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Abstract

We extend the classic ”martingale-plus-noise” model for high-frequency returns to accom-

modate an error correction mechanism and endogenous pricing errors. It is motivated by

(i) novel empirical evidence documenting that microstructure noise exhibits frequently

changing patterns of serial dependence which are interwoven with innovations to the

efficient price; (ii) building a bridge between high-frequency econometrics and market

microstructure models. We identify temporal pricing error correction and noise endogeneity

as complementary components driving high-frequency dynamics and inducing two separate

regimes, characterized by the sign of the return serial correlation and an implied bias in

realized variance estimates. We document frequent fluctuations between these regimes,

which can be associated with price discovery in a setting with incomplete information

and learning. The model links critical concepts from high-frequency statistics and market

microstructure theory, suggesting new avenues for volatility estimation.
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1 Introduction

The increasing availability of high-frequency asset price data has spurred two largely separate

literatures. One focuses on model-free ex-post measurement of features concerning the realized

return path, with the main attribute of interest being the realized volatility (RV), representing

the empirical quadratic return variation. The premise is that asset prices reflect an underlying

arbitrage-free “efficient” or “fundamental” return process polluted by market microstructure

noise (MMN), due to rounding to a price grid, varying transaction and quote intensities, private

information, bid-ask spreads, and other trading costs. Hence, the fundamental log-price process

is a semimartingale, while MMN is viewed as a nuisance factor. In some specifications, the

MMN process is serially correlated, but it is typically uncorrelated with the efficient price process.

Implicitly, this literature presumes that all relevant information is impounded instantaneously

so that, at all times, transaction prices and quotes embed the latent efficient equilibrium price,

bracketed by the bid-ask spread. Consequently, at the micro level, the fundamental price is

“hidden” through MMN distortions which, locally, are of non-trivial order. As a result, much

work builds on such a ”martingale-plus-noise” framework and is devoted to MMN-robust

inference for realized components of the efficient price process.1

In contrast, a central topic in market microstructure is price discovery. This literature

explores a variety of complications, including asymmetric information, heterogeneous trading

motives, and market design. Learning, price impact, and strategic trading arise as natural phe-

nomena. The interaction of such features generates a complex environment, so most theoretical

microstructure models are fairly stylized, allowing for specific aspects of the price discovery

process to be explored in isolation. Kyle (1985), Holden and Subrahmanyam (1992), Vives

(1995) and Glosten and Milgrom (1985), among others, are seminal contributions analyzing

strategic trading in environments with differently informed agents and deriving implications for

(the speed of) information revelation, the formation of bid/ask quotes, and the role of noise.

Importantly, the specification of the high-frequency return dynamics naturally changes when

asymmetric information is explicitly accommodated within the framework. As an illustration,

consider the Glosten and Milgrom (1985) model, which incorporates the fact that agents may

possess private information regarding the fundamental asset value. Hence, the active purchase

or sale of an asset is informative and causes uninformed market participants to update their

assessment of the fair asset price. Specifically, given current information, the efficient price

reflects public information, including the full history of the order flow. Thinking ahead, the bid

and ask quotes are then set by competitive market makers to reflect the update in asset value

1See, e.g., the survey by Andersen and Bollerslev (2018a), the classic articles in Andersen and Bollerslev (2018b),
and the book treatment of Ait-Sahalia and Jacod (2014).
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that will occur, if the next transaction is a sell or buy. Thus, conditional on a sale at the bid, this

transaction price now reflects the expected fundamental asset value and, likewise, a purchase

at the ask renders this transaction price the new efficient price, based on the available public

information. That is, there are no “noisy” transactions, and traditional sources of noise are

instead intrinsically linked to innovations regarding the fundamental asset value. While this is

an extreme perspective, relaxing the underlying assumptions in this setting will not eliminate

the forces that induce correlations between the noise and fundamental return innovations.

We conclude that, generally speaking, microstructure models imply that noise is endogenous,

because innovations to transaction prices and quotes interact with the efficient price process

through learning, inventory, and temporal feedback mechanisms. Meanwhile, microstructure

theory does not focus on time variation in the return dynamics, which is of primary interest in

econometric work on realized volatility. Building a bridge between these strands of the literature

requires extending the classic ”martingale-plus-noise” model by components accommodating

temporal feedback and price endogeneity. Accordingly, we generalize the martingale-plus-noise

model and analyze its statistical and empirical implications. We discuss the consequences for

volatility estimation, the validity of the underlying semimartingale paradigm and identification

of the underlying mechanisms. The analysis points to the potential for new insights as well as the

pitfalls arising when econometric models for the high-frequency return dynamics are integrated

with structural, or theoretically motivated, features from market microstructure theory.

1.1 Illustrative Empirical Evidence

As an initial step, for the Nasdaq 100 stocks, we document persistent, yet time-varying, return

autocorrelations of alternating signs. These features induce locally monotone relations between

realized volatility and the underlying sampling frequency. Accordingly, this relation also

displays substantive fluctuation across time. Results along these lines have been reported

before but, arguably, have not received the scrutiny they deserve, especially in terms of their

implications for model specification and inference. Since our explorations do not involve the

development of novel techniques, we defer the detailed review of methodology and associated

findings to the Supplementary Appendix. Instead, this section reviews findings that motivate the

theoretical developments and subsequent empirical approach adopted in the paper.

As a vivid illustration, Figure 1 presents the so-called volatility signature plots, introduced

by Andersen et al. (2000), for two stocks constructed from intraday quotes over one trading day.

The increasing RV measure at higher sampling frequencies for Ebay in the left panel (moving

leftward along the horizontal axis) is consistent with i.i.d. noise, which generates an MA(1)
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Figure 1: The figure depicts signature plots for the realized variances (RV) of Ebay and Amazon on selected trading
days. The left and right panels illustrate cases with downward and upward sloping signature plots, respectively. For
each sampling frequency ∆ (1-120 seconds with one second increments), we compute the RV measure for multiple
”grids” by initiating the grid at each second mark from 1 until ∆ (thus, for ∆=1sec, we have one grid, and for
∆=120sec, we obtain 120 grids). Each blue dot corresponds to a daily RV estimate computed at a given sampling
frequency and a specific initial grid point. The red solid lines represent the average value of RV for a given sampling
frequency across all grid configurations (the so-called sub-sampled RV estimate).

structure and negative return autocorrelation, as noted by Roll (1984).2 However, our Nasdaq

sample contains many examples of the exact opposite behavior, exemplified by the right panel,

where the signature plot for Amazon decreases monotonically and drops sharply at the highest

frequencies.

The shape of signature plots is tied to the underlying autocorrelation structure. Figure 2

depicts the first-order return serial correlations on these particular days for all of the stocks.3

They are computed over each of the 39 consecutive 10-minute intervals across the trading day at

two different sampling frequencies, with the relevant Ebay and Amazon sample autocorrelations

highlighted in red. Focusing initially on these observations, even if the return dependencies

appear to vary across the trading day, they are predominantly negative and positive, respectively,

for Ebay and Amazon. Moreover, it turns out that the sample statistics, as expected, are not

perfectly correlated across the two sampling frequencies, because MMN has a differential

impact in these scenarios - a feature verified by the corresponding signature plots in Figure 1.

We now turn to the intraday return autocorrelations for all remaining NASDAQ 100 con-

stituents on the two selected days (grey dots) in Figure 2. The relative number of positive

sample autocorrelations is close to, and often exceeds, the fraction of negative ones. This

finding is stable across trading days and robust to the choice of sampling frequency. Moreover,

there is a wide dispersion in the strength of the contemporaneous serial correlation across the

2The i.i.d. noise assumption was invoked in the early RV literature to identify and estimate the magnitude of the
MMN induced return variation, see Zhang et al. (2005) and Bandi and Russell (2008).

3The statistics are computed imposing a mean return of zero, as detailed in the Supplementary Appendix.
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Figure 2: The figure shows return autocorrelations estimated within 10 min local intervals on four selected trading
days for the NASDAQ 100 constituents. Each dot on a scatter plot corresponds to a single local interval and single
stock (in total, 3900 dots for a trading day). A single dot reflects serial autocorrelation calculated with returns sampled
at ∆=2 sec (horizontal axis) and ∆=5 sec (vertical axis). Red dots highlight the estimated local autocorrelations for
a selected stock specified in the upper left corner (39 dots for a trading day). Percentage numbers in the upper right
and lower left corners indicate the fractions of dots placed in the upper right and lower left quadrants, respectively.

stocks, even if the majority display negative dependencies in the left panel and positive in the

right panel. The Supplementary Appendix provides comprehensive evidence for moderately

persistent and significant return autocorrelation regimes of alternating sign across consecutive

intraday intervals.4 This implies that the return serial correlation for individual stocks usually

display pronounced fluctuations over the course of the trading day. To summarize, we find about

an equal amount of positive and negative high-frequency return autocorrelations which, in turn,

are the ultimate drivers behind upward and downward sloping volatility signatures.

1.2 Implications for High-Frequency Return Dynamics

The empirical findings in Section 1.1 have important implications. First of all, the analysis of

local first-order return autocorrelations across a variety of frequencies indicate that the MMN

process is complex. Negative return autocorrelation is consistent with i.i.d. exogenous noise,

orthogonal to the efficient price. In contrast, significant positive serial correlation and monotonic

downward sloping signature plots imply that the noise is persistent and/or endogenous. The

empirical evidence, detailed in the Supplementary Appendix, finds about an equal number

of negative and positive intraday autocorrelation regimes, with frequent transitions between

regimes for a given stock. That is, the MMN process is dynamic and strongly time-varying.

4Specifically, for every stock in the sample, we test if the local return serial correlation equals zero for a range of
sampling frequencies and local interval lengths. To enhance statistical power, we apply one-sided heteroskedasticity-
robust tests for the average absolute and signed (only positive/negative) autocorrelations over a sequence of
consecutive intervals. In addition, we document a statistically significant persistence in the sign of the return
autocorrelation across local intervals for most of the stocks throughout the sample period.
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Secondly, monotonically declining volatility signature plots also imply that the MMN

cannot be exogenous, even if it displays positive short-term autocorrelation. This finding

corroborates the hypothesis of endogenous microstructure noise. Specifically, if MMN is

stationary and uncorrelated with the efficient price process, then the variance of the observed

high-frequency returns equals the sum of the variance of the underlying components, i.e.,

V ar(ri) = V ar(r ∗i ) + V ar(ui), where ri and r ∗i denote the observed and efficient returns

over the i-th high-frequency interval, and ui is the corresponding MMN increment. This

decomposition trivially carries over to RV measures obtained as the cumulative sum of squared

high-frequency returns over a local interval. Moreover, since the MMN increments are largely

invariant with respect to the return frequency, i.e., they are of orderOp(1), while the fundamental

return variation is of order Op(∆) and grows linearly with the horizon ∆, the impact of MMN

is large relative to the typical efficient price innovation over short high-frequency intervals,

that is, V ar(ri) ≈ V ar(ui) > V ar(r ∗i ), but close to negligible over longer return horizons,

where V ar(ri) ≈ V ar(r ∗i ). Consequently, if MMN is uncorrelated with the fundamental price

process, the RV measure should be growing with the sampling frequency due to the larger

relative impact of V ar(ui).

