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2

Platonic Stars
3 ALEXANDRA FRITZ AND HERWIG HAUSER

4

5 BB
6 ut of beauty, I repeat again that we saw her there
7 shining in company with the celestial forms; and
8 coming to earth we find her here too, shining in
9 clearness through the clearest aperture of sense. For sight is

10 the most piercing of our bodily senses; though not by that is
11 wisdom seen; her loveliness would have been transporting if
12 there had been a visible image of her, and the other ideas, if
13 they had visible counterparts, would be equally lovely. But
14 this is the privilege of beauty, that being the loveliest she is
15 also the most palpable to sight
16 Plato, Phaedrus
17

18 EXAMPLE 1 The picture above shows the zero set of the

19 following equation,

f ðu; vÞ ¼ ð1� uÞ3 � 5

27
cu3 þ cv; with c 6¼ 0; ð1Þ

2121 where

uðx; y; zÞ ¼ x2 þ y2 þ z2;

vðx; y; zÞ ¼ �zð2x þ zÞðx4 � x2z2 þ z4 þ 2ðx3z � xz3Þ
þ 5ðy4 � y2z2Þ þ 10ðxy2z � x2y2ÞÞ: ð2Þ

2323 For any value c[ 0, the zero set of this polynomial, such
24 as the one displayed in figure 1, is an example of a surface
25 that we want to call a ‘‘Platonic star’’. This particular
26 example we call a ‘‘dodecahedral star’’ because it has its
27 cusps at the vertices of a regular dodecahedron and has the
28 same symmetries. We refer to the familiar Platonic solid
29 with 12 regular pentagons as faces, 30 edges, and 20 ver-
30 tices. See figure 2e.
31 The following article deals with the construction of sur-
32 faces such as the one above.Wewill always use polynomials

33such as u and v from above. Their role will become clear
34when we introduce some invariant theory.
35The general task is to construct an algebraic surface, that
36is, the zero set X = V(f) of a polynomial f 2 R½x; y; z�, with
37prescribed symmetries and singularities.1 By ‘‘prescribed
38symmetries’’ we mean that we insist the surface should be
39invariant under the action of some finite subgroup of the real
40orthogonal group O3ðRÞ . Most of the time we will consider
41the symmetry group of some Platonic solid S � R

3.
42The symmetry group of a set A � R

3 is the subgroup of
43the orthogonal group O3ðRÞ, formed by all matrices that
44transport the set into itself, that is, SymðAÞ ¼ fM 2
45O3ðRÞ; MðaÞ 2 A for all a 2 Ag � O3ðRÞ. (Often the sym-
46metry group is defined as a subgroup of SO3 instead of O3.
47The subgroup of O3 we consider here is referred to as the
48full symmetry group.)
49A Platonic solid is a convex polyhedron whose faces are
50identical regular polygons. At each vertex of a Platonic
51solid the same number of faces meet. There are exactly five
52Platonic solids, the tetrahedron, octahedron, hexahedron

53(or cube), icosahedron, and dodecahedron. See figure 2.
54Two Platonic solids are dual to each other if one is the
55convex hull of the centers of the faces of the other. The
56octahedron and the cube are dual to each other, as are the
57icosahedron and the dodecahedron. The tetrahedron is
58dual to itself. Dual Platonic solids have the same symmetry
59group. For a more rigorous and more general definition of
60duality of convex polytopes see [7, p. 77].
61The Platonic solids are vertex-transitive polyhedra: their
62symmetry group acts transitively on the set of vertices. This
63means that for each pair of vertices there exists an element
64of the symmetry group that transports the first vertex to the
65second. One says that all vertices belong to one orbit of the
66action of the symmetry group.

Citation of Phaedrus from [8].

Supported by Project 21461 of the Austrian Science Fund FWF.

Figures 12 and 13 are generated with Wolfram Mathematica 6 for Students. All the other figures are produced with the free ray-tracing software Povray,

http://www.povray.org.

1FL01 1Of course a lot of people have been working on construction of surfaces with many singularities, also via symmetries. We want to mention, for example, Oliver Labs and

1FL02 Gert-Martin Greuel.
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67 A convex polyhedron that has regular polygons as faces
68 and that is vertex-transitive is either a Platonic solid, a prism,
69 an antiprism, or one of 13 solids called Archimedean solids.2

70 One can extend the notion of duality as we defined it to
71 Archimedean solids. Their duals are not Archimedean any
72 longer; they are called Catalan solids3 or just Archimedean

73 duals. Each Archimedean solid has the same symmetries as
74 one of the Platonic solids, but with this proviso: in two
75 cases we do not get the full symmetry group but just the
76 rotational symmetries.
77 Here we will deal with just three groups: the symmetry
78 group of the tetrahedron Td, that of the octahedron and
79 cube Oh, and that of the icosahedron and dodecahedron Ih.
80 The Catalan solids are not vertex-transitive but are obvi-
81 ously face-transitive.
82 By ‘‘prescribing singularities’’ of a surface we mean that
83 we insist the zero set should havea certain numberof isolated
84 singularities of fixed type, at a priori chosen locations. A

85singular point, or singularity, of an algebraic surface is a
86point where the surface is locally not a manifold. This signi-
87fies that the first partial derivatives of the definingpolynomial
88disappear at the point. Isolatedmeans that in a neighborhood
89of the singularity there are no other singular points.
90An isolated surface singularity is said to be of type A2 if it
91has (up to local analytic coordinate transformations) the
92equation x3 + y2 + z2 = 0. The corresponding zero set is a
93two-dimensional cusp Y as displayed in figure 3a. Note that
94the cusp, in these coordinates, is a surface of rotation. Its
95axis of rotation is the x-axis. We call that axis the tangent-

96line of the cusp Y at the origin. (Clearly it is not the tangent-
97line in the usual, differential-geometric sense. The origin is a
98singularity of the cusp, that is, the surface is not a manifold
99there, so that differential-geometric methods fail there.) One
100can also view this ‘‘tangent-line’’ as the limit of secants of Y
101joining one point of intersection at the singular point 0 to
102another point of intersection moving toward 0. Now if X is
103any variety with a singularity of type A2 at a point p, then we
104define the tangent-line at this point analogously. Note that
105we are no longer dealing with a surface of rotation.
106We will choose the location of the singular points so that
107they all form one orbit of the action of the selected group. If
108we use the symmetry group of a Platonic solid, we can
109choose, for example, the vertices of the corresponding
110Platonic or Archimedean solid.
111Now we are ready to define our ‘‘object of desire’’, the
112‘‘Platonic star’’. We want to emphasize that the following is
113not a rigorous mathematical definition.
114Let S be a Platonic (Archimedean) solid and m the
115number of its vertices. Denote its symmetry group in O3ðRÞ
116by G. An algebraic surface X that is invariant under the
117action of G and has exactly m isolated singularities of type
118A2 at the vertices of the solid, is called a Platonic (Archi-

119medean) star. We require that the cusps point outward,
120otherwise we speak of an anti-star. In both cases for all
121singular points p the tangent-line of X at p should be the
122line joining the origin to p.

