Wild Singularities and Kangaroo Points for the

Resolution of Singularities in Positive Characteristic

HERWIG HAUSER

Wild singularities appear when trying to apply the characteristic zero proof for the resolution of
singularities to the case of characteristic p > 0. They are a specific type of singularities which
produce under blowup at selected points of the exceptional divisor — so called kangaroo points
— an increase of the characteristic zero resolution invariant. This increase destroys the induction
argument in positive characteristic.

In the article, we describe the structure of wild singularities and the occurrence of kangaroo
points, giving a complete characterization of both phenomena. This in turn sheds some light on
the difficulties one has to overcome in order to resolve singularities in arbitrary characteristic.
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Introduction

Let X be a singular subscheme of a smooth scheme W, and let W be equipped with a normal
crossings divisor E. In characteristic zero, the embedded resolution of the singularities of
X with respect to W and E goes in two steps. First, construct an upper semicontinuous
function inv : X — I' on X with values in a well ordered set I' for which the locus Z of
points where inv attains its maximal value is smooth and transversal to 2. Moreover, the
points of X at which X is smooth and transversal to E shall be mapped by inv to the minimal
element 0 of I'. In this way, inv defines a stratification of X in locally closed subschemes.
The open dense stratum consists of the smooth points where X is transversal to E and the
smallest strata correspond to the (locally) worst singularities. Take Z as the center of a blowup
m: W' — W, and let X’ be the strict or weak transform of X (the precise definitions for
these notions are given later on). The second step of the proof consists in showing that at each
point a’ of X’ in E/ = 7~1(E), the value inv(a’) of inv has dropped in comparison to the
image point @ = 7(a’) in Z. If this is the case, induction shows that finitely many blowups
resolve the singularities of X.

In most of the existing proofs for the embedded resolution in arbitrary dimension (at least
for hypersurfaces), the function inv is constructed as a vector of non-negative rational numbers
whose entries are orders of certain ideals at the points a of W. The first entry is usually the
order of the ideal sheaf K defining X in W, i.e., the order of the stalk of K in the local ring
Ow,q of W at a. Fix a and let ¢ = ¢(a) be this order. The second entry of inv is constructed
via the choice of a local hypersurface of maximal contact at a and taking the order of the
resulting coefficient ideal. To be more explicit, let X be a hypersurface in W with local
equation f = 0 at a, and let (z,y) = (x, Ym, - - -, y1) be a system of local regular parameters
in W at a such that the hypersurface V' of maximal contact is defined locally at a by = = 0.
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It is well known that V' contains locally at a the points where K has the same order as at a.

Pass to an étale neighborhood of a and expand the Weierstrass form of f as a series in z, say
flz,y) =2 + Yi2g aily)a’.

The coefficient ideal of f in V at a is the ideal .J in Oy generated by the weighted coefficients

af"' with k; = -2~ The order e = e(a) of .J at a is then the natural candidate for the second

c—1i"

entry of the invariant inv, say
e = min {orda(afi), 0<i<e-1}L

This gives inv,(K) = (c,e,...) = (ordy(K),ord,(J),...) for all a in X. The remaining
entries of inv are constructed in a similar fashion. It is then shown that e (and the other entries)
do not depend on the choice of V" and the subsequent hypersurfaces of maximal contact, and
that inv is upper semicontinuous when varying a. In particular, the second entry e is upper
semicontinuous along any stratum of points where the order of K is constant. Thus the first
two components of inv are intrinsically defined and upper semicontinuous when considered
with respect to the lexicographic ordering.

Along an actual resolution process, the definition of the invariant is slightly more involved,
taking into account the decomposition of coefficient ideals into an exceptional monomial
factor and a remaining, unkown factor, and also the task of how to achieve through the
invariant the required transversality of the center with E.

We only address here the first issue, leaving aside the transversality problem. It is easily
observed that the first entry c of inv does not increase under blowup of W in centers contained
in the stratum of maximal order of K. Moreover, always in characteristic zero, the transform
V' of the local hypersurface of maximal contact V" at a contains all points a’ of X’ N E’ where
¢ has remained constant, and V'’ is again a hypersurface of maximal contact for the (strict or
weak) transform K at these points. In particular, the coefficient ideal J’ of K’ at a’ is defined
in V', Tts order €', however, may have increased, since J’ need not be the weak transform
of J. It only equals the controlled transform. This is a transform in between the weak and
total transform, defined by deleting a prescribed exceptional factor from the total transform
(whereas for the weak transform the maximal possible exceptional factor is deleted).

So in order to ensure the commutativity of taking the weak transform with the descent to
coefficient ideals and to ensure the non-increase of of the invariant it is necessary to factor
from J and J’ the entire exceptional monomial. Then take for the second entry of the invariant
the order o = o(a) of the remaining factor. We denote thisas J = M - I and J' = M’ - I',
and redefine the second entry of inv as 0 = ord,(I), o’ = ord,/(I’). The factor I passes to
the weak transform I’ and therefore o does not increase (since the center is contained in the
locus of points where (¢, 0) attains its maximal value, which is assumed throughout). Thus, in
total, we have at any point a’ of X’ N E’ that the first two entries (¢’, 0’) of inv, (K”) satisfy

(c,0") < (c,0)

with respect to the lexicographic ordering. This is in essence the starting point of the induction
argument for the resolution of singularities in characteristic zero.

Unfortunately, the argument does not carry over to positive characteristic. Experimentation
shows that the location of the points a’ of X’ N E’ with ¢/ = ¢ is much more erratic. In
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contrast to characteristic zero, these points cannot be “caught” by the successive transforms
of smooth hypersurfaces. This complicates the control of the singularities under blowup.

The present paper is concerned with the problem of extending the preceding characteristic
zero definitions and constructions of coefficient ideals and their orders to the case of singu-
larities in positive characteristic, and to investigate the behaviour of the shade under blowup.
The first entry of the invariant, the order ¢ of K at points, carries over without obstruction,
and ¢’ < c holds again for any blowup with center contained in the maximal locus S of
ord, (K'). But hypersurfaces of maximal contact need no longer exist. Narasimhan showed
that the stratum .S need not be contained locally in any smooth hypersurface [Nal, Na2], and
Abhyankar’s concept of Tschirnhaus transformation breaks down [Ab]. Therefore it is not
clear how to choose the coefficient ideal of K and the second entry of the invariant.

The first observation is that, for any smooth local hypersurface V' in W at a, the coefficient
ideal J = Jy(K) of K in V at a is defined, and thus one can consider e = ord,(J), the
order of J in V at a (we discard the factorization J = M - I for the moment). Clearly, e
will now depend not only on a but also on V. It is therefore not a significant measure for the
complexity of the singularity as long as we cannot make it intrinsic, i.e., independent of any
choices.

It turns out that, back in characteristic zero, there is an alternative definition of e, and
this is the one we will use in positive characteristic: the order e of J at a with respect to a
hypersurface of maximal contact V' equals the maximum of the orders of the coefficient ideals
of K, the maximum being taken over all smooth local hypersurface U in W through a, say

ord, (Jy (K)) = max {ord,(Jy(K)), U C W smooth}.

This equality was noticed by Abhyankar (see e.g. [Ab3]) and is proven in [EH]. It suggests
to use the maximum as an alternative definition of the second component of the resolution
invariant in positive characteristic. Hypersurfaces V' which realize the maximum will be called
hypersurfaces of weak mazximal contact [EH, FK].! After factoring from .J the exceptional
monomial (see below for the precise formula), one obtains as the order of the remaining
factor a number which again is intrinsic. It will be called in this article the shade of K at
a, and is denoted by o = shade, (K). We thus get again a pair (c, 0) of positive integers as
the candidates for the first two entries of our resolution invariant. The definition is valid in
any characteristic, and coincides in characteristic zero, as mentioned above, with the classical
definition.

As a matter of fact, the pair (¢, 0) behaves in positive characteristic by far not as nice
as in characteristic zero. For instance, in the purely inseparable case, say f = z¢ + g(y),
Moh observed that the shade may increase under blowup along permissible centers at points
where c has remained constant [Mol, Mo2]. Even though the increase can be bounded (see
Thm. 1), it prohibits to apply directly induction. Cossart has studied in his thesis extensively
this type of increase (“le cas joyeux”), describing many special circumstances and further

1 Actually, as Friihbis-Kriiger observed, one would have to maximize the orders of all iterated
coefficient ideals [FK] defined in flags of smooth subschemes. We do not pursue this aspect
here.



intricacies [Co1]. In his recent papers with Piltant [CP1, CP2], he succeeds in a tour de force
to control the pathologies for three-folds in order to establish (non-embedded) resolution in
dimension three and any characteristic. Abhyankar had achieved this earlier for algebraically
closed fields of characteristic p > 5, with a later refinement by Cossart and a substantial
simplification by Cutkosky [Ab4], [Co4], [Cu2].

Another drawback of the shade is its lack of semicontinuity. This was observed by several
people, among them Hironaka, Cossart, Piltant, Villamayor and Wtodarczyk [Hil, Col, Co2,
Vil, Wi2]. So it is not at all clear whether the shade is an appropriate measure for the
complexity of a singularity along the points where the first entry, the order of the ideal, is
constant.

Despite of this uncertainty about the relevance of the shade, it is instrumental to understand
its behaviour under permissible blowup. Aside of the small hope that the shade can possibly
be adjusted so that it does serve as the second component of the resolution invariant (as it
happens e.g. for surfaces, see [HW]), the respective study may also lead to the discovery of
new invariants and to a clarification of the obstructions for resolution in positive characteristic.

Understanding and explaining the occasional increase of the shade under permissible
blowups is the objective of the present paper. Actually, the increase happens very rarely,
and the singularity, say the ideal K, has to assume a very special shape in order to make it
happen. We propose to call such singularities wild, since their transformation under blowup
is irregular and seems hard to be controlled. In addition, the points of the exceptional divisor
where the increase occurs — the kangaroo points— are confined to specific regions. This may
raise a certain expectation to be able to take care of these rare exceptions, but this could not
be confirmed yet.

Let us emphasize that the present paper focusses on one particular pathology of singularities
in positive characteristic. We do not claim that this comprises all possible obstructions to
resolution, nor that our study automatically paves the way towards a proof of resolution in
arbitrary characteristic and dimension. But the reasons which cause the increase of the shade
are intricate, subtle and interesting.