Contrary to the predictions outlined above, exploring a large cross-section of equity returns,

we find no systematic evidence that realized return volatility increases with the sampling

frequency. Instead, we encounter a striking variety of growing and declining slopes for the

volatility signature plots, both across time for a given stock and across stocks at a given point

in time. Since declining volatility signature plots and negatively biased RV measures are only

feasible, if the noise and fundamental return innovations are negatively correlated, the noise

leaves a distinct footprint in the data, signifying the presence of endogeneity. Consistent with

these findings, studies – going back at least as far as Hansen and Lunde (2006) – conclude that

such high-frequency return dynamics are inconsistent with an exogenous noise representation.5

Hence, our empirical evidence – along with insights founded in market microstructure

theory – poses a challenge for all representations assuming orthogonality between MMN and

the efficient price process. This is true even if the i.i.d. assumption for MMN is relaxed. Recent

examples of sophisticated econometric work developing nonparametric inference while allowing

for a flexible MMN dependency structure include Jacod et al. (2017), Li and Linton (2020), Da

and Xiu (2020), Li (2020) and Li et al. (2020). These approaches, however, all maintain the

assumption of orthogonality between the MMN increments and the fundamental martingale

price component. In fact, this exogeneity assumption is essential, because nonparametric

identification of the separate latent martingale and noise components becomes infeasible, when

MMN is endogenous, as we discuss in more detail later.

5Hasbrouck and Ho (1987) is among the first studies noting the inadequacy of the basic MA(1) representation.
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1.3 A Parsimonious Framework Accommodating Endogeneity

Our discussion of microstructure theory suggests that MMN is endogenous, while the evidence

in Sections 1.1-1.2, and further detailed in the Supplementary Appendix, corroborates this

conjecture. Consequently, we seek a tractable framework for high-frequency asset prices that

accommodates MMN endogeneity and diverse serial correlation patterns in the return dynamics.

To capture these empirical features and connect high-frequency volatility estimation to

market microstructure theory, we adopt a parametric model facilitating inference over short

intraday windows. It is cast in discrete time, allowing for temporal feedback effects which

persist, even if returns are sampled at (very) high frequencies. Within this setup, we extend

the classic ”martingale-plus-noise” model by components accommodating an error correction

mechanism and price endogeneity. These ingredients arise naturally, once one recognizes that

the investors’ information set is imperfect and subject to acquisition and processing delays.

Under such circumstances, investors cannot determine, with certainty, whether a given price

increase is due to the arrival of positive (private) news or random buying orders from liquidity

traders (noise). In the former case, the price is likely to continue its upward trajectory while, in

the second case, the price tends to revert. Even if astute traders avoid systematic mispricing,

the valuation is unbiased only on average. During episodes with sustained imbalances in net

liquidity demand or unusually intense information-based trading, uninformed agents tend to

err in the same direction. Nonetheless, rationality does imply that simple trading strategies

cannot earn significant profits. The fact that we find positive and negative return autocorrelation

patterns to be about equally common is consistent with this prediction.

The ingredients of our model are not new to the literature. The classical decomposition of

observed prices into random-walk and stationary components is discussed already by Hasbrouck

(1993). However, no existing tractable framework simultaneously accommodates noise endo-

geneity and error correction effects, treating them as interacting features operating at varying

intensity, and shaping the diverse and frequently changing return autocorrelation patterns.

We retain tractability by assuming our model applies only locally, and thus allow the model

parameters to vary across intraday intervals. This flexible approach is aligned with our evidence,

showing that the sign of return autocorrelations alternates frequently across the trading day.

It effectively allows the shifting market environment to guide the evolution of the system.

Moreover, the local approximating model with constant coefficients enables us to sidestep the

difficult task of jointly modeling the intraday patterns and the persistent activity dynamics. By

cumulating local volatility estimates, we obtain – as a byproduct – an alternative return variation

measure that generally is consistent with the RV measures, but deviates systematically under

specific market conditions, reflecting the relative strength of different MMN distortions.
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Our model includes four parameters; (i) the volatility of the random walk process (the

“fundamental” volatility); (ii) the “magnitude of the noise,” or noise-to-signal ratio; (iii) the speed

of reversal from mispricing, which is closely related to the persistent return autocorrelation or

momentum effects; and (iv) the instantaneous response to efficient price innovations, capturing

the extent of mispricing due to informational frictions. This parsimonious representation

captures various return dependencies implied by microstructure models. In particular, the classic

“martingale-plus-noise” model and variants, allowing for endogenous noise, emerge as special

cases. Moreover, it embeds the partial adjustment dynamics of Amihud and Mendelson (1987),

which, combined with our accommodation of heterogeneity across intraday intervals, renders

the setting reminiscent of the endogenous noise specification of Kalnina and Linton (2008).6

It further embeds the illustrative model of Chan (1993), who emphasizes return correlation

patterns resulting from signal extraction in a context of noise and fundamental information.

Our approach is also related to studies linking the properties of noise more explicitly to the

trading process and the underlying microstructure, e.g., Hasbrouck (1993), Madhavan et al.

(1997), Diebold and Strasser (2013), Li et al. (2016), and Chaker (2017). However, none of

these studies consider the type of high-frequency variation in mispricing and temporal feedback

effects that are crucial in explaining the return dynamics underlying Figures 1 and 2.

While our framework covers fundamental microstructure price mechanisms in a minimalistic

way, it remains sufficiently rich to capture distinct market states. In particular, the speed of

price reversion interacts with the noise-to-signal ratio to determine the sign of the return

autocorrelation. We classify the market environment accordingly into two regimes. In one, the

impact of “mispricing,” induced by idiosyncratic noise shocks, is dominated by the strength of

the price reversal, inducing negative return serial correlation, or “contrarian” traits. In the other

regime, the feedback from mispricing generates “momentum,” or positive return autocorrelation.

In summary, we identify the difficulty of aligning temporal feedback effects with infill

asymptotics, where pricing errors (in the limit) are corrected instantaneously, as a prime reason

for the lack of commonality between high-frequency based volatility estimation and market

microstructure models. Moreover, as discussed by Hasbrouck (1993), in a discrete-time random-

walk-plus-noise model, separate identification of the noise variance and the degree of noise

endogeneity is generally infeasible. In our extended model with temporal feedback effects,

these identification issues become even more involved. In response, we provide an analysis

of (partial) identification restrictions and explore conditions that ensure identification of the

full parameter vector. As such, our approach represents a step towards the development of

high-frequency volatility estimators that retain a link to the market microstructure literature and

allow for a more structural treatment of the impact originating from noise shocks.

6See also Sheppard (2013) for a related notion intended to measure market “speed.”
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Conveniently, our model may be cast in a linear state-space form, enabling estimation via

the Kalman filter and ensuring consistent estimates for the (locally constant) volatility, albeit

with non-negligible error for short horizons. We estimate the model over intraday intervals using

high-frequency mid-quote returns. The results imply a high degree of informational efficiency,

although the price process also contains a non-trivial element of sluggishness. We identify

strong intraday periodicities in the speed of price discovery and find that fundamental volatility

is highly elevated at the market open and flat through the remainder of the trading day. The

increasing activity towards the market close is, in contrast, driven by uninformative trading and

idiosyncratic noise. This illustrates the potential of our approach to build a foundation for new

quantitative measures of market efficiency and fundamental volatility. Formal tests favor our

flexible parameter approach relative to popular stylized microstructure models.

1.4 Overview

The rest of the paper is structured as follows. Section 2 introduces the parametric model and

explores its dynamic properties along with its relation to existing models. Section 3 focuses on

identification issues in our general specification and reviews our estimation strategy. Section

4 presents empirical findings, and Section 5 concludes. Auxiliary materials are deferred to

the Supplementary Appendix, including comprehensive evidence for statistically significant

local return autocorrelations of varying sign as well as a large-scale Monte Carlo study that

corroborates the robustness of our empirical findings.

2 A Model for High-Frequency Asset Price Dynamics

This section introduces a parsimonious parametric model accommodating the salient features

of the price dynamics illustrated in Section 1 and more systematically documented in the

Supplementary Appendix. The objective is to assist in the identification and interpretation of

the drivers behind the time-variation in the shape of the volatility signature plots and return

autocorrelation patterns. This should provide a starting point for building more realistic models

of real-time price discovery and market fluctuations, in which we can gauge the impact of

learning, information heterogeneity and various market microstructure frictions.

2.1 The Discrete-Time Local Regime Model

We observe the logarithm of the quote midpoint for a given asset, pi , across an equidistant time

grid, i ∈ {0, 1, 2, . . . , T}, yielding a total of T log-returns, ri = pi − pi−1, i = 1, . . . , T . Each

return covers a short interval, on the order of multiple seconds, but not fractions of a second.
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An important consideration for our model design is the identification of channels for price

discovery, as opposed to MMN, allowing for significant return autocorrelation over non-trivial

time intervals. Generally, we cannot disentangle such features by nonparametric techniques, so

we impose identifying structure through parametric assumptions, subject to empirical scrutiny.

The ”efficient” (full information and frictionless) log price at time i, p∗i, follows a random

walk, consistent with a no-arbitrage representation for the return over short intraday intervals,

p∗i = p∗i−1 + ε∗i and r∗i = ε∗i = p∗i − p∗i−1 , (1)

where r∗i = ε∗i is the “efficient” return with ε∗i ∼ i.i.d.
(
0, σ2
∗
)
.

The evidence in Section 1.1 suggests that the mid-quote price dynamics deviates from that

of the efficient price in significant ways. We propose a simple representation that accommodates

both price endogeneity and correlation in the pricing errors via readily identifiable components.

Specifically, the return dynamics, locally, evolves according to the scheme,

ri = pi − pi−1 = −α (pi−1 − p∗i−1) + (γ ε∗i + εi) , 0 < α < 2, (2)

where εi is an i.i.d. component, uncorrelated with ε∗i , E[εi ] = E[εi ε
∗
i ] = 0 and V[εi] = σ2

ε .

In the martingale-plus-noise model, the degree of noise impacts the optimal sampling fre-

quency, see Ait-Sahalia et al. (2005) and Bandi and Russell (2006). It is also critical for the

short-run dynamics in our framework. Hence, we define the noise-to-signal ratio as,

λ = σ2
ε/σ

2
∗ .

For α = γ = 1, we obtain the “classic” representation, pi = p∗i + εi. In contrast, if γ 6= 1 or

α 6= 1, we introduce noise endogeneity and error correction, potentially generating downward-

sloped volatility signatures and persistent return autocorrelation. Below we separately discuss

the effects of price endogeneity and temporal feedback by, in turn, letting α = 1 or γ = 1.

Uncorrelated Endogenous Pricing Errors

For α = 1, we eliminate persistent return serial dependence. Specifically,

pi = p∗i + (γ − 1) ε∗i + εi , (3)

so the system features i.i.d. noise but, in general, there is endogeneity, as the error term is

correlated with the fundamental price innovation ε∗i , whenever γ 6= 1.

Letting γ differ across local intervals is one way to mimic intertemporal heterogeneity in the

information environment. Traders with incomplete information seek to infer the fundamental
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value from the concurrent market dynamics, including signals derived from price innovations,

evolving order book imbalances, consummated trades, and incoming news items. At a point in

time, rational agents with incomplete information tend to draw similar conclusions from avail-

able public signals. Hence, cumulative random shocks in either direction generate correlated,

albeit short-lived, pricing errors. Even if investors price assets correctly on average, they will,

for short intervals, induce γ > 1 in some scenarios and γ < 1 in others. Such temporary periods

of over- or under-reaction to latent news impact the price dynamics. To formalize the discussion,

we explicitly characterize the return variation and first-order return dependence in the system.