.........................................................................................................................................................
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Figure 1. Dodecahedral star with parameter value c = 81.

2FL01 2Often the Archimedean solids are defined as polyhedra that have more than one type of regular polygons as faces but do have identical vertices in the sense that the

2FL02 polygons are situated around each vertex in the same way. This definition admits (besides the Platonic solids, prisms, and antiprisms) an additional 14th polyhedron

2FL03 called the pseudo-rhombicuboctahedron. This is a fact that has often been overlooked. The sources we use, namely [3, p. 47–59] and [4, p. 156 and p. 367], are not very

2FL04 clear about it. See [4].

3FL01 3Named after Eugène Charles Catalan, who characterized certain semi-regular polyhedra.
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(a) The A2-singularity,

x3 + y2 + z2 = 0.

(b) Dodecahedral star and

dodecahedron.

Figure 3. The two-dimensional cusp and the dodecahedral star.

(a) Tetrahedron. (b) Octahedron. (c) Hexahedron. (d) Icosahedron. (e) Dodecahedron.

Figure 2. The five Platonic solids.

(a) c = −300. (b) c = −30. (c) c = −15. (d) c = −3. (e) c = −1.5. (f) c = −27 /32.

(g) c = −0.6. (h) c = −0.3. (i) c = −0.03. (j) c = 0. (k) c = 0.003. (l) c = 0.03.

(m) c = 0.3. (n) c = 3. (o) c = 30. (p) c = 81. (q) c = 300. (r) c = 3000.

Figure 4. Dodecahedral star with varying parameter value c, for c B -27/32 the surfaces are clipped by a sphere of radius 4.5.

� 2010 Springer Science+Business Media, LLC
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123 Later we will see that the algebraic surfaces defined by
124 equation (1) from the introductory example satisfy by
125 construction the conditions of the definition above. For
126 now we ask the reader to consider the illustrations, espe-
127 cially figure 3b, that suggest that this claim is true. If we
128 choose c[ 0 we get stars, for c\ 0 anti-stars. The choice
129 c = 0 yields an ordinary sphere. See figure 4 for the effect
130 of varying the parameter c. Note that the singularities stay
131 fixed on a sphere of radius one for all parameter values, so
132 for c\ 0 we have to zoom out to be able to show the
133 whole picture. For c = -27/32 the anti-star has a point at
134 infinity in the direction of the z-axis, which is among the
135 normals of the faces of the dodecahedron. By symmetry it
136 will also have points at infinity in the direction of the
137 normals of the remaining faces. The pictures suggest that
138 for c[-27/32 the dodecahedral anti-stars and stars are
139 bounded while they remain unbounded for c\ -27/32. It
140 might be interesting to refine the definition of stars and
141 anti-stars by demanding that the surfaces be bounded. In
142 this article we shall not consider this question.

143 Some Basics from Invariant Theory
144 In order to explain our construction of the equations for the
145 stars we need a few results from invariant theory. Those
146 who are familiar with the topic can proceed to the next
147 section; those who want to know more details than we give
148 can refer to [10].
149 For ease of exposition, we work over the complex
150 numbers C. Let there be given a finite subgroup G of
151 GLnðCÞ. Typically, this will be the symmetry group of a
152 Platonic solid, allowing also reflections.
153 The group G acts naturally on Cn by left-multiplication.
154 This induces an action of G on the polynomial ring
155 C½x1; . . .; xn�, via p � f(x) = f(p � x). A polynomial f is called
156 invariant with respect to G if p � f = f for all p [ G. For
157 instance, if G is the permutation group Sn on n elements,
158 the invariant polynomials are just the symmetric ones.
159 The collection of all invariant polynomials is clearly
160 closed under addition and multiplication, and thus forms
161 the invariant ring

C½x�G :¼ ff 2 C½x�; f ¼ p � f ; for all p 2 Gg:

163163 In the nineteenth century it was a primary goal of
164 invariant theory to understand the structure of these rings.
165 Hilbert’s Finiteness Theorem asserts that for finite groups,
166 C½x�G is a finitely generated C-algebra: There exist invariant
167 polynomials g1ðxÞ; . . .; gkðxÞ such that any other invariant
168 polynomial h is a polynomial in g1, …, gk, say hðxÞ ¼
169 Pðg1ðxÞ; . . .; gkðxÞÞ. Said differently,

C½x�G ¼ C½g1; . . .; gk�:

171171 In general, the generatorsmaybe algebraically dependent,
172 that is, may satisfy an algebraic relation R(g1, . . ., gk) = 0
173 for some polynomial Rðy1; . . .; ykÞ 6� 0. It is important to

174understand these relations. As a first result, it can be shown
175thatC½x�G always contains some n algebraically independent
176elements, say u1, . . ., un. These need not generate the whole
177ring. But it turns out that u1, . . ., un can be chosen so that
178C½x�G is an integral ring extension of its subringC½u1; . . .;un�.
179This is Noether’s Normalization Lemma.
180In particular, C½x�G will be a finite C½u1; . . .;un� -module.
181A theorem that probably first appeared in an article by
182Hochster and Eagon [5] asserts that for finite groups G, the
183invariant ring is even a free C½u1; . . .;un� -module (one says
184that C½x�G is a Cohen-Macaulay module). That is to say,
185there exist elements s1; . . .; sl 2 C½x�G such that C½x�G ¼
186al

j¼1 sj � C½u1; . . .;un�. This decomposition is called the
187Hironaka decomposition; the ui are called primary

188invariants4 and the sj secondary invariants.5 Therefore
189each invariant polynomial f has a unique decomposition

f ¼
X

l

j¼1

sjPjðu1; . . .;unÞ;

191191for some polynomials Pj 2 C½x1; . . .; xn�.
192Things are even better if G is a reflection group. An
193element M 2 GLðCnÞ is called a reflection if it has exactly
194one eigenvalue not equal to one. A finite subgroup of
195GLðCnÞ is called a reflection group if it is generated by
196reflections. In a reflection group, C½x�G is even generated
197by n algebraically independent polynomials u1, . . ., un and
198vice versa (Theorem of Sheppard-Todd-Chevalley) – so that
199the decomposition reduces to

f ¼ Pðu1; . . .;unÞ

201201for a uniquely determined polynomial P.
202Here is howwe shall go about constructing the equations
203for our Platonic stars: Find a polynomial in the invariant
204generators such that f has the required geometric properties.
205(Remember that when we speak of symmetry groups we do
206not restrict to proper rotations. The symmetry groups of the
207Platonic solids as we defined them are reflection groups. By
208the Sheppard-Todd-Chevalley Theorem, this can be checked
209by calculating the primary and secondary invariants.) Even
210though, for each f, the polynomialP is unique, there could be
211several f sharing the properties. This phenomenon will
212actually occur; it is realized by a certain flexibility in choosing
213the parameters of our equations. The families of stars which
214are thus obtained make certain parameter values look more
215natural than others. This is the case for the plane symmetric
216star with four vertices, where only one choice of parameters
217yields a hypocycloid, the famous Astroid (see example 9).
218For surfaces, the appropriate choice of parameters is still an
219open problem. This raises also the question of whether (in
220analogy to the rolling small circle inside a larger one for the
221Astroid) there is a recipe for contructing the Platonic stars
222with distinguished parameter values. We don’t know the
223answer.