We would like to complement this introduction by mentioning some related work having
appeared recently. Hironaka defines and studies the shade in the purely inseparable situation
(and then calls it the restdual order). He describes examples where the upper semicontinuity
fails (taking into account non closed points) and proves results on the locus of closed points
where the residual order attains its maximal value [Hil, Hi3]. In his program towards reso-
lution in positive characteristic he uses part of the assertions of the main result of this article
[Hil, Prop. 13.1]. In a different vein, Friihbis-Kriiger investigates kangaroo points in higher
codimension [FK]. She describes several types of phenomena related to the increase of the
shade when passing to iterated coefficient ideals. Hauser and Wagner use the characterization
of kangaroo points to give a new proof for the embedded resolution of surfaces by adjusting
suitably the pair (¢, o) [HW]. This adjustement exploits the local description of wild singular-
ities and results in the definition of a bonus which has to be occasionally subtracted from the
shade, thus making the invariant drop after each blowup. Similar invariants and adjustments
appear in Abhyankar’s proof for the embedded resolution of surfaces [Abl, Cul], and in
Panazzolo’s treatment of the resolution of vector fields in dimension three [Pa].
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Other authors like Cossart, Benito-Bravo-Encinas-Villamayor or Kawanoue-Matsuki apply
differential operators to the coefficient ideals (and variants of it) in order to extract relevant
numerical information on the complexity of the singularity [Co3, BeV, BrV, EV, Vil, Vi2, Vi3,
Ka, KM]. This approach is motivated by the work of Giraud [Gil, Gi2], but has neither been
proven yet to be a decisive technique for positive characteristic. The problem with differential
operators and more specifically with partial derivatives is that they do not only eliminate p-th
powers of polynomials (where p is the characteristic), but also all monomials which have just
in the variable of derivation a p-th power (and arbitrary powers in the remaining variables).
Thus the information gets kind of distorted, and it seems difficult to recover and to control
the original ideal from its derivatives.

Recent advances in resolution of positive characteristic and resolution of vector fields
(which reveals in part similar phenomena) have been achieved, among others, by Cossart-
Piltant, Cossart-Jannsen-Saito, Moody, McQuillan-Panazzolo, Cano, Teissier, Urabe, Zeillin-
ger [CP1, CP2, CJS, Md1, Md2, MP, Ca, Te, Ur, Zel]. We refer to [Ha5] for a description of
the contents of some of these papers. There have been several results by Abramowich-Karu-
Matsuki-Wlodarczyk and Cutkosky on the monomialization, respectively toroidalization of
morphisms, with partially similar behaviours of the invariants as those for varieties in positive
characteristic, see e.g. [AK, Cu3].

Recent papers on resolution in characteristic zero, as well as expository articles or lec-
ture notes, include work of Blanco, Bierstone-Milman-Temkin, Cutkosky, Faber-Hauser,
Gonzalez-Pérez-Teissier, Jannsen, Kollar, Nobile, Temkin, Wtodarczyk, Yasuda, Zeillinger
[BL, BMT, Cu4, FH, GT, Ja, Ko, No, Tm1, Tm2, Tm3, W11, Ya, Ze2].

Let us now describe in some more detail the contents of the paper. For the simplicity of
the exposition we restrict to hypersurface singularities f = 0 in W. First, we introduce the
shade of a singularity at a given point a as a subordinate invariant after the order of f at a.
For this we have to choose a smooth local hypersurface V' in W of weak maximal contact
with f at a. The shade of f is then defined with respect to an already given, not necessarily
reduced normal crossings divisor D in W. All subsequent results are local at a. We consider
local blowups of W at a with centers included in V' and, more specifically, contained in the
locus of points where the coefficient ideal J of f in V' has maximal order. For such blowups,
we study the behaviour of the shade at the points a’ of the exceptional divisor where the order
c of f has remained constant.

We prove in Theorem 1 that the shade can only increase at ' if the order c of f at a is a pure
p-th power p®. Moreover, the order of .J in V' at a must be an integer multiple wc of ¢, and
the residues modulo c of the exceptional multiplicities ¢,,—1, . . . , ¢1 of the monomial defining
D NV and factored from J must satisfy a certain arithmetic inequality. This inequality
can be expressed through the comparison of lattice points in simplices of R”~! and their g¢-
translates, where ¢ = (gn,—1, - - -, ¢1). The inequality implies that a’ lies outside all transforms
of exceptional components through a whose multiplicity was not a multiple of c.

If all these conditions hold, one may look at the weighted initial form F' of f, with respect
to weights (w, 1,...,1) on the variables (x, Y, ...,y1) for which V is defined in W by
z = 0. It turns out that this form must be a purely inseparable polynomial, say of shape
F = z°+ y? - G(y), where G is a homogeneous polynomial of degree wc — |g| which is
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unique up to c-th power factors and coordinate changes. In addition, the possible location
of points a’ where the shade may increase is determined by F'. Finally, we give an explicit
formula for G; for two variables, it was first given by the author, in arbitrary dimension, it is
due to Hironaka [Ha4, Hil]. Hironaka uses some of the assertions of Thm. 1 in his recent
program for the resolution in positive characteristic [Hil]. Moh showed that the shade can
increase at most by ¢/p, and we give an alternative bound [Mo1, Mo2].

Theorem 1 is proven by translating the occurrence of wild singularities and kangaroo points
into a statement about weighted homogeneous polynomials, collected in Theorem 2. This
theorem represents the key technical ingredient for understanding the increase of the shade.
In the last section, we briefly mention how the main theorem can be used for an alternative
proof of the embedded resolution of surfaces in A3.

Acknowledgements. We are very much indebted to G. Miiller, J. Schicho, A. Quirés, S.
Encinas, O. Villamayor, D. Cutkosky, H. Hironaka, J.-J. Risler, V. Cossart, D. Panazzolo, F.
Cano, A. Bravo, R. Blanco and A. Friihbis-Kriiger for many discussions and very valuable
suggestions on the subject. J. Wlodarczyk indicated an inaccuracy in an earlier draft of the
paper. It is conceivable that some aspects of the properties listed in Theorem 1 have already
been observed or conjectured earlier. We apologize for any omission in this regard. It should
be understood that the present article owes very much to the papers and ideas of Zariski,
Abhyankar, Hironaka, Giraud, Moh, Cossart, and of many other mathematicians working in
the field.

Theorem 1

Definitions. We introduce the basic concepts needed to understand the statement of the
theorem. The detailed definitions are given in the section Preliminaries. The ground field
k is of characteristic p > 0 and assumed to be algebraically closed; W denotes a smooth
ambient scheme of finite type over k. If not said differently, points of W are always closed
points. When necessary, we allow to pass from Zariski-local to étale neighborhoods. For an
ideal sheaf K in W, we denote by ord, (K) the order of K at a, i.e, the maximal integer k
such that the stalk of K at a is contained in m’;, for m, the maximal ideal of the local ring
Ow,q of W at a. This definition is also valid for non-closed points a. The top locus top(K)
of K is the reduced closed subscheme of W of points where ord, (K) attains its maximal
value. Let V' be a local smooth hypersurface in W' at a, with a a closed point. The coefficient
ideal of K in V at a is the ideal

Jv(K) =320 lagi, feK)=

in V, where ¢ = ord,(K) is the order of K at a and any f € K is written f(x,y) =
Yoo afi(y)z' with ay; € Oyq, for local coordinates (z, Yy, - - -, y1) at a defining V by
z=0 (the dependence on the coordinates is not indicated notationally). The rational exponent
in the definition has to be understood as the equivalence class of pairs of ideals and numbers,
where (J, k) = (J!,1k) for any | € N (or replace in the definition —<- by -2-). We say that
V has weak mazximal contact with K at a if the order of Jy (K) at a is maximal over all
choices of V.



An effective normal crossings divisor D in W is compatible with K at o if there is a
local smooth hypersurface V' transversal to D and of weak maximal contact with K at a such
that Jy (K) = Iy (D NV) - I for some ideal I in V, with Iy,(D N V) the ideal defining
DNVinV. The shade of K at a with respect to a compatible divisor D is the number
o = shade, (K) = ord,(I).

Let be given a blowup 7 : W/ — W with smooth center Z transversal to D and contained
in top(K) and top([), locally at a. Such blowups and centers will be called permissible for
K and D at a. Let K’ be the weak transform of X in W’, and define the transform D’ of D as
D' =77 Y(D)+(0—c)-Y' of D, withY’ = 7=1(Z) the exceptional divisor of 7. Leta’ € Y’
be a point above a with ord, (K') = ord, (X), and consider smooth local hypersurfaces V"’
in W' ata'. As Z is assumed to be transversal to D and contained in top(I) locally at a, one
may choose V' transversal to D’ and with weak maximal contact with K’ at o’ so that the
coefficient ideal Jy (K') of K’ in V' at o’ factors into Jy+ (K') = I/ (D' NV’) - I’ for some
ideal I in V' (see the section Preliminaries below for details). Hence D’ is compatible with
K’ at @’ and the shade of K’ at a’ with respect to D’ is defined.

We say that the ideal K defines a wild singularity at a with respect to D and a permissible
blowup 7 : W/ — W, if there exists a point a’ in W’ above a such that the weak transform
K’ of K satisfies

ordy (K') = ord, (K),
shade,: (K') > shade, (K).

The points a and o’ are then called antelope, respectively kangaroo point, of the blowup.?
Obviously, we may (and will) replace in the preceding definitions the ambient scheme W by
a suitable neighborhood of a so that V' is closed in W and Z is contained in V' on whole W.

For a list r of integers and a non zero integer ¢, let ¢.(r) denote the number of entries r;
of r which are not divisible by c,

¢e(r) = #{i, ri Z 0 mod c}.
Write [7¢| for the sum of the residues 0 < 7§ < c of the entries of 7 modulo c.

The following result characterizes wild singularities. For the ease of the exposition, we
restrict to principal ideals. A more explicit statement will be given in Theorem 2.

Theorem 1. Let K be a principal ideal in W of order ¢ at a and let D be an effective
normal crossings divisor in W compatible with K. Let V' be a hypersurface of weak
mazimal contact with K at a which is transversal to D. Assume that the coefficient
ideal of K in'V is non-zero and factorizes into Jy (K) = Iy (DNV)-I for some ideal
I iV ata. Let m: W' — W be the blowup of W along a smooth center Z which
is transversal to D and contained in the loci of points where K and I have maximal
order. Then, for K to have a wild singularity at a with respect to D, with kangaroo
point @’ inY' = 7=Y(Z), the following conditions must be satisfied.

