Principles of Resolution
Herwig HAUSER

Anacrusis. The polynomial f(x,y,2) = (2 — y3)? — (22 — y?)3 defines as its real zeroset an algebraic
surface X in Euclidean space R®. This surface cannot be a manifold, since the polynomial violates at
certain points of X the assumptions of the Implicit Function Theorem. The points of failure represent the
singularities of X. They are determined by equating the three partial derivatives to zero. The singular
points occur along two curves Z; and Z, in X, defined in the two planes y = 42z by the equation 22 = y3.
These cusps are parametrized by ¢t — (3,12, £¢2); they meet at 0 with two limiting tangent lines in the
direction of the vectors (0, 1,+1). Along the two cusps, at a point a = (3,2, £¢2) different from 0, we
may intersect the surface with a plane in R? which is perpendicular to the respective cusp. Its equation is
t3z + t?y + t22 = 0. The intersection curves turn out to be again cusps, say S; and S, with singularity
at a. More precisely, the surface X is at its singular points locally analytically isomorphic to the Cartesian
product of a smooth curve (the germ of Z; at a) with the transversal cusp (the germ of S; at a) — with the
exception of the origin, where the geometry of X is much more involved.

Replacing = and z by —x and —z leaves the equation of X invariant, so that our surface is symmetric
with respect to these reflections. Finally, R* acts on X viat - (z,vy,2) = (t3z, t?y,t?z), which shows that
X is cone-like. All this makes it plausible to believe that the surface looks like the one depicted in Figure 1.

Figure 1: View of Daisy, the surface with equation (22 — y3)? = (22 — y?)3.

Consider now the mapping 7 from R? to R? sending (z,y, 2) to (¢223, ¥yz?, 12?), where (z,y) is the
polynomial (y? — 1) + y. This map is an isomorphism from the complement of the four surfaces y = =41,
z = 0 and ¢ = 0, onto the complement of Z; and Z. The inverse map is defined on R3 \ (Z; U Z3)

by the triple of rational functions ((z% — y2?)(y? — 22)~t2~1 y2~1 27 12?). Therefore 7 is a birational
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morphism from R? to R3. To compute the inverse image X* = 7~ 1(X) of X under 7, substitute in the
equation of X the variables x, y and z by the three components of 7. This calculation gives

F@228, pya?, 22) = (120 — g3y20)? — (4224 — g2y?24)? =
27722y 0212 4 12402498212 — 48225912212 + 322:E7y7212 —5628y10212 ...,

This is a polynomial of degree 36 in z, y and z, consisting of 67 monomials. Actually, it equals the product
fay)=@-y?+y* =1y + 1 [y —1° [2(y® - 1) +9]° - 2*%

Therefore, X * has five irreducible components, with multiplicities 1, 2, 2, 6 and 12, respectively. All compo-
nents are smooth. The first component X’ of equation (x — y)? + y? = 1 is a cylinder in the 2-direction
over an ellipse, to which the two planes y = 41 are tangent. Aside from this tangency, all components meet
pairwise transversally. The image of X’ under 7 equals X, whereas the other four components contract to
curves or points. The restriction of 7 to X' gives a parametrization 7 : X’ — X of the singular surface X
by the smooth surface X’. Such a morphism is called a resolution of the singularities of X.

Figure 2: The parametrization (z,y, z) — (223, yz?2, 12?) of Daisy (¢ = z(y% — 1) + ).

Adit. By a scheme we shall understand a separated scheme of finite type over an algebraically closed field
k; you may think as well in terms of varieties; all ideal sheaves are assumed to be coherent. There are
three main versions for the resolution of singularities, each stronger than the foregoing: Non-embedded
resolution of reduced singular schemes, embedded resolution of reduced singular schemes, and princi-
palization or monomialization of ideals. The present article (which is written for algebraic geometers and
the interested non-expert) will explain the differences between these statements and develop the main ideas
for proving them. Actually, all existing proofs resort to similar types of arguments and principles. It is
our purpose here to make these common features explicit. This shall lead to an intuitive understanding of
why the proofs do work in characteristic zero, and why and where they fail in positive characteristic. The
exposition of these principles forms the main body of the article.

As a complement, it is then natural to look more closely at the two-dimensional case where we know
that resolution also exists in prime characteristic. We will address the question of which extra arguments
are necessary to make the reasoning go through in both cases. This is done by taking the characteristic zero
induction invariant and to investigate its behaviour in positive characteristic. It turns out that the analysis
is quite fruitful as it suggests a modification of the invariant which works in any characteristic (at least for
surfaces of order equal to the characteristic). In the appendix, we collect for the convenience of the reader
the definitions of some technical concepts used in the text.

I. Non-embedded Resolution of Singularities. For any reduced scheme X there exists a smooth
scheme X and a proper birational morphism wx : X — X which is an isomorphism over the
smooth points of X.



In addition, one may require that 7x is a sequence of blowups in smooth centers, and that 7 commutes with
smooth base changes (thus preserving the symmetries of X).

In Figure 3, the successive centers of the blowups are (i) the most singular point in the center, (ii) the
horizontal line at the intersection of the two “components”, (iii) the horizontal “intersection” line forming
the singular locus of the surface, and (iv) the two vertical singular lines of the surface. The two components
of the singular locus of the initial surface are two plane cusps, which separate while transforming into two
parabolas and a line meeting these transversally, then in three lines meeting at two points, then in a pair of
two parallel lines.

Figure 3: Resolution of Daisy by blowups in points and lines.

II. Embedded Resolution of Singularities. For any reduced subscheme X of a smooth scheme W there
exist a smooth scheme W and a proper birational morphism m : W — W which is an isomorphism
over the complement of the singular points of X so that the strict transform X° of X is smooth
and the total transform X* has normal crossings.

Again, we may want to achieve that 7 is a sequence of blowups in smooth centers and commutes with
smooth base changes. Moreover, one may require that there exists (in an algorithmic way) for any pair
X C W an upper semicontinuous function inv : X — I" into a well ordered set I' such that the centers
of blowup are given as the locus of points of X where inv attains its maximal values. In general, such a
function uses also part of the history of prior blowups and thus does not only depend on the scheme X . This
dependence will be sketched in the section on transversality. As X* is a normal crossings scheme and the
strict transform X * of X is smooth, it meets each component of the exceptional divisor transversally (in the
sense that the scheme-theoretic intersection is smooth). Reading the sequence of blowups backwards, each
step contracts one exceptional component to a point or a curve. This creates singularities on the surface
along its intersection with the component which is contracted.

Figure 4 illustrates this contraction process. The exceptional components are depicted in different colours.
The left side picture represents the surface one step before its embedded resolution is achieved (the two
intersection lines of the surface with the red planes would still have to be blown up to get normal crossings
for the total transform). In the second picture, the two red planes have been contracted to two vertical lines,
the singular lines of the resulting surface. Next, the yellow plane is contracted to a line (the intersection of
the green and blue plane). In the fourth picture, the green plane has been contracted to this line. It may be
confusing that the inclined line of the singular locus of the surface transforms into a parabola. This is due to
the chosen chart expression of the blowup. The last step contracts the blue plane to the most singular point.
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Figure 4: Successive contraction of a union of smooth surfaces.

II1. Principalization of Ideals. For any ideal sheaf J in a smooth ambient scheme W there exists a
composition of blowups in smooth centers m: W — W so that the total transform J* = n=(J) of
J in W is a principal monomial ideal supported by the exceptional divisor.

By a monomial ideal we understand an ideal which is, locally at each point, generated by monomials in
local coordinates. The assertion of III is also called monomialization or log-resolution of .J.

There are many further specifications which can be added to these results, see e.g. [EH]. Let us prove
that III implies II and that II implies I. For the first, choose for J the ideal defining X in W. Then, by III,
X* is a normal crossings divisor in W. Assume for simplicity that X is irreducible. As X* is supported by
the exceptional divisor, the strict transform of X in W is empty. This implies that at an earlier stage of the
sequence of blowups, the strict transform of X was chosen as center, and was hence smooth. Stopping the
blowups at that stage yields the required embedded resolution of X.

