal to one
return (C=C, iter_number = iter_number )

end
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4.2 MATLAB (R2009a version and later)

function [C, iter_number ] = GFT_inverse_mapping (gamma_in , tol_value )
C = [];
iter_number = -1;

% Check if input is of proper format : gamma is of suitable length
% and tolerance value belongs to a proper interval
n = 0.5*(1+ sqrt (1+8* length ( gamma_in )));
if isvector ( gamma_in ) && (n == floor(n))...

&& ( tol_value >= 1e -14 && tol_value <= 1e -4)

% Place elements from gamma into off - diagonal parts
% and put zeros on the main diagonal of nxn symmetric matrix A
A = zeros(n);
A( logical (tril(ones(n) , -1))) = gamma_in ;
A = A + A’;

% Read some properties of matrix A
diag_vec = diag(A);
diag_ind = logical (eye(n));

% Iterative algorithm to get the proper diagonal vector
dist = sqrt(n);
while dist > sqrt(n)* tol_value

diag_delta = log(diag(expm(A)));
diag_vec = diag_vec - diag_delta ;
A( diag_ind ) = diag_vec ;
dist = norm( diag_delta );
iter_number = iter_number + 1;

end

% Get a unique reciprocal correlation matrix
C = expm(A);
C( diag_ind ) = ones(n ,1);

else
fprintf (’Error: input is of wrong format ’);

end
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4.3 OxMetrics

# include <oxstd.h>

GFT_inverse_mapping (const gamma_in , const tol_value ){
decl n, A, diag , dist , diag_delta , iter_number , C;
iter_number = -1

// Check if input is of proper format : gamma is of suitable length
// and tolerance value belongs to a proper interval
n = 0.5*(1 + sqrt (1+8* rows( gamma_in )));
if(n != floor(n)){

print(" Dimension of ’gamma ’ is incorrect "); exit (1);
}
if( tol_value < 1e -14 || tol_value > 1e -4){

print(" Incorrect tolerance value"); exit (1);
}

// Place elements from gamma into off - diagonal parts
// and put zeros on the main diagonal of nxn symmetric matrix A
A = setlower (zeros(n,n), gamma_in );
A = A + A’;

// Read properties of the input matrix
diag = diagonal (A)’;

// Iterative algorithm to get the proper diagonal vector
dist = sqrt(n)
while(dist > sqrt(n)* tol_value ){

diag_delta = log( diagonal (expm( setdiagonal (A,x)))) ’;
diag = diag - diag_delta ;
A = setdiagonal (A,diag );
dist = norm(d ,2);
++ iter_number ;

}

// Get a unique reciprocal correlation matrix
C = expm( setdiagonal (A,x))
C = setdiagonal (C,ones(n ,1));

return {C, iter_number };
}
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4.4 Python 3 (using NumPy and SciPy libraries)

import numpy as np
from scipy. linalg import expm , norm

def GFT_inverse_mapping (gamma_in , tol_value ):
C = []
iter_number = -1

try:
# Check if input is of proper format : gamma is of suitable length
# and tolerance value belongs to a proper interval
n = 0.5*(1+ np.sqrt (1+8* len( gamma_in )))
if not all ([ gamma_in .ndim == 1, n. is_integer (),

1e -14 <= tol_value <= 1e -4]):
raise ValueError

# Place elements from gamma into off - diagonal parts
# and put zeros on the main diagonal of nxn symmetric matrix A
n = int(n)
A = np.zeros(shape =(n,n))
A[np. triu_indices (n ,1)] = gamma_in
A = A + A.T

# Read properties of the input matrix
diag_vec = np.diag(A)
diag_ind = np. diag_indices_from (A)

# Iterative algorithm to get the proper diagonal vector
dist = np.sqrt(n)
while dist > np.sqrt(n)* tol_value :

diag_delta = np.log(np.diag(expm(A)))
diag_vec = diag_vec - diag_delta
A[ diag_ind ] = diag_vec
dist = norm( diag_delta )
iter_number += 1

# Get a unique reciprocal correlation matrix
C = expm(A)
np. fill_diagonal (C, 1)

except ValueError :
print("Error: input is of wrong format ")

return C, iter_number
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4.5 R (using “expm” library)

library (expm)

GFT_ inverse _ mapping <- function (gamma_in , tol_value ){
C <- matrix (,nrow =0, ncol =0)
iter_ number <- -1

# Check if input is of proper format : gamma is of suitable length
# and tolerance value belongs to a proper interval
n <- 0.5*(1+ sqrt (1+8* length (gamma_in )))
if (!(is. vector (gamma_in) && n%% 1==0)){

stop(" Dimension of ’gamma ’ is incorrect ")
} else if (!(tol_value >=1e -14 && tol_value <=1e -4)){

stop(" Incorrect tolerance value")
} else {

# Place elements from gamma into off - diagonal parts
# and put zeros on the main diagonal of nxn symmetric matrix A
A <- matrix (0, nrow=n,ncol=n)
A[upper.tri(A, diag=FALSE )] <- gamma_in
A <- A + t(A)

# Read properties of the input matrix
diag_vec <- diag(A)

# Iterative algorithm to get the proper diagonal vector
dist <- sqrt(n)
while (dist > sqrt(n)*tol_value ){

diag_delta <- log(diag(expm(A)))
diag_vec <- diag_vec - diag_delta
diag(A) <- diag_vec
dist <- norm(diag_delta , type="2")
iter_ number <- iter_ number + 1

}

# Get a unique reciprocal correlation matrix
C <- expm(A)
diag(C) <- rep (1,n)

}

return (list(C=C, iter_ number =iter_ number ))
}
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