2 In the purely inseparable case, Hironaka investigates an invariant similar to the shade of an ideal,
called residual order, and also the respective analogue of kangaroo points, called by him metastatic
points [Hil, Hi2].



(1) The order of K at a is a pure p-th power ¢ = p°, for some integer b > 1.

(2) The order of Jy(K) at a is a c-multiple e = we, for some integer w > 1.

(3) The multiplicities r; of the components of D NV at a whose transforms do not
contain a’ satisfy

(A) ] < (@e(r) —1) - c.

(4) The multiplicities s; of the components of D NV at a whose transforms contain
a’ are multiples of c.

(5) The weighted initial form F of a generator of K at a with respect to the weights
(w,1,...,1) is uniquely determined, up to the choice of local coordinates in W at a
and up to c-th power factors, by the orders ¢ and e, the divisor D and the location of
a onY’.

(5") In suitable local coordinates (z,y) = (T, Ym,...,y1) in W at a, F is given by
a purely inseparable polynomial F(x,y) = z¢ + y? - G(y), with G a homogeneous
polynomial of degree o = e — |q| and y? - G(y) not a c-th power. Here, V and DNV
are defined at a by x = 0, respectively y? = 0, with ¢ = (rm,...,7j+1,55,...,51) and
j the number of components s;. The polynomial y9 - G(y) is uniquely determined,
up to coordinate changes in y and c-th power factors, respectively summands, by the
multiplicities r; and s; and the degree o. The coordinates (Ym,...,y1) in V can be
chosen so that, setting z = (Ym—1,-..,y1) and 1 = (1,...,1,0,...,0) € Nm=17J x 0,
we have

m—1

(©) Gz 41 =TT Gt ) NGl

i=j+1
for some non-zero polynomial N of degree < o/c.
(6) For any pure p-th power ¢, any list ¢ = (Tm,...,7j41,85,...,51) as in (3) and
(4) and any integer o > 0 so that |g| + o is a multiple of ¢, the ideal K generated by
F(z,y) =2+ y?-G(y) as in (5°) has a wild singularity at a = 0 with respect to the
divisor D defined by y?4 = 0.
(7) The increase of the shade of K at a' is bounded by c/p = p*~'. It is also bounded
by p?, where d > 0 is mazimal so that the weighted initial form of K is a p®-th power,
and by |r| — |u|, where u; <r; are so that || > (Ppe(u) — 1) - c.

Comments on Theorem 1. Homogeneous polynomials P(y) = y9 - G(y) of degree e = wc
as in (5°) will be called oblique with respect to ¢ = p® and q. For each choice of ¢ with
decomposition ¢ = (y,,...,7j+1,S;,...,51), they are characterized and uniquely deter-
mined (up to c-th power factors and summands®) by the requirement ordS P+ (y) > e — |q|,
where P (y) = P(ym, z + 1 - ym) with 2 = (Ym—1,...,91)and 1 = (1,...,1,0,...,0) €
N™~177 % 0/, and where ordS PT denotes the maximum under the addition of c-th powers of
the orders of P+ with respect to z. This will be proven in the section on oblique polynomials.

3 We are indebted to J. Wtodarczyk for pointing out an inaccuracy at this point of an earlier draft of
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The exponents 7; from (3) and s; from (4) will be called the relevant, respectively silent
multiplicities of the components of D NV at a with respect to a’.

Conditions (1) and (2) of the theorem appear, either implicitly or in the form of examples,
in the work of Abhyankar, Cossart and Moh [Abl, Col, Mol, Mo2]. The first bound in (7)
is due to Moh, and appears for surfaces already in [Ab1] (see [Cul] for a concise account of
Abhyankar’s reasoning). The remaining assertions of the theorem, especially (3), (4), (5) and
the first part of (5”), are from [Ha4]. The description of the polynomial G from (G) of (5°) is
given in [Ha4] only for m = 2, together with other characterizations. In [Hil, Hi2], Hironaka
investigates the kangaroo phenomenon in the purely inseparable case F'(z,y) = 2°+y?-G(y)
and gives the formula for G for arbitrary m; he calls the degree of G the residual order of F'
and kangaroo points metastatic. The formula for G was also determined by Schicho. Notice
that the multiplicity r,, does not occur in the product, and that the formula determines G.
It can easily be shown that changing the polynomial N in (5°) only affects y? - G(y) by
introducing or deleting c-th powers. Assertion (6) follows directly from (5”) by computation.

The proof of the arithmetic inequality in (3) and the uniqueness of the weighted initial
form in (5) is not so difficult, though it is computationally somewhat involved. It relies
on an accurate analysis of the behaviour of the weighted initial form F' under weighted
homogeneous coordinate changes. The inequality (3) signifies in the case where ¢ = r (i.e.,
no multiplicities s; occur), that the simplex A = {« € N, |a| = o}, with o = e — ||,
contains more c-multiples than its translate » + A (cf. Lemma 5),

[ANc-N™| > |(r+A)Nc-N7|.

The inequality (3) appears, but with strict inequality and a different significance, in the work
of Abhyankar on good points [Ab2] (the difference being that the inequality has in our context
a negative effect). The inequality will be made explicit in the example below.

By condition (3) the kangaroo point ¢’ does not lie on at least two transforms of components
of DNV ata. This jumping-off of a’, together with the jump of the shade, justifies the naming
kangaroo. The components of D NV at a of (4) can be eliminated by auxiliary blowups
with centers of codimension 2, so that a’ then only lies on the new exceptional component
Y’. Similarly, all components r; can be made smaller than c. It is reasonable to expect and
confirmed by experimentation that the location of the kangaroo point a’ on the exceptional
divisor is completely determined by the polynomial y? - G(y).

The uniqueness in (5) is an astonishing circumstance. It signifies that this obstruction to
prove resolution of singularities in positive characteristic with the methods of the characteristic
zero proof only occurs in very specific situations. In particular, it clearly shows why the purely
inseparable case is the the most significant difficulty; it has always attracted in the literature
special attention. The theorem allows us to reduce the resolution problem to this case. Even
though the description of (5”) gives a precise description of the weighted initial form of the
defining polynomial, it is not yet clear how to overcome the obstruction of wild singularities
systematically (cf. the paragraphs after the example for a couple of possible approaches).

The appearence of wild singularities is due to the failure of maximal contact in positive
characteristic. This failure has been studied extensively, especially by Abhyankar, Hironaka,
Giraud, Moh, Cossart and Villamayor. The theorem explains for instance, why for local
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uniformization of surfaces the case of non discrete rational valuations is the hardest one [Abl1,
Cul]. Indeed, to have an infinite number of increases of the shade along a valuation, there
must occur infinitely many antelope points in the intersection of two exceptional components,
and the successive kangaroo point has to lie outside the transforms of these components.

Example 1. For m = 2 and j = 0, say ¢ = (r1,r2) without silent multiplicities s;, the
inequality of (3) signifies that r; and 7, are not multiples of ¢ = p? (so that, in particular, the
point q lies at the intersection of the two components of DN V), and that their residues modulo
c satisfy 77 + 73 < c. By definition of 7, the kangaroo point a’ lies on the exceptional divisor
Y of the blowup outside its intersection points with the transforms of the two components of
DNV ata.

The simplest example of an oblique polynomial is P(y, z) = yz- (y?+22) in characteristic
2. Here, the exponents r; = ro = 1 satisfy inequality (3) of the theorem, G(y, z) = 3> + 22
has degree 0 = 2 and PT(y,2) = P(y,z +y) = y(z +y) - 22 = y2® + y*2? has p-order
ord? P* with respect to z equal to 3 > o (since 3?22 is a square).

Example 2. (Communicated by O. Villamayor, see also [Hil]) The polynomial f = 2P 43Pz
defines a subscheme X of three-dimensional affine space A®. It is isomorphic to a Cartesian
product along the z-axis, since replacing z by z + ¢ with ¢ # 0 and « by « + P/t reproduces
f. The coefficient ideal of f at a = 0 in the hypersurface V' defined by x = 0 equals y”z, and
its top locus is reduced to the origin. The origin is thus the only permissible center, despite
of the Cartesian product structure of X. This pathology shows that the coefficient ideal only
carries reliable information at the point in question, but not in a whole neighborhood.

Impact on resolution. It could be hoped that the explicit description of wild singularities
from above opens ways to prove resolution in positive characteristic and arbitrary dimension.
Some caution is here in order: Statements (5) and (5°) only tell us something about the
weighted initial form of the defining polynomial (say, in the hypersurface case). Higher order
terms are completely overlooked and discarded. But they will come into play later in the
resolution process, and their control seems to be out of reach.

The theorem rather suggests that the pair formed by the order and shade of an ideal are just
not the right local invariants to capture the complexity of a singularity in positive characteristic.
New singularity measures have to be searched. One idea is to consider all derivatives of order
< e of the polynomial y? - G(y) and to extract invariants from the ideal they generate.

Nevertheless, the theorem suggests some new perspectives how to approach resolution. The
arithmetic condition (3) of Theorem 1 cannot occur in embedding dimension 2. Therefore,
there are no wild singularities in the resolution of plane curve singularities, and hence no
characteristic p obstruction [HR]. For surfaces, wild singularities may appear. The increase
of the shade can be controlled since it is compensated by stronger drops before or after the
blowup. The invariant formed by the pair (ord, shade) decreases in the long run. Zeillinger
observed in [Zel] that one can define at kangaroo points a correction term, the bonus,
which, when subtracted from the shade, saves the induction: The modified shade interpolates
monotonously the original shade and drops after each blowup (supposing, of course, that the
order has remained constant). The definition of the bonus is quite systematic. It exploits the
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precise knowledge of wild singularities [HW]. Similar observations had already been made
earlier by Abhyankar [Abl, Cul], and seem to play a role in Hironaka’s recent approach to
positive characteristic [Hil, Hi2].

At the end of this article we give a short argument for the embedded resolution of surfaces
of order ¢ = p?, based on Theorem 1. In fact, the characterization of wild singularities implies
that between two subsequent kangaroo points of a sequence of local blowups with constant
order there is always a point which lies in the intersection of two exceptional components.
Then one shows by a simple computation that the occurrence of this point forces the shade to
decrease to its half along the sequence, a drop which easily makes up the maximal increase
p®~! of the shade at the kangaroo point.

The description of wild singularities suggests to either try to choose a resolution pro-
cess which never runs into a wild singularity, or to develop more refined measures for the
complexity of a singularity. Some options are:

(A) Ensure by suitable earlier blowups that the arithmetic inequality (3) never happens.

