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1 Introduction

The problem of the existence and construction of a resolution of singularities is one of the
major questions in algebraic geometry. The question of existence was solved in general,
for algebraic varieties de�ned over �elds in characteristic zero, by Heisuke Hironaka in
his famous paper in the year 1964. But Hironaka's proof is not constructive. And it took
more than 25 years to develop a constructive way from this. However, the resolution of
singularities of algebraic curves is not so di�cult and it was already well known in the
19th century. These days di�erent constructive methods of proving resolution of singu-
larities of algebraic curves are known.

The purpose of this thesis is to present a new constructive method of resolving sin-
gularities of plane algebraic curves over C. To get some new ideas how to resolve the
singularities of a particular polynomial equation de�ning a plane algebraic curve, we work
with parametrizations of the branches of the curve in each of its singularities. From each
such parametrization we get additional information about the singularity itself. With
help of this information we construct from the implicit equation the so-called modi�ed
higher curvatures that will play the key role in resolving the singularities of the curve
and in some cases they will even completely determine the resolution.

To be more precise, let X ⊆ A2
C be a plane algebraic curve with a singularity at the

origin. Consider an analytic parametrization γ(t) = (x(t), y(t)) of a singular branch of
X at the origin. The aim is to construct an analytic function z(t) from γ such that the
following three conditions are satis�ed:

1) The triple (x(t), y(t), z(t)) parametrizes a branch of an algebraic space curve Xz,
2) the branch of Xz parametrized by (x(t), y(t), z(t)) is regular at the point lying over
(0, 0),
3) Xz is birationally equivalent to X.

As for the �rst and third condition, we introduce the concept of a geometric in-
variant of X. Let z(t) be a meromorphic function that can be written as a rational
function in x(t), y(t) and their higher derivatives. Let us write z(t) = z(x(t), y(t)) to
indicate that z depends on x and y. We call z(t) a geometric invariant if it is invari-
ant under reparametrization, i.e., if for every reparametrization ϕ ∈Aut(C{t}) we have
z((x ◦ ϕ)(t), (y ◦ ϕ)(t)) = [z(x(t), y(t))]|t=ϕ(t). For example the expression

x′′(t) · y′(t)− x′(t) · y′′(t)
(x′(t) + y′(t))3

is a geometric invariant. It turns out that every geometric invariant z is indeed a ra-
tional function in x and y, i.e. z(t) = g(x(t),y(t))

h(x(t),y(t)) with polynomials g, h ∈ C[x, y]. Thus,

(x(t), y(t), z(t)) parametrizes a branch of an algebraic space curve Xz ⊆ V (f, g − z · h),
where f ∈ C[x, y] is the de�ning polynomial ofX. In our example of a geometric invariant
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the equality

x′′(t) · y′(t)− x′(t) · y′′(t)
(x′(t) + y′(t))3

=

(
fxxf

2
y − 2fxyfxfy + fyyf

2
x

(fx − fy)3

)
(x(t), y(t))

holds. In particular, the map X → Xz, (x, y) 7→
(
x, y, g(x,y)h(x,y)

)
is birational. Furthermore,

we will see that the polynomials g and h are always polynomials in the higher partial
derivatives of f , so each geometric invariant of a plane algebraic curve is completely
determined by modi�ed di�erential operators.

To ful�ll the second condition we use a criterion for the regularity of parametrized
curves that tells us that a branch at the origin of an algebraic space curve Y ⊆ An
is regular if and only if the branch admits a parametrization η(t) = (y1(t), . . . , yn(t))
for which the minimum of the t-adic orders of the yi(t), denoted by ord(η), is equal to
one. For the construction of a geometric invariant z(t) of t-adic order one we proceed as
follows. We construct from the parametrization γ a �nite sequence of geometric invariants
z1, . . . , zk of X with

0 < ord(zi+1(t)) < ord(zi(t)) < max{ord(x(t)), ord(y(t))}

for all i = 1, . . . , k − 1 and

ord(zk(t)) < min{ord(x(t)), ord(y(t))}.

We call them the modi�ed higher curvatures of X. Let us denote the corresponding
modi�ed di�erential operators by κi. Here

κi :=
κ
(1)
i

κ
(2)
i

with the modi�ed di�erential operators κ
(1)
i , κ

(2)
i corresponding to zi(t), i.e.