From equation (3), the return variance and first-order auto-covariance take the forms,

V[ri] = σ2
∗ + 2 [ γ(γ − 1) + λ ]σ2

∗ and Cov[ri, ri−1] = [ γ(1− γ) − λ ]σ2
∗ , (4)

and all higher order return autocorrelation coefficients (h > 1) are zero.

Both the return variation and covariation depend on the quadratic term γ (γ− 1). For γ = 1,

we obtain the classic i.i.d. noise result of variation inflation and negative serial correlation.

For γ > 1, the price overreacts to fundamental news, reinforcing the excess volatility and

exacerbating the negative correlation induced by idiosyncratic noise. In contrast, if γ < 1, the

concurrent return innovation fails to fully incorporate the efficient price innovation, smoothing

the price path and counteracting the irregularity stemming from i.i.d. noise. In this case,

the return variation may even drop below the value associated with the fundamental return,

V[ri] < σ2
∗ , and the return autocorrelation turns positive. Because α = 1, the adjustment to the

efficient price innovation is completed over the subsequent interval, and the smoothing effect is

maximized, when the price change is evenly distributed over the two intervals, i.e., γ = 1/2.

These results reflect the symmetry of the second-order return moments around γ = 1/2.

The degree of price smoothing is controlled by |γ − 1/2|, so there are two distinct values of γ

that imply the identical return variance and auto-covariance. For example, the martingale plus

i.i.d. noise model arises in two separate cases, γ = 1 and γ = 0. More generally, this symmetry

feature induces an identification problem, that we analyze in further detail below.

Error Correction Dynamics

Focusing instead on the error correction mechanism, the scenario γ = 1 and α 6= 1 yields,

pi = pi−1 − α (pi−1 − p∗i−1) + ε∗i + εi = p∗i + (1 − α) (pi−1 − p∗i−1) + εi . (5)

Now the i.i.d. error is independent of the efficient return innovation but, for 0 < α < 1, the

response to pricing errors is sluggish, inducing longer-run return autocorrelation.
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This parsimonious reduced-form error correction mechanism is motivated by the intuition

that risk-averse agents with incomplete information form (unconditionally) unbiased, yet not

error-free, expectations about the efficient price. Investors are aware that temporary mispricing

creates opportunities for (risky) speculative trading which generates a pull back towards effi-

ciency. Prior studies, e.g., Kyle (1985) and Vives (1995), identify various settings and economic

factors, that render prolonged price reaction patterns consistent with sequential learning.

Formally, we readily obtain the unconditional return variance and hth-order auto-covariance,

V[ri] = σ2
∗ +

2λ

2 − α
σ2
∗ and Cov[ri, ri−h] = − (1 − α)h−1 αλ

2 − α
σ2
∗ . (6)

Absent endogeneity, the error term inflates the return variation and renders the autocorrela-

tion negative. A small α leads to a more protracted error correction, more return smoothing and

less price variation, while 1 < α < 2 generates overshooting and increased return variation.

The ”Random-Walk-plus-Noise” Representation

To facilitate comparisons to the extant literature, we couch our model (1)-(2) in a random-walk-

plus-noise format by labeling the mispricing component, its innovation, and its variance,

µi = pi − p∗i , εµi = (γ − 1) ε∗i + εi and V[εµi ] = σ2
µ = (γ − 1)2σ2

∗ + σ2
ε . (7)

The system (1)–(2) now implies,

pi = p∗i + µi, (8)

µi = (1− α)µi−1 + εµi . (9)

Equation (8) identifies µi as a MMN component, generating a wedge between pi and p∗i .

Correlation between the innovations in model (1)-(2) along with temporal feedback imply, that

the pricing error is affected by both efficient price and noise shocks. Econometrically, αµi−1 is

an error correction term, pushing the mid-quote back towards ”equilibrium,” pi = p∗i .

The role of ε∗i in the error εµi resembles features discussed in the case of uncorrelated

endogenous errors. If γ = 1, the efficient price innovation is fully incorporated in pi and has

no impact on εµi . In contrast, if γ = 0, new information has no immediate impact, implying a

lagged price response, and ε∗i is fully embedded in εµi . We review this scenario in Section 2.4.5.

The mispricing component in Equations (8)-(9) takes the form of a mean-zero AR(1) process.

It is stationary for 0 < α < 2 with unconditional variance,

V[µi] =
σ2
µ

α (2− α)
=

(γ − 1)2 + λ

α (2− α)
σ2
∗ . (10)
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Expression (10) may be interpreted as a measure of (average) mispricing, or “inefficiency.”

The mid-quote equals the efficient price in expectation, i.e., E[µi] = 0 and E[pi] = E[p∗i ], so the

average squared pricing error equals the variance, V[µi]. It is evident that V[µi] is minimized

for α = 1 implying, rather intuitively, that rapid error correction enhances price efficiency.

The second factor controlling the degree of inefficiency is the pricing error innovation in

the numerator of Equation (10). This term is small if, all else equal, there is no (local) over- or

under-reaction to latent news (γ = 1), and the idiosyncratic error is minimal (low λ).

In summary, the price dynamics reflects the covariance structure of the innovations to the

mispricing component and the fundamental price, and how these shocks are propagated through

the temporal adjustment process. The covariance structure takes the form,

Σ =

[
E[(εµi )2] E[εµi ε

∗
i ]

E[εµi ε
∗
i ] E[(ε∗i )

2]

]
=

[
(γ − 1)2 + λ γ − 1

γ − 1 1

]
σ2
∗ . (11)

Equation (11) shows the off-diagonal (noise endogeneity) entries are non-zero, whenever γ 6= 1.

We reiterate that our model, deliberately, is of reduced form and intended to apply only for

short intervals over which the dynamics remains stable. Allowing model parameters to shift

across adjacent intervals accommodates time-varying local return autocorrelations.7

Persistent Endogenous Noise and Local Trends

The system (8)-(9) recasts model (1)-(2) as a discrete-time MMN (or pricing error) process,

with mispricing being persistent and/or endogenous for α 6= 1 and/or γ 6= 1. These properties

are complementary and both critical in generating realistic serial correlations for high-frequency

returns in our setting. Persistent pricing errors allow for non-zero return autocorrelation beyond

order one, while endogeneity (correlation between pricing errors and fundamental price shocks)

allows the observed autocorrelations to be positive across all return horizons. In contrast, if

noise is modeled as i.i.d. and orthogonal to the efficient price (α = γ = 1), only the first-order

autocorrelation is non-zero, and necessarily negative. Likewise, in ”martingale-plus-noise”

models, where noise components can be dependent, but uncorrelated with the efficient price

(i.e., no endogeneity), return autocorrelations can be positive, but not jointly across all horizons.

Through the ability to induce patterns of protracted positive return autocorrelations, per-

sistent endogenous noise is consistent with stylized features in observed price dynamics, such

as occasional local trending. The mechanism behind this trending behavior in our model is

simple. Suppose, for example, that the noise-to-signal ratio, λ, is moderate and the observed

7The spirit of this approach mimics the assumptions often invoked for developing inference techniques with high-
frequency data, see, e.g., Mykland and Zhang (2009) and Bibinger et al. (2014), who explicitly rely on local
windows in which the quantity of interest, in their case return volatility, may be assumed to remain fixed.
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price (locally) underreacts to efficient price changes (i.e., endogeneity with γ < 1). This induces

severe mispricing, if there is a large shift in the efficient price. Moreover, if the error correction

is sluggish (low α, i.e., noise persistence), the initial mispricing is followed by a prolonged

adjustment to the new equilibrium level (i.e., slow price discovery). This tends to generate a

sequence of unidirectional price movements, so we observe a locally trending dynamic, even

though the efficient price has zero drift.

Figure 3: Simulated price (upper plots) and return processes (bottom plots) for alternative parameter values. The
first regime (blue) features a nearly unbiased instantaneous reaction to fundamental shocks (γ=0.95), implying
low noise endogeneity. The second regime (red) displays severe instantaneous underreaction to fundamental news
(γ=0.05), implying substantial noise endogeneity. The error correction coefficients are calibrated to generate
persistent pricing errors (Regime 1: α=0.05, Regime 2: α=0.35). Noise-to-signal ratios are identical (λ=0.2).

The plots for Regime 2 in Figure 3 illustrate how trending episodes emerge naturally, when

the price is simulated for model parameters mimicking persistent endogenous noise. In the left

panel, the fundamental price path (full-drawn line), modeled as a random walk without drift,

displays random oscillations across the interval. Regime 2 generates the corresponding observed

price path – a heavily ”smoothed” version of the efficient path due to systematic mispricing

(low γ) followed by slow error correction (low α). In the right panel, the efficient price exhibits

a positive jump so, in Regime 2, the pricing error is particularly severe, generating a temporary

adjustment process akin to “gradual” jumps, as described by Barndorff-Nielsen et al. (2008a).

Importantly, even if the pricing error is very persistent, such local trends are largely absent
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within Regime 1, for which the degree of endogeneity is low - the corresponding estimated

return serial correlations are, in fact, slightly negative. This reflects the near instantaneous

incorporation of the fundamental shock (γ ≈ 1), ensuring a strong temporal coherence between

the efficient and observed returns (for reasonable λ values). Nonetheless, the price may still,

locally, differ non-trivially from the efficient level, as is, indeed, the case for Regime 1.

2.2 Second Order Return Moments

This section provides model-implied conditions for excess volatility and return serial correlation.

These features are closely related and reflect the impact of MMN versus smoothing in the return

variation process. The latter also affects our ability to identify the drivers behind the price

dynamics from the observed return moments in the absence of auxiliary assumptions.

2.2.1 Excess Return Variation

We recall that the log-return in Equation (2) may be stated as ri = −αµi−1 + (ε∗i + εµi ) . The

following lemma provides an explicit expression for the return variation in this general case.

Lemma 1 (Return Variance). Assume σ2
ε > 0, 0 < α ≤ 1, 0 ≤ γ < 2. Then,

V[ri] = α2 V[µi] + (γ2 + λ)σ2
∗ = σ2

∗ +
2

2 − α
Fα(γ, λ) σ2

∗ , (12)

where, for later convenience, for given α, we define Fα(γ, λ) as a function of γ and λ,

Fα(γ, λ) = γ2 + ( 1 − γ ) α + λ − 1.

Proof. Follows by a sequence of straightforward calculations from equation (10).

Equation (12) implies the return volatility is increasing in σ2
∗ and λ. Likewise, due to the

“smoothing” of the price path for low α, the volatility grows with α (for γ < 1). Finally, as

before, the return variation is minimized for γ = α/2, increasing for γ > α/2, and decreasing

for γ < α/2, generalizing the result for the uncorrelated endogenous noise setting (α = 1).

The following corollary summarizes the conditions for excess volatility in our general

setting, featuring both error correction and endogeneity.

Corollary 1. Assume σ2
ε > 0, and 0 < α ≤ 1. Then,

V[ri] ≤ V[r∗i ] if Fα(γ, λ) ≤ 0 , (13)

V[ri] > V[r∗i ] otherwise. (14)
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Consequently, the return volatility is lower than the fundamental volatility if price updating

is slow, the extent of noise is low (i.e., α and λ are small), and γ is close to α/2, implying a

variance-minimizing degree of smoothing. The condition Fα(γ, λ) < 0, alternatively, can be

stated as γ2 + λ < 1− α(1− γ). Hence, the two regimes are governed by the relative size of

the effective return smoothing, 1− α(1− γ), and the size of the return innovations, γ2 + λ.