For II implies I it suffices to restrict the morphism 7 : W — W to the strict transform X of X in W. It
is well known that X ® coincides with the blowup XofXina (not necessarily smooth and reduced) center,
hence the morphism 7x = 7| x is a blowup map and thus proper and birational.

The principles of resolution treated in this text are: Choice of center; Upper semicontinuity; Resolution
invariants; Chart expressions; Flags; Minima and maxima; Equiconstant points; Weak maximal contact;
Cartesian induction; Transversality. Many important sites of the resolution landscape cannot be visited, due
to space limitations. Among them are topics like alterations, normalization, Nash modification, polyhedral
game, canonicity and functoriality, low dimensional techniques, arithmetic resolution, projections and
elimination algebras, idealistic filtrations, algorithms and implementations. A selection of relevant articles
is listed in the references.

Principle 1: Choice of center.

The first blowup of the surface Daisy (left two pictures in Figure 3) modifies the zeroset only in the
origin. The projection map contracts the horizontal singular line of the second surface to the origin. Or,
mutatis mutandis, the blowup replaces the most singular point of Daisy by a line. Outside the origin, the
transformation is an isomorphism (even though it may not look like it). Alternatively, one could have tried
to modify the surface directly at all points of its singular locus (the two cuspidal curves). This would yield
a more complicated blowup map, but possibly a simpler surface. So there is some ambiguity on how to
proceed for resolving a singular scheme. This section will discuss some of the possible options.

The blowup of a scheme is entirely determined by the selection of a closed subscheme, the center of the
blowup. This is the locus of points where the scheme is actually modified and where the geometry will
change when passing to the transform of the scheme. Outside the center, the scheme remains untouched.

It is a delicate matter how to choose the center of a blowup in order to simplify the singularities of the
scheme. The canonical way is by means of a partition or stratification of the scheme, taking then the smallest
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stratum as center. We start with the simplest partition given by the singularities themselves. Any reduced
scheme X is naturally partitioned by the regular or smooth locus Reg(X) consisting of its smooth points,
and its singular locus Sing(X) of singular points.

X = Reg(X) U Sing(X).

The singular locus is a Zariski-closed subscheme and nowhere dense. Obviously, we do not want to touch
the smooth points when we try to resolve, so we will select our centers of blowups inside Sing(X'). On the
other hand, each point of Sing(X) has to be modified in a resolution process in order to achieve a smooth
final scheme. Therefore it has to belong at least once to a center. This suggests, in a first naive approach, to
take the whole singular locus as the center of blowup. It is easy to see in simple examples that this does not
yield in general a (non-embedded) resolution of X. Moreover, for the embedded situation, such a center
may produce, when it is singular, singularities in the transform W' of the smooth ambient scheme W in
which X is embedded. It is a challenge to understand the ambient singularities which arise from a singular
center.

In any case, our control of blowups with singular centers is too poor to give them any further consideration
here. From now on, all centers will be reduced, closed and smooth in Sing(X), and moreover required
to be transversal to possibly already existing exceptional components (blowups in centers transversal to
normal crossings schemes preserve these). This restriction implies in the case where the singular locus of
X is itself singular that the center is strictly contained in Sing(X), i.e., a proper closed subscheme of it.
The goal is to find a good candidate for such a smooth subscheme. The natural idea is to stratify Sing(X)
further, e.g. by taking the filtration obtained by the successive singular loci, starting with Sing(Sing(X)).
By Noetherianity, one will arrive at a singular locus Z = Singk(X ) which is smooth and non-empty (it
may be reduced to a single point). Taking this subscheme as center will modify X only along Z, and the
inverse image Y of Z in the strict transform X’ = X° of X will again be smooth (Y is the exceptional
divisor of the blowup of X with center Z). Two things can happen: Either Singk(X ") has become empty,
so that Singk -1 (X’) is already smooth. In this case we can apply induction on the length % of the filtration
by singular loci. Or Sing”(X”) is still non-empty, and then the procedure can be repeated.

This construction is geometrically appealing and thus very plausible. It has just one major drawback:
It is not clear that the process terminates, i.e., that X becomes eventually smooth. The termination would
require some kind of measure which reflects the improvement of the singularities under each of the blowups
and which would thus allow us to apply induction. It seems that no such measure has been discovered yet.
One difficulty lies in the control of Sing”(X') under blowup: Its pullback to X’ need not equal Sing" (X"),
and Sing® (X') may even be singular, cf. the examples in [Ha5]. Due to these problems this approach has
not led to concrete results. Instead, it has become standard to define the center in a more algebraically
inspired way as the stratum of points where a certain local singularity invariant of the scheme attains its
maximal value. These points are then, in this more algebraic perspective, the worst points of X, and they
will be modified first. Before following this approach, we need some preparations.

Principle 2: Upper semicontinuity.

The Taylor expansion of the polynomial f = (2% — y®)? — (22 — y?)? at various points a will have varying
order according to the location of the point (the order or multiplicity at a is understood to be the degree of

1 By the existence of a resolution as in I, it is known that there must exist a generally non-reduced structure on
Sing(X) so that taking this subscheme as center one gets in one stroke a smooth transform of X. Nobody seems to

know what such a structure should look like.



the first non-vanishing term of the expansion). Outside the zeroset of the polynomial, the order will be 0, at
smooth points it will be 1. Along the singular locus, the order is at least 2. Actually, in this example it is
equal to 2 at all singular points with the exception of the origin (where it is 4). This suggests to declare the
origin as the most singular point, and to consider schemes together with the stratification induced by local
functions as is the order.

Let I' = (T', <) be a well-ordered set and let W be a reduced scheme. A function ¢ : W — T is upper
semicontinuous if for all ¢ € T the set top(z, ¢) = {a € W, i(a) > c} is closed. This implies that the value
of ¢ at a non closed point b of W is the minimum of its values at the closed points a in the closure of b.
We set top™ (i,¢) = {a € W, i(a) > c}. In general it is not immediate how to find explicit equations for
top(i, ¢).

Any upper semicontinuous function ¢ induces a filtration of W by the closed sets top(i,c¢). This
filtration is finite because W is Noetherian. In particular, ¢ assumes only finitely many values in I', and
attains its maximum on the closed set top(i) = top(i,co) with ¢g = max,ew i(a). The differences
S. = top(i,c) \ top™ (i,c) = {a € W, i(a) = c} define a finite partition of W into locally closed sets
(which may be singular). Occasionally it is convenient to consider local top loci, taking into account only
points of a suitable small neighborhood.

Instead of defining a stratification geometrically as it was done in the last section with the iterated singular
loci it is more practical to define first an upper semicontinuous function and to consider then the associated
stratification. This is the classical procedure in resolution matters to define the center of blowup. An upper
semicontinuous function ¢ is called a local invariant of an ideal J or a closed subscheme X of W if its value
i(a) only depends on the isomorphism class of the completions of the local rings O,/ J,, respectively
Ox,o = Ow,o/Iw(X),. Here, J, C O, denotes the stalk of J at a, and Iy (X) is the ideal sheaf
defining X in W.

The easiest local invariant of an ideal sheaf J on W (or the closed subscheme X of W defined by J) is
its order o(a) = ord,(J) = max{k € N, J, C m*}, with m, = mw,, the maximal ideal of Oyy,,. It
only depends on the isomorphism class of the completion of Oy ,/J,, and it is upper semicontinuous since
top(o, ¢) equals the zeroset V(0% f, f € Ju, 0 < |a] < ¢ — 1) of all partial derivatives of elements of .J,
up to order ¢ — 1. The top locus top(o) = top(J) = top(X) is often called the equimultiple locus of .J or
X. Notice that the order depends of the embedding of X into the smooth ambient space W.