(B) Define a semi-local resolution invariant taking into account the location of the kangaroo
points and coordinates which are global along the exceptional components.

(C) Correct the occasional increase of the shade by subtracting in specific situations a
bonus from it [Abl, Cul, HW]. The critical case for this are three-folds.

(D) The observations from the introduction suggest to consider as candidates for possible
resolution invariants also the order of polynomials along curves. Indeed, for P(y, z) as at the
beginning, being divisible by (y + z)° can be rephrased by saying that P has order at least
equal to o along the curve y + z = 0. It is known that in characteristic zero, this order along
curves is used implicitly to bound the order at points of the strict transform at those points a’
of the exceptional divisor where a translation occurs. The phenomenon of wild singularities
in characteristic p turns out to be related to the failure of the upper semicontinuity of the order
when poynomials are considered up to the addition of p®-th powers, cf. [Hil].

(E) In the resolution process of a hypersurface which is given, say, by a polynomial F'
of fixed degree, difficulties appear if there is an infinite sequence of wild singularities and
kangaroo points along a valuation. By the theorem, each such wild singularity imposes
severe restrictions on the coefficients of the original polynomial F' (they must satisfy a linear
system of equations). It is then tempting to try to show that these restrictions are sufficiently
independent so that infinitely many of them cannot be satisfied simultaneously by any non-zero
polynomial F'.

(F) Try to resolve wild singularities directly by some ad-hoc method.

Comments on the proof. Assertion (1) of Theorem 1 will be seen by using Abhyankar’s
concept of Tschirnhaus transformation for constructing osculating hypersurfaces as in [EH].
The proof of (2) is a variant of the proof of (3) in a simple special situation and will be omitted.

The key challenge is the uniqueness assertion from (5). It implies most of the other
statements of the theorem. In the case where we assume from the beginning that the weighted
initial form F' of K is a purely inseparable polynomial, the argument is relatively easy and
given separately in the section on oblique polynomials. In the general case, the proof of (5)
is more involved. It requires a detailed control of the behaviour of weighted homogeneous
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polynomials under coordinate changes. Even though the reasoning is quite straightforward,
there appear some subtle technical complications. We recall here that (5) implies in particular
via (5”) that we can restrict the study and resolution of wild singularities to purely inseparable
polynomials.

A first simplification is achieved by choosing local coordinates at a so that the blowup ,
the hypersurfaces of weak maximal contact and the various transforms of the ideals assume
a convenient form. The outcome is made explicit in Theorem 2, which, in some sense,
represents the algebraic essence of Theorem 1. The increase of the shade is transcribed into
an inequality relating the orders of a weighted homogeneous polynomial before and after
a weighted homogeneous coordinate change. Assertion (3) of Theorem 2 gives uniqueness
of the polynomial without assuming weak maximal contact. The proof uses elementary
techniques of convex geometry and linear algebra.

Once the uniqueness assertion of Theorem 2 is ensured, it suffices to search for each choice
of parameter values (dimension, degree, relevant and silent multiplicities, ...) a weighted
homogeneous polynomial which satisfies inequality (3) of Theorem 2. If such a polynomial
exists, it is the unique candidate for providing a wild singularity with these parameter values
as described in Theorem 1. Now, if the inequality of (3) of Theorem 1 is not fulfilled, we show
that one can take as candidate a polynomial which is ¢-th power F'(z,y) = (x + A(y))¢ with
A homogeneous of degree w. It will satisfy inequality (3) of Theorem 2 but not inequality (3)
of Theorem 1. As the obvious coordinate change in x transforms F' into ¢, the hypersurface
V defined by « = 0 did not have weak maximal contact. This settles (3) of Theorem 1.

A similar reasoning shows that, whenever inequality (3) is satisfied, the weighted initial
form must be a purely inseparable polynomial as in (5’). Indeed, it suffices to show that the
polynomial from (5°) defines a wild singularity as claimed in assertion (6). This is proven in
the section on oblique polynomials.

Preliminaries

Setting and concepts. All schemes are of finite type over an algebraically closed field £ of
characteristic p > 0. Throughout, W denotes a regular ambient scheme of dimension m + 1
and a a closed point of W. We write Oy, for the local ring of W at a, with maximal ideal
my,, and completion @W,a- Regular parameter systems of Oy, are called local coordinates
of W at a; they will be denoted by (x,y) = (Z, Ym, - - -, Y1)

A closed subscheme D of a smooth scheme is a normal crossings scheme if it can be defined
at any of its points by a monomial ideal in local coordinates. It is an effective normal crossings
divisor if this ideal is locally principal. The exponents of the defining local monomial are
called the multiplicities of the components of the divisor. Two closed subschemes D and V'
of W meet transversally if the subscheme of W defined by the product of their ideals is a
normal crossings scheme. If V' is smooth, then D NV is again a normal crossings subscheme
of V. We denote by M = Iy,(D NV') the monomial ideal in V" at ¢ defining the intersection.

A local smooth hypersurface of W at a is a regular, locally closed subscheme V' of W
of codimension 1 passing through a. It is defined by a regular element of Oy ,. Usually,
coordinates (x,y) are selected so that V' is defined in a neighborhood of a by x = 0. We
identify elements of Oy, with their representatives on small open neighborhoods of a in W,
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and then talk of ideals instead of stalks of ideal sheaves.

Let K be an ideal in W at a point a (not necessarily closed). We denote by ord,(K) =
max{k, K C m’éV’a} its order at a. The zero ideal has order co. The order of an ideal is
upper semicontinuous in a. We denote by top(K) and call the top locus of K the reduced
closed subscheme of W of points of maximal order. Similarly, one may also define the local
top locus top, (K) of K at a, restricting K to a sufficiently small neighborhood of a. If P is a
polynomial in variables ¥y, . .., y1, we denote by ord, (P) the order of P in the localization
of the polynomial ring at the ideal generated by y,,, ..., y1.

A smooth local hypersurface V' at a has weak maximal contact with K at a if it maximizes
the order of the coefficient ideal of K in V' at a. Such hypersurfaces always exist: Either the
coefficient ideal is 0 for some (possibly formal) V', and then its order is oo, or the orders of the
coefficient ideals are bounded for varying V, in which case the maximum is attained by some
V. In characteristic zero, it is possible to choose V' in addition so that, locally at a, it contains
top(K'), and so that V' has weak maximal contact to K at all points a; of top(K) sufficiently
close to a. This is no longer true in positive characteristic [Nal, Na2, Mu, Grl, Gr2, Col,
Co2]. Given a point at a € top(K), there need not exist a smooth local hypersurface V' in W
at a having weak maximal contact with K at a such that for a; a point of top(K) sufficiently
close to a, V' has weak maximal contact with K at a;. This may not be possible even if
V contains top(K) locally at a. Therefore, we may not be able to choose the same local
hypersurface V' for the points of small open subsets of top(K).

Let V have weak maximal contact with K at ¢ and assume given a normal crossings
divisor D in W transversal to V' and compatible with K and V. The shade of K in
V is the order of I at a, where Jy (K) = M - I is the factorization from above, say
shade, K = ord,(Jy(K)) — ord, (M) with M = I, (D NnV). It is independent of the
choice of V' as long as D is transversal to V' and compatible with K and V. The order of
DNV inV ataequals, by transversality, the order of D in W at a.

In characteristic zero, the standard resolution invariant is a vector of integers, consisting
of the orders of coefficient ideals in decreasing dimensions. This vector is considered with
respect to the lexicographic ordering. Its first two components are associated to an ideal
K, alocal hypersurface V' of maximal contact with K at a in the sense of Hironaka [Hi5],
and a normal crossings divisor D compatible with K and V'; they are defined as the pair
(ordy (K),ord, (Jy (K)) — ord, (Iv (D N V))). It is known that hypersurfaces which have
maximal contact with K also have weak maximal contact [EH], so that the second component
of the invariant does not depend on the choice of V' and coincides with the shade of K as
defined above.

For a smooth closed subscheme Z of W, let m : W/ — W denote the blowup of W in Z
with exceptional component Y/ = 7~1(Z). Pull-backs of ideals and subschemes are denoted
by superscripts *, strict transforms by *, weak transforms by . Objects in W’ assuming the
same role as their counterparts in W will be primed ’, and the respective type of transform
will be specified. We suppose that Z is contained in top(K) and, locally at a, also in V,
and that it is transversal to a given normal crossings divisor D. Such blowups will be called
permissible. The transforms D*® and D* are again normal crossings divisors in W’ and V'*
is smooth. We denote by K’ the weak transform K = K* - Iy, (Y')=°42(K) of K in W',
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Let a’ € Y be a point above a. Then ord, (K’) < ord,(K) because of Z C top(K). The
point a’ is called equiconstant for K (or infinitely near to a) if equality holds.

The occurrence of kangaroo points depends on the configuration of the exceptional com-
ponents at a and a’. The multiplicities of the components of D NV at a whose transforms in
V'# do not contain @’ are the relevant multiplicities of D NV at a with respect to a’; they are
grouped in an unordered list , which, clearly, depends on the position of a’. The remaining
multiplicities of D N V are the silent ones and grouped in the list s.

If V' has weak maximal contact with K at a, the transform V'* contains the equiconstant
points a’ in Y’ above a. Moreover, V may be chosen at a so that V'* has again weak maximal
contact with K’ at o’. In characteristic zero, this property can be achieved along any per-
missible sequence of local blowups as long as the order of K remains constant: There exists
a choice of V' whose iterated transforms maintain weak maximal contact with K along any
sequence of equiconstant points. One may take V" osculating for K at a in the sense of [EH].
In particular, the transforms of V' contain all equiconstant points above a. Such hypersurfaces
are said to have maximal contact with K at a. Their existence implies that the shade of K
does not increase at equiconstant points,

(ordy (K'), shadey (K')) <jex (ord,(K),shade,(K)).

This inequality is the starting point of the proof of resolution in characteristic zero by descent
in dimension. The inequality is known to fail in characteristic p > 0: There exist sequences
of permissible blowups for which the transforms of any local smooth hypersurface V' at a
lose eventually some equiconstant points of K above a. In particular, the transforms of the
hypersurface cease to have weak maximal contact with the transforms of K [Nal, Na2, Mu,
Mol, Mo2, Grl, Gr2, Col, Co2, Ha3]. It is then necessary to replace occasionally the local
hypersurface by a new one so as to ensure again weak maximal contact. It turns out that
this change may produce an increase of the shade. This is the phenomenon we propose to
understand and describe in the present article.