Thus, we have two distinct regimes. If γ = 1, the presence of noise, λ > 0, trivially leads

to excess volatility. In contrast, with partial price adjustment, the volatility may drop below the

fundamental return variation and generate inverted volatility signature plots.

2.3 Return Auto-Covariances

The determinants of whether returns display excess volatility are also critical for the sign of the

return auto-covariances. This is a consequence of the following lemma and corollary.

Lemma 2 (Return Auto-Covariances). Assume σ2
ε > 0, 0 < α ≤ 1, and h ≥ 1. Then,

Cov[ri, ri−h] = ψ(h− 1)
[
1− α(1− γ)− (γ2 + λ)

]
σ2
∗ = −Fα(γ, λ) ψ(h− 1) σ2

∗ (15)

with ψ(h− 1) = α
2−α (1− α)h−1 and ψ(0) = 1, if α = 1.

Proof. See the Supplementary Appendix.

Hence, the relation between 1 − α (1 − γ) and γ2 + λ also governs the sign of the auto-

covariance for the observed returns. We summarize this result in the form of a corollary.

Corollary 2. Assume σ2
ε > 0, 0 < α ≤ 1, and h ≥ 1. Then,

Cov[ri, ri−h] ≥ 0 if Fα(γ, λ) ≤ 0 , (16)

Cov[ri, ri−h] ≤ 0 otherwise. (17)

We note that, for 0 < α < 1, the sign of the auto-correlation is identical for all h ≥ 1, so both

”contrarian” and ”momentum” regimes display persistent return dependence. In Section 4, we

seek to identify this feature empirically over short trading intervals.

Without endogeneity, i.e., γ = 1, return momentum is infeasible here – a point further

discussed in Section 2.4.1. However, contrary to the pure price endogeneity setting of Section

2.1, momentum effects may arise for γ = 0, if λ < 1− α.

It is useful to relate these model implications to empirical evidence. The Supplementary

Appendix documents that, on average, the stocks display only limited return serial dependence.

For low γ values, it implies that 1− α ≈ λ. Our subsequent review of the estimation results
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suggests that this arises because the MMN component is small, while prices impound informa-

tion swiftly, i.e., 1− α is small as well. More generally, zero return correlation is consistent

with MMN, as long as the impact is mitigated by a certain sluggishness in market prices.

A natural application of these results is realized volatility estimation. Traditional realized

variance measures, obtained from cumulative high-frequency squared returns, will be biased

and inconsistent, unless the market environment generates a return dynamic that satisfies the

condition for no excess volatility, namely, γ2 + λ ≈ 1 − α (1− γ) or Fα(γ, λ) ≈ 0.

Finally, note that for given α and λ, scenarios for which |γ − α/2| are identical, e.g., the

cases γ = 0 and γ = α, yield the same return variances and autocovariances. We discuss this

issue in more detail in the context of statistical identification in Section 3.1.

2.4 Nested Models

Our model captures basic structural mechanisms from alternative market microstructure ap-

proaches within a uniform setting, providing a starting point for identifying strengths and

limitations of existing paradigms. Because we nest several important special cases, our em-

pirical work should help shed light on which models best approximate salient features of the

high-frequency return process. A second objective is to highlight the identification issues that

arise in microstructure models with a latent endogenous noise component. This often-overlooked

feature becomes evident, as we summarize the empirical implications of various models below.

2.4.1 The Classical Model with Idiosyncratic Noise Autocorrelation

A critical feature of our model (1)–(2) is the accommodation of noise endogeneity via γ 6= 1.

Specifically, γ = 1 implies that the innovation of the mispricing component, εµi , is uncorrelated

with the (efficient price) increment ε∗i .
8 In this case, we obtain,

Σ =

[
E[(εµi )2] E[εµi ε

∗
i ]

E[εµi ε
∗
i ] E[(ε∗i )

2]

]
=

[
λ 0

0 1

]
σ2
∗ .

The absence of correlation among the innovations has important ramifications. Letting ∆µi =

µi − µi−1, for any stationary noise dynamics and integers i, j, we have E[ ε∗i ∆µj ] = 0 and,

ri = pi − pi−1 = ε∗i + ∆µi . (18)

It follows that the actual return variation always exceeds the efficient return variation,

8As discussed by Hasbrouck (1993), this condition corresponds to a standard identification restriction in the
macroeconomic literature, see, e.g., the discussion in Watson (1986).
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E[ r 2
i ] = σ2

∗ + E[ (∆µi)
2 ] ≥ σ 2

∗ ,

and the return variance and autocovariances take the form in equation (6). It implies that,

uniformly, the volatility signature plots should lie above the efficient variance. This is at odds

with the empirical evidence, as the signature plots often drop sharply at higher frequencies.

We reiterate that this feature arises, even with dependence in the return series induced by

serial correlation in the noise process. Our model specification (8) - (9) now implies,

pi = p∗i + µi , (19)

µi = (1− α)µi−1 + εi , (20)

with E[εi ε
∗
i ] = 0 and E[ εi µj ] = 0 for all integers i, j. Hence, in our parametric setting,

the mispricing component, µi , follows an AR(1) process, inducing return dependence for

α 6= 1. This is relevant for volatility measures obtained from data sampled at the very highest

frequencies, as features such as the bid-ask spread, price grid and order splitting induce serial

dependence in both transaction and quote returns. Recognizing this issue, the original realized

volatility estimation procedures employ sparse sampling, e.g., Andersen and Bollerslev (1998).

Subsequently, a variety of robust approaches were proposed, including realized kernels, pre-

averaging, multi-scale, or spectral procedures, e.g., Barndorff-Nielsen et al. (2008b), Jacod

et al. (2009), Zhang et al. (2005), and Bibinger et al. (2014). A recent development of simple

procedures attaining the same objective is given by Da and Xiu (2020).

2.4.2 The Classical Model

The i.i.d. noise model arises from the above by imposing α = 1, so that E[εi ε
∗
i ] = 0 and,

pi = p∗i + εi . (21)

Thus, fundamental news are embodied instantaneously and past pricing errors are corrected

without delay, so shocks fully dissipate by the next observation, yielding V[ri] = σ2
∗(1 + 2λ)

and Cov[ri , ri−1] = −λσ2
∗ . That is, instant error correction implies negative first-order serial

correlation, but also no return correlation beyond lag one.

This “classic” random-walk-plus-iid-noise model, see, e.g., Zhou (1996), Ait-Sahalia et al.

(2005) and Bandi and Russell (2008), still provides a basic reference for empirical microstructure

effects, yet rules out both feedback effects and noise endogeneity, which arise for 0 < α < 1,

and γ 6= 1. In fact, these conditions seem to apply routinely across a large set of subintervals,

as documented in Section 4.4.
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2.4.3 The Uncorrelated Endogenous Noise Model

As noted in Section 2.4.2, imposing α = 1 yields a scenario with endogenous, but uncorre-

lated noise, pi = p∗i + (γ − 1) ε∗i + εi , and first-order autocovariance, Cov(ri , ri−1) =

[(1 − γ) γ − λ] σ 2
∗ . The specification is consistent with positive return dependence, if γ < 1 ,

i.e., the concurrent return innovation does not fully incorporate the efficient price innovation. In

this setting, the fundamental return variation may be estimated consistently through a first-order

lag adjustment to the realized volatility estimator, as originally suggested by Zhou (1996).

The point is that noise endogeneity and information feedback are distinct features. Endo-

geneity can alter the sign of the return autocorrelation, while persistent noise generates longer

lasting correlation effects. One of our objectives is to determine conditions under which we can

identify the underlying source of noise from the observed high-frequency return dependencies.

2.4.4 The Amihud-Mendelson Model

Our model (1) - (2) modifies the standard representation to allow for economic mechanisms

that generate longer-run return dependence. Meanwhile, the finance literature contains several

models designed to accommodate low-frequency serial correlation. Prominent examples include

Amihud and Mendelson (1987) and Hasbrouck and Ho (1987). Specifically, the Amihud-

Mendelson model emerges as a special case by setting γ = α, implying,

pi = (1 − α) pi−1 + αp∗i + εi . (22)

In this scenario, the mid-quote price is a weighted average of the past price and the current

efficient price, with an innovation term, that is uncorrelated with the efficient price innovation.

The price dynamics in equation (22) mimics the one in equation (2), with the notable

difference that the price adjustment in the latter is based on the discrepancy between the lagged

observed and past efficient price. Importantly, the model allows for both noise endogeneity

and feedback effects through an error correction mechanism, while providing a parsimonious

and readily identifiable model. The main drawback is the tight link between the strength of

endogeneity and speed of error correction via the restriction γ = α.

Note that Amihud and Mendelson (1987) seek to capture daily return dynamics. In that

context, updating based on the current efficient price (established over a full trading day) is

sensible relative to one-day-old information. In a high-frequency setting, featuring incessant

order book revisions, multiple trades per second, and nearly continuous news feeds, it is less

plausible that traders have the capability and all relevant information to gauge the efficient price

every instant. Instead, updates may occur with a slight delay. As such, equation (2) may provide

the more suitable representation at very high frequencies.
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2.4.5 The Information Delay Model

An alternative specification, yielding the identical first- and second-order return moments, as in

the Amihud and Mendelson (1987) model, may be obtained via a different economic mechanism.

As noted in Section 2.2, γ = 0 implies that even well-informed agents respond to newly arriving

information with a minor delay. This leads to a lagged price response and feedback – features

that appear empirically plausible. Moreover, the delay and feedback effects can be stronger

or weaker depending on the information and market environment at the time, motivating our

approach of keeping model parameters fixed only over short intraday intervals.

In this model, the only contemporaneous shock to the price is idiosyncratic noise, but

corrections to past pricing errors are also ongoing, so the efficient price innovations govern the

intermediate dynamics, as the market disentangles the noise and fundamental shocks to prices.

Letting γ = 0, equations (1)–(2) generate the following price dynamics,

pi = (1 − α) pi−1 + αp∗i−1 + εi . (23)

A few comments are in order. First, since ε∗i is latent and uncorrelated with εi, we obtain

an equivalent representation by relabeling p∗i−1 as p∗i . But this renders Equations (22) and (23)

identical. In other words, we cannot separately identify the two models – they generate the

identical process for the observed returns. This complicates identification and inference in

general – an issue we discuss in depth in Section 3.1.

Second, the covariance structure for the innovations now takes the simple form,

Σ =

[
E[(εµi )2] E[εµi ε

∗
i ]

E[εµi ε
∗
i ] E[(ε∗i )

2]

]
= σ2

∗

[
1 + λ −1

−1 1

]
.

This result reflects the incorporation of efficient innovations into prices with a delay, so the

mispricing component must absorb the full impact of any concurrent ε∗i shock, rendering

the noise endogenous. In this scenario, the return dynamics, reflecting the error correction

mechanism, is the only source of coherence between market and efficient prices. Hence, the

market is in a perpetual state of transition, driven by an ongoing process of price discovery.

Conceptually, this separates our specification from standard microstructure models in which

prices are in equilibrium, except for short-lived distortions induced by exogenous noise shocks.

Third, the “information delay” and Amihud and Mendelson (1987) models differ, as the

latter has a covariance structure identical to the general representation (11), but with γ = α.

For either model, information processing proceeds at a rate governed by α. The latency of the

efficient price implies, that we cannot determine if this occurs with a temporal delay or not. This

notwithstanding, the incomplete and delayed price adjustment renders the noise endogenous.
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Typically, such endogeneity is imposed via explicit statistical assumptions, see, e.g., Kalnina

and Linton (2008), but it is endowed with a more structural interpretation in our specification.