For plane curves X, the induced stratification is just the decomposition of X into the dense regular
locus Reg(X) and the singular locus Sing(X) = top(o, 2). More generally, for hypersurfaces X, we have
Sing(X) = top(o, 2). For non-hypersurfaces, the order seems to be of little significance, in particular if X
is not minimally embedded in W and lives in a smooth hypersurface V inside . In this case, the equation
of V has order 1 along X and belongs to the ideal .J of X. Therefore .J has order 1 along X, and the order
is not even able to detect the singular locus of X.

This flaw of the order of ideals became relevant when, at the end of the fifties, people, and, more
specifically, Hironaka, started to consider resolution problems for non-hypersurfaces. The first attempt to
overcome the deficiency of the order for non-principal ideals was to consider the sequence of orders of a
selected generator system of the ideal (called standard basis by Hironaka, nowadays known as Macaulay
basis). Take a minimal generator system of the (stalk of the) ideal whose initial forms (homogeneous
forms of lowest degree) generate the initial ideal. The orders of these generators, taken in an increasing
manner, constitute then an upper semicontinuous invariant when considered with respect to the lexicographic
ordering on the set N® of finite sequences. This vector, called v by Hironaka, had then to be considered
under blowups in permissible centers (i.e., centers, along which the invariant takes a constant value). It does
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not increase if the center is permissible.

It was soon realized that the Hilbert-Samuel function of the ideal represents a more conceptual local
invariant. Bennett established its upper semicontinuity [Bn]. He also showed that it does not increase under
permissible blowups. The stratification underlying this invariant became known as normal flatness, and was
dominant in the field until the nineties. Only then was it observed that also the order of ideals alone suffices
for the induction to ensure the termination of the resolution process (but considering the so called weak
transform instead of the strict transform of X, and taking an entire string of orders of different ideals as the
measure of improvement).

The proof of the non-increase of the Hilbert-Samuel function under permissible blowups is quite involved.
A much shorter proof for an almost equivalent statement can be given when replacing the Hilbert-Samuel
function by the initial ideal of the ideal J with respect to a degree compatible monomial order on the set
of exponents [Hal]. The monomial order specifies for each element of the stalk of J, considered either in
the local ring or in its completion, a (smallest) initial monomial (in contrast to the initial form from above),
and the initial ideal is the ideal generated by all these monomials. It can be made coordinate independent
when taking its minimal or maximal value (with respect to the natural ordering on monomial ideals) over all
coordinate choices. This ideal, the minimal or maximal initial ideal, is then a local invariant which is very
easy to control under blowup. It contains essentially the same information as the Hilbert-Samuel function.
However, it too is not sufficient to prove termination of the resolution algorithm. Further invariants have to
be constructed.

All proofs known nowadays for the resolution of singularities in arbitrary dimension over a field of
characteristic zero therefore use a whole string of local invariants, considered lexicographically. The
first entry is the order of the ideal J (or, as in [BM1], the Hilbert-Samuel function), the next entries are
(usually) the orders of suitable coefficient ideals. These are ideals in less variables, living in successive
local hypersurfaces of maximal contact. The ideals depend on the choice of the hypersurfaces, but their
orders do not, and are moreover upper semicontinuous, since they are orders of ideals. Therefore the string
of orders is a local invariant. (In reality, the construction of this string is more involved, since the descent
in dimension to coefficient ideals is technically rather subtle).

In the recent approaches to resolution in positive characteristic, the upper semicontinuity of the proposed
invariants is more delicate. In particular, some of the invariants are only upper semicontinuous when
restricting to closed points. This is unpleasant but can be handled by redefining the value at non-closed
points as the minimum of the values at the closed points in the Zariski-closure [Hil].

The upper semicontinuity of the invariants is substantial because the centers of blowup are chosen as
their top locus and must be closed. Moreover, the invariant being defined locally, it has to be ensured that
the local constructions patch to give a global center. This is automatic if the local invariant does not depend
on any choices (i.e., is an invariant in the sense defined above). Large parts of recent works on resolution
are devoted to the proofs of these two properties [Ka, KM, BeV, BrV1].

Principle 3: Chart expressions.

The formula (z,y) — (x,zy) is known as the prototype of a blowup map. And indeed, a very favorable
feature of blowups is their explicit expression in affine charts. This allows to work with defining equations
of affine schemes in local cooordinates and to compute the transform of the ideals by substitutions of the
variables. Besides, these substitutions are of a very simple kind, namely given by quadratic monomials (for
smooth centers).

To be precise, let W be a smooth ambient scheme, Z C W a smooth closed subscheme taken as the
center of the induced blowup 7 : W’ — W, with exceptional divisor Y’ = 7=1(Z). Let a be a closed
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point of Z, and let ' € Y be a closed point above a, say 7(a’) = a. There then exist local coordinates
x = (x1,...,2y) in W at a (i.e., a regular system of parameters of the local ring Oy, as defined in the
appendix) such that the following holds. (i) The point a has components (0, ..., 0) with respect to z. (ii)
The center Z is defined locally at a by 1 = ... = xp, = 0, where k is the codimension of Z in W at a. (iii)
The substitution formula x; — x;x, for ¢ < k — 1 and x; — x; for 7 > k induces local coordinates for W/’
at @’ (say, in the so called x-chart of W’). (iv) In particular, o’ has components (0, ..., 0) with respect to
the induced coordinates. (v) The exceptional divisor Y” is given in this chart by z;, = 0.

In this situation we say that the local blowup 7 : (W', a’) — (W, a) (defined as a map germ) is expressed
in the affine x;-chart with respect to the coordinates x in W at a. Notice that the chart expression z; — z;xy,
respectively z; — x;, of the blowup map interprets the map as a (local) morphism of A™ onto itself with
the same system of coordinates in source and target. We then say that the local blowup is monomial in the
chosen coordinates, and that o is the origin of the x-chart of the blowup.

With this explicit description of blowups it is easy to compute locally transforms of ideals and of
subschemes. It suffices to substitute in the involved equations the coordinates by the formulas from above.
But this computation is local, and often one wants to know the transforms simultaneously at all points a’
of Y’ above a. It is then appropriate to partition the fibre Y, = 7~(a) into locally closed subsets. As W
and Z are assumed to be smooth, Y is isomorphic to projective space P*~1, which decomposes naturally
into affine spaces A!, for I varying between 0 and k& — 1 (there is some freedom how to distribute these
affine pieces over Y). Let be given coordinates z1, . .., x, at a so that Z is defined by 1 = ... = 25, =0
as above. Let a’ be any point in Y’ above a (not necessarily the origin of an induced chart). We wish to
determine a coordinate change at a which makes the local blowup 7 : (W', a’) — (W, a) at &’ monomial
in the transformed coordinates. If a’ is the origin of the xy-chart of the blowup, the local blowup is already
monomial and no change is necessary. Otherwise, it lies in the union of the remaining affine pieces of Y.
In the x;_1-chart, we consider the affine line x1 = ... = zp_92 = 2 = ... = z,, = 0. Its point at infinity
is the origin of the xj-chart. A linear triangular change x; — xr_1 + tx—_12; in W at a with a suitable
constant ¢;_; then makes the local blowup monomial. In the [-th chart, for [ < k, the coordinate change is
of form x; — x; + ¢; ;2 for i between [ and £ — 1 and suitable ¢, ; in the ground field.

These formulas are useful because the local invariants are mostly given by the Taylor expansions of
elements of the local rings at a and a’. They allow us to check whether the invariant decreased or remained
constant (it should not go up).

Often, the invariants are defined first in a coordinate dependent manner (e.g., as the order of a coefficient
ideal). Either one is able to ensure by additional arguments their actual independence of the coordinates (one
such argument is known as Hironaka’s trick via test-blowups), or one has to choose the minimal, respectively
maximal value over all coordinate choices. This makes the invariant automatically coordinate independent.
This procedure is especially effective in positive characteristic, where hypersurfaces of maximal contact no
longer exist. Instances of maximizing coordinate choices can be found in [Ab3, Hi3, Ha2, Ha3, Kol].

Principle 4: Flags.

Triangular coordinate changes (z,y) — (z + ty, y) in the plane, with ¢ a constant in the ground field, allow
to render the local chart expression of a point blowup monomial. The geometric device behind this trick is
the introduction of local flags.