Let be given K and D in W at a as above. Choose V' in W of weak maximal contact with
K at a, and assume that D is compatible with K and V. Write Jy (K) = Iyy(DNV) - I for
some ideal I in V. Consider the blowup 7 : W/ — W with center Z transversal to D and
contained in top(K) and top (), locally at a. Set Y’ = 7=(Z). As we are only working
locally at points ¢ € Z and @’ € Y’ above a, we may shrink W so that V' is closed in W
and Z C top(I) holds on whole W. Hence we may assume Z C V. Set ¢ = ord,(K)
and ¢ = ordy (K') so that ¢ < c¢. Assume that o’ € V* is an equiconstant point for
K, ¢ = c Seto = shade,(K) = ord,(I) and define the transform D’ of D in W’ as
D' = D*+ (o—c¢)-Y’'. As Z is transversal to D and o > c, this is an effective normal
crossings divisor and V* is transversal to D’.

Locally at o, the coefficient ideal Jys(K') of K’ at a’ with respect to V* equals the
controlled transform (Jy (K))' = (Jy (K))* - Iy« (Y’ N V*)~¢ of Jy (K) with respect to the
control c. As Z C top(I) and hence I C Iy (Z)°, we get a factorization Jy = (K') = M°-I"
with M® = Iy (D'NV*)and I' the weak transform of I in V* ata’. Hence D’ is compatible
with K’ and V'*.

The strict transform V® of V need not have weak maximal contact with K’ at a’. In this
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case we may choose a new hypersurface V' in W’ at o’ which does have weak maximal
contact with K’ at a’. It can be obtained from V* by a local formal automorphism of W’
at a’. It is easy to see that V'’ can again be chosen transversal to D’. For such a V”’, the
coefficient ideal Jy/(K’) factorizes again; but, in contrast to before, Jy/(K') = M’ - I°
with M’ = Iy/(D' N V') and I° some ideal in V' at o’ which is in general not (isomorphic
to) the weak transform I of I in V* at a/. In this situation, the shade of K’ at a’ with
respect to D’ is o' = ord, (I°). It does not depend on the choice of V and V’. Observe
that shade, (K’) > ord, (I") if V* does not have weak maximal contact with K’. And, as
indicated in the introduction, it may even happen that shade, (K’) > shade, (K).

Coordinate choices. Assume given coordinates (x, Y, - - -, ¥1) at a so that V' is defined by
2 = 0. For K of order c at a, let e be the order of the coefficient ideal Jy (K) of K in V.
Assume that Jy (K) is non-zero and set w = e/c. The weighted initial forms of K with
respect to the coordinates and the weight vector (w, 1, ..., 1) are the weighted homogeneous
polynomials of order ¢ and weighted degree e which are expansions of elements of K with
respect to (x,y) [AHV].

Let 7 : W' — W be a blowup with smooth center Z transversal to a normal crossings
divisor D and contained in a closed smooth hypersurface V' transversal to D. Assume that
V has weak maximal contact with an ideal K in W at a. Let o/ be an equiconstant point of
Y’ = 771(Z) above a for K. We set m = dim(W) — 1 and d = dim(2).

Lemma 1. There exist local coordinates (xz,y) = (,Ym,...,y1) of W at a such that
(1) a has components a = (0,...,0) with respect to (x,y).

(2) V is defined in W by x = 0.

(3) Z is defined in W by x = ypp, = ... = ya41 = 0.

(4) DNV is defined in V locally at a by a monomial ydr - - - yi*, for some g € N™.
(5) The point a' lies in the ypm,-chart of W’. With respect to the local coordinates at

the origin of the y.,-chart of W' given by the chart expression of w,

T 2 (T, Yms -5 Y1) = (TYms Yms YUm—1Yms - - - Yd+1Yms Yds - - - Y1),

it has components

! / li
a’'=(0,0,a7,_1,...,a5,1,0,...,0)

!/
m—1s- -+

for some d < j <m —1 and with a ,a;H # 0. Here, j — d is the number of
components of D whose transforms pass through a’.

(6) Local coordinates in W' at o’ are given by the composition of m,, with the trans-
lation py : (x,y) — (z,y+1t) in W witht = (0,tm—1,...,tj4+1,0,...,0) and t; = a.
This composition equals the composition of the linear map A : (z,y) — (x,y + tym)
in W at a with m,,. The map \¢ preserves Z and V.

(7) If condition (4) is not imposed, the coordinates x,Ym,...,y1 at a’ can be chosen
with (1) to (3) and so that a' is the origin of the ypm,-chart with local coordinates in
W' at a’ given by the monomial blowup 7, .

(8) The transform V* of V in W' is given in the induced coordinates at a’ by x = 0.
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(9) The decomposition ¢ = r + s of the multiplicities of D NV at a in relevant
and silent multiplicities with respect to o’ is given by r = (Gm, - - .,qj+1,0,...,0) and
s=(0,...,0,q5,...,q1).

Notice that if D is an effective normal crossings divisor so that Iy, (D N V') is monomial in
the coordinates x, ¥, . - ., ¥1, and if not all ¢; are zero (i.e., if j < m — 2), the coordinate
change \; destroys the monomiality of Iy, (D N V) as in statement (4).

Proof. All statements are standard. It is clear that (z, ¥y, . - ., y1) can be chosen satisfying
(1) to (3), and (4) can be achieved because D and Z are transversal. As for (5), we know by (3)
that the exceptional component Y is covered by the charts corresponding to x, Yy, - - -, Yd+1-
As V has weak maximal contact with K we know that = appears in the initial form of K.
As ordy (K') = ord, (K) it follows that o’ cannot lie in the z-chart. Hence a’ lies in the
other charts and satisfies there a/, = 0. A permutation of y,,, ..., yq+1 allows to assume that
a’ lies in the y,,-chart. This permutation does not alter (2) and (3). As Y’ is given in the
Ym~-chart by y,, = 0and asa’ € Y’ we geta,, = 0. From ag = ... = a1 = 0 follows that
al; = ... = a} = 0. After a permutation of y,,,_1,...,yq+1 We may assume that a; # 0
form—1>4i>j+1landa, =0forj > i >1andi = m with m — 1 — j the number
of non-zero components of a’. This establishes (5). Assertions (7) to (9) follow from (5) by
easy computations.

Lemma 2. Let K be an ideal in W at a of order ¢, and let V' be a smooth local
hypersurface in W at a. Let be given local coordinates x, Y, ...,y1 at a so that V is
defined by x = 0. Assume that at least one of the homogeneous initial forms of degree
c of elements of K involves the coordinate x.

(1) There exists a local formal automorphism ¢ in W at a of the form (x,y) =
(x 4+ b(y),y) so that V has weak maximal contact with ¥*(K).

(2) Let D be an effective normal crossings divisor in W transversal to V' at a and
compatible with K and V.. Then D is also compatible with ¥*(K) and V.

Condition (1) is equivalent to saying that ¢(V') has weak maximal contact with K. The
version given in the lemma is more convenient when working in local coordinates. If the
homogeneous initial forms of degree c of elements of K involve in all coordinate systems at
least two coordinates, the orders of all coefficient ideals of K are equal to ¢, and any local
hypersurface has weak maximal contact with K. In this case, there are no wild singularities.

Proof. (1) follows from the definition of coefficient ideals and the Gauss-Bruhat decompo-
sition of local formal automorphisms with respect to the lexicographic order [Hal]. (2) is
immediate from (1).

Wild singularities

Coefficient ideals. Wild singularities are characterized by the increase of the shade under
blowup. In this section, we make this condition more explicit. Apply Lemma 2 to the weak
transform K’ of the ideal K and the transform V* of a hypersurface V' of weak maximal
contact with K under the blowup W’ — W at an equiconstant point ' € W’. As V has
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weak maximal contact with K at a, we may arrange that it satisfies the assumption in Lemma
2 with respect to the initial forms of K. As the order of K’ at o’ has remained constant,
these properties will then also hold for V¢ with respect to K’. Moreover, it follows, as in
[Hi4] and [Ha2, proof of Thm. 8.1], that the local automorphism v in W’ at a’ is induced by
a local automorphism ¢ of W at a of the same type. Combining this with the assertions of
Lemma 1, the construction of a hypersurface V' of weak maximal contact with K’ at a’ can
be transcribed into the search of a transformation of K by a local automorphism of W at a,
together with the translation \; as in Lemma 1. Applying these transformations to K, the
passage from K = A} (o*(K)) to ¢*(K') is given by a monomial substitution of the chosen
coordinates. This allows to read off the shade of K’ from the Newton polyhedron of K. We
specify the details.

Fix coordinates (z,¥ym,...,%1) at a so that V is defined by x = 0. Working in the
polynomial ring over k in these variables, the coefficient ideal J,(F’) of a polynomial F
with respect to x is understood as the coefficient ideal Jy (F)with respect to the hyperplane
V. Similarly, the order of elements of Oy, will now be expressed as the order of their
polynomial expansion with respect to the variables.

Let e be the order of Jy (K) at a. Choose an element in K of order ¢ at a with coefficient
ideal in V of order e. Set w = e/c and equip the variables with the weights (w, 1,...,1). Let
F denote the expansion of the weighted initial form of the chosen element at a as a polynomial
in (z,y). We may asssume that z¢ appears with non-zero coefficient in F', w.l.0.g. equal to
1. Let z + H(y) be the expansion of the weighted initial form of ¢ so that F'(z + H(y),y)
is the expansion of an element in the weighted initial form of ¢*(K). Set

Flz,y) = Fz+ H(y),y + tym)

with t = (0,¢m—1,...,¢+1,0,...,0) as in Lemma 1. Observe that V' has weak maximal
contact with K at a if and only if F(x + H(y),y) is not a c-th power, for all choices of H.
The chart expression of the blowup (W', a’) — (W, a) is the composition of A; : (z,y) —
(z,y + tym) with the monomial blowup 7 of Z in the y,,,-chart. Substituting accordingly the
variables (z,y) in F' produces a polynomial F” which has order ¢ in the variables (z,y) and
whose coefficient ideal with respect to x has order at least ¢’ in the variables 3. Notice that
F" is the expansion of an element of the weighted initial form of 1* (K”).