In summary, our information delay model – or high-frequency reinterpretation of Amihud

and Mendelson (1987) – featuring just three free parameters, (α, λ, σ∗), endows the asset pricing

process with dynamic properties reflecting distinct underlying economic factors. The empirical

evidence in Section 4 illustrates how this fully identifiable variant of our model captures salient

features of the short-run dynamics, providing a framework suitable for assessing the separate

economic forces at play relative to traditional microstructure representations.

2.5 Realized Volatility Measures

This section reviews the implications of the preceding results for realized volatility measures

computed from return data generated by model (1)–(2). The realized volatility for interval [0, T ],

using equidistant log-price observations, pi∆ , i = 0, . . . , n = n(∆) = bT/∆c, is obtained as,

RVT (∆) =

n(∆)∑
i=1

(
pi∆ − p(i−1)∆

)2
=

n(∆)∑
i=1

( ri∆ )2 . (24)

In the frictionless variant of our model with α = γ = 1 and λ = 0, we have,

E [RVT (∆) ] = T σ2
∗ . (25)

In the case of general exogenous noise, ri = ε∗i + (µi−µi−1) = ε∗i + ∆µi , as discussed

in Section 2.4.1, we find, in analogy to the result established there, that,

E [RVT (∆) ] = T
[
σ2
∗ + E[ (∆µi)

2 ]
]

= T

[
1 +

2λ

2− α

]
σ2
∗ ≥ T σ2

∗ . (26)

This result reiterates a point stressed by Hansen and Lunde (2006) – the RV measure, absent

endogenous noise, cannot be uniformly downward biased. Thus, a monotone declining signature

plot indicates the presence of endogenous noise. Moreover, for exogenous noise, the extent

and variation in any upward bias is governed by the properties of the noise process. The usual

assumption is that each price observation contains a noise component unrelated to the sampling

interval, so ∆µi = (µi − µi−1) constitutes an Op(1) term which, for ∆ → 0, dominates the

Op(
√

∆) term of the efficient price innovation. This generates an increasing upward bias at

higher sampling frequency, and a positively sloped volatility signature plot, as ∆→ 0.

As observed previously, Figure 1 illustrates the general point that, as the sampling frequency

increases, the volatility signature plot may be sharply upward sloping in some periods and

sharply downward sloping in other cases. In Section 2.4.1, we documented that the latter is
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possible only if the noise is endogenous. For our full parametric model, with γ 6= 1,

E [RVT (∆) ] = T

[
1 +

2

2 − α
Fα(γ, λ)

]
σ2
∗ . (27)

As before, the sign of Fα(γ, λ) determines whether the return volatility measure is upward or

downward biased. Both cases are empirically important, as each occur with regularity, showing

that a (time-varying) degree of exogenous and endogenous noise is required to capture the

observed features of the volatility process for individual stock returns.

3 Statistical Inference

3.1 The Identification Problem

Section 2 shows that the general model (1)–(2) is not uniquely identified from the second-order

return moments. This identification issue has been recognized previously. In the literature on

high-frequency based volatility estimation, researchers typically impose two distinct sets of

assumptions on the noise to achieve identification. One approach casts the model in continuous

time and conducts inference via an in-fill asymptotic scheme, where the number of observations

(ticks) diverges within a fixed interval. In this case, the noise dependence is identified, because

the tick-by-tick innovations in the efficient price shrink with the length of a sampling interval,

while the magnitude of the noise shocks is invariant with respect to sampling frequency, so the

noise is asymptotically “big,” ensuring nonparametric identification.9

In contrast, if the noise dependence is fixed in discrete time, asymptotic inference requires an

increasing time horizon. In this case, identification hinges on the stipulation that the fundamental

price process is a (semi-)martingale, while the noise is stationary. The latter implies an element

of mean reversion but, without auxiliary assumptions, this can only be ascertained with precision

over longer time intervals. Moreover, dependence between the noise and fundamental price

process complicates identification even further, as noted in Ait-Sahalia et al. (2006). Typically,

one can only accomplish this task via careful parametric modeling.

The general model in Section 2, involving frictions and temporal price corrections, naturally

falls into the second category. In fact, absent either endogeneity (γ = 1) or noise in the

mispricing component (σ2
ε = 0),10 the system is identified through the parametric specification,

9A thorough development is provided by Jacod et al. (2017); see also the discussion in Li and Linton (2020).
Likewise, Da and Xiu (2020) obtain consistent inference from a tick-time MA(q) noise process in a continuous-time
setting with independence between noise and efficient price, but otherwise very general assumptions.

10This restriction, used in the Beveridge and Nelson (1981) decomposition for macroeconometric time series models,
is invoked by Hasbrouck (1993) to identify and parameterize the pricing error in terms of present and past returns
as well as auxiliary explanatory variables.
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but once such dependence is present, we have only partial identification. We can estimate the key

parameter determining the fundamental volatility, σ2
∗ , but the finer details of the noise dynamics

are elusive, as the second-order return moments fail to disentangle the delay with which the

price incorporates the fundamental innovation versus the relative size (variance) of the noise

component. Specifically, separate identification of λ and γ fails. Both impact the return variation

(12) and autocovariances (15) only through the function Fα(γ, λ) = γ2−αγ+α+λ−1. Thus,

any combinations of γ and λ yielding the same value for Fα(γ, λ) imply identical second-order

moments. In contrast, it is readily shown that α and σ2
∗ are identifiable. Henceforth, in this

section, we often abbreviate Fα(γ, λ) by Fα.
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Figure 4: The dashed blue lines describe admissible values of (γ, λ), corresponding to Regime I (left plot) and
Regime II (right plot). Regime I has α = 0.835, σ2

∗ = 0.986 · 10−8 and Fα = −0.100 and generates positive
return autocorrelation. Regime II has α = 0.976, σ2

∗ = 0.524 · 10−8 and Fα = 0.091 and generates negative
autocorrelation. The solid black lines represent values of (γ, λ) which solve equation Fα(γ, λ) = 0 for a given α.

We may impose additional constraints on γ and λ, such as non-negativity. Yet, whenever

the parameters are not on the boundary, any small shift in γ may be offset by a compensatory

shift in λ, leaving Fα unaltered. Since Fα is linear in λ and quadratic in γ, fixing γ identifies

λ, but fixing λ does not generally identify γ. In particular, scenarios with identical values for

|γ − α/2| are observationally equivalent. When estimating the general model, we initially

focus on the lower-dimensional vector (α, σ2
∗ , Fα), with values for Fα consistent with a range

of (γ, λ) combinations for given return dynamics. Auxiliary economic restrictions can help

identify all parameters, as illustrated in Section 4.3, enabling full model estimation.

To illustrate the geometry of non-identification regions for (γ, λ), we consider two scenarios

associated with positive and negative return autocorrelations, respectively. In Regime I, we

choose the parameter values α = 0.835, σ2
∗ = 0.986 · 10−8 and Fα = −0.100 producing a

positive first-order autocorrelation of 0.087. In Regime II, we set α = 0.976, σ2
∗ = 0.524 · 10−8

and Fα = 0.091, resulting in a negative first-order autocorrelation of −0.074. These values for
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α, σ2
∗ and Fα correspond to the median estimates α̂, σ̂2

∗ and F̂α obtained across local 10-minute

intervals with positive and negative return autocorrelations, respectively, in Section 4.

Figure 4 depicts the admissible loci of (γ, λ) for Regimes I (left) and II (right), imposing

non-negativity. The shaded rectangular area indicates the range of values γ and λ can take, given

the remaining parameters. The admissible (γ, λ) combinations are indicated by the dashed blue

line, with λ treated as a function of γ and the value of (α, Fα) for the corresponding regime.

The solid black line depicts the loci of (γ, λ) solving Fα(γ, λ) = 0 for a given α. All

points below this line imply Fα(γ, λ) < 0, whereas all points above indicate Fα(γ, λ) > 0.

Accordingly, for Regime I (positive autocorrelation) and negative Fα, all admissible pairs (γ, λ)

are located below the parabolic curve Fα(γ, λ) = 0. In contrast, for Regime II (negative

autocorrelation), all admissible (γ, λ) combinations lie above Fα(γ, λ) = 0.

This analysis delivers maximum admissible values for γ and λ in a given regime. For λ, it

is attained at the level of γ that minimizes the return variance, i.e., γ = α/2,

λmax =
α2

4
− α + Fα + 1. (28)

Correspondingly, it is readily seen that γmax is attained for λ = 0, so that,

γmax =
α

2
+
√
λmax. (29)

This provides algebraic upper bounds given estimates for the identified parameters (α, σ2
∗ , Fα).

We further note that the maximum γ satisfying the boundary condition Fα(γ, λ) = 0 is

attained for λ = 0 and equals unity. Therefore, Fα < 0 implies γmax < 1, and Fα > 0 implies

γmax > 1. This feature is nicely illustrated in Figure 4. If Fα < 0 (Regime I), the dashed

curve λ(γ) is below the black curve (Fα(γ, λ) = 0), crossing the horizontal axis below 1, and

γmax < 1. If Fα > 0 (Regime II), the situation is reversed. Here, overreactions to return

innovations (γ > 1) only occur for Fα > 0, implying negative first-order autocorrelation.

These identification relations have direct implications for the nested models discussed in

Section 2.4. Firstly, the equivalence between the Amihud-Mendelson and Information Delay

models is due to γ = α and γ = 0 both implying Fα(γ, λ) = α + λ − 1. Secondly, the i.i.d.

noise model implies γ = 1 and Fα(1, λ) = λ > 0, excluding positive serial correlation. As

demonstrated in the empirical analysis, this constraint is often counterfactual, and the associated

estimates of the efficient return variance, σ2
∗ , will generally be biased.

The endogenous uncorrelated noise model of Section 2.4.3 with α = 1 implies F1(γ, λ) =

γ2 − γ + λ. In contrast to the classical model with idiosyncratic noise, this allows for a

positive first-order return autocorrelation. Due to the constraints discussed above, we have

F1(γ, λ) ≥ −1
4 , thus the first-order autocorrelation must fall within (−1

2 ,
1
2).
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Finally, by fixing γ, the information delay (equivalently, Amihud-Mendelson) model allows

for identification of all remaining parameters without imposing additional constraints on the

return dynamics. This specification allows for only partial instant incorporation of fundamental

information along with the feedback mechanism associated with dynamic price discovery.

3.2 Estimation Under Identification

For estimation purposes, it is convenient to restate the model as,

ri = −αµi−1 + ε̃i,

µi = (1− α)µi−1 + εµi ,

where ε̃i = γε∗i + εi and εµi = ε̃i − ε∗i = (γ − 1)ε∗i + εi. Then, returns ri are driven by a latent

variable µi following an AR(1) process with covariance structure given by,

E[ ε̃iµi+h ] = (1− α)h
(
γ2 + λ− γ

)
σ2
∗ , ∀h ≥ 0,

E[ ε̃iµi−h ] = 0, ∀h > 0,

E[ ε̃iε
µ
i ] = [ γ(γ − 1) + λ ] σ2

∗,

E[ ε̃iε
µ
i−h ] = 0, ∀h 6= 0.