(κi(f))(x(t), y(t)) =

(
κ
(1)
i (f)

κ
(2)
i (f)

)
(x(t), y(t)) = zi(t),

where (κi(f))(x(t), y(t)) denotes the modi�ed di�erential operator κi applied to f and
consecutive substitution of variables (x, y) 7→ (x(t), y(t)). Taking the zk, which is of
smallest t-adic order, and adding this as the third component to the parametrization of
X produces a parametrization (x(t), y(t), zk(t)) of an algebraic space curve Xzk . After
the projection Xzk → A2, (x, y, z) 7→ (y, z) we get, as image of this projection, a plane
algebraic curve that has one branch parametrized by γk(t) = (y(t), zk(t)). Then the
inequality

ord(γk) < ord(γ)
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holds and we proceed by induction on the order of the parametrization γk.

The modi�ed di�erential operators κi are universal and can be applied to an arbitrary
polynomial in two variables. Even more, for an arbitrary plane algebraic curve V (g)
parametrized by (u(t), v(t)) at the origin we have

ord((κi+1(g))(u(t), v(t))) < ord((κi(g))(u(t), v(t)))

for all i ∈ N and

0 < ord((κj(g))(u(t), v(t))) < min{ord(u(t)), ord(v(t))}

for some j ∈ N. Therefore, the process of constructing the modi�ed higher curvatures
of a plane algebraic curve with increasing t-adic order does not depend on the curve
itself and can be used for an arbitrary plane algebraic curve. But the length of the �nite
sequence of modi�ed higher curvatures depends on the parametrization of the curve and
so on the curve itself and therefore varies from case to case.

Applying the above procedure to each singular branch of X at the origin produces an
algebraic space curve X̃ with regular branches at the origin. Furthermore, by construc-
tion of the modi�ed higher curvatures, the curve X̃ is birationally equivalent to X.

The whole procedure of making singular branches regular can be described as a
blowup of X with a suitable center. Here, the center is completely determined by the
modi�ed di�erential operators corresponding to the modi�ed higher curvatures that de-
�ne the curve X̃. Finally, for the separation of the regular branches of X̃ we draw inspi-
ration from the modi�ed higher curvatures of X and generate a new system of geometric
invariants from which we then select those which are relevant for us. Again, the modi-
�ed di�erential operators corresponding to these new geometric invariants determine the
center of the blowup of X̃ which describes the process of separating the regular branches
of X̃.

Repeatedly applying the procedure described above to all singularities of X produces
a resolution of singularities of X.
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3 Preparation for resolution of singularities

3.1 Basic concepts of algebraic geometry

In this thesis, some familiarity with the basic concepts of algebraic geometry is assumed.
However, the most important de�nitions and statements will be recalled in this section.
Some of them will be for example the de�nition of the singular and regular locus of an
algebraic variety, the de�nition of a blowup of an algebraic variety and the de�nition of
a parametrization of an algebraic curve and its branches.

Let Z = V (I) ⊆ An be an algebraic variety and I ⊆ C[x1, . . . , xn] its de�ning ideal.
In this thesis An denotes AnC, the a�ne space over C. Assume that 0 ∈ Z and consider
the primary decomposition of I in the convergent power series ring C{x1, . . . , xn} locally
at the origin, I = I1 ∩ · · · ∩ Im. For each j = 1, . . . ,m, let Zj = V (Ij) be the analytic
variety de�ned by the ideal Ij . The germs (Zj , 0) of the zero sets Zj at 0 are called the
branches of Z at the origin. An ideal J ⊆ C{x1, . . . , xn} is called defining ideal of
(Zj , 0) if the analytic variety V (J) is a representative of the germ (Zj , 0). If Z has more
than one branch at the origin, it is called analytically reducible at the origin. Otherwise,
we call Z analytically irreducible at the origin.