As V' maximizes the order ¢’ of Jy (K') in W' atd’, the coefficient ideal of F” with respect
to 2 has maximal order. This coefficient ideal is the controlled transform (J,(F))' under the
monomial blowup in the y,,-chart with respect to the control ¢ = ord,(K). Therefore ¢’ is
bounded by the order of (J,(F))' with respect to y,

e < ord, ((J.(F)").

As the blowup 7 is monomial in the y,,-chart we can interpret the preceding inequality in
terms of F'. In fact, paper & pencil show that

ord, ((Jo(F))") < ord. (J,(F)) + 0 — ¢,

with 2 = (ym—1,...,y1) and o = shade, (K). By definition, we have o’ = shade, (K') =
e/ —ordy (D) =€’ — (0o — ¢) — |s| with s the list of silent exponents of D at a with respect
to o’. This yields the inequality
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o < ordy((Jo(F))') = orda (D') < ord,(J,(F)) — |s].

If 0 < o then ord, (J(F)) — ordq (D) < ord, (J,(F)) — |s| follows. Using that ord, D =
|r| + |s| we have proven

Lemma 3. Assume that a is a wild singularity of K with kangaroo point a’. Let F' and
D be as above, let r be the list of relevant multiplicities of D at a with respect to a’, and
set F(z,y) = F(z + H(y),y + tym) in chosen coordinates (x,y) = (&, Ym, ..., y1) =
(T, Ym,2). Then

(0) ord (Jo(F)) > ordy (J,(F)) — |r|.

This inequality will be used to prove Theorem 1. It carries on the exponents of the polynomials
Fand F, say the associated Newton polyhedra. Using these, the inequality can be made quite
explicit. This will be done in the next section. In the case of purely inseparable polynomials
F =2+ y?- G(y), the inequality simply reads

ordZ(G(y + tym)) > ordy (G(y)) + s,

where, as before, ordf/ and ord; denote the order of polynomials up to the addition of c-th
powers.

Zwickels. This section carries on the location of the exponents of the involved polynomials.
Let be given ¢ < e in N and write cw = e with and w € Q. Set m = n — 1. Let
L. = {(k,a) € N**™ [ < ¢} and consider the map

L.—Q": (k,a) = % -«

projecting elements (k, o) of N'*™ to elements of Q™. The center of the projection is the
point (c,0,...,0). Let ¢ € N with |[¢| = q1 + ... + ¢ < e be fixed, and assume given a
decomposition ¢ = r + s with r = (gm,...,¢;+1,0,...,0) and s = (0,...,0,¢;,...,q1)
for some j between m — 1 and d > 0. Define the upper zwickel Z(q) in N+ as the set of
points (k,a) with 0 < k < ¢, wk + |a| = e and projection —* - & >, ¢, denoting by >,
the componentwise order. Thus Z(q) is given by

Z(q): wk+ o] =€ and a >¢ [<E (g, .., q1)].

Define the lower zwickel Y (7, s) in N1 as the set of points (k, 3) in N1*™ with0 < k < ¢,
wk + |B| = e and projection _< - 3 >, (|r],0,...,0,s). Thus Y'(r, s) is given by

Y(r,s): wk+ |06 =e and (8 > [(C_k-\r|,0,...,0,c;k~qj7...,%k-ql)].

C c

For j = m — 1 and hence © = (¢, 0,...,0) and s = (0,¢m—1,...,¢1) we have Z(q) =
Y (r,s). In general, the two zwickels are different. We claim that for any r and s and
0 <k < ctheslice

Y(r,s)(k) ={(k,8) € Y(r,s)} = Y(r,s) N ({k} x N")
has at least as many elements as the slice
Z(q)(k) = {(k, o) € Z(q)} = Z(q) N ({k} x N™).
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This holds for k& = 0, by definition of Z(q) and Y (r,s). For arbitrary k, the inequality
[k 7] < |[<% - r]| implies that the condition

wk + |8 = e and B >cp (I[<G5 - r1],0,...,0,[55 - g5], .. [55 - au])

is equally or more restrictive than the condition

wk+ |6 =€ and >, ([%wrﬂ,o,...,o,[ej gl (Czk “q1])

defining Y (r, s) (k). For each k, the set of pairs k, /3 satisfying the first condition has as many

elements as Z(q)(k) because |r| + ¢; + ... 4+ q1 = |q|. The claim follows.

Lemma 4. For given variables (z,y) = (Z,Ym,...,y1), let F(x,y) be a weighted
homogeneous polynomial of weighted degree e with respect to (w,1,...,1), w € N.
Denote by J,(F) the coefficient ideal of F with respect to x. Let F(z,y) = F(x +
H(y),y + tym) and ¢ = r + s be as in Lemma 3, with H a homogeneous polynomial
of degree w and t = (0,tmm—1,...,t1).

(1) A monomial y? can be factored from J,(F) if and only if F' has support in Z(q).
(2) If F and F satisfy the inequality (#) from Lemma 3, the support ofﬁ — z€ lies
outside Y (r, s).

Proof. The assertions follow immediately from the definitions.

It will be shown in Theorem 2 that in the situation of (2) of the lemma the inequality
[7¢| > (¢c(r) — 1) - c opposite to the inequality from assertion (3) of Theorem 1 implies that
F was already a c-th power, say F' = (x + A(y))¢ for some homogeneous polynomial A
of degree w. If F' was the weighted initial form of an element of the ideal K, this signifies
that the chosen hypersurface * = 0 did not have weak maximal contact with K, contrary
to the assumption in Theorem 1. So the presence of a wild singularity forces the inequality
[7¢| < (¢e(r) — 1) - c. In this case the inequality (#) from Lemma 3 may really occur, as we
will see in the section on oblique polynomials.

The arithmetic inequality from (3) of Theorem 1 can be interpreted as an inequality between
the number of lattice points in zwickels. Let a c-ray be the segment in N'+™ between the point
(¢,0,...,0) € NI+ and a lattice point in {0} x ¢ - N". Then inequality (3) is equivalent to
saying that the upper zwickel Z(q) contains less c-rays than the lower zwickel Y (r, s). More
precisely, with Z(¢)(0) = Z(¢) N (0 x N™) and Y (r, 5)(0) = Y (r,s) N (0 x N™), we have

Lemma 5. Let c € Nand ¢ = r+s € N with r = (¢m,..-,¢j+1,0,...,0) and

s=1(0,...,0,¢j,...,q1) for some j between 0 and m — 1. Then the inequality [7¢| <
(¢c(r) — 1) - ¢ holds if and only if

|Z(q)(0) Nc- N*Y™| <Y (r,s)(0)Ne- NH™|,

Proof. To see this, let (0, ca) be a point of 0 x ¢ - N™. It belongs to Z(q)(0) N ¢ - N*™ if
and only if |ca| = e and

ca Zep ((Qmw"afh)—l = (Mm-|v"'v I—q{I)'

As the components of « are integers, the inequality is equivalent to
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« Zcp (fq2’1»~~~» (%‘I)

Conversely, (0,¢) in 0 x N™ belongs to Y (r, s)(0) N ¢ - N if |¢3| = e and

Cﬂ ZCP [(‘TLO’~-~7anj7"'7(h)] = (HrHvoa“-aOa [qj]""”'qﬂ)’

which can be written as

/BECP ("L7C“|‘|70"”70’ [q?]“’v{%l])

The inequality [7¢| > (¢.(r) — 1) - ¢ is equivalent to the equality |[§]| = [@], and hence
alsoto |[Z]| = [‘LCI] This implies that the second condition on (0, ¢3) can be rewritten as

B Zep (ITE11,0,...,0, [T, TLT).
The equality

T2 =TT+ ..+ T2

(&

then implies that [7¢| > (¢.(r) — 1) - ¢ if and only if the upper zwickel Z(q) contains as many
c-rays as the lower zwickel Y (r, s). This proves the assertion.

Theorem 2

We continue in making the statement of Theorem 1 more explicit. Recall from Lemma 3 the
inequality ord. (J,(F)) > ordy (J5(F')) — |r| for the orders of coefficient ideals in the pres-
ence of a wild singularity. Here, F'(x, y) was a weighted homogeneous polynomial of order ¢
at 0 and weighted degree e = ¢/w with respect to weights (w, 1,..., 1), and not equal to z°.
We had set F(z,y) = F(z + H(y),y + tym) = F(z + > hyy? Y + tym), where the sum
ranged over v € N™ with |y| = w and where t = (0, ¢,,—1, . .., 41,0, . ..,0) with non-zero
t; and j the number of silent exponents s;. Any decompositionq = (7., ..., 741, Sj,---,51)
defined induced zwickels Z(q) and Y (r, s) in N**™_ The number of components of r not
divisible by ¢ was denoted by ¢.(r).

Theorem 2. Let F(z,y) and F(z,y) = F(z 4 H(y),y + tym) be polynomials as above,
with support of F in Z(q).

(1) Assume that F is not a c-th power. If w = e/c € N or |[F¢| > (¢.(r) —1) -c or
H =0 then

ord, (Jo(F)) < ordy (Jo(F)) — |r].

(2) Assume that F' is not a c-th power. If w =e¢/c € N and [7¢| < (¢.(r) — 1) - ¢ then

ord; (Jo(F)) < ordy (Jo(F)) = |ul,

for any w € N™ with u; <r; and [a®| > (¢.(u) — 1) - c.
(3) For each choice of ¢, e, r, s, H and t there is at most one F with

ord, (Jz(F)) > ordy (Jo(F)) —|r|.

In this case, either F is a c-th power, or the assumptions of (2) hold and F is purely
inseparable of the form x¢+y?-G(y) with c = p® and G a polynomial of degree e —|q|.
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This result will imply via Lemma 3 assertions (2) to (7) of Theorem 1, see the respective section
below (with the exception of Moh’s bound from (7)). The list s of silent exponents can be made
empty by auxiliary blowups in suitable centers (defined locally by z = y; = 0 for 1 < i < j),
so that ¢ = r becomes the relevant case (some r; may be equal to 0). The polynomial G
in (3) will be described in the section on oblique polynomials. With P(y) = y? - G(y) and
P*(y) = P(y + tym) the inequality of (3) reads ord P* > ord; P — |r|.

Matrices

Multinomial matrices. For the proof of Theorem 2 we will have to compute the coefficients
of F in terms of the coefficients of F. The dependence will obviously be linear. We are
thus lead to consider the respective transformation matrices. These are matrices with certain
multinomial entries. We need a preparatory lemma.