4FL01 4In the following chapter on the construction and in the examples, we write u, v, w instead of u1, u2, u3. Note that sometimes we do not need all three of them, as in the

4FL02 introductory example of the dodecahedron; but a general invariant polynomial may depend on all three.

5FL01 5There exist algorithms to calculate these invariants. One is implemented in the free Computer Algebra System SINGULAR. See http://www.singular.uni-kl.de/index.html

5FL02 for information about SINGULAR and http://www.singular.uni-kl.de/Manual/latest/sing_1189.htm#SEC1266 for instruction.

THE MATHEMATICAL INTELLIGENCER

Journal : Large 283 Dispatch : 8-3-2010 Pages : 14

Article No. : 9147
h LE h TYPESET

MS Code : TMIN-200 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f

http://www.singular.uni-kl.de/index.html
http://www.singular.uni-kl.de/Manual/latest/sing_1189.htm#SEC1266


U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

224 Construction of Stars
225 In this section the group G � O3ðRÞ we consider once
226 again one of the three real symmetry groups of the Platonic
227 solids. If the scalars of the input of the algorithms for the
228 calculation of primary and secondary invariants are con-
229 tained in some subfield of C, then the scalars of the output
230 are also contained in this subfield, see [10, p.1]. In our
231 examples the inputs are real matrices (the generators of G)
232 and the outputs are the primary and secondary invariants
233 that generate the invariant ring as a subring of C½x1; . . .; xn�.
234 They even generate the real invariant ring, R½x1; . . .; xn�G .
235 See the last section ‘‘Technical Details’’ for a proof.
236 The symmetry groups of the Platonic solids are reflec-
237 tion groups. This implies that we have primary invariants
238 fu; v;wg � R½x; y; z� such that R½x; y; z�G ¼ R½u; v;w�. In
239 the following we always assume that we have already
240 constructed a set of homogeneous primary invariants
241 fu; v;wg � R½x; y; z�.
242 Our aim is to construct a polynomial f in the invariant
243 ring of G with prescribed singularities. By the results from
244 the previous section we may write the polynomial uniquely
245 in the form

f ðu; v;wÞ ¼
X

id1þjd2þkd3 � d

aijku
ivjwk; ð3Þ

247247 where d1 ¼ degðuÞ;d2 ¼ degðvÞ;d3 ¼ degðwÞ, and aijk 2 R.
248 Such a polynomial has the desired symmetries, so we may
249 move on and prescribe the singularities. They should lie at
250 the vertices of a Platonic or an Archimedean solid. Let S be
251 a fixed Platonic (or Archimedean) solid. In the introduction
252 we mentioned that these solids are vertex-transitive. This
253 implies that the algebraic surface corresponding to the
254 polynomial (3), which is an element of the invariant ring of
255 the symmetry group of S, has to have the same local
256 geometry at each vertex of S. Therefore it is sufficient to
257 choose one vertex and impose conditions on f(u, v, w)
258 guaranteeing an A2-singularity there.
259 We can always suppose that S has one vertex at
260 p := (1, 0, 0), otherwise we perform a coordinate change
261 to make this true. Having a singularity is a local property of
262 the surface, so we have to look closer at f at the point p. We
263 do that by considering the Taylor expansion at p, that is,
264 substitute x + 1 for x in f(u(x, y, z), v(x, y, z), w(x, y, z)).
265 We have the following necessary condition for a singularity
266 of type A2, with c1 and c2 being real constants not equal to
267 zero, see [1, p.209].

Fðx; y; zÞ
:¼ f ðu1ðx þ 1; y; zÞ;u2ðx þ 1; y; zÞ;u3ðx þ 1; y; zÞÞ
¼ c1ðy2 þ z2Þ þ c2x

3 þ higher order terms: ð4Þ

269269 ‘‘Higher order terms’’ here refers to all terms that have
270 weighted order, with weights (1/3, 1/2, 1/2), greater than
271 1—that is, all monomials xi yj zk with i/3 + j/2 + k/2[ 1.
272 If c1 and c2 have the same sign, the cusps will ‘‘point
273 outward’’, that is, we obtain a star. If they have different
274 signs the cusps will ‘‘point inward’’.
275 Now expanding F(x, y, z) and comparing the coeffi-
276 cients of x, y, and z with the right-hand side of equation
277 (4), we obtain a system of linear equations in the unknown

278coefficients of f from (3), that is, in our notation the
279parameters aijk. Additionally we obtain inequalities that
280give us information about whether we will obtain a star or
281an anti-star. In general this system of equations will be
282underdetermined. We will be left with free parameters, as
283we already saw in the introductory example of the
284dodecahedral star.
285Evidently, in this construction we have to choose the
286degree d of the indetermined polynomial f. If we choose it
287too small, the system of equation may not have a solution;
288but we want d to be as small as possible subject to this. The
289degree d has to be greater or equal to three, clearly. It
290depends on the degrees of the primary invariants ui, as we
291will see in the examples.
292The same construction should work for any dimension
293n. The case of plane curves, n = 2, is easier to handle.
294Even there the results are quite nice, as we will see in the
295section on ‘‘plane dihedral stars’’. An interesting general-
296ization for n = 4 would be to calculate ‘‘Schläfli stars’’,
297corresponding to the six convex regular polytopes in four
298dimensions, which were classified by Ludwig Schläfli, [2, p.
299142].
300We now conclude this section by demonstrating the
301above procedure in detail in the example of the octahedron
302and the cube. More examples will follow in the next sec-
303tion, namely, the remaining Platonic stars and some
304Archimedean stars. We will also present some selected
305surfaces with dihedral symmetries in real three-space.