The choice of hypersurfaces of maximal contact in characteristic zero and the subsequent descent in
dimension to a coefficient ideal break the local symmetry of the ambient space W at a given point a (this is
the symmetry of affine space A™ at a given point). Iterating this descent corresponds essentially to ordering
the local coordinates lexicographically. The ordering can be made intrinsic by the consideration of local
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flags. They serve to restrict substantially the allowable choices of coordinates while still keeping sufficient
flexibility in defining the local invariants. Moreover they are compatible with blowups.

Let a be a closed point of the smooth ambient space W. A local flagin W at a is achain F : Wy = {a} C
Wyc...c W,_1 C W, = W oflocal smooth subschemes W; of dimension 7 (i.e., the W; are considered
as germs at a). When varying the reference point a, certain semicontinuity conditions (to be specified
below) can be required. A smooth subscheme Z of W is called transversal to F if all scheme-theoretic
intersections Z N W; are smooth. In this case, the blowup 7 : W’ — W of W with center Z admits at each
point ' € Y’ above a a local flag F' associated naturally to F. Assume first for simplicity that Z = {a}
is a point. Then W/ is set equal to the strict transform W if o’ belongs to W. Otherwise, it is defined as
the unique linear i-dimensional subspace of Y’ =2 P*~1 containing a’ and the intersection with Y’ of the
pullback of the tangent space T, W, of W; at a.

If the center is positive dimensional, say of dimension k, the blowup map is locally above a equal to
the Cartesian product of the point blowup of a k-codimensional, Z-transversal section V' of W through
a, together with the identity map on the scheme Z, and the definition of the induced flag F’ is built on
this Cartesian product. The details are left to the reader, or can be found in [Hal]. See also the work of
Panazzolo, where local flags, called axes, are studied for the resolution of vector fields in three dimensional
space [Pa]. They are considered in families.

In dimension 2, a flag is just a smooth plane curve C passing through a. Its strict transform C'® under the
point blowup with center a hits the exceptional divisor Y in precisely one point. There, the induced flag is
C*. At all other points of Y”, the induced flag is equal to Y. This already reflects what should be meant
by the semicontinuity of the flag on W’: the local flags defined at each point of Y vary continuously along
the strata of a suitable stratification of Y’ by locally closed sets.

In dimension 3, a flag consists of a smooth curve C' contained in a smooth surface .S in three-space. The
exceptional divisor Y of the point blowup in A? is isomorphic to P2, and the induced flag is defined as
follows: At the intersection point p of the strict transform C'® with Y, the induced flag is C* C S*. Outside
this point, but still inside the intersection curve Y’ N S%, the flag at a’ is C’ C S*, where C” is the line in P2
connecting p with a’. Finally, if ' € Y does not lie in S*, the flag consists of the line connecting p with a’
and the plane containing a’ and the intersection of Y’ with the pullback of the tangent space T,.S.

Coordinates x at a in W are called subordinate to a given flag F if the ¢-th component W is defined by
ZTi+1 = ... = 2y = 0. Two systems of subordinate coordinates differ hence by a triangular automorphism.
Moreover, if the center Z is transversal to the flag, and a’ is a given point in Y above a, the coordinates can
be chosen so that the local blowup is monomial and that the induced coordinates at o’ are again subordinate
to the induced flag [Hal]. This suggests to define local invariants as maxima over subordinate coordinates;
they depend only on the flag and are then also defined after blowup. Finally, the coordinate description of
the blowup map makes it possible to determine their transformation behaviour.

Principle S: Resolution invariants.

The surface defined by f = 2 +y'! +y32* + 2° has at the origin a point of order 2. Blowing up this point
and looking at the origin of the y-chart, one quickly observes that the order is again 2 (the strict transform
being f’ = x2 4+ y° + y°2* + 432°.) So, either the center was too small and a curve should have been taken
as the center, Or the origin was the correct choice but the improvement is not detected by the order of f. A
more refined measure is necessary. The natural candidate is the order of g = y'! + y32* 4 2° at the origin.
It is 5. Helas, the order of g increases from 5 to 8, because the transform ¢’ = y3(y® + y%2* + 2°) of ¢
accrues additional exceptional factors. Only after having deleted the factor y3 from ¢/, the resulting order
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yields a reliable measure. It does not increase, which is good, but as it equals again 5, we are stuck with our
induction.

Resolution invariants are designed to overcome this difficulty. As the complete resolution is often
composed by a long sequence of blowups, the improvement in each step may be small. Accordingly, a
relatively fine measure has to be invented to detect and exhibit this improvement. Usually this is a string of
numbers, considered with respect to the lexicographical ordering. Each entry is indexed by a certain ambient
dimension, which is prescribed by the respective hypersurface of maximal contact. In all known proofs
(for resolution in arbitrary dimension), the invariant defining the center (call it the stratifying invariant)
is the same as the invariant measuring the improvement (call it the resolution invariant). This may be a
coincidence, but is certainly not the most economic choice, for the following reason.

First, experimenting with blowups and the transform of ideals and schemes, it quickly becomes clear
that the larger the center is the stronger is the improvement. In fact, if the center is strictly included in
the locus where the resolution invariant attains its maximum, the invariant cannot drop under blowup for
semicontinuity reasons: At a point of the top locus outside the center, the value of the invariant remains the
same, since the blowup map is an isomorphism over the complement of the center, and since the invariant
only depends on the isomorphism type of the (completed) local ring. The closure of the difference of the
top locus and the center is the entire top locus. On the transformed ambient space, at points in the closure
of the inverse image of this difference, the invariant will have, by the upper semicontinuity, the same value
as at points inside the difference. Therefore it will have remained constant there.

This argument shows that the top locus of the resolution invariant must be contained in the center of the
blowup (which is the top locus of the stratifying invariant). But, at least in principle, it could be strictly
contained. We conclude that the resolution invariant should refine (or be equal to) the stratifying invariant.

The non-increase of the order of an ideal under blowup in a center along which the ideal has constant
order is one of the basic facts used permanently in resolution articles. This holds for both the strict and
the weak transform, but in general not for the total or controlled transforms (see the appendix for these
notions). The overall strategy of resolution is to associate to the given ideal locally at each point an ideal
in one variable less, the coefficient ideal. This descent in ambient dimension commutes with blowup (in
characteristic zero) as long as the order of the original ideal does not drop, taking as the transform of
the coefficient ideal the controlled transform. Resolving in lower dimension produces after a sufficiently
long sequence of blowups a coefficient ideal which will be a principal monomial ideal supported on the
exceptional divisor (on the transform of the hypersurface), but that will have, in general, huge order. At
that stage, the strategy is changed. The original ideal is then resolved by a purely combinatorial method,
taking into account the monomiality of the coefficient ideal. Still, the resolution of the coefficient ideal
will use the order as the main resolution invariant, but as the ideal passes under blowup to the controlled
transform, it will be necessary to factor from this ideal as many exceptional components as possible to get
as the remaining factor the weak transform (whose order will not have increased by the permissibility of the
center).

We will see later on how the non-increase of the order of an ideal under blowup (and taking the weak
transform) paves the way to the descent in dimension and the Cartesian induction. Indeed, it suffices to
consider on the exceptional divisor the points where the order has remained constant (called equiconstant
points), and to establish a local descent to coefficient ideals only at these points. Here, the commutativity of
the descent with taking the controlled transform is crucial. It fails in positive characteristic, which represents
the main obstacle there.

There is a recent new approach to induction by Bravo and Villamayor [BrV1], taking up the classical
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method of Jung: Instead of restricting to hypersurfaces, the idea is to project onto hypersurfaces. One thus
obtains a resolution problem in one dimension less which is of different type than coefficient ideals. The
approach works marvelously well, both the upper semicontinuity of the invariant and a certain commutativity
of the descent with blowups can be ensured. Again, by induction on the dimension, one can resolve the
lower dimensional problem. The still unsolved difficulty here is how to exploit this subordinate resolution
for the construction of a resolution of the original scheme. This is again a kind of a combinatorial problem,
but reversing the descent in dimension seems to be much more challenging [BrV1].