In the Supplementary Appendix, we show the model can be estimated by maximum like-

lihood (ML) via the prediction error decomposition, see e.g., Harvey (1989), yielding the

log-likelihood,

`(Y, θ) = −1

2

T∑
i=1

ln(si) −
1

2

T∑
i=1

ν2
i

s2
i

, (30)

where νi denotes the (optimal) linear prediction of ri given the past returns (ri−1, . . . , r1),

and s2
i = E[ν2

i |ri−1, . . . , r1] is the conditional variance. Assuming εi and ε∗i are Gaussian,

`(Y, θ) is readily computed by the Kalman filter by recasting the model in terms of a linear

state-space system. If the errors ε∗i and εi are not normally distributed, equation (30) instead has

the interpretation of a quasi likelihood function yielding consistent parameter estimates, as long

as the second order return moments are correctly specified. In this case, the linear predictions of

the state variables are not optimal among all prediction functions, but remain the best linear

ones, see the Supplementary Appendix, Section 3, for details.

We reiterate that our estimation approach differs fundamentally from the infill asymptotic

procedures applied routinely for realized volatility estimation. This reflects our finding of

prolonged periods of persistent return serial correlation and the corresponding model feature
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involving a temporal feedback mechanism. To capture such temporal effects, the persistence is

most naturally viewed as given for a fixed interval length ∆ > 0. In this context, ML inference

provides a standard
√
T convergence rate for T →∞.

As noted in Section 3.1, γ and λ are not separately identifiable in our general model. Instead,

we can determine Fα = Fα(γ, λ) – a specific function of the underlying coefficients. Thus, the

parameter vector θ effectively contains only three identifiable coefficients, θ = (α, σ2
∗ , Fα)′. Of

course, in many market microstructure models, the absence of noise endogeneity or temporally

persistent pricing errors imply specific parameter restrictions, that ensure identification. Below,

we propose mild identification assumptions, which allow us to recover all four primary model

parameters, α, σ2
∗ , σ2

ε (or equivalently λ) and γ, in the general setting.

Our identification approach relies on the hypothesis that traders form their perception of the

state of the market from the information flow and the past trade and quote activity. This learning

process is updated over time, as new data is obtained. In a noisy environment, the investors’

inferred state only changes significantly after a sizable set of signals, indicating a shift in the

dynamics, is obtained. As such, any shift in the intensity of the fundamental return shocks must

play out over some time, before the majority of the investors learn and adapt. Likewise, a change

in the speed with which pricing errors is corrected only manifests itself in the (conditional)

mean of the return. Therefore, we stipulate that the (exogenous) fundamental return variance,

σ2
∗ , and the hard-to-measure speed of error correction, α, vary at a higher frequency than the

parameters governed more directly by the majority of the trader population, namely the intensity

of the noise variance, σ2
ε , and the assessment of fundamental news, as captured by γ.

We operationalize the above hypothesis by splitting our sequence of intraday returns for

every asset into non-overlapping groups of K ≥ 2 consecutive intraday intervals, each of

length T . We assume that the two (unidentified) parameters, σ2
e and γ, are fixed across the

k = 1, . . . ,K consecutive intervals, while the two remaining (identified) parameters, α and σ2
∗

are free to vary across theK samples. We denote the sub-vector of fixed parameters across theK

intervals, by θ′0 = (σ2
e , γ), and the remaining interval-k-specific parameters by θ′k = (αk, σ

2
∗ k).

The second-order return moments, computed from the K consecutive intervals, now deter-

mine all 2K + 2 parameters. The coefficients in θk are identified through the sample moments

in interval k, while the parameters in θ0 are obtained from moments generated across all K

intervals. The principle is akin to the identification through heteroskedasticity, detailed by

Rigobon (2003), with temporal variation in the system serving to separate the distinct features.

Specifically, the fluctuations in θk induce shifts in Fαk for k = 1, ...,K, which generate K

equations with only two unknowns, σ2
e and γ, given that the remaining parameters are identified

from other moment conditions. If the system is correctly specified, the parameter vector is

uniquely identified, whenever at least two samples generate distinct second-order moments.

25



The total log-likelihood function based on the K intervals can be written as a sum of

log-likelihood functions for the individual samples in equation (30),

K∑
k=1

`
(
Yk, (θ

′
0, θ
′
k)
′),

where Yk denotes the return series for interval k. Assuming the second-order return moments

are correctly specified, and the return series across the intervals generate non-identical moments,

the parameter vectors θ0, θ1, ..., θK are consistently estimated through this quasi-ML approach.

We rely on this design for empirical illustrations at the end of Section 4.

4 Evidence from Model Estimation

4.1 Data

We estimate the model as outlined in Section 2.1 using high-frequency mid-quote returns of the

Nasdaq 100 equity index constituents, obtained from LOBSTER.11 We split the sample of 100

equities into quintiles based on the average daily number of mid-quote revisions, with Group

1 being the 20% of stocks with most frequent revisions and Group 5 being the 20% with the

fewest.12 Consequently, for a typical stock in Group 5, we usually have fewer quote revisions

than intra-day returns, whereas this ratio is much more favorable for stocks in Groups 1 to 4.

While we concentrate our discussion on the most liquid groups, we convey a sense of robustness

by reporting results for the full spectrum of stocks.

We calculate the mid-quote price as the average of bid and ask prices observed at the top of

the order book. To keep the analysis manageable, we restrict our sample to the first three months

of 2014 yielding a total of 61 trading days. For each day, we consider the full 6.5 hour trading

period, which is split into 39 non-overlapping local intervals of T = 10 min. Consequently, we

employ up to a total of 237,900 local intervals. The underlying returns are sampled at the fixed

frequency of ∆= 2 seconds. The model is estimated by maximum likelihood via the Kalman

filter, as described in Section 3.2.

4.2 Parameter Estimates With Partial Identification

We first focus on parameter estimates without imposing additional identification restrictions,

i.e., estimates of α, σ2
∗ and Fα(γ, λ). From estimates of Fα(γ, λ) we back out corresponding

11The LOBSTER database (https://lobsterdata.com) builds on Nasdaq’s historical TotalView-ITCH data. It provides
information on all trade and quote activity on Nasdaq at nano-second time stamp precision.

12The quintiles include an average of 17,485, 10,365, 8,166, 5,531 and 2,497 daily mid-quote revisions, respectively.
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upper bounds, γmax and λmax as given by equations (28) and (29).

Figure 5 displays the empirical distributions of the parameter estimates13 obtained across

all stocks in the first, fourth and fifth quintile (with 20 stocks in each), respectively, sorted

according to the intensity of quote-midpoint revisions. All distributions appear unimodal and

approximately symmetric, apart from the distinct right skew in the σ2
∗ distribution.
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Figure 5: The figure depicts the distribution of estimated parameters from T = 10 min intervals sampled at the
frequency of ∆= 2 sec. Results are reported for the stocks in the 1st, 4th and 5th group sorted by the average number
of daily mid-quote revisions for the first 61 trading days in 2014. The densities are constructed using Gaussian
kernels from parameter estimates obtained across 47,580 local intervals.

13These are empirical histograms of parameter estimates smoothed by a standard Gaussian kernel estimator.
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In Group 1, the α estimates have a mode around 0.90, corroborating the hypothesis of a

feedback effect and mildly sluggish price adjustments. The distribution of γmax is centered on

1, consistent with a first-order return autocorrelation around zero, but with a significant number

of positive and negative coefficients (see Table 1 in the Supplementary Appendix). The two

regimes imply, respectively, that γmax < 1 and γmax > 1, with these values attained only for

λ = 0, as illustrated by the left and right panels of Figure 4. Because the returns, invariably,

embody some degree of high-frequency noise, we presume λ > 0. Hence, the relevant case

involves γ < γmax, reflecting a leftward movement along the dashed curves in Figure 4, starting

from (γ, λ) = (γmax, 0). We conclude that, for a majority of the local intervals, γ < 1.

This discussion reflects the fundamental identification issue for microstructure models with

latent and endogenous noise. Our model has two separate sources of non-martingale return

behavior. Idiosyncratic noise is “corrected” over time, inducing negative return dependence,

while incomplete incorporation of fundamental innovations – endogeneity – induces positive

dependence, as prices subsequently adjust to the shift in p∗ (for α/2 < γ < 1). Hence, an

increase in both the idiosyncratic noise and the initial underreaction to fundamental news have

offsetting effects, potentially leaving the return autocorrelation pattern unchanged.

Our results imply that, for most intervals, the return dynamics is affected by endogenous

noise. This induces a smoother price path, with return autocorrelation being positive or negative

depending on the relative size of the idiosyncratic noise component, λ. Note also that some local

intervals featuring negative return autocorrelation may imply γ > 1, indicating an information

environment, where agents are (overly) concerned about asymmetric information and overreact

to information signals, generating “overshooting.” For such episodes, there is an additional

source behind the price reversals, reinforcing the impact of idiosyncratic noise.

Our upper bound estimates for λmax mostly fall below 0.4. This confirms recent findings of

a relatively small noise component for large cap stocks. Consistent with the empirical evidence

presented in Introduction and in the Supplementary Appendix, point estimates for the Group 1

autocorrelation have a small positive mode and a right skew, indicating regimes with positive

return autocorrelation are common and, perhaps, even in the majority.

For the less liquid stocks in Group 4, we find a slightly lower degree of return dependence,

a lower level of fundamental volatility, and more rapid error correction. To interpret these

findings, it is useful to have actual estimates for the relative degree of idiosyncratic noise, but

this is complicated due to the lack of separate identification for λ. We return to this issue below.

In Group 5, the estimates of α and λmax are higher, on average, have smaller dispersion

around the mode and are distinctly right-skewed. Hence, less liquid stocks with fewer quote

revisions and larger relative tick size generate noisier returns and react more strongly to past

pricing errors. Consequently, the model-implied return autocorrelations are predominantly

28



negative, as also indicated by the slight left skew in the associated empirical distribution. Table

4 of the Supplementary Appendix provides summary statistics for the parameter estimates in

each liquidity quintile. The identical qualitative patterns are present in all quintiles and the

relevant statistics shift monotonically across the quintiles, corroborating our earlier findings.

However, Group 5 seems to constitute an outlier and may be unduly impacted by illiquidity.14

The fully identified Information Delay model from Section 2.4.5 or, equivalently, the

Amihud-Mendelson model in Section 2.4.4, enables us – at the cost of one additional restriction

– to shed light on the trade-off between γ and λ. This model retains both noise endogeneity and

error correction, but α now governs the strength of each. The model is fully consistent with our

general setup, as the permissible combinations of (γ, λ) always allow for γ = 0 or, equivalently,

γ = α. In this scenario, the fundamental price innovation is incorporated only partially, and

possibly with a delay, into the current market price. The distribution of the estimates for the

relative size of the idiosyncratic noise component, λ, in this model is displayed in Figure 6.
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Figure 6: The figure depicts the distribution of the λ estimates (under the restriction γ = 0, or γ = α) obtained
from T = 10 min intervals sampled at the frequency of ∆= 2 sec. Results are reported for the stocks in the 1st and
4th group sorted by the average number of daily mid-quote revisions for the first 61 trading days in 2014. In total,
each density is constructed based on Gaussian kernels from parameter estimates across 47,580 local intervals.

We observe an upward shift in λ for Group 4 versus Group 1. The group 2 and 3 stocks

have λ-distributions between these two, reflecting a monotonic pattern and suggesting more

active stocks display less idiosyncratic noise. For higher λ, any given price change is more

likely to reflect noise, enhancing the willingness to trade against recent price moves. This raises

14The results for the initial 10 minutes of trading, reported in Figure 1 of the Supplementary Appendix, corroborates
this conjecture. The trading around the open is very active, and the Group 5 stocks are also liquid over this interval.
Figure 1 of the Supplementary Appendix confirms that the Group 5 distribution of the parameter estimates are
closely aligned with those in the other groups. This confirms that the general estimates for Group 5 likely are
heavily impacted by microstructure frictions, and we focus our attention on the other groups in the sequel.
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α, pulling the return autocorrelation lower. Finally, the large, active stocks are likely subject to

a more intense flow of fundamental information, consistent with the patterns in Figure 5.