Lemma6. Let v €N, p € N and U = {6 € pu+ N |§| <v}. Setu=|U| = (Hv;‘“‘).
Let € N' and let t = (t;,...,t1) be a vector of variables. Then

det((("37) - 00 5e0) =1
with p=u -0 € N' independent of t.

Ezample. Letl =1,t =ty = land p € N. Then U = {§ € N, p < § < v} and the matrix
has the form

0GR GR)
T OUED e OO
U e OO

with determinant 1.

Proof. Write A? for the (u x u)-square matrix with entries A%; = (1) - 7+9=°_ Observe
that for # = 0 € N! we have det A° = 1, since the matrix is upper triangular with 1’s on the
diagonal. From (j'l.'l) = (]1) + (111) follows for any ¢ € N with || = 1 that

Albe=te AP+ AP, ifd €e+ N,
AlEe =5 A, otherwise.

Therefore the matrix A°*¢ is obtained from A by multiplying the columns A9_7 s by t¢, for
all 6 € €+ N, and by then adding the column A9_7 s_. toit. The other columns Ae_’ s are only
multiplied with ¢*. This implies that

det(A%*e) = v . det(AY),
and induction gives det(A%) = t%% . det(A°) = t*Y. The lemma is proven.
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Transformation matrices. Let F(z,y) and F(z,y) = F(z + H(y),y -+ tym) be weighted
homogeneous polynomials of order ¢ and weighted degree e with respect to a weight vector
(w,1,...,1)on (z,y) = (&, Ym, - .., y1), withw = e/c. The sum H(y) = 27 hy? ranges
overy € N™ with |y| = w, the coefficients 1., and the components ¢; of t = (0, ¢,—1, ..., 1)
belong to the ground field. Write

F(z,y) = Y araz®y® and F(z,y) = 3 bis(t)z'y”

with wk + || = wl + |8] = e. Fix a decomposition ¢ = r + s € N™ with r =
(Gm»---+¢j41,0,...,0) and s = (0,...,0,¢;,...,¢1) for some index j between m — 1
and 0. Write elements 3 € N™ as (3,,,3”) where 3~ = (Bm_1,...,31) € N1 Let
Y*(r, s) be the subset of Y (r, s) of elements (k, 3) € N'*™ given by

67| < e —wk =[5 - |r[],

c

ﬁ_ ch ’—%(OaaoaQ_W)ql)-'

By definition, for each k, the slice Y*(r,s)(k) = Y*(r,s) N ({k} x N™) has the same
cardinality as the slice Z(q)(k) of the upper zwickel Z(q). For o and § in Z™ set (§) =
IL (f;’) where (?) is zero if o; < §; or 0; < 0. For I' a subset of N, define for k € N and
A= (Ay)yer € NT the alternative binomial coefficient

[(7;\)} = H'yeF (k_)\ljp) with |/\"Y = 256F75<lez'7 Ae.

Let I' C N™ be the set of v € N™ with |y| = w and write b = (hy)yer. Set A-T' =
Zwer Ay -y eNm™andfixt = (0,tmm—1,...,tj41,0,...,0). In this situation we have

Lemma 7. Let F(xz,y) and F(z,y) = F(z + H(y),y + tym) be weighted homogeneous
polynomials as above, and assume that x¢ has coefficient 1 in both. Fixq=r+s € N
with zwickels Z(q) and Y*(r,s) C Y(r,s).
(1) The transformation matric A = (Aga,) from the coefficients ago of F to the
coefficients bjg ofﬁ 1s given by

Arags = 2 (DI, b te0ee,

AENT | X|=k—1

where Sagy = (am, 3~ — (A-T)7) € N™ and b* = L, 1)
(2) The quadratic submatriz A9 = (Aka,18) of A with (ka,lB) ranging in Z(q) x
Y*(r,s) has determinant t° where p = p(r,s) is a vector in N™ independent of
h = (hy)yer which satisfies p, =0 and pj =---=p1 =0.
(3) Assume that F' has support in Z(q). Iftm—_1,...,tj41 are non-zero, the coefficients
big of F in the lower zwickel Y (r,s) determine all coefficients of F. In particular,

there is, for each choice of H and t, at most one non-zero polynomial F(x,y) with
support in Z(q) such that F(x,y) — ¢ has support outside Y (r, s).

Proof. Multinomial expansion of f(x,y) = F(z + Zv hyy?,y + tym,) gives for each
ka € Nttm
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(= + nyel“ Py )R (y + tym)™ =

= Yerick (D2 (T er hat") ! Y serm s o ()Pt 00 =

= 2 (D' e yier Ier (5P (g 5 5yt —wi ™" =

=222 ('f) IL, (k*l;JAl”) (2) - BA om0 gl Ty Ly yla=dl

= 3 S0 s (NNI(G) - pA - o0 gl TH0 el
As dapr = ((0apr)ms0,4y) = (am, 87 — (A-T')7) we can rewrite for given k, v and [ a
sum Y eys -y AT yl,?_(sl over A € N and § € N™ with coefficients eys as

D NENT N mh—l 226< par EAS S Y L

- ZIM:k—l Zéécw exs (y*)(XF)’M* _yﬁ—5\+(,\.r+5)m _
=2 penm 2on—h-t Eapn " (V)7 yr =
=2 senm (O nmht EAGusn) Y

Here the coefficients e)g
a ¢ 5aﬁ/\ + N™, say if (

of the last two sums are set equal to zero if dopx & N™ or
) = 0. Thus

aBX

S
F(2,9) = Yo k- (@ + X ep hay")* - (4 + tym)* =
=3 ke 218 O Akt aka(’;’)[(’f;l)](éa%) SR peSapa L gl g8 =
= Zlﬁﬁlﬁ"rl P

This gives assertion (1). Observe here that we have used that a.o = 1 and by = 1.

For (2), note that Ay, 3 = 0if k < [. Hence the matrix A is block triangular with blocks
A(k) = (Aga,k3)ap on the diagonal k = [. By the choice of Y*(r, s), the induced blocks
AB(E) of AV are square matrices. Therefore A is a square matrix. Assertion (1) yields

Ao ks = a0 (500,) - B 1070000 = (52 ) 4070000 = (53;0) AT 0o,

with @ = (am, @) and dag0 = ((0080)m, 5;ﬁ()) = (Qm, B7). Recall that ko and I3 vary in
Z(q) and Y*(r,s) C Y(r, s), respectively, so that

wk+ ol =€ and a > [<E - (gm, -, q1)],

wl+|/8| =e and 5ZC}D [CT_Z(|T|a07a07(]]77QI)-‘

Hence, as k£ = [, we have

la”| =e—wk —aym and a” >, fczk (Gm-15---q1)15

16,50l = 87| = e—wk— By and 650 >cp (%-(07...,07%,...,%)1.

The determinant of A7 (k) is given by Lemma 6, taking there b = (¢ — k) - w — [[<£ - 7]|,
= [% -(0,...,0,q5,...,q1)] and 0 = [% “(Gm-1,---,¢j+1,0,...,0)]. Substituting
the variables ¢,,,—1, ..., t1 by constants with ¢,,,_1, ..., %;+1 7 0 the determinant is non-zero.
We conclude that all A”(k) and hence A" are invertible. This proves (2).
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The uniqueness assertion (3) follows from (2) since the transformation matrix between the
koin Z(g) and the I8 in Y (r, s) has, as t,;,—1, .. ., tj41 are non-zero, maximal rank equal to
the cardinality of Z(g). Note that F' is non-zero since ¢ has coefficient 1. This establishes
Lemma 7.

Proof of Theorem 2

Proof. Assertion (2) holds by replacing in (1) the entries r; by u;. We will first show (1)
using (3), and then (3).

Ifw = e/c ¢ N, then H is zero, and the proof is similar to the proof in case w € N by setting
all h, = 0, but without using the arithmetic condition |7¢| > (¢ (r) — 1) - c. So assume that
w € N and that the inequality holds. We shall construct a weighted homogeneous polynomial
F' with support in Z(g) which is a c-th power and such that the associated polynomial F—z¢
has support outside Y (r, s). This will only be possible if Z(g) contains sufficiently many
c-rays as described in Lemma 5. From the uniqueness of weighted homogeneous polynomials
with ord, (J, (F)) > ord, (J5(F')) —|r| by assertion (3) and the description of the inequality
in terms of Y (r, s) from Lemma 4 we will then conclude that any F which is not a c-th power
must satisfy the opposite inequality ord. (J,.(F)) < ord,, (J,.(F)) — |r| as claimed in (1).

Let! =m — 1. The set T of 7’s in N satisfying

Y| =w and v ¢ ([IZ[1,0,...,0, [L],.... [4])

forms an equilateral [-dimensional simplex in ' = {y € N, |y| = w} C N™. Consider its
projection 7~ in N! obtained by omitting the first component 7,,,. It consists of elements v~
in N subject to

T~ y7 [ <w—[lZ[] and v~ 2 (0,...,0, %], [£]).

Thus 7~ forms an equilateral {-dimensional simplex in N’ with side length w — [|Z£]] — |[£]]
and [-dimensional volume 7 - (w — [|Z]] — [[£]])". As v~ € N! determines v € I' we may

r
c

write h for h. Consider the system of equations

67N 16— —n— _ -
== Y () g, yeT
0= ZepY ™
with unknowns gs— = g5 and indices 6~ ranging in the equilateral simplex S~ in N,

ST|0T Sw— [T ] and 67 26 (2], [C])-

Thus S~ has side length w — |[2]] and hence I-dimensional volume 7 - (w — |[4][)". The
assumption |[7°| > (¢.(r) — 1) - c is equivalent to

TSI < T,

which in turn is equivalent to

ITeIl < TIEN+ 1121
The set 7~ equals the set U of Lemma 6, taking o = (0,...,0,[%],...,[£]) and v =

w — [|Z|]. The lemma implies together with ;, ..., ¢; 11 # O that the system
e $ () g e
572c.p'77
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admits solutions gs- with 6= € S~. Set F(x,y) = (z + Y gsy°)¢ with § = (3,,,07)
satisfying ~ € S~. This polynomial is a weighted homogeneous c-th power of weighted
degree e and with support in Z(q), by definition of S~. Moreover, as ¢, = 0,

F(z,y +tym) = (v + 395 - (y + tym)’)* =
=@+ g5y (Y~ +t7ym)’ )=
= @+ 5 e 9Um  nerace ()W) e ) =
=(z+ Zyer Zafesf,&zcw— 9s 'y;ﬂniwil : (ji) (ym)7
= (z+ Z’yEF Y7 - 2576577672@77 gs - (j:) ()Y e =
=@ =2 ery” by + Z'yEF\T yre())e
with some unspecified sum (.. .). Observe that if h, = 0 for all v € T, then all g5 = 0. The
equalities imply that
F(az,y) = F(x+ Y cp by, y + tym) =
=F(z+ 3 cr by, y +tym) + Rz, y) =
=12+ R(z,y),

where R is a polynomial with support outside Y (r, s), by definition of T". Thus F — 2¢ has
support outside Y (r, s). This establishes assertion (1) of Theorem 2 using the uniqueness
assertion from (3).