Principle 6: Minima and maxima.

For the polynomial f = 2% + 2zyz + y° + y?2? + 2° the order of the coefficient ideal? in the hypersurface
x = 0 is 4. This number is not significant, since it depends on the choice of coordinates. Applying the
coordinate change * — = — yz yields the expansion f = 2% 4 y® + 2z® with coefficient ideal of order 5. It
turns out that the change has maximized the order over all coordinate choices. It is hence now intrinsic.

It is a classical feature of resolution of singularities that many types of invariants are constructed by
means of special choices of coordinates. Given a polynomial f (or a polynomial ideal .J) in n variables and
a point a in A™ one wishes to measure the complexity of the singularity of the zeroset X defined by f or J
at a. The main such measure is the order of f at a, say, the local multiplicity. It gives some but not enough
information. For non-principal ideals, one may extend the order by the increasing sequence v of orders of
a standard (= Macaulay) basis of J at a as suggested by Hironaka, the Hilbert-Samuel function of J at a,
or the generic initial ideal of J at a with respect to a degree compatible monomial order on N" [Hi4, Bn,
Hal]. All these are by definition coordinate independent (and actually only depend on the completion of the
local ring of A™ modulo f or .J). But they are not fine enough to exhibit the improvement of the singularity
under blowup. At some points of the exceptional divisor, they may assume the same value as below. This
suggests to consider there a secondary invariant which complements and refines the local multiplicity.

Already for plane curves, it is convenient (though not absolutely necessary) to define the secondary
invariant through the choice of local coordinates. Usually one takes the slope of the first segment of
the Newton polygon of the local defining equation f (the Newton polygon is the positive convex hull
conv(A + R2) of the set A of exponents of the Taylor expansion of f in given coordinates at the point of
reference). This slope depends on the choice of coordinates. It is made coordinate independent by taking
its maximal value over all choices of local coordinates (assuming that f is already in Weierstrass form). If,
for some coordinates, there is no first segment in the Newton polygon, f is already a monomial up to units
in the local ring. This case is considered as being resolved and can thus be discarded. If the maximal slope
exists and is finite, one may choose local coordinates x at a realizing this value. Then look at the transform
of f under blowup (with center a point where the order of f is maximal). On the exceptional divisor, choose
any point a’ where the order of f has not changed (if there is no such point, we are done by induction on
the order). We wish to show that the slope has decreased. This would imply that the pair (order, slope) has
decreased with respect to the lexicographic ordering at any point of the exceptional divisor. As it belongs
to a well-ordered set, induction applies.

To compute the slope, first compute the Taylor expansion of the transform f’ of f at a’ using the chart
expressions for the blowup. In the induced coordinates ’ at a’, the slope may not attain yet its maximal
value. It may be necessary to apply a local (formal) coordinate change to maximize it. One then shows —
and this is the clue — that the change at a’ stems from a local coordinate change at a, i.e., that the naturally
induced diagram of blowups and local automorphisms commutes. In principle, the change at a could destroy

2 The coefficient ideal is defined here ad hoc as (yz)? + (y° + y?22 + z5), cf. the appendix.
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the maximality of the slope there (it can be shown that it does not), but this would not do any harm because
of the chain of inequalities

max, slope,, ,.(f’) = slope,, ., (f") < slope, ,(f) < max, slope, ,(f).

Here, the first equality holds by the choice of the coordinates x’ at a’, the strict inequality is checked by a
direct computation in the chart expression of the blowup (which may be assumed to be given by a monomial
substitution of the variables), and the last inequality holds by definition of the maximum. This is, in short,
the inductive argument for the resolution of plane curves.

Of course, in this reasoning it is very helpful to allow at a’ only a small class of coordinate changes
(e.g., those subordinate to a flag), because this improves the chances to have them commute with the chart
expression of the blowup (a fact which is crucial for making explicit computations).

For surfaces and higher dimensional schemes, the pair (order, slope) is not sufficient for applying
induction. One usually constructs a whole string of numbers, considered with respect to the lexicographic
ordering. The components are often defined through choices of hypersurfaces or coordinates.

When a component of the string is defined as a maximum over some coordinates, this maximum has to
be realized after the blowup at all points a’ where the earlier components of the invariant have remained
constant. The opposite happens when taking the minimum over all coordinate changes. For reasons
analogous to those suggested by the chain of inequalities above, it has to be realized before the blowup at
the points a. By the way, the generic initial ideal mentioned earlier can be interpreted as a minimum [Hal].

In both cases it is important that the chosen measure extracts substantial information on the local
complexity of the polynomial at a and o’. For instance, the minimum of the slope of the first segment of the
Newton polygon is useless since it is always —1. As a general rule, one tries to make by coordinate changes
the Newton polyhedron (i.e., the three-dimensional analogon of the polygon) as small as possible, cf. [Hi3,
Ha2, Yo].

Principle 7: Equiconstant points.

The polynomial f = 22 + y° + 323 + 2° has order 2 at 0 and transforms under the blowup of the origin
into f' = 224 y7 +y*23 +y"2°. This is the chart expression of the strict transform of f at the origin of the
y-chart. It has again order 2 there. The next blowup with center this point gives f” = 22 +y5+1°23 +y142°,
again of order 2 at the origin of the y-chart. In this way the origins of the successive y-charts represent
points in a sequence of blowups where the order did not decrease. These points will be of particular interest.

Take now more generally a hypersurface X in W = A" defined by an equation f = 0, for some
polynomial f in local coordinates. For any point a in W, the basic measure of the complexity of the
singularity of X at a is the order of the Taylor expansion of f at a. It equals the maximal power & for which
f is contained in m* with m, the maximal ideal of the local ring Ow,q- Equivalently, it is the minimal
order |« of a partial derivative 9 f of f which does not vanish at a (in characteristic p, one has to take the
Hasse-Schmidt derivative).

We have already seen that the top locus top(X ) of X in W of points where the local order of f is maximal
is closed. Let Z be a smooth closed subscheme of top(X) (i.e., permissible), and let 7 : W’ — W be the
induced blowup with center Z and exceptional divisor Y”. The order of X is constant along Z, say equal
to a value o. Using the chart description of blowups it is quite immediate to show that at any point a’ of Y’
the order of the strict transform X’ = X ® of X cannot increase,

ordy (X') < ord, (X).
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Moreover, there exists, locally at any point a of Z, a smooth hypersurface V in W whose transform V' = V'*
contains all points a’ of Y’/ where the order has remained constant. This fact, first observed by Zariski
[Zal], holds in any characteristic. These points a’ will be called equiconstant for X, they are also known
as infinitely near points. If V' is chosen transversal to the center (in characteristic zero, V' can even be
chosen to contain top(X) and hence also Z), the transform V" is again smooth. Unfortunately, it need not
be suitable for a second blowup W” — W' in the sense that its transform V"' may no longer contain all
points a” in Y where the order has remained constant. One may have to choose a new smooth V" at any
a’ to ensure this containment. This new choice, however, is only necessary in positive characteristic (and
there are examples proving that it cannot be avoided). In characteristic zero, by a miraculous coincidence,
one may already choose locally at a a smooth hypersurface V' such that all its transforms under an arbitrary
sequence of permissible blowups contain all equiconstant points above a.

The choice of such a hypersurface is based on so called Tschirnhausen transformations, which boil down
to choose for the defining equation of V' a partial derivative of f which has order 1 at a (and hence defines
a smooth V).

Therefore, in characteristic zero, we have at our disposal along any sequence of equiconstant points in
a composition of permissible blowups of a sequence of local smooth hypersurfaces which accompany the
points. This immediately suggests to descent to these hypersurfaces, formulate there a resolution problem (in
one dimension less) which, by induction on the dimension, must improve in each step (provided the centers
of blowup are chosen appropriately). This descent is feasable, but there are several technical complications
involved we wish to skip.