Let us now consider an algebraic space curve X ⊆ An and a point a ∈ X. Let (Y, a)
be a branch of X at a and J ⊆ C{x1, . . . , xn} a de�ning ideal of this branch. Then a map

γ : D(x1(t)) ∩ ... ∩D(xn(t))→ X
b 7→ (x1(b), ..., xn(b))

that is de�ned by convergent power series xi(t) ∈ C{t} is called a parametrization of
the branch (Y, a) if g(x1(t), ..., xn(t)) = 0 in C{t} for all elements g ∈ J and if there
exists a point b in the interior of (D(x1(t)) ∩ ... ∩D(xn(t))) so that (x1(b), ..., xn(b)) = a.
Here D(xi(t)) is the area of convergence of xi(t). We say that γ parametrizes X at a
if γ is a parametrization of one of the branches of X at a and the Zariski-closure of
Im(γ) equals X. Sometimes we also say that the n-tuple fo convergent power series
γ(t) = (x1(t), ..., xn(t)) parametrizes the branch (Y, a) or the curve X at a, respectively.

Remark 3.1.1. For each branch (Y, a) of X, a parametrization of (Y, a) can be con-
structed according to the Newton-Puiseux algorithm. Each parametrization of (Y, a)
even parametrizes the curve itself. For more details see the appendix.

De�nition 3.1.2. Let Y ⊆ Cn be an analytic variety and a ∈ Y a point. Assume that

dima(Y ) = k. The point a is called a regular point of Y if there exists U ⊆ Cn an open

neighbourhood of a and an ideal J = (g1, . . . , gm) ⊆ C{x1, . . . , xn} so that Y ∩U = VU (J)
and the Jacobian matrix of J evaluated in a,
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DJ(a) =


∂g1
∂x1

(a) . . . ∂g1
∂xn

(a)
...

. . .
...

∂gm
∂x1

(a) . . . ∂gm
∂xn

(a)

 ,

has rank n − k. Otherweise, a is said to be a singular point of Y . Here VU (J) = {b ∈
U |gi(b) = 0 for all i = 1, . . . ,m} is the zero set of J in U .

There are more equivalent de�nitions of regular and singular points of analytic vari-
eties. One of them is for example the following:

De�nition 3.1.3. Let Y ⊆ Cn be an analytic variety and a ∈ Y a point on Y . The point
a is called a regular point of Y if there exists U ⊆ Cn an open neighbourhood of a and

V ⊆ Cn an open neighbourhood of 0 and biholomorphic map ϕ : U → V sending Y ∩ U
to L ∩ V for some linear subspace L ⊆ Cn.

Proofs for the equivalence of both de�nitions can be found in most di�erential geom-
etry books.

A branch (Y, a) at the point a of an algebraic curve X ⊆ An is called regular if each
representative of (Y, a) is as an analytic variety regular at a. Otherwise we call (Y, a) a
singular branch of X.

Proposition 3.1.4. Let X ⊆ An be an algebraic curve with 0 ∈ X. Let (Y, 0) be a

branch of X at the origin. Then the branch (Y, 0) is regular if and only if (Y, 0) admits

a parametrization γ(t) = (x1(t), . . . , xn(t)) with γ(0) = 0 and min{ord0(xi)} = 1. Here

ord0(xi) denotes the t-adic order of xi(t).

Proof. ⇒: Assume that (Y, 0) is regular. Let Ỹ be a representative of (Y, 0). Let U, V ⊆
Cn be open neighbourhoods of 0, L ⊆ Cn a linear subspace and ϕ : U → V a biholomor-
phic map sending Ỹ ∩U to L∩ V as in De�nition 3.1.3. We may w.l.o.g. assume that L
is the line parametrized by γ(t) = (t, . . . , t) going through the origin. Then ϕ−1(γ) has
components of t-adic order equal to one and parametrizes (Y, 0).
⇐: Let γ(t) = (x1(t), . . . , xn(t)) be a parametrization of (Y, 0) so that γ(0) = 0 and
ord(x1) = 1. Then for each representative Ỹ of (Y, 0) the map

ϕ : Ỹ → L

(y1, . . . , yn) 7→ (y1, 0, . . . , 0),

with L = V (xi, i = 2, . . . , n) ⊆ Cn one-dimensional linear subspace, is biholomorph with
the inverse map de�ned by ϕ−1(t, 0, . . . , 0) = (x1(t), . . . , xn(t)). Therefore, the conditions
from De�nition 3.1.3 are satis�ed and Ỹ is regular at the origin.