306EXAMPLE 2 (Octahedral and Hexahedral Star). The

307octahedron (the Platonic solid with 6 vertices, 12 edges,

308and 8 faces) and its dual the cube (or hexahedron - with 8

309vertices, 12 edges, and 6 faces) have the same symmetry

310group Oh, of order 48. We choose coordinates x, y, and z of

311R
3 such that in these coordinates the vertices of the octa-

312hedron are (±1, 0, 0), (0, ±1, 0), and (0, 0, ±1). Then Oh is

313generated by two rotations r1, r2 around the x- and

314the y-axes by p/2, together with the reflection s in the

315xy-plane:

r1 ¼
1 0 0

0 0 �1

0 1 0

0

B

@

1

C

A
; r2 ¼

0 0 �1

0 1 0

1 0 0

0

B

@

1

C

A
;

s ¼
1 0 0

0 1 0

0 0 �1

0

B

@

1

C

A
:

317317These matrices are the input for the algorithm imple-
318mented in SINGULAR that computes the primary and
319secondary invariants. In this example the primary invariants
320that generate the invariant ring are the following (although
321it is easy to see that these three polynomials are invariant, it
322is not evident that they are primary invariants, that is,
323generate the invariant ring as an algebra):

uðx; y; zÞ ¼ x2 þ y2 þ z2;

vðx; y; zÞ ¼ x2y2 þ y2z2 þ x2z2;

wðx; y; zÞ ¼ x2y2z2:

ð5Þ

� 2010 Springer Science+Business Media, LLC
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325325 Now how low can the degree be of our indeterminate
326 polynomial? (Here and in the rest of this article degree
327 means the usual total degree in x, y, z.) Clearly it must be
328 even. A degree four polynomial yields no solvable system
329 of equations. Let us try a polynomial of degree six,

f ðu; v;wÞ ¼ 1þ a1uþ a2u
2 þ a3u

3 þ a4uv þ a5v þ a6w:

331331 We substitute x + 1 for x and expand the resulting
332 polynomial F(x, y, z) = f(u(x + 1, y, z), v(x + 1, y, z),
333 w(x + 1, y, z)). Next we collect the constant terms and
334 the linear, quadratic, and cubic terms, and compare them
335 with the right-hand side of (4). This yields the following
336 system of linear equations:

Constant term of F : 1þ a1 þ a2 þ a3 ¼ 0;

Coefficient of x : 2a1 þ 4a2 þ 6a3 ¼ 0;

Coefficient of x2
: a1 þ 6a2 þ 15a3 ¼ 0;

Coefficient of y2and z2 : a5 þ a1 þ a4 þ 2a2 þ 3a3 ¼ c1;

Coefficient of x3
: 4a2 þ 20a3 ¼ c2:

ð6Þ

338338 Since the monomials y, z, xy, xz, yz do not appear, we do
339 not obtain further equations from them.
340 Solving the first three equations from the above system
341 yields the polynomial (7) with three free parameters. In
342 addition we get an inequality from the condition that the
343 coefficient of x3must have the same sign as the coefficient of
344 y2 and z2 if we want to obtain a star. Substituting the solution
345 of the first three equations yields c1 = a4 + a5 and c2= -8.
346 We impose a4 + a5 = 0 to obtain a star or an anti-star:

f ðu; v;wÞ ¼ ð1� uÞ3 þ a4uv þ a5v þ a6w;

with a4 þ a5 6¼ 0: ð7Þ

348348 If we allowed all three parameters to be zero we would
349 obtain the sphere of radius one. We have already made clear
350 that for a4 + a5 = 0 the zero set of (7) cannot have singu-
351 larities of type A2, so it must either be smooth or have
352 singularities of a different type. If we choose a4 = c, a5 = 0
353 and a6 = -9c, c= 0, the zero set is again not an octahedral
354 star, for it has too many singularities; we will describe this
355 phenomenon in more detail after the example of the hexa-
356 hedral star. For the other choices of parameters the
357 corresponding zero sets are octahedral stars for a4 + a5\ 0,
358 or anti-stars for a4 + a5[ 0. See figure 5a. Sometimes
359 additional components appear and the stars or anti-stars
360 become unbounded. In all examples presented in this
361 article, especially when there is more than one free param-
362 eter, special behaviors (such as additional components,
363 unboundedness, ormaybemore singularities than expected)
364 may occur for special choices of the free parameters. Most
365 pictures presented are merely based on (good) choices of
366 parameters. As we already mentioned, it would be interest-
367 ing to find conditions that prevent this behavior so that we
368 could prescribe boundedness as well as irreducibility in the
369 definition of a star.
370 Now we turn to the Platonic solid dual to the octahe-
371 dron, namely the cube. If we use the same coordinates as
372 before, it has vertices at ð	 1

ffiffi

3
p ;	 1

ffiffi

3
p ;	 1

ffiffi

3
p Þ. But as we

373 already mentioned, we prefer to have a vertex at (1, 0, 0),

374so we perform a rotation to achieve this, and write the
375invariants in the new coordinates. With these invariants we
376can proceed as in the example of the octahedron. Again we
377get no solution with degree four and must use a polynomial
378of degree six. After solving the system of equations we
379perform the inverse coordinate change and obtain the
380following polynomials (8) as candidates for hexahedral
381stars or anti-stars:

f ðu; v;wÞ ¼ 1� 3uþ a1u
2 þ a2u

3 þ a3uv þ ð9� 3a1Þv
�9ð3þ a3 þ 3a2Þw; ð8Þ

383383with 3a1 + 9a2 + 2a3 = 0. For a1 = 3, a2 = -1, and
384a3 = 0 we obtain the sphere. Other choices such that
3853a1 + 9a2 + 2a3 = 0 may give singularities but cannot give
386A2-singularities. Again there is a choice of parameters,
387namely a1 = 3, a2 = -1 and a3 = c = 0, for which the
388surface has too many singularities. We obtain the same
389object as in the example of the octahedral star, with equa-
390tion (9) below. In the other cases we obtain a hexahedral
391star for 3a1 + 9a2 + 2a3\ 0 (figure 5b), or anti-star for
3923a1 + 9a2 + 2a3[ 0, even though, as in the example of the
393octahedral stars, additional components may appear.//
394Before proceeding, let us say more about the surface (9)
395that emerged as a special case both of the octahedral and
396the hexahedral stars. It has 14 singularities, exactly at the
397vertices of the octahedron and the cube, see figure 6,

f ðu; v;wÞ ¼ ð1� uÞ3 þ cuv � 9cw; with c 6¼ 0: ð9Þ

399399We will call this object a 14-star or 14-anti-star for c\ 0
400or c[ 0, respectively. The parameter value c = 0 yields
401obviously a sphere. See figure 7 for an illustration of the
402dependence on the parameter.
403This star does not correspond to a Platonic or Archi-
404medean solid, but to the polyhedron S that is the convex
405hull of the vertices of a hexahedron and an octahedron that
406have all the same Euclidean diameter. This polyhedron has
40714 vertices, 36 edges, and 24 faces, which are isosceles
408triangles. See figure 6b. It is remarkable that it appears
409here, for the symmetry group Oh does not act transitively
410on its vertices! The vertices of the hexahedron form one
411orbit, the vertices of the octahedron another. If we fol-
412lowed the program of this paper and sought such a star, we
413would need to fix two points, one in each orbit, and

(a) Octahedral star, a4 = −100,

a5 = 0, a6 = 0.