In positive characteristic, the situation is much more interesting. Again we are led to consider a sequence
of equiconstant points above a. The final goal is to show that any such sequence is finite, i.e., that eventually
the order of f drops. (By the upper semicontinuity, the lengths of the various sequences of equiconstant
points will be bounded.) The method to show this consists in trying to introduce a second local upper
semicontinuous invariant which drops after each blowup at an equiconstant point. When it reaches its
minimal possible value there cannot be any more equiconstant point above, hence the order of f must drop.

In characteristic zero, this secondary invariant is constructed by induction on the dimension. We pass
locally to a hypersurface of maximal contact and consider the order of the coefficient ideal of f there, show
that it does not increase under blowup (when passing to the weak transform), and that the descent commutes
with the blowup of f at any equiconstant point (here, maximal contact is used in an essential way). Now,
by induction on the dimension, we know that the order of the coefficient ideal (with the exceptional factors
deleted) must eventually drop. But it cannot drop infinitely often, at some stage it becomes zero. There, the
coefficient ideal consists only of exceptional factors, and is hence a principal monomial ideal. As mentioned
above, this situation is so special that one can then define a direct (combinatorially constructed) resolution
of f.

In positive characteristic, this approach fails, because even though a secondary invariant can be defined
similarly, it may go up and down in quite an uncontrolled way. Let us describe how such an invariant could
be constructed and where the complication arises.

Principle 8: Weak maximal contact.

For the polynomial f = 2 + y° + y?2? + 2° the hypersurface = = 0 maximizes the order of the coefficient
ideal, with the exception of the characteristic 2 case, where we have to take instead the hypersurface
x + yz = 0. This shows that the choice of the hypersurface is sensitive to the characteristic. However, the
maximum of the orders of the various coefficient ideals in different hypersurfaces will not depend on any
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choice. We thus obtain an intrinsic secondary measure (after the order of the defining polynomial) for the
complexity of a singularity.

Fix a sequence of equiconstant points above a. Our goal is to prove that it is necessarily finite, in-
dependently of the characteristic. Again, the only conceivable way to show this is to exhibit a repeated
improvement of some secondary invariant along the sequence. But this invariant has to be more involved
than before, since coordinate changes as above make polynomials quite intractable in prime characteristic.
The first thing which comes to our mind is to consider the coefficient ideal of f in some local smooth
hypersurface at a and to consider its order at a. It will depend on the choice of V, and is hence neither
intrinsic nor necessarily significant. After all we wish to measure the complexity of the singularity of f, and
this should not depend on any choices. The resolution of plane curves (which works in any characteristic)
already encounters this problem, and handles it by taking, as mentioned above, the maximal slope, which
can be reinterpreted as the maximum of the order of the coefficient ideals in local hypersurfaces [Ab3, Gil,
Gi2, Col, Co2, HR].

Hypersurfaces V' which realize the maximal order of the coeffient ideal of f at a are called hypersurfaces
of weak maximal contact [EH]. They were first considered by Abhyankar [Ab3, Cu2] and have seen a
renaissance in the recent approaches to resolution in positive characteristic [BrV1, Hil, Hi2]. Their strict
transform V¢ under blowup will contain all equiconstant points a’ above a, but need not have again weak
maximal contact with the weak transform f’ of f. One may have to choose a new local hypersurface V'
at any equiconstant point a’. This would, a priori, not be a drawback, if the order of the coefficient ideal
behaved nicely. But it does not: Moh exhibited examples where the maximal order of the coefficient ideal
increases under blowup. (The order of f must be a power of the characteristic for this to happen.) This
destroys the induction. However, Moh was able to bound the increase of the order (it is at most pe_l if
the order of f at a is equal to p® where p is the characteristic). For surfaces of order exactly p, Hauser
and Wagner were able to show that this occasional increase is made up by stronger decreases of the order
of the coefficient ideal before and after the critical blowup [HW]. It thus decreases in the long run, which
reestablishes the induction. For three-folds, the problem of resolution in positive characteristic is still open
(at least concerning embedded resolution and principalization of ideals).

Principle 9: Cartesian induction.

The polynomial f = 23+ 7 +y?22 4 25 has as coefficient ideal in the hypersurface 2 = 0 the ideal generated
by g = 37 + y?22 + 2°. The transform of f under the blowup of the origin is f’ = 23 + y* + y22 + y22°
(at the origin of the y-chart), with coefficient ideal generated by ¢’ = y* + yz? + y22°. This polynomial
can be directly computed from g. Take the total transform ¢* = y7 + y*22 + 3°2° and factor from it the
exceptional monomial y3. This transform is the controlled transform of g with respect to the control ¢ = 3
(cf. the appendix.) We conclude in this example that passing to coefficient ideals commutes with taking
certain transforms under blowup. We shall see next that this commutativity is a general feature of coefficient
ideals.

The method of Cartesian induction has much to do with calling a subroutine in a computer program.
Whenever the resolution process runs into a problem — here, the non-decrease of the invariant, or the
non-transversality of the center with the exceptional locus (see the next section) — it formulates this obstruc-
tion/failure as a new resolution problem of smaller size. By induction on the size (which has to be defined
properly and which is almost always the dimension of the smooth ambient scheme) we can assume to know
how to resolve this smaller problem. For this to work in general, a comprehensive notion of resolution has
to be defined; part of it is the embeddedness, i.e., the normal crossings requirement for the total transform.
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Other properties, such as the resolution morphism being a composition of blowups in smooth centers, can
be appropriate.

So assume that we are able to solve (or improve) the subproblem by a sequence of blowups, referring e.g.
to induction on the dimension. These blowups usually have centers in a smooth subscheme V' of the ambient
scheme W we started with. So the sequence of blowups of V" also induces a sequence of blowups of W, and
hence transforms our initial resolution problem. Denote by V"’ the scheme above V' where the subproblem
is solved (respectively, has improved), and by W’ the respective transform of our ambient scheme.

Now, at this stage, we look again at the obstruction which forced us at the beginning to formulate and solve
a subproblem. It will have transformed with the blowups. Two things can happen: Either the obstruction
has disappeared and we can proceed with the next step, or it has remained. In the latter case we have to
check that, at least, it improved in some sense. The only practical way to do this is to compare it with
the transform of the original obstruction, say with the transform of the subproblem. This transform, as we
know, is resolved or has improved.

All known formulations of such subproblems aim at establishing a commutativity of the passage to
the subroutine with blowups: The transform of the obstruction for the original problem should equal the
obstruction of the transfom of the original problem.

If this commutativity holds, we can be sure, by induction on the size of the resolution subproblem
expressing the obstruction, that our obstruction has improved during the auxiliary blowups. It then suffices
to iterate until it has disappeared (obviously, for this to work, the measure of the intricacy of the subproblem
has to lie in a well ordered set).

We leave it to the reader to visualize this principle of induction by a Cartesian diagram of blowups and
descents in dimension (see [Ha4] for more details.)

Principle 10: Transversality.

Assume that in a sequence of blowups there appears at a certain stage a pinch point singularity of equation
22 — 322 = 0. Its singular locus is the z-axis. Blowing up the origin reproduces in the z-chart the identical
singularity. So we are led to take as center the entire axis. But it may happen that this axis is tangent
to an already existing exceptional hypersurface, e.g. the one given by = + yz = 0. Then the blowup will
destroy the smoothness of this hypersurface, thus violating the requirements of an embedded resolution. It is
therefore necessary to treat the non-transversality of the axis with the exceptional divisor first. This is usually
done by separating through auxiliary blowups the center of preference from the exceptional component.

The transversality issue is often omitted in presentations about resolution by declaring it as part of the
more technical machinery. Nevertheless it is a very substantial ingredient which caused many complications
and controversies in the field. Its treatment is often related to taking into account the history of the resolution
process.