A Noetherian local ring R with maximal ideal m is called regular if m can be gener-
ated by d elements, where d is the Krull-dimension of R. The �eld K = R/m is called the
residue �eld of R and a minimal system of generators of m is called a regular parameter

system for R.
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De�nition 3.1.5. A point a of an algebraic variety Z ⊆ An is said to be regular if the

local ring OZ,a := C[Z]mZ,a of Z at a is a regular local ring. Here mZ,a is a maximal

ideal of the coordinate ring C[Z] de�ned as mZ,a = {g ∈ C[Z]|g(a) = 0}.

There is also another equivalent de�nition of the singular and regular locus.

De�nition 3.1.6. Let Z ⊆ An be an algebraic variety de�ned by the ideal I := (f1, . . . , fm) ⊆
C[x1, ..., xn] with I =

√
I. A point a ∈ Z is called singular if for the rank of the Jacobian

matrix DI evaluated at the point a the following inequality holds:

rk(DI(a)) < codima(Z).

Here rk denotes the rank of the matrix and codima(Z) the local codimension of Z in

a. Otherwise the point a is said to be a regular point. The set of all singular points

of Z is denoted by Sing(Z) and called the singular locus of Z. Its complement in Z,
Reg(Z) := Z\ Sing(Z), is called the regular locus of Z. The variety Z is called regular if

each point on Z is a regular point.

For the proof of the equivalence of both de�nitions see [Har77] Thm.5.1., p.32.

Theorem 3.1.7. The ring OZ,a is regular if and only if its completion ÔZ,a is a regular

local ring.

Proof. [AM69] Prop.11.24., p.124.

However, it is not clear how to decide based only on a parametrization at a point a
of an algebraic curve X ⊆ An whether a is a regular or singular point of X. We will
discuss this problem in the next section.

Let R be a Noetherian ring and I an ideal in R. The height of I is de�ned as the
maximal length k of a chain of prime ideals I0 ( I1 ( ... ( Ik = I.

Krull's principal ideal theorem 3.1.8. If R is a Noetherian ring and I is a principal,
proper ideal of R, then I has height at most one. Moreover, if I = (f) and f is a non-zero

divisor in R, then I has height 1.

The geometrical meaning of the height of an ideal I in the polynomial ring C[x1, ..., xn]
is the following: Let Z = V (I) ⊆ An be the algebraic variety de�ned by I. Then the
height of I coincides with the codimension of Z. We have Z = Zk ( Zk−1 ( ... ( Z0 =
V (0) = An, where Zi = V (Ii), Ii as in the de�nition above. Furthermore, the Krull-
dimension of Z equals the Krull-dimension of the coordinate ring of Z, C[Z]. Namely
the chain of prime ideals (0) = p0 ( p1 ( · · · ( pk ⊆ C[Z] corresponds to the chain of
irreducible varieties Zk ( Zk−1 ( · · · ( Z0 ⊆ Z = V (I) with Zi = V (pi).

Let C(Z) be the function �eld of Z. Then we say that C(Z) has transcendence
degree d over C if d is the maximal number of elements of C(Z) that are algebraically
independent over C.
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Lemma 3.1.9. For an algebraic variety Z ⊆ An the equality

dim(Z) = transdegC(C(Z))

holds.

Proof. [CLO15] Thm.7., p.511.

Corollary 3.1.10. Let Z1 ⊆ An and Z2 ⊆ Am be irreducible algebraic varieties which

are birationally equivalent. Then dim(Z1) = dim(Z2).

Proof. [CLO15] Cor.8., p.512.

Lemma 3.1.11. Let ϕ : An → Am be a morphism. Let Z ⊆ An be an algebraic variety

of Krull-dimension d. Then
d ≥ dim(ϕ(Z)),

where dim(ϕ(Z)) denotes the Krull-dimension of ϕ(Z).