(b) Hexahedral star, a1 = −100,

a2 = 0, a3 = 0.

Figure 5. Octahedral and hexahedral star.
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414 prescribe singularities at both. This would lead to a larger
415 system of linear equations.
416 Note, by the way, that if the vertices of the octahedron
417 and the cube have different Euclidean norms of a certain
418 ratio, namely 2=

ffiffiffi

3
p

, the convex hull is a Catalan solid,
419 called the rhombic dodecahedron (14 vertices, only 12
420 faces because the triangles collapse in pairs into rhombi,
421 and 24 edges). This is the dual of the Archimedean solid
422 called the cuboctahedron that will be discussed later.

423 Further Platonic and Archimedean Stars
424 EXAMPLE 3 (Tetrahedral star). The tetrahedron is the

425 Platonic solid with 4 vertices, 6 edges, and 4 faces. Its

426 symmetry group Td has 24 elements. If we choose coordi-

427 nates x, y, z such that one vertex is (1, 1, 1), the invariant

428 ring is generated by the primary invariants displayed in

429 (10). One could also choose (1, 0, 0) as a vertex to avoid a

430 coordinate change, but then the invariants would be more

431 complicated. Note how different the primary invariants are

432 from those of the octahedron and the hexahedron (5).

uðx; y; zÞ ¼ x2 þ y2 þ z2;

vðx; y; zÞ ¼ xyz;

wðx; y; zÞ ¼ x2y2 þ y2z2 þ z2x2:

ð10Þ

434434Here a degree three polynomial yields no solution but
435degree four already suffices:

f ðu; v;wÞ ¼ 1� 2uþ cu2 þ 8v � ð3cþ 1Þw;
with c 6¼ 1: ð11Þ

437437For c\ 1 we obtain a star, for c[ 1 an anti-star. Its
438singular points (for c = 1) are (1, 1, 1), (-1, -1, 1), (1,
439-1, -1), and (-1, 1, -1). If we choose c = 1 in (11) the
440polynomial f has four linear factors, see figure 8j:

f ¼ ðx � 1þ z � yÞðx � 1� z þ yÞðx þ 1� z � yÞ
� ðx þ 1þ z þ yÞ:

442442For very small c-values there seem to appear four
443additional cusps at the vertices of a tetrahedron dual to the
444first one; but these points stay smooth for all c2R. For
4450\ c\ 1 the zero set of our polynomial has additional
446components besides the desired ‘‘star shape’’. For c[ 1 we
447get anti-stars, see figure 8. Note that for c[ 0 the surfaces
448are unbounded. So unlike the previous examples, there are
449no bounded anti-stars.

450EXAMPLE 4 (Icosahedral star). The icosahedron is the

451Platonic solid with 12 vertices, 30 edges, and 20 faces.

452The symmetry group Ih of the icosahedron and its dual, the

453dodecahedron, has 120 elements. Its invariant ring is gen-

454erated by the polynomials (2) from the first example,

455together with a third one (12),

wðx;y;zÞ¼ 4x2þz2�6xz
� �

�
�

z4�2z3x�x2z2þ2zx3þx4�25y2z2

�30xy2z�10x2y2þ5y4
�

�
�

z4þ8z3xþ14x2z2�8zx3þx4�10y2z2

�10x2y2þ5y4Þ: ð12Þ

457457We point out that both invariants v and w factorize (over
458R) into six, respectively ten, linear polynomials. The zero sets
459of these linear polynomials are related to the geometry. To
460explain this, we introduce a new terminology: Given a Pla-
461tonic solid P, we call a plane through the origin a centerplane

(a) 14-star, c = −50. (b) Polyhedron S corresponding

to the 14-star.

Figure 6. 14-star and the corresponding convex polyhedron.

(a) c = −10000. (b) c = −1000. (c) c = −100. (d) c = −10. (e) c = −1. (f) c = −0.1.

(g) c = 0. (h) c = 0.1. (i) c = 1. (j) c = 3.5. (k) c = 4. (l) c = 5.

Figure 7. 14-star and anti-star, for c C 4 the surfaces are clipped by a sphere with radius 5.
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462 of P if it is parallel to a face of the solid. The dodecahedron
463 has twelve faces and six pairs of parallel faces, so it has six
464 centerplanes. They correspond to the six linear factors of the
465 second invariant v. Analogously the icosahedron has ten
466 centerplanes, which give the linear factors of w. We have
467 written out the factorization in the last section, see (38).
468 For the dodecahedral and the icosahedral star the
469 ‘‘smallest possible degree’’ is six. The third invariant has
470 degree ten, so we do not use it in either case. An equation
471 for the icosahedral star is the following:

f ðu; v;wÞ ¼ ð1� uÞ3 þ cu3 þ cv; with c 6¼ 0: ð13Þ

473473 Figure (9) shows icosahedral stars (c\ 0) and anti-stars
474 (c[ 0) for various c-values. For c = 0 we get a sphere of

475radius one. For all c = 0 the 12 singularities lie on this
476sphere. For c = 27/32 the surface has points at infinity in the
477direction of normals to the faces of the corresponding ico-
478sahedron. Note that this is just the negative value of c for
479which the dodecahedral stars are unbounded. The illustra-
480tions suggest that for c[ 27/32 the surfaces become
481unbounded while they are bounded for c\ 27/32.

482EXAMPLE 5 (Cuboctahedral star). The cuboctahedron is

483the Archimedean solid with 14 faces (6 squares and 8

484equilateral triangles), 24 edges, and 12 vertices. See fig-

485ure 11b. Its symmetry group is that of the octahedron and

486cube. We use the invariants (5). Our construction yields a

487polynomial of degree six, with three free parameters:

(a) c = −1000. (b) c = −100. (c) c = −10. (d) c = −0.1. (e) c = 0.

(f) c = 0.1. (g) c = 0.5. (h) c = 0.8. (i) c = 27/ 32. (j) c = 0.9.

Figure 9. Icosahedral star and anti-star, with varying parameter c; for c[ 27/32 the surfaces are clipped by a sphere with

radius 11.

(a)

c = −100000.

(b) c = −1000. (c) c = −100. (d) c = −3. (e) c = −1. (f) c = 0.

(g) c = 0.3. (h) c = 0.6. (i) c = 0.98. (j) c = 1. (k) c = 1.02. (l) c = 3.