Each blowup in a smooth center Z inside the ambient scheme W produces an exceptional hypersurface
Y’ = 771(Z) in the new ambient scheme W’. The iteration of blowups adds several such components.
For many applications, but also for the inductive proof, it is important to know that these components meet
transversally, i.e., form a normal crossings divisor. The only reasonable way to ensure this is to choose
each center transversal to the already existing collection of exceptional components (in the sense that the
union is a normal crossings scheme). The centers are usually given as the top locus of some local upper
semicontinuous invariant on the singular scheme we wish to resolve. It thus does not take into account a
priori the position of the exceptional components. The possible non-transversality may result to be fatal.

There are two ways to confront this problem. The first consists in adding to the stratifying invariant
the configuration of the exceptional components. This is possible but causes the aforementioned technical

15



complication. Some exceptional components are automatically transversal (the so called new ones) and
need not be considered for the modification of the invariant. The old components are dangerous and have
to be taken into account. Hence, some book-keeping is necessary (the relevant information one has to keep
track of is assembled in the notion of mobile, cf. [EH]). This is often referred to as remembering the history
of the resolution process.

The other option is to formulate a subordinate resolution problem whenever the center prescribed by the
stratifying invariant (let us call it the virtual center) is not transversal to the exceptional locus. By construction
of the invariant, this locus should be smooth, but cannot be taken yet as the actual center of blowup. Using
induction on the dimension it is then possible, by the assumed existence of embedded resolution in smaller
dimension, to separate, by auxiliary blowups, the virtual center from all exceptional components to which it
is not transversal. It is easier notationally to achieve separation rather than transversality.®> While doing so
it has to be ensured that the original resolution problem does not get worse. But as the auxiliary centers are
smaller than the virtual center (along which the invariant is constant), the invariant remains constant by its
upper semicontinuity (it does not change outside the center, and remains the same at points of the closure
of a locally closed stratum along which it is constant, by the same argument as earlier).

Once the critical components are separated from (the transform of) the virtual center, this subscheme can
be taken as the actual center of the next blowup. The resolution invariant should now (hopefully) decrease
at all points of the new exceptional component. On the transform of the singular scheme, the story repeats
itself.

Sample case: Surface resolution.

Resolution of surfaces in positive characteristic was first established by Abhyankar [Ab2]. Today, the proofs
for the embedded resolution of surfaces in arbitrary characteristic are often based on a resolution invariant
proposed by Hironaka [Hi3, Co3, Ha2]. This invariant is extracted from the Newton polygon of a singularity.
It seems to be kind of hand knitted, but it is substantial. It is used in Cutkosky’s proof (following Abhyankar)
of non-embedded resolution of three-folds in characteristic > 5, as well as in Cossart-Piltant’s proof for the
same case but over fields of arbitrary characteristic [Cul, Cu2, CP1, CP2]. The invariant has been extended
to the embedded resolution in the non-hypersurface case for arbitrary two-dimensional excellent schemes
by Cossart-Jannsen-Saito [CJS].

For two-dimensional hypersurfaces of order equal to the characteristic of the ground field (where the
purely inseparable case is known to be the tough one) the invariant has been replaced recently by Hauser
and Wagner by a simpler and more conceptual invariant [HW], proposed originally by Zeillinger [Ze1]. We
will briefly describe its definition and how it is used for the induction argument.

So let X be a (reduced) surface in a smooth, three-dimensional ambient space . When working locally
at closed points a of W, we will tacitly pass to the completion of the local ring Oy, (say, work in an étale
neighborhod) and assume that X is defined at a by a formal power series f in three variables.

The singular locus of X is given locally by the vanishing of the partial derivatives of f. It is a closed
subscheme consisting of a finite number of points and irreducible curves. Blowing up the singular points of
these curves provides, after finitely many iterations, a surface X where the one dimensional components of
the singular locus have become smooth curves. Additional point blowups will then allow us to assume that
these curves meet transversally [Zal]. We will suppose throughout that we are in this situation. Moreover

3 There seems to be no genuine invariant measuring the distance of scheme from having normal crossings at a point.
The option of factoring the maximal monomial from the defining equation and taking the order of the remaining factor

falls short in positive characteristic when one descends in dimension.
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we will assume for ease of exposition that locally at a given point a, the defining equation of X is in purely
inseparable form

f(@,y,2) = 27" + g(y, 2),

for some power series ¢ in two variables of order > p* at 0. Here, p > 0 will be the characteristic of the
ground field, k is > 1, and x, y, z are chosen local coordinates at a, so that a becomes the origin of the chart.
It is known that this type of equations poses the hardest obstacle for the resolution in positive characteristic.
We will restrict to the case k = 1, i.e., ord f = p, so that

f(LU,y,Z) =aP + g(y,z),

with ord g > p. Note that g, which generates, up to raising to a suitable power, just the coefficient ideal of
finx = 0, is only given up to the addition of p-th powers, since = can be replaced by x + n(y, z) without
changing the geometry of X. We say that g is monomial, or that we are in the monomial case, if g is, up
to addition of p-th powers and up to a suitable multiplication of a unit in the power series ring, equal to a
monomial y"z° in the variables. In this special case one can render, by a sequence of point blowups, the
curves defined by y = 0 and z = 0 in the plane V' : z = 0 transversal to the possibly already existing
exceptional curves. There is then a direct procedure to make the order of f drop below p: If r > pors > p
blow up the curves y = 0, respectively z = 0. It is easily seen by computations in local coordinates that
this yields in finitely many steps » < p and s < p. Either the order of f has meanwhile dropped, or r + s is
still at least p. In the latter case, apply a point blowup. Again, direct computations show that eventually the
order of f drops below p.

These local blowups globalize since we had made at the beginning the singular locus of X normal
crossings. And as the centers are transversal to the existing exceptional curves, the exceptional divisor
stays normal crossings. So, to summarize, the monomial case permits a mostly combinatorial procedure to
decrease the order of f at all points of X. We can therefore discard it in our further consideration. More
precisely, in the general situation, we are led to transform ¢ into a monomial (times a unit) by suitable
blowups.

So let us assume henceforth that g is not monomial at a. The first thing to prove is that there are only
finitely many such points. This is an argument on the upper semicontinuity of the coefficient ideal of f (in
a suitable sense). First, it is shown that the locus of points where ¢ is not monomial is algebraic, and then,
that it cannot contain an entire curve. So the interesting locus consists of finitely many points. It is then
heuristically clear (but has to be proven) that it is not necessary to modify X outside these points in order to
obtain monomality of g everywhere (in which case we would be done). Hence point blowups should (and
will) suffice to achieve this. Let us therefore place ourselves at one of these points where g is not monomial,
call it a. Our objective now is to show that finitely many point blowups make g monomial (if the order of f
does not drop meanwhile below p). This is the most interesting part of the whole argument, and we will be
more explicit on this.

Let g(y, z) be a power series in two variables, considered up to the addition of p-th powers. The blowups
of X and f with centers isolated points have a specific impact on the transformation of g, and the chart
expression of the transform of g can be directly computed (see below). We can therefore forget about f
and concentrate on g. The outset is the search for a measure how far the series g is away from being a
monomial (in the above sense.) This measure inv(g) should be an element of a well ordered set T", and it
should decrease under blowup as long as g is not monomial. Then induction will show that finitely many
point blowups yield monomiality.

The construction of a convenient candidate for inv(g) is built on the inspection of the transformation of
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g under blowup. We shall work in local coordinates y, z at a, and denote by the same letters the induced
coordinates after blowup at our selected reference point a’. It is well known that according to the location
of a’ on the exceptional divisor, there are three different chart expressions for the blowup map (we wish to
use the same coordinates y, z at a for all points a’ simultaneously):

(A) Translational move: (y, z) — (yz + tz, z) with t # 0,
(B) Horizontal move: (y, z) — (yz, z),
(C): Vertical move: (y, z) — (y,yz).

The naming is justified by the transformation of the Newton polygon of g under blowup. It is drawn with
the y-axis vertically, the z-axis horizontally. As g is considered only up to the addition of p-th powers, all
lattice points of N? which are multiples of p, i.e., belong to p - N2, are considered as “holes”. A typical
move of the Newton polygon is depicted in Figure 5.