Proof. If Y := ϕ(Z) is reducible, we consider for each irreducible component Yi ⊆ Y the
restricted morphism ϕ−1(Yi) → Y and reduce the problem in this way to the case that
ϕ : Z → Y is a dominant map with Y an irreducible variety.
Let Zj be the irreducible components of Z. Then we have Y =

⋃
ϕ(Zj), as Z is the

union of �nitely many Zj 's, and so we have already Y = ϕ(Zj) for one j. Therefore,
considering the restriction ϕ|Zj : Zj → Y , the problem is reduced to the case where
ϕ : Z → Y is a dominant morphism between two irreducible varieties.
We proceed now by induction on the Krull-dimension of Y . The case k = 0 is clear. Let
us assume that the statement is true for some d ∈ N. Let Y be an algebraic variety of
Krull-dimension d + 1. We construct a chain of maximal length of irreducible algebraic
subvarieties of Y ,

Yd+1 ( · · · ( Y0 = Y.

The preimages ϕ−1(Yi) are algebraic varieties and we have

ϕ−1(Yd+1) ( · · · ( ϕ−1(Y0) = ϕ−1(Y ) = Z.

We apply the induction hypothesis to the irreducible subvariety Y1 of Y of Krull-dimension
d. For the dominant morphism ϕ−1(Y1)→ Y1 and the varieties ϕ−1(Y1) and Y1 we then
have

dim(ϕ−1(Y1)) ≥ dim(Y1)

from which then, using the irreducibility of Z, follows

dim(Z) ≥ dim(ϕ−1(Y1)) + 1 ≥ dim(Y1) + 1 = dim(Y ).

Lemma 3.1.12. Let Z ⊆ An be an algebraic variety and C[Z] its coordinate ring. If

dim(Z) = 0, then C[Z] is a �nite-dimensional C-vector space.
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Proof. [AM69] Prop.6.10., p.78 and Thm.8.5., p.90.

Proposition 3.1.13. Let X1, X2 ⊆ A2 be plane algebraic curves de�ned by polynomials

f1, f2 ∈ C[x, y] of total degrees n1 and n2, respectively. Then X1 and X2 intersect in

�nitely many points if and only if f1 and f2 have no common irreducible factor. Even

more, if X1 and X2 intersect in �nitely many points, then we have

|X1 ∩X2| ≤ dimCC[x, y]/(f1, f2) ≤ n1 · n2.

Proof. ⇒: Let us assume that g 6≡ 0 is a common irreducible factor of f1 and f2. Then
∅ 6= V (g) ⊆ X1 ∩X2 and so |X1 ∩X2| =∞.
⇐: If X1 and X2 have no common irreducible component, then C[x, y]/(f1, f2) has Krull-
dimension zero and according to Lemma 3.1.12 it is a �nite-dimensional C-vector space.
For each �nite set {p1, . . . , pk} of common points of X1 and X2 we can de�ne the poly-
nomials

hi =
∏
j 6=i

(x− pj1) ·
∏
j 6=i

(y − pj2), i = 1, . . . , k

that satisfy hi(pi) 6= 0 and hi(pj) = 0 for all j 6= i. Here pj = (pj1 , pj2). We then have
that if

k∑
i=1

ci · hi = uf1 + vf2,

with some polynomials u, v ∈ C[x, y] and constants ci ∈ C, then after substituing the
points pi we get ci · hi(pi) = 0 wich implies ci = 0 for all i = 1, . . . , k. Hence, the images
of hi, i = 1, . . . , k in C[x, y]/(f1, f2) are linearly independent. And so the inequality

|X1 ∩X2| ≤ dimCC[x, y]/(f1, f2)

was shown.
Let C[x, y]d be the C-vector space of polynomials of total degree at most d. Then
dimC(C[x, y]d) = 1 + · · · + (d + 1) = 1

2(d + 1)(d + 2). For d ≥ n1 + n2 we consider the
following sequence of linear maps

C[x, y]d−n1 × C[x, y]d−n2 →α C[x, y]d →π C[x, y]d/(f1, f2)→ 0,

where α(u, v) = uf1 + vf2 and π is the quotient map. Since f1 and f2 have no common
factor, the kernel of α consists of the pairs (wf2,−wf1) with w ∈ C[x, y]d−n1−n2 . Hence,
dimC(ker(α)) = 1

2(d− n1− n2 + 1)(d− n1− n2 + 2). Using the Rank-nullity theorem we
get dimC(Im(α)) = 1