Figure 8. Tetrahedral star (and anti-star) with varying parameter value c; for c[ 0 the images are clipped by a sphere with

radius 5.
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f ðu; v;wÞ ¼ 1� 3uþ au2 þ ð12� 4aÞv þ bu3

� ð4þ 4bÞuv þ cw;
ð14Þ

489489

490 with a + b = 2 and 8(a + b) - c = 16. For a = 3,
491 b = -1, and c = 0 we obtain a sphere. In this example we
492 have a new kind of behavior. We always got inequalities
493 from the condition that the coefficients of x3 and y2 + z2 in
494 the Taylor expansion of f in (1, 0, 0) should have the same
495 sign. In this case the coefficient of x3 is -8, but y2 and
496 z2 have different coefficients, namely a + b - 2 and
497 16 - 8(a + b) + c, respectively. So if both are negative we
498 obtain stars, see figure 11a; if both are positive, anti-stars;
499 but if they have different signs, we will have a ‘‘new’’
500 object, whose singularities look, up to local analytic coor-
501 dinate transformations6, such as x3 + y2 - z2 = 0, see
502 figure 10. The singularities always lie on a sphere of radius
503 one.

504 EXAMPLE 6 (Soccer star). The truncated icosahedron is

505 the Archimedean solid which is obtained by ‘‘cutting off the

506 vertices’’ of an icosahedron. It is known as the pattern of a

507 soccer ball. It has 32 faces (12 regular pentagons and

508 20 regular hexagons), 60 vertices, and 90 edges. See

509 figure 11d. Its symmetry group is the icosahedral group

510 Ih. For this example we do need the third invariant, because

511 the first polynomial that yields a solvable system of

512 equations is of degree ten. We obtain the following equa-

513 tion with four free parameters, in the invariants (2) and

514 (12):

515

f ðu; v;wÞ

¼ 1þ
�

128565þ 115200
ffiffiffi

5
p

1295029
c3 þ

49231296000
ffiffiffi

5
p

� 93078919125

15386239549

c4 � c1 � 3c2 � 3

�

uþ

þ
��230400

ffiffiffi

5
p

� 257130

1295029
c3 þ

238926989250� 126373248000
ffiffiffi

5
p

15386239549

c4 þ 3c1 þ 8c2 þ 3

�

u2þ

þ
�

115200
ffiffiffi

5
p

þ 128565

1295029
c3 þ

91097280000
ffiffiffi

5
p

� 172232645625

15386239549

c4 � 3c1 � 6c2 � 1

�

u3þ

þ c3 þ
121075� 51200

ffiffiffi

5
p

11881
c4

� �

v þ 102400
ffiffiffi

5
p

� 242150

11881
� 2c3

� �

� uv þ c1u
4 þ c2u

5 þ c3u
2v þ c4w;

with c4 6¼ 0 and bðc1; c2; c3; c4Þ
:¼ ð991604250� 419328000

ffiffiffi

5
p

Þc4 þ 20316510c3þ
þ ð135776068� 121661440

ffiffiffi

5
p

Þc2
þ ð33944017� 30415360

ffiffiffi

5
p

Þc1 þ 30415360
ffiffiffi

5
p

� 33944017 6¼ 0: ð15Þ

517517We obtain stars if we choose c1, c2, c3, and c4 such that
518c4 and b(c1, c2, c3, c4) have the same sign. Otherwise we
519obtain anti-stars. See figure 11c.

520Plane Dihedral Stars
521Analogous to the Platonic and Archimedean stars in three
522dimensions, we will define plane stars. Let P be a regular
523polygon with m vertices. Its symmetry group in O2ðRÞ is
524the dihedral group denoted by Dm. It is of order 2m. A
525plane m-star is a plane algebraic curve that is invariant
526under the action of the dihedral group Dm and has exactly
527m singularities of type A2 (that is, with equation x3 +

528y2 = 0) at the vertices of P, ‘‘pointing away form the origin’’;
529otherwise, that is, if the cusps ‘‘point towards the origin’’, we
530speak of anm-anti-star. In the examples presented here the
531singularities will be at the mth roots of unity.
532If we consider the dihedral groups as subgroups of
533O2ðRÞ, they are reflection groups. This is not true if we
534view them as subgroups of O3ðRÞ, as we do in the next
535batch of examples.

Figure 10. The zero set of x3 + y2 - z2 = 0.

(a) Cuboctahedral star,

a = 0, b = 0, c = −100.

(b) Cuboctahedron. (c) Soccer star,

c1 = −100, c2 = −100,

c3 = −100, c4 = −100.

(d) Truncated

icosahedron.

Figure 11. Two Archimedean solids and stars.

6FL01 6But if we allow complex local analytic coordinate transformations, the singularities are still of type A2.
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536 There is another way to construct plane stars, namely as
537 hypocycloids. A hypocycloid is the trace of a point on a
538 circle of radius r that is rolling within a bigger circle of
539 radius R. If the ratio of the radii is an integer, R : r = k, then
540 the curve is closed and has exactly k cusps but no self-
541 intersections. Hypocycloids have a quite simple trigono-
542 metric parametrization (16):

u 7!
�

ðk � 1Þr cosuþ r cos ðk � 1Þu;
ðk � 1Þr sinu� r sin ðk � 1ÞuÞ; u 2 ½0; 2p�: ð16Þ

544544 There are algorithms for the implicitization of trigono-
545 metric parametrization, see [6]. It turns out that hypocycloids
546 are stars in our sense: they have the correct symmetries and
547 singularities of type A2. In the construction of stars via pri-
548 mary invariants we always try to find a polynomial of
549 minimal degree that satisfies these properties. We will see
550 that sometimes the hypocycloids coincide with the stars we
551 obtain that way. In one of the examples presented here,
552 namely the 5-star, the degree of the implicitization of the
553 hypocycloid is higher than the degree of the polynomial our
554 construction yields. This suggests that we define a ‘‘star’’ as
555 the zero set of the polynomial ofminimal degree satisfying all
556 other conditions.

557 EXAMPLE 7 (2-star). The group D2 has primary invariants

uðx; yÞ ¼ x2;

vðx; yÞ ¼ y2:
ð17Þ

559559 Our constructions yields the degree six polynomial with
560 six free parameters:

f ðu; vÞ ¼ð1� uÞ3 þ c1v þ c2uv þ c3v
2 þ c4uv

2 þ c5u
2v

þ c6v
3; with c1 þ c2 þ c5 6¼ 0: ð18Þ

562562 The choice c1 = 0 and the remaining parameters equal to
563 zero yield the simple equation

f ðu; vÞ ¼ ð1� uÞ3 þ c1v; with c1 6¼ 0: ð19Þ

565565
566 For c1\ 0 we obtain a 2-star. The corresponding curve
567 runs through the points ð0;	 1

ffiffiffiffiffiffi�c1
p Þ and is bounded. See

568figure 12a. For c1[ 0 it is an unbounded anti-star. In both
569cases it has two singularities at (±1 , 0).
570The hypocycloid for k = 2 is parametrized by (2r
571cosu, 0) where u is in [0, 2p]. So it is not an algebraic curve
572but an interval on the x-axis.