For assertion (3) we need to consider the matrix relating the coefficients of F' and F. The
statement is now an immediate consequence of Lemma 7, using the characterization of the
inequality (#) from Lemma 3 as given in Lemma 4. This concludes the proof of Theorem 2.

Proof of Theorem 1

Proof. Assertion (1) can be seen by using Abhyankar’s concept of Tschirnhausen transfor-
mation for constructing osculating hypersurfaces as in [EH]. Assume that ¢ = ¢’ - p® for some
¢’ > 1 prime to p. Choose an element f of K of order ¢ whose coefficient ideal in V' has
order e. There exist local coordinates (x,y) = (x, Ym, .- .,y1) so that, after passing to the
completion of the local ring of W' at a and applying the Weierstrass Preparation Theorem, f is
a polynomial in  whose coefficients are series in y. As ¢’ is not divisible by p, we may change
the coordinates so that the coefficient of (¢ ~1)P” becomes zero. Then V defined by x = O has
weak maximal contact with K at a, and its transform V" has again weak maximal contact with
the weak transform K’ of K at all equiconstant points a’. As Jy+(K') = Iy,(D'NV’')- I
with I’ the weak transform of I and as Z is contained in the locus of points where I has
maximal order, we get shade, (K') = ord, (I') < ord,(I) = shade,(K). Therefore a was
not a wild singularity. This proves (1).

The divisibility of the order e by c in assertion (2), the arithmetic inequality of (3) and the
last bound in (7) are direct consequences of Theorem 2. Observe here that weak maximal
contact implies that F' is not a c-th power. Assertion (4) on the silent multiplicities is implied
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by inequality (1) of Theorem 2 and the description of D’ NV’ in local coordinates as in
Lemma 1.

The uniqueness (5) of the weighted initial form follows from the uniqueness assertion (3)
in Theorem 2, which is based on the invertibility of the transformation matrix between the
coefficients of F in Z(q) and of F' in Y (r, s) given in Lemma 7. The pure inseparability
is then a consequence of the description of the weighted initial form in (5°). Assertion (6)
follows from the formula (5°) by computation.

The second bound in (7) follows from Moh’s bound in case ¢ = p, using uniqueness and
raising the weighted homogeneous polynomial of the wild singularity for ¢ = p to the d-th
power. We are left with the proof of the description of oblique polynomials from assertion
(5’) of Theorem 1.

Oblique polynomials. Recall that a homogeneous polynomial P(y) = y? - G(y) of degree
e = we = |g| + o is called oblique with respect to ¢ and ¢ if ord; Pt > o for P*(y) =
P(Ym,2z+1-ym), where z = (y_1,...,y1)and 1 = (1,...,1,0,...,0) € Nm=1=J x 07,
Here, ordS P* denotes the order of PT with respect to z up to the addition of c-th powers,
and the exponent ¢ = (7'4,...,7j4+1,5;,...,51) has been decomposed into relevant and
silent multiplicities.* Instead of P*(y) = P(ym,2 + 1 - ymm) we could have taken also
Pt (y) = P(y +tym) fort = (0,tmm—1,...,tj+1,0,...,0) with non-zero constants ¢;. By a
suitable homothety in the variables, all ¢; can be made equal to 1, so we restrict to this case.

We assume for convenience that no silent multiplicities s; occur, so that r = ¢q. From
Theorem 1 we know that c is a pure p-th power, say ¢ = p® with b > 1, and that the degree
e of P(y) = y" - G(y) is a multiple wc of ¢. Let o = e — |r| be the degree of G and set
I = m — 1. Observe that ord, Pt > o implies, by the uniqueness (5) of Theorem 1 and the
proof given above of the second bound in (7), that actually ordS P+ > o + p®~1.

Dehomogenizing P with respect to y,,, by setting y,,, = 1 preserves c-th powers. Moreover,
as P is homogeneous of degree divisible by ¢, the dehomogenization creates no new c-th
powers in P(1,z). Therefore, the characterization of obliqueness can be transcribed one to
one to the dehomogenized situation.

Set Q(z) = P(1,2) = 2" -G(1,z) withr~ = (ry,...,r1) and G(1, ) a polynomial of
degree < o. The dehomogenization of P equals QT (2) = Q(z+1) = (2+1)" -G(1,2+1),
where 1 now denotes (1,...,1) € N.. The inequality ord$(P*) > o + ¢/p signifies that the
order with respect to z of Q1 modulo c-th powers is at least o + ¢/p. Thus P being oblique
with respect to ¢ is equivalent to Q* € (2)°+¢/P modulo c-th powers, where (z) denotes the
ideal in the polynomial ring k[z] generated by z, . .., z1. Let us write this as

(z4+1)" -G(1,z+1) — N(2°) € (z)ote/p

for some polynomial N of degree less or equal to (|7~ | 4+ 0)/c. As (2 +1)" has order zero
and G(1, z) has order < o, the polynomial N cannot be zero. We may assume moreover that
N (z°) has degree < o + ¢/p, say, that N has degree < o/c. Changing N to some N’ of
degree less or equal to (|7~ | + 0)/c modifies (z + 1)" - G(1,z + 1) and hence also P only
by the addition of c-th powers. It follows that for each choice of ¢, r and o there is at most one

41n [Ha5], p. 18, a slightly different definition of oblique was chosen, discarding the monomial factor.
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oblique polynomial P, up to the addition of c-th powers. Using that (z + 1)" is invertible in
the formal power series ring we get G(1,z+ 1) = [(2 +1)™" - N(z°)], as required. This
proves assertion (5’) and completes the proof of Theorem 1.

Remarks. The reasoning above shows directly that there is precisely one oblique polynomial
P, up to the addition of pb-th powers, for each choice of ¢ = pb, r and o satisfying |[7¢| <
(¢e(r) — 1) - cand |r| + 0o = we, without referring to the proof of the uniqueness statement
(5) of Theorem 1 (which is used essentially to reduce to the purely inseparable case).

Assume that ; < ¢ = p® for all i and let (2 + 1) ! denote the product of all (z; + 1)L
Setting M (z) = (z +1)~! - N(z) as a formal power series, we get

G(Liz+1)=(z+1)" - M(z)]o,

where 7’ denotes the vector of residues 7} of —r; modulo ¢, say 0 < r} < c¢. Inverting the
translation 7(z) = z + 1 we get

2 Gz)=2" e+ D)7 - N(z)]o}
=z (= + D)7 M(2%) o}

The homogenization of this polynomial with respect to y,, followed by the multiplication
with y/™ then yields the oblique polynomial P(y) = y" - G(y). It does not depend on the
choice of N, up to the addition of c-th powers.

Note that for ¢ = p, the monomial y" is the maximal power which can be factored from
an oblique polynomial P. Otherwise we would have some factor 4" where the inequality
Fi > 1y is strict for at least one . This would cause P(y) = y" - G(y) with G of degree
0 < 0. Then ord? P+ < 6 + 1 would imply ord? P* < 0 and contradiction to obliqueness.
Thus A = {& € N™, |a| = o} is the smallest equilateral simplex such that the support of P
is contained in r + A, for some r € N™. This property could turn out to be crucial in further
studies of the resolution of wild singularities.

Resolution of surfaces

Moh’s bound on the increase of the shade and the description of wild singularities from
Theorem 1 (actually, only of a small portion of it) allow us to adapt the characteristic zero
proof of the embedded resolution of surfaces to the case of arbitary characteristic. We shall
only treat hypersurfaces in a smooth three-dimensional ambient variety W and skip technical
details. By a classical argument [Zal, Za2, Hi4, Ha2] one can reduce, using the embedded
resolution of curves, by a sequence of blowups to the case where the locus of points of
maximal order of the defining function of the hypersurface consists of isolated points and
smooth curves intersecting transversally. Blowing up these curves, the shade cannot increase,
by inequality (3) of Theorem 1. So we are left with point blowups. We have to prove that in
any given sequence of point blowups along which the order remains constant the shade cannot
increase or remain constant infinitely many times (if there is a curve blowup in between, the
argument is similar). To this end we shall observe that between a kangaroo point and the
antelope point of its subsequent kangaroo point, the shade drops at least to its half. As the
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increase between antelope point and kangaroo point is bounded by ¢/p, our goal follows (the
case where the shade is equal to 2 requires a small extra argument).

So let us fix a sequence of point blowups in a three-dimensional ambient space along
which the order of the defining equation remains constant. We call oasis point of a given
antelope point a; the last point aq prior to a; where none of the two exceptional components
through a; has existed yet. So the blowup of ag creates an exceptional component whose
strict transform passes through a1, and the second component through a; has appeared later
(recall that a; must lie on two exceptional components). It turns out that the shade actually
drops at least to its half already between the oasis point and its successive antelope point.

The definition of oasis point implies via Lemma 1 that there exist local coordinates (x, y, z)
at ag for which the whole sequence of blowups between ag and a; is given by monomial
substitutions of the coordinates. Moreover, the centers of blowups are always contained in
the hypersurfaces x = 0 (we lift the coordinates at ag through all blowups). This allows to
work in dimension 2. The claim now follows from the following easy observation, whose
proof is left as an amusing exercise.

Lemma8. Let w : Vi — Vj be a sequence of point blowups of a smooth two-dimensional
variety Vo. Let ay € Vy be the first center of blowup, and assume that there are
coordinates y, z at ag which make all blowups monomial. Assume moreover, that a,
is contained in two exceptional components. Let G(y, z) be a non-zero polynomial in
Vo at ag, and denote by G'(y, z) its strict transform in Vi at a;. Then

ord,.G' < 3 - ord,.G.

The above reasoning seems to be restricted to surfaces, since the strong decrease need not
happen in higher dimension. For a more systematic treatment of the embedded resolution of
surfaces see [Abl, Cul, Hi4, CJS, HW].
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