These results are all obtained through our model-based translation of specific price-path

realizations into an interpretable quantitative representation. Section 3 of the Supplementary

Appendix provides a detailed graphical illustration of this process, mapping realized high-

frequency price observations into parameter estimates across a number of local intraday intervals.

4.3 Full System Estimation via Identification through Heterogeneity

To corroborate our findings from Section 4.2, we provide estimates using the identification

strategy in Section 3.1. We estimate the model parameters jointly from samples covering K = 3

consecutive T = 10 min intervals. The parameters γ and σ2
e are assumed constant for the full 30

minutes, while the remaining parameters may differ across each 10 minute interval.

The key identification restriction is that γ and σ2
e change more slowly than other parameters,

because they reflect ongoing learning on the part of investors. However, the return volatility and

trading activity is known to shift rapidly after the market open and prior to the close. This fact

invalidates the rationale behind the identification restriction, as investors will be aware of these

periodic shifts in the environment. Hence, we exclude 30 minutes after the market opening

and 30 minutes before the closure, yielding 11 sequences of 3 consecutive intervals per trading

day. We defer a detailed review of the results to Section 5 of the Supplementary Appendix, but

summarize a few relevant findings. First, more than 90% of the γ̂’s fall between 0 and 1. Recall

from Section 2.1 that, for γ ∈ (0, 1), the price innovation only partially accommodates concur-

rent fundamental signals, ranging from no immediate reaction (γ = 0) to perfect instantaneous

incorporation (γ = 1). Thus, the estimates indicate that market ”underreaction” prevails in most

local intervals, implying an incomplete information environment, where signals initially are

ascribed to noise. Second, there is a distinct separation of the estimates of γ into two clusters.

More than 67% fall in the interval [−0.1, 0.2], while more than 20% of estimates take values in

[0.7, 1]. In particular, there is no evidence of statistically significant negative estimates for γ̂.

Third, λ̂ is below 0.25 in more than 90% of the local intervals, with a median of 0.069.

These estimates are generally consistent with the loci for the partially identified (γ, λ) in

Section 4.2, and confirm that the noise-to-signal ratio is moderate, but not zero, as implied,

e.g., by the Beveridge-Nelson type identification restriction invoked in Hasbrouck (1993).

Figure 7 compares the distribution of λ̂ for stocks in Group 1 and 4. It is broadly consistent

with the estimates under the restriction γ = 0 in Figure 6, although it exhibits a degree of

bi-modality, with a larger fraction located near zero. Thus, while γ = 0 constitutes a reasonable

approximation in most cases, it is not universally valid. Finally, the distribution associated with

Group 4 is again shifted upward, indicating that more actively traded stocks exhibit less noise.
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Figure 7: The figure depicts the distribution of estimates for λ under constrained estimation from the sequences of
3 consecutive local intervals (T = 10×3 min) sampled at the frequency of ∆= 2 sec. Results are reported for stocks
in the 1st and 4th group sorted by the average number of daily mid-quote revisions for the first 21 trading days in
2014 (excluding 30 minutes after the market open and before the market close). In total, each density is constructed
based on Gaussian kernels from parameter estimates across 4,620 local intervals.

4.4 Testing Popular Nested Model Specifications

Testing the restrictions α = 1 and γ = 1 allows us to gauge whether our extension of models

for high-frequency asset prices, routinely used in the literature, is warranted statistically.

We first test the null hypothesisH0 : α = 1 against the two-sided alternative,H ′1 : α < 1 and

H ′′1 : α > 1. We employ a Wald test based on QML (”sandwich”) estimates of the asymptotic

covariance. Table 1 reports the rejection frequencies based on a 5% significance level.

Rejection side Group 1 Group 2 Group 3 Group 4 Group 5 All stocks

α < 1 17.44 16.62 14.64 15.76 34.52 19.80

α > 1 0.22 0.30 0.32 0.40 0.25 0.30

Table 1: Percentage of local intervals for which the hypothesis H0: α = 1 is rejected at 5% level by the Wald test
(in favor of α 6= 1). The rejection rates are computed for model estimates for all stocks and local intervals (T = 10
min, ∆ = 2 sec) over the first 61 trading days of 2014. Results are provided both separately for stocks from different
liquidity groups and for all stocks together (right column). The number of considered local intervals equals 47,580
for each liquidity group and 237,900, in total, for all considered stocks.

Despite low power due to short time intervals, we reject the null hypothesis for about 20% of

all local intervals. Interestingly, while the rejections are equally common across the liquid stocks,

the rejection rate for the least liquid ones (Group 5) is considerably higher, reaching almost 35%.

Moreover, the rejections are almost exclusively due to point estimates of α̂ < 1, suggesting

only partial corrections of concurrent pricing errors. Given the comparably high number and
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one-sided nature of the rejections in a setting with limited power leads us to conclude that

temporal feedback effects are prevalent in the high-frequency return dynamics.

Formal tests of restrictions on γ are possible under the assumptions ensuring full identifica-

tion. Table 2 provides rejection frequencies of the Wald test for γ = 0 (upper panel) and γ = 1

(lower panel). The former restriction is compatible with the Information Delay model from

Section 2.4.5, whereas the latter is implied by the ”classical” model with i.i.d. noise, reviewed

in Section 2.4.2. We find γ = 1 to be rejected about 63% of the time, indicating a delayed price

reaction to fundamental news and the presence of endogenous pricing errors. Hence, at high

frequencies, this model appears inadequate. In contrast, the hypothesis γ = 0 is rejected for

less than 30% of the tests, which, to some degree, may be seen as supportive of the Information

Delay model. Interestingly, for liquid stocks, the hypothesis γ = 1 is rejected slightly more

often than for the illiquid ones, while the situation reverses for the hypothesis γ = 0.

Rejection side Group 1 Group 2 Group 3 Group 4 Group 5 All stocks

γ
vs

0 γ < 0 1.67 1.80 1.62 1.77 1.90 1.75

γ > 0 24.33 24.83 24.96 26.13 28.66 25.78

γ
vs

1 γ < 1 63.16 63.48 62.23 62.03 61.23 62.43

γ > 1 0.06 0.24 0.11 0.28 0.28 0.19

Table 2: The table reports the percentage of local intervals for which the hypotheses H0: γ = 0 (upper panel)
and H0: γ = 1 (lower panel) are rejected at 5% level of significance by the Wald test (in favor of γ 6= 0 and
γ 6= 1, respectively). The rejection rates are computed for estimates of the restricted model over the sequences of 3
consecutive local intervals (T = 10×3 min, ∆ = 2 sec) for all stocks over the first 21 trading days of 2014 (excluding
30 minutes after the market opening and before the market closure). Results are provided both separately for stocks
from different liquidity groups and for all stocks together (right column). The number of considered sequences of
local intervals is equal to 4,620 for each liquidity group and 23,100, in total, for all considered stocks.

The findings of incomplete instantaneous incorporation of fundamental information are

also consistent with the indirect evidence against the restriction γ = 1 obtained in Section 3.1.

Moreover, γ < 1 is a necessary, albeit not sufficient, condition for positive return autocorrelation

in this setting. Specifically, the empirical analysis provided in the Supplementary Appendix

rejects the hypothesis of zero return correlation for almost all stocks, irrespective of liquidity

and sampling frequency. In addition, between 27% (Group 5) and 57% (Group 1) of the local

intervals display positive serial correlation across a variety of lower sampling frequencies,

reinforcing the conclusion that the evidence favors the hypothesis of γ < 1 across a large

fraction of the local intervals for all of the stocks in our sample.
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4.5 Parameter Variation and Time-of-Day Effects

Figure 8 depicts the average time-of-day estimates for parameters and implied model features

across all stocks in Groups 1 and 4 within the partially identified setting, also explored in Section

4.2. Qualitatively identical patterns are present for the other liquidity quintile groups.
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Figure 8: Intraday plots of average model parameters estimated over the period January - March, 2014 (61 trading
days in total). Results are reported for the Nasdaq stocks from the 1st and 4th groups sorted by the average number
of daily mid-quote revisions (with 20 stocks in each group) for ∆= 2 sec on intraday intervals T = 10 min.

Several of the panels reveal a pronounced intraday pattern. In the top right panel, the σ̂2
∗

values form a sharp L-shape, with high volatility in the morning followed by a quick decay

and a largely flat pattern for the rest of the trading day. The picture is similar for both groups,
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although the decay is more gradual in Group 1. The differences are even more evident for the

return serial correlation. Both display sharply lower autocorrelation at the open and close, while

the level across the middle of the day resembles a mild U-shape. At the same time, the Group

1 values are consistently above those for Group 4, with the former being positive throughout

except at the open and close, while the latter are almost uniformly negative.

These features also impact the remaining parameters. For α, we observe an elevation

at the open and close, combined with a mild reverse U-shape across the main phase of the

trading session. The bottom two panels display the maximum γ and λ values consistent with

the fully identified parameters. They merely provide upper bounds and cannot be attained

simultaneously. Specifically, γmax applies for λ = 0, while λmax is achieved for γ = α/2.

Since we, unquestionable, must have λ > 0 to capture idiosyncratic noise stemming from

market frictions, the average γ must be below unity almost uniformly for Group 1 and, likewise,

most of the time in Group 4. Hence, endogenous noise is ubiquitous. These considerations

aside, the spike in the upper bound for both parameters at the boundary of the trading day are

noteworthy, pointing again to an unusual market environment at those times.

To shed additional light on the asymmetry between fundamental and idiosyncratic volatility,

we depict the intraday pattern for average realized volatility and trading volume for Group 1

and 4 in Figure 9. After the few opening intervals, Group 1 uniformly displays higher volatility.

Moreover, the qualitative pattern for realized volatility aligns well with the one for fundamental

volatility. On the contrary, trading volume spikes dramatically at the end of trading, mimicking

the late day upswing of the Fα(γ, λ) coefficient in Figure 8. To further illustrate the likely path

of idiosyncratic volatility, we portray the intraday evolution of λ in the Amihud-Mendelson

model, which retains all main structural features of our general model. Figure 10 documents a

sharp increase in the relative size of the idiosyncratic volatility at the market close.

How do we interpret this evidence? The most striking feature is the huge asymmetry between

the open and close for fundamental volatility, coupled with the near symmetric behavior of

all other series. The trading volume is highly elevated both at the open and close, but our

model associates only the opening with the assimilation of an unusual amount of fundamental

information. The results suggest this raises the speed by which pricing errors are corrected (α),

and perhaps also the instantaneous response of market prices to new information (γ) as well as

the relative amount of the idiosyncratic noise (λ). The high level of fundamental volatility at the

start of trading is consistent with active price discovery associated with information processing

of overnight news and orders. Given the (anticipated) rapid arrival rate of fundamental price

signals following the open, market makers commit less capital to intermediation, so the bid-ask

spread widens, the order book thins out, and the sensitivity to every piece of market news is

magnified. These features enhance the role of idiosyncratic noise in the price discovery process.
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Figure 9: Intraday plots of average realized variance (left panel) and trading volumes (right panel) computed over
the period January - March, 2014 (61 trading days in total). Results are reported for the Nasdaq stocks from the 1st
and 4th groups sorted by the average number of daily mid-quote revisions (with 20 stocks in each group) for ∆= 2
sec on intraday intervals T = 10 min.
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Figure 10: Intraday plots of average estimates of parameter λ (under the restriction γ = 0, or γ = α) over the
period January - March, 2014 (61 trading days in total). Results are reported for the Nasdaq stocks from the 1st and
4th groups sorted by the average number of daily mid-quote revisions (with 20 stocks in each group) for ∆= 2 sec on
intraday intervals T = 10 min.