573EXAMPLE 8 (3-star). The primary invariants of D3 are

uðx; yÞ ¼ x2 þ y2;

vðx; yÞ ¼ x3 � 3xy2:
ð20Þ

575575In this case a degree four polynomial suffices to generate a
576star, see figure 12b. The polynomial (21) is completely
577determined, we have no free parameters. It coincides with
578the hypocycloid for k = 3, which is also called Deltoid:

f ðu; vÞ ¼ 1� 6u� 3u2 þ 8v: ð21Þ

580580EXAMPLE 9 (4-star). The dihedral group of order eight,

581D4, has primary invariants

uðx; yÞ ¼ x2 þ y2;

vðx; yÞ ¼ x2y2:
ð22Þ

583583Our construction yields the following polynomial of
584degree six with two free parameters:

f ðu; vÞ ¼ ð1� uÞ3 þ c1v þ c2uv; with c1 þ c2 6¼ 0; ð23Þ
586586

587For c1 + c2\ 0 we obtain stars, for c1 + c2[ 0 anti-
588stars. In both cases additional components might appear.
589The curves become unbounded for c2[ 4.
590The hypocycloid with four cusps is also called Astroid.
591Its implicit equation is (1 - u)3 - 27v = 0. So if we choose
592c1 = -27 and c2 = 0 in (23) we obtain the same curve. See
593figure 12c.

594EXAMPLE 10 (5-star). The primary invariants of D5 are

uðx; yÞ ¼ x2 þ y2;

vðx; yÞ ¼ x5 � 10x3y2 þ 5xy4:
ð24Þ

596596If we try a degree five polynomial, we obtain (25) with
597no free parameters. It only permits anti-stars.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

x

y

(a) A 2-star (19), c1 = −4.

0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

x

y

(b) The Deltoid.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

x

y

(c) The Astroid.

Figure 12. Some plane dihedral stars.
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f ðu; vÞ ¼ 1� 10

3
uþ 5u2 � 8

3
v: ð25Þ

599599 So let us use degree six. This yields the following
600 polynomial for plane 5-stars or anti-stars:

f ðu; vÞ ¼ 1� cþ 10

3
uþ ð2cþ 5Þu2 � 8

3
ð1þ cÞv þ cu3;

with c 6¼ �1; 5: ð26Þ

602602 Here, as the parameter value c varies we observe a quite
603 curious behavior. For c\ -1 one obtains a star, the
604 smaller c gets, the smaller is its ‘‘inner radius’’, see fig-
605 ure 13a. The choice c = -1 yields a circle with radius
606 one—the circle containing the five singularities of the (26)
607 for other c. For -1\ c\ 5 the cusps of (26) point inward,
608 that is, we have anti-stars. For - 1\ c\ 0 the curve has
609 one bounded component; for c = 0, it is unbounded with
610 five components, figure 13b; for 0\ c\ 5 the curve is
611 again bounded, but has five components, like drops falling
612 away from the center, figure 13c. For c = 5 only finitely
613 many points satisfy the equation, the five points that are
614 singular in the other cases. If we choose c[ 5 we obtain
615 stars again, that is, the cusps point outward, even though
616 for 5\ c\ 80 the curve also has five components, like
617 drops falling towards the origin, figure 13d. The curve we
618 obtain for c = 80 is special in that it has self-intersections,
619 that is, five additional singularities. They lie on a circle with
620 radius one quarter, on a regular pentagon. These ‘‘extra

621singularities’’ are of type A1, that is, they have, up to ana-
622lytic coordinate transformations, equation x2 + y2 = 0.
623One could call this curve an algebraic pentagram. For
624c[ 80 the curve has two components, see figure 13e.
625The implicit equation of the hypocycloid with five cusps
626is already of degree eight, while the polynomial we found
627with our construction has degree six. The two equations
628cannot coincide for any choice of the free parameter c.

629Dihedral ‘‘Pillow Stars’’ in R3

630If we consider the dihedral groups Dm as subgroups of
631O3ðRÞ, they cease to be reflection groups, so we have to
632consider the secondary invariants as well. The number of
633secondary invariants depends on the order of the group
634and the degrees of the primary invariants, see [10, p.41]. In
635the examples we give here there are always two secondary
636invariants. The first one, s1, is always 1, so we do not
637mention it every time but just give the second one, s2.
638In this section our aim is to construct surfaces that are
639invariant under the action of Dm with singularities at the
640mth roots of unity in the xy-plane, and which in addition
641pass through the points (0, 0, ±c) with 0 6¼ c 2 R. Intui-
642tively the resulting surface should look like a pillow. To
643lead to such a shape, more conditions, such as bounded-
644ness and connectedness, would have to be imposed. We
645do not have a systematic theory, but our experimental
646results seem promising. In these examples we have a large
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Figure 13. 5-stars and anti-stars.
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647 number of free parameters, unfortunately. We have tried to
648 choose values giving attractive results.

649 EXAMPLE 11 (D3). The primary invariants of D3 � O3ðRÞ
650 are

uðx; y; zÞ ¼ z2;

vðx; y; zÞ ¼ x2 þ y2;

wðx; y; zÞ ¼ x3 � 3xy2;

ð27Þ

652652 its secondary invariant is

s2ðx; y; zÞ ¼ 3x2yz � y3z: ð28Þ

654654 A polynomial of degree three yields no solution. The
655 general equation of a degree four polynomial in the
656 invariant ring of D3 is f1(u, v, w) + b s2, where f1(u, v, w)
657 is an indeterminate polynomial of degree four in R½u; v;w�
658 as in the previous examples, and b is a constant. A degree
659 four polynomial suffices to obtain a solvable system of
660 equations. It yields the following polynomial with three
661 free parameters:

f ðu; v;wÞ ¼ 1� 1þ c1c
4

c2
uþ c1u

2 þ c2uv � 6v � 3v2 þ 8w;

ð29Þ

663663 with -(1 + c1c
4) + c2c2 \ 0. Note that the secondary

664 invariant s2 does not appear in the above polynomial, its
665 coefficient b is zero. We obtain a nice result for c1 =

666 c2 = 0, c = 1/3, see figure 14a.

667 EXAMPLE 12 (D4). The group D4 has the following

668 primary and secondary invariants:

uðx; y; zÞ ¼ z2;

vðx; y; zÞ ¼ x2 þ y2;

wðx; y; zÞ ¼ x2y2;

ð30Þ

670670 s2ðx; y; zÞ ¼ x3yz � xy3z: ð31Þ

672672 Our construction yields a degree six polynomial; as in the
673 previous example, the secondary invariant s2 happens to
674 drop out:

f ðu; vÞ ¼ 1� 1þ c1c
4 þ c4c

6

c2
u� 3v þ c1u

2 þ c2uv þ 3v2

þ c3w þ c4u
3 � v3 þ c5uw þþc6vw þ c7uv

2

þ c8u
2v; ð32Þ

676676

677with c3 + c6\ 0 and -(1 + c1c
4
+ c4c

6) + c2(c2 +
678c7)\ 0. See figure 14b for the resulting surface, where we
679chose c = 1/3, c3 = -27 and set all the other parameters
680to zero.