It is not possible to use blindly the invariant (ord, slope) of the resolution of plane curves in the new
context of polynomials modulo p-th powers. There are points a’ above a where the order remains the same
but the maximal slope increases. A more refined argument is necessary.

The first idea is to replace the order of g by a different local invariant, the height. This is not mandatory,
but simplifies the construction of the second component of the invariant. The height is, roughly speaking,
the vertical extension of the Newton polygon, minimized over all coodinates. For given coordinates vy, 2,
consider the highest and the lowest vertex of the Newton polygon (i.e., those with largest and smallest
y-component, not taking into account vertices which lie in holes). The difference of their y-components is
the height of F' with respect to the coordinates. Then take the minimal value height(g) over all coordinates
at a.

Figure 5: Horizontal move of the Newton polygon under blowup.

This number is easy to control under the moves (B) and (C). Assume that g is not a monomial, i.e., that
the height is not 0. Under horizontal moves the height remains constant, under vertical moves it decreases
at least by two (or the transformed polynomial is already a monomial). The only delicate transformations
are the translational moves. The height may increase, but, fortunately, it can increase at most by 1, adapting
the argument of Moh (for equations of type P + g(y, z) the increase is at most p*~1). The points a’ with
an increase of the height are the so called kangaroo points (they are called metastatic points by Hironaka).

It is now immediate how to argue: Consider a sequence of point blowups. We wish to show that the
height decreases in the long run until it reaches 0. There are two reasons for this. First, it can be shown,
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using a small portion of the characterization of kangaroo points [Ha3], that between two translational moves
with an increase of the height in each of them there must always have been a vertical move. This results in
a total drop of the height from one kangaroo point to the next.

Due to this we can conclude that there can only be a finite number of kangaroo points. Assume that we
have already passed all of them. We are left to show that the height cannot remain constant infinitely many
times. From the above we know that it can remain constant only under translational and horizontal moves.
Using now the maximal slope of the first segment of the Newton polygon (the maximum being taken over
all coordinates realizing the minimal height) it is not too hard to show that the height must eventually drop.
This completes the induction argument.

Appendix
We collect the definitions of the technical terms used in this paper.

Schemes. All schemes appearing in the text are of finite type over an algebraically closed field. Locally in
an affine chart, they are given as the spectrum Spec(A), where A is the quotient of a polynomial ring in n
variables with coefficients in k£ by an ideal J. Readers who are not familiar with the language of schemes
may equally work with algebraic varieties over k, not necessarily irreducible. When working locally at
a point a, we may pass to the completion and thus place ourselves in the formal power series ring in n
variables. This passage carries no harm as long as we ensure that our local constructions are sufficiently
natural so as to produce (by patching) global objects.

If W is a scheme and a a point of W, we denote by Oy the sheaf of regular functions on W and by
Ow,q the stalk of Oy at a. This is a local ring with maximal ideal m,, of functions vanishing at a. Itis a
regular ring if and only if a is a smooth point of W' (the ground field is assumed to be algebraically closed,
hence perfect).

Local coordinates. Local coordinates in a smooth scheme W at a point a are formed by a regular system of
parameters of the local ring Oy, i.e., by elements z, .. ., z,, generating the maximal ideal m,, of Oy q,
where n is the Krull-dimension of Oy, ,. Passing to the completion we get, by Cohen’s Structure Theorem,
a formal power series ring @W,a & k[[x1,...,x,]] generated by z1, ..., z,. Essentially all constructions
in resolution of singularities are compatible with the passage to the completion, thus allowing us to work
with formal power series and to use the Weierstrass Preparation Theorem. Grothendieck has shown that
excellent schemes are the correct context for resolution problems.

Blowups. Let Z be a closed subscheme of W defined by the ideal sheaf I(Z). The blowup of W with center
Z is a morphism 7 : W’ — W which is an isomorphism outside the exceptional divisor Y/ = 771(2)
onto X \ Z and which contracts Y’ to Z. It can be described in various ways, one is the following. Let

g1, - - -, gk be local generators of 1(Z), say on an open affine subset U of W. Consider then the map
v:U\NZ —P1ia— (gi(a):...:gra))
where (u; : ... : u) denote projective coordinates in P*~1. The graph G () of y lives in (U \ Z) x Pk~1.

We define U’, the blowup of U in Z N U, as the Zariski closure of this graph

U =G(H) C U x P2,

It comes with a natural projection 7y : U’ — U, the blowup map, induced from the projection U x P¥—1 —
U on the first components. The equations of U’ in U x P*~! are

u;g;(g) — ujgi(w) =0 for all i and j.
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Different choices of the generators of I(Z) yield isomorphic blowups of U. It is easy to see that these local
constructions patch and give a scheme W' together with a (birational proper) morphism 7 : W' — W.

The preimage Y’ = 7~1(Z) is a hypersurface (a Cartier divisor) in W’ called the exceptional divisor.
Blowups are characterized by a universal property, being a morphism which transforms the center into a
Cartier divisor and is minimal with this property (any other such morphism factors through 7). For more
details, see [EiH].

Permissible centers. If X is a closed subscheme of a smooth ambient scheme W and ifinv: X — I'isa
local upper semicontinuous invariant on X, the center Z C X of blowup is called permissible (with respect
to inv) if inv is constant along Z, i.e., if Z is contained entirely in one stratum of the stratification of X
defined by inv.

Transforms. Let 7 : W' — W be the blowup of a scheme W with center Z and exceptional divisor Y.
Let X be a closed subscheme of W defined by the ideal sheaf .J of Oy. The total transforms X * and J* of
X and J are the pullbacks 7 !(X) and 7*(J) of X and J. The strict transform X * of X is the closure of
775X\ Z)in W', Itis defined by the ideal J* generated locally by the strict transforms f* of elements of
the stalks of .J, where f* = f* - Iy (Y")~°"42(f) (the negative exponent has to be understood in the sense
that there exists, up to units in the local ring, a unique element f*so that f* = f* - Iy (Y”)°"42(£)). The
weak transform J ¥ of .J is the ideal J* - Iy (Y")~°"42(/); the controlled transform .J' with respect to a
control ¢ < ordy(J) is defined as J* - Iy, (Y') €.

Transversality. Two subschemes U and V' are said to meet transversally if they are both smooth along the
intersection U N V' and if the intersection U N V' is scheme-theoretically smooth (in the sense that the sum
of the ideals of U and V' defines a smooth subscheme of 7). Notice that the second condition implies the
first. Transversality is equivalent to saying that the sum of the tangent spaces at an intersection point is
of maximal possible dimension. Notice that in differential geometry, transversality has usually a different
meaning (namely, that the sum of the tangent space equals the tangent space of the ambient space).

A reduced subscheme D of W has normal crossings at a, if it is, locally at a, analytically isomorphic to
a union of coordinate subspaces of affine space A”. There is also an algebraic version of this, see [Ko2].
An arbitrary subscheme D of W has normal crossings at a, if it can be defined, locally at a, by a monomial
ideal in a local coordinate system. A smooth subscheme V" is said to meet D transversally, if the subscheme
D UV defined by the product of the ideals is a normal crossings subscheme. In particular, V' will meet each
component of D transversally.

Coefficient ideal. Let f be a formal power series in n variables, let o be the order of f at 0, and let
[ =2, air(y)z’ be the expansion of f with respect to z,,, where a; f(y) are formal power series in
y = (1,...,2,—1). The coefficient ideal .J,,, (f) of f with respect to x,, is defined as

o—1 ot
Jao () = 2oz (@i g (y)?=7).
In the literature the factorial is often omitted for notational reasons in the exponent, thus allowing rational

exponents. This causes no problems as long as the exponent is interpreted correctly. For ideals K of order
o at 0 we set

1

Jon (K) = Y07 i s ()75, f € K).

If V is the local hypersurface defined in W by x,, = 0 we also say that .J,, (K) is the coefficient ideal of
K in V, written by a slight abuse of notation as Jy (K) (though it depends on the coordinates).
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