Finally, understanding that the efficient price is shifting quickly and noise is relatively prevalent,

traders expend informational resources to adjust rapidly to incoming signals, so α rises. In all

cases, we expect the return autocorrelation to drop, as we observe more immediate incorporation

of fundamental news, a larger presence of idiosyncratic noise and less price smoothing.

The period prior to the close differs in that customer orders must be executed before trading

terminates to avoid exposure to price uncertainty overnight. Likewise, popular incentive schemes

for trade execution, such as the “volume-weighted average price” (VWAP) criterion, motivate

risk-averse intermediaries to transact towards the close, as they trade closer to the benchmark

they are measured against. In contrast, executing trades early carries exposure to subsequent

price changes impacting the VWAP. Hence, there are also non-informational rationales for an

35



afternoon elevation in the trading intensity, enhancing market depth. Thus, a rising, but largely

uninformative, order flow elevates the responsiveness of informed market participants to price

signals, generating quicker price corrections, yet also additional idiosyncratic noise.

In summary, we find evidence that liquid market conditions early and late in the trading day

foster efficient processing of fundamental news. At such times, the main component behind

temporary misalignments in prices is microstructural noise, consistent with negative return serial

correlation. In contrast, when the information and order flow are slower, the resources devoted

to price discovery shrink, i.e., α drops. This effect enhances price sluggishness, generating

conditions favoring momentum in the price formation during the middle of the trading day.

The Supplementary Appendix provides summary statistics for (unconstrained) parameter

estimates over the first and last 10-minute trading interval, 9:30 to 9:40, and 15:50 to 16:00.

During these periods, the return dynamics deviates substantially from the rest of the trading

day. Furthermore, summary statistics across all intraday intervals, excluding the first and last 20

minutes of trading, confirm that evidence obtained across the full trading day is representative

of the general market conditions and not unduly distorted by the dynamics at the open and close.

4.6 Model-Implied versus Realized Return Volatility

For robustness, we compare the relationship between our model-implied estimates of funda-

mental variance and realized volatility (RV) measures obtained at distinct frequencies. This is

helpful in gauging whether our 2-second sampling and stylized model generate biased measures.

The top panel of Figure 11 displays the mean estimate of σ2
∗ along with corresponding averages

of daily RV obtained from sampling at the 2-second, 2- and 10-minute frequencies as well

as squared open-to-close returns. Aggregating over the full sample and all stocks, we obtain

presumably accurate (average) volatility estimates from 10-minute sampling and squared open-

to-close returns, while a bias may be present in the standard RV measure based on 2-second

and 2-minute sampling. The logic is similar to that of volatility signature plots, where the mean

level of volatility may be approximated by averaging (nearly) unbiased, but noisy, estimates.

To interpret the results, recall that negative high-frequency return autocorrelation – akin to

the bid-ask bounce effect – tends to generate an upward bias in the RV estimate, while positive

return dependence – by smoothing out rapid price moves – tends to induce a negative bias in

the empirical RV measure. Hence, the fact that the average model-implied RV in the top panel

of Figure 11 is slightly above the 2-sec RV for Group 1 and below it for Group 5 reflects the

model-based bias correction induced by the predominance of positive return autocorrelations in

Group 1 and the reverse in Group 5. It is also reassuring that the model-implied daily RV is very

close to the mean estimates from the 10-min as well as the open-to-close based RV measures

for all liquidity categories. Overall, the main impression is that these measures, effectively, are
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Figure 11: The barplots show the average estimates of the return variance (represented in annualized volatility
units) computed by the model-implied and several realized variance measures. The model-implied measures are
estimates of the fundamental variance parameter σ2

∗ obtained from T = 10 min intervals sampled at frequency ∆= 2
sec. The realized variance are computed at frequencies 2 sec, 2 min and 10 min. In addition, we consider the squared
open-to-close return as a proxy for the daily return variance. All variance measures are averaged over the entire
period (the first 61 trading days in 2014) and over the stocks of a given liquidity group, where groups are sorted by
the average number of daily mid-quote revisions (20 stocks per group).

equivalent and do not indicate biases, on average, even for the 2-second RV estimates.

The two other panels of Figure 11 illustrate the model-implied bias correction more explicitly

by averaging the RV measures only for the local intervals with positive, respectively only

negative, sample return autocorrelations. For the positive return dependencies in the middle

panel, the model-implied RV largely aligns with that of the 2-min and 10-min RV measure for
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the liquid Groups 1 and 2. For the less liquid categories, the model-based estimates “adjust” the

RV measures, so that it is more in line with the volatility in Groups 1 and 2. Since there is no

fundamental reason why volatility should be particularly low among less liquid stocks in local

intervals with positive return autocorrelation, this adjustment appears appropriate. Likewise, for

the local intervals displaying negative return correlation in the bottom panel, the model-based

estimates mitigate the discrepancies in the average RV measures across the liquidity groups. In

particular, there is a large downward correction for Group 5. Since wide spreads and bid-ask

bouncing are particularly prevalent in illiquid markets, it is sensible to expect the RV measures

of volatility to be artificially inflated for the stocks with relatively few quote revisions.

To summarize, our microstructure model estimated over short intraday intervals produces

return variation estimates consistent with those obtained from standard RV measures. However,

they also deviate systematically, whenever there is a notable autocorrelation in the return series

at the highest frequencies. This corroborates the hypothesis, that MMN effects generate biases

in RV estimates of varying sign. For longer periods, like a full trading day, such effects are

mitigated by cancellations induced by the randomly shifting sign of the bias, yet it remains non-

trivial over shorter periods, and it manifests itself significantly for days, where the predominant

MMN features induce persistent spells of return serial dependence in a given direction. As such,

we bridge the MMN and RV literatures: the main microstructure theories imply a form for noise

endogeneity, that violates the standard infill asymptotic RV approach, while the RV measures

are robust to time-varying return heteroskedasticity, that is absent in microstructure models.

5 Concluding Remarks

MMN leaves a distinct imprint on high-frequency returns, manifesting itself through non-trivial

return autocorrelations for individual stocks which (i) are significant for local intervals, and (ii)

display persistence, yet also undergo rapidly alternating signs. The fact that a large proportion of

local intervals displays nontrivial positive return autocorrelation and induces a negative bias in

the associated RV estimates is a new finding, inconsistent with the common assumption of MMN

increments being uncorrelated with the efficient price process. Notably, endogeneity is implied

by many market microstructure models, e.g., Glosten and Milgrom (1985), suggesting that price

discovery and noise innovations are intrinsically related, and Kyle (1985) or Vives (1995), who

point towards longer-lasting pricing errors induced by strategic trading and learning.

Consequently, the portrayal of the price formation process in the market microstructure

literature is at odds with typical high-frequency volatility estimation procedures. Specifically, RV

measures usually rely on “semimartingale-plus-noise” models, that preclude persistent structural

interaction between efficient price innovations and noise. Instead, the key assumption is that the
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noise component becomes dominant, and thus locally identifiable by nonparametric means, as

the sampling interval shrinks to zero. This defies the idea of significant longer-run dependencies

in the error process itself and its interaction with the fundamental price innovations.

We seek to bridge this gap by extending the martingale-plus-noise model so it aligns better

with the market microstructure literature and the empirical footprint left by MMN through the

high-frequency return autocorrelogram. Our modification introduces noise endogeneity and an

error correction mechanism, capturing partial adjustment dynamics along the lines of Amihud

and Mendelson (1987) although, contrary to their model, we separate these effects so they

serve as complementary sources of local mispricing. Our parsimonious model captures salient

features of high-frequency return dynamics, as the interplay of the model’s four parameters

- the volatility of the fundamental martingale process, the noise variance, the strength of

temporal error correction, and the endogeneity between the efficient price innovations and noise

- triggers local regimes of “momentum” and “contrarian” trading. Moreover, it helps identify the

complementary roles of the temporal error correction component and the endogenous pricing

errors in determining the sign, strength, and longevity of the return autocorrelation.

We hasten to add that, unquestionable, the realized volatility approach has drastically

improved our ability to monitor and model the return variation process. The point is that daily

realized volatility measures are largely unaffected by the local biases, as long as the positive

and negative autocorrelation regimes are evenly balanced across the trading day, and thus

cancel through intertemporal averaging. Nonetheless, it does imply that local realized (spot)

volatility estimates are subject to potentially significant biases. Moreover, trading days for

which the autocorrelation pattern is highly one-sided will be associated with RV measures, that

are subject to a substantial measurement error. A few concurrent papers deal with extreme

manifestations of this phenomenon, in the sense that they identify individual local episodes of

highly significant semimartingale violations in the observed price process, see, e.g., Andersen

et al. (2020), or periods of explosive drifts, see, e.g., Christensen et al. (2020). An earlier piece

noting the need for filtering episodes featuring unusually strong positive return serial correlation

is Barndorff-Nielsen et al. (2008a), who classified certain such episodes as “gradual jumps.”

We differ from these studies by documenting that local violations of the semimartingale

hypothesis for (observed) intraday return series are common, yet fleeting. We link this finding

to the arrival of economic news in the presence of incomplete and asymmetric information,

ongoing learning, noise, and trading costs. Specifically, using mid-quote returns from Nasdaq,

we find that a flexible price discovery process in line with our information delay model is useful

in capturing the high-frequency return dynamics over local intervals. We find that the pricing

error is endogenous and, consequently, the classic martingale-plus-exogenous-noise model is

often inappropriate. Moreover, the incorporation of a sluggish price adjustment is critical for

39



modeling the dynamics of high-frequency returns. These implications questions the validity

of identification assumptions employed in studies, where the statistical properties of MMN

are derived via nonparametric asymptotic techniques, assuming the noise is orthogonal to the

efficient price. Hence, the evidence for short-run positive return serial dependence in MMN

processes, obtained in recent work,15 might alternatively be viewed through a different lens

involving time-varying levels of noise endogeneity.

From an econometric perspective, the primary contributions are as follows. First, compared

to the usual high-frequency econometric approach, our model provides a more structural treat-

ment of market microstructure noise capturing sources of endogeneity and temporal dependence.

The resulting insights can be exploited to construct conceptually novel model-based estimators

of volatility that adapt to this noise structure. Second, we complement long-lasting discussions

around the identifiability of parameters in a martingale-plus-noise setting. Within our set-up,

we show that the signal-to-noise ratio is only partially identified if the covariance between

the MMN and efficient price components is unconstrained, while the fundamental volatility is

always fully identified. We further show how full identification may be obtained by exploiting

heterogenous variation in the fundamental versus learning-based parameters. Third, our results

provide strong evidence for locally shifting return dynamics. These findings have implications

for local volatility estimation and should, in periods with unusual return dynamics, help mitigate

biases associated with the estimation of volatility over longer daily or weekly horizons. In

summary, we anticipate that the combination of market microstructure inspired modeling and

explicit recognition of the ever-evolving market dynamics will open up interesting avenues for

future work on the construction of alternative local and daily volatility estimators and a deeper

understanding of the impact of noise in financial prices.
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