681EXAMPLE 13 (D5). The primary invariants of D5 are

uðx; y; zÞ ¼ 0z2;

vðx; y; zÞ ¼ x2 þ y2;

wðx; y; zÞ ¼ x5 � 10x3y2 þ 5xy4:

ð33Þ

683683Its secondary invariant is

s2ðx; y; zÞ ¼ 5x4yz � 10x2y3z þ y5z: ð34Þ

685685A degree five polynomial already produces a solvable
686system of equations, but the resulting polynomial with
687three free parameters only permits anti-stars. So we choose
688a polynomial of degree six; again s2 does not appear:

f ðu; v;wÞ ¼ 1� 1þ c1c
4 þ c3c

6

c2
u� 10þ c4

3
v þ c1u

2

þ c2uv þ ð5þ 2c4Þv2 �
8

3
ð1þ c4Þw þ

þ c3u
3 þ c4v

3 þ c5uv
2 þ c6u

2v: ð35Þ

690690The zero sets of these polynomials are stars for

c4 þ 1\0 and � ð1þ c1c
4 þ c3c

6Þ þ c2ðc2 þ c5Þ\0; or

c4 � 5[ 0 and � ð1þ c1c
4 þ c3c

6Þ þ c2ðc2 þ c5Þ[ 0:

ð36Þ

692692A nice choice for the free parameters is c = 1/3, c4 =
693-3, setting all other parameters equal to zero. See figure
69414c.

695EXAMPLE 14 (Zitrus). The last example we want to

696present is the surface Zitrus. It is the plane 2-star rotated

697around the x-axis (figure 15). Its equation is

f ðx; y; zÞ ¼ ð1� ðx2 þ y2 þ z2ÞÞ3 þ cðy2 þ z2Þ;
with c\0: ð37Þ

(a) D3-star. (b) D4-star. (c) D5-star.

Figure 14. Pillow stars.

Figure 15. Zitrus for c = -4.
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699699 Outlook
700 In all the examples presented above we observed ‘‘unwan-
701 ted’’ behavior for special choices of the free parameters: the
702 surfaces became unbounded at some point, or additional
703 components appeared. Sometimes we even had more sin-
704 gularities, or singularities of a different type than we
705 expected. Further investigations would be necessary to find
706 conditions preventing such behavior. After this is done, one
707 could refine the definition of ‘‘stars’’ and ‘‘anti-stars’’ by
708 demanding that the surfaces be bounded and irreducible.
709 Dual (Platonic) solids have the same symmetry group,
710 hence the same primary invariants were used to construct the
711 corresponding stars. But there seems to benoobvious duality
712 between the stars such as occurs for dual (Platonic) solids.

713 Technical Details

714 Factorization of the primary invariants of Ih

715 In example (4) of the icosahedral stars, we claimed that two
716 of the primary invariants of Ih factor into linear polynomials
717 corresponding to the centerplanes of the dodecahedron
718 and icosahedron, respectively, and we promised to give the
719 factorizations explicitly. Here they are:

vðx; y; zÞ

¼ � 1

16
zð2x þ zÞ ð

ffiffiffi

5
p

þ 1Þx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10� 2
ffiffiffi

5
pq

y � 2z

� �

� ð
ffiffiffi

5
p

þ 1Þx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10� 2
ffiffiffi

5
pq

y � 2z

� �

� ð
ffiffiffi

5
p

� 1Þx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10þ 2
ffiffiffi

5
pq
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� �

� ð
ffiffiffi

5
p

� 1Þx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffi

5
pq

y þ 2z

� �

;

wðx; y; zÞ ¼ � 1

20250000
�3x þ x

ffiffiffi

5
p

þ z
� �

3x þ x
ffiffiffi

5
p

� z
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�
�

� 2x
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þ x
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723723

724

725The invariant ring R½x1; . . .; xn�G
726Let G � GLðRnÞ be a finite subgroup. Then there exist n
727homogeneous, algebraically independent polynomials
728u1; . . .;un 2 C½x1; . . .; xn� (called the primary invariants of
729G) and l (depending on the cardinality of G and the degrees
730of the ui) polynomials s1; . . .; sl 2 C½x1; . . .; xn� (the sec-
731ondary invariants of G) such that the invariant ring
732decomposes as C½x1; . . .; xn�G ¼al

j¼1sjC½u1; . . .;un�. There
733are algorithms to calculate these primary and secondary
734invariants, see [10, p.25]. Also in [10, p.1] it is claimed that if
735the scalars of the input for these algorithms are contained in
736a subfield K of C, then all the scalars in the output will also
737be contained in K. So in our case with G � GLðRnÞ, the
738primary and secondary invariants will be real polynomials:
739u1; . . .;un; s1; . . .; sl 2 R½x1; . . .; xn�.
740Now the claim is, in the notation above: R½x1; . . .;
741xn�G ¼al

j¼1sjR½u1; . . .;un�.
742The first inclusion R½x1; . . .; xn�G 
al

j¼1sjR½u1; . . .;un�
743is trivial. We prove the opposite inclusion: Let f 2 R½x1; . . .;

744xn�G � C½x1; . . .; xn�G be an invariant polynomial. As C½x1;
745. . .; xn�G equals al

j¼1sjC½u1; . . .;un�, we can write f

746uniquely in the following form:

f ðx1; . . .; xnÞ ¼
X

l

j¼1

sj
X

a2A
cjau

a;

748748where cja = dja + ieja are complex constants, and A is
749some finite subset of Nn. Then

f ðx1; . . .; xnÞ ¼
X

l

j¼1

sj
X

a2A
djau

a þ i
X

a2A
ejau

a

 !

¼
X

l

j¼1

sj
X

a2A
djau

a þ i
X

l

j¼1

sj
X

a2A
ejau

a

¼ f1ðx1; . . .; xnÞ þ if2ðx1; . . .; xnÞ:

ð39Þ

751751Here f1 and f2 are real polynomials. Since f is also contained
752in the real polynomial ring, f2 must be equal to zero. But

753from f2ðx1; . . .; xnÞ ¼
Pl

j¼1 sj
P

a2A ejau
a ¼P

a2A ð
Pl

j¼1 sjejaÞ
754ua ¼ 0 itwould follow that for all a [ A the sum

Pl
j¼1 sjeja must
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755 be equal to zero, because the ui are algebraically inde-

756 pendent. Hence f ¼ f1ðx1; . . .; xnÞ ¼
Pl

j¼1 sj
P

a2A djau
a 2

757 al

j¼1 sjR½u1; . . .;un�.
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