2(d− n1 + 1)(d− n1 + 2) + 1
2(d− n2 + 1)(d− n2 + 2)− 1

2(d− n1 −
n2 + 1)(d−n1−n2 + 2). The surjectivity of π together with Im(α) ⊆ ker(π) implies that

dimC(C[x, y]d/(f1, f2)) ≤ dimC(C[x, y]d)− dim(Im(α)) =

=
1

2
(d+ 1)(d+ 2)− 1

2
(d− n1 + 1)(d− n1 + 2)−

−1

2
(d− n2 + 1)(d− n2 + 2)− 1

2
(d− n1 − n2 + 1)(d− n1 − n2 + 2) = n1 · n2.
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And so the inequality dimC(C[x, y]c/(f1, f2)) ≤ n1 · n2 is ful�lled for all c ∈ N and
consequently dimC(C[x, y]/(f1, f2)) ≤ n1 · n2.

A sequence r0, . . . , rd in a commutative ring R is called regular if ri is a non-zero-
divisor in R/(r1, . . . , ri−1) for all i = 1, . . . , d.

De�nition 3.1.14. Let X ⊆ An be an algebraic variety with the coordinate ring C[X]
and let Z be a subvariety of X. Let I = (g1, . . . , gk) ⊆ C[X] be the de�ning ideal of Z.
Assume that the set X\Z is Zariski-dense in X. The morphism

δ : X\Z → Pk−1
a 7→ (g1(a) : · · · : gk(a))

is wellde�ned. The Zariski-closure X̃ of the graph ∆ of δ inside X × Pk−1 together with

the restriction π|
X̃

: X̃ → X of the projection map π : X × Pk−1 → X is called a blowup

of X along Z. Sometimes also called a blowup of X with center Z.

Remark 3.1.15. The de�nition of a blowup does not depend, up to an isomorphism
over X, on the choice of the generators gi of I. It can be shown that a blowup of X
along Z is unique up to a unique isomorphism. Therefore, it is called the blowup of X
along Z.

For more details see [Hau12].
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3.2 Rational and geometric invariants of parametrized plane curves

The aim of this section is to introduce the concept of geometric invariants which will then
play the key role by the process of resolving singularities of plane algebraic curves. Fur-
thermore, we will establish in this section a criterion that works only with parametriza-
tions of algebraic curves and that distinguishes between the regular and singular locus
of algebraic curves.

A reparametrization

ϕ : C{t} → C{t}
t 7→ ϕ(t)

is a C-algebra automorphism of the convergent power series ring C{t}. The image ϕ(t)
of t is then a power series of t-adic order equal to one and so ϕ is a local map, i.e.,
we have ϕ(m) ⊆ m for m = (t) the maximal ideal of the local ring C{t}. Furthermore,
ϕ(mk) = ϕ(m)k ⊆ mk for all k ∈ N and so ϕ is continuous with respect to the t-
adic topology. Every convergent power series g can be written as limit of polynomials
gi ∈ C[t], i ∈ N, g = lim gi, where gi ≡ g mod mi. As ϕ is continous, we have the
equalities

ϕ(g(t)) = ϕ(lim gi(t)) = limϕ(gi(t))

and the map ϕ is completely determined by the image of t. The automorphism group of
C{t}, (Aut(C{t}), ◦), acts on C{t}2 via

Aut(C{t})× C{t}2 → C{t}2
(ϕ, (x, y)) 7→ ϕ ∗ (x, y) := (ϕ(x), ϕ(y)) = (x(ϕ(t)), y(ϕ(t))).

This induces the following left group action of Aut(C{t}) on C{{t}} :

Aut(C{t})× C{{t}} → C{{t}}(
ϕ,
x

y

)
7→ ϕ ∗

(
x

y

)
:=

ϕ(x)

ϕ(y)
=
x(ϕ(t))

y(ϕ(t))
.

Let us associate to every rational function in an even number of variables

R =
P

Q
∈ C(u0, v0, . . . , uk, vk)

the map

ψR : C{t}2 → C{{t}}

(x, y) 7→ R ? (x, y) :=
P ? (x, y)

Q ? (x, y)
.
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For a polynomial in an even number of variables

P (u0, . . . , vk−1) =
∑

cα · uα1
0 · v

α2
0 · · ·u

α2k−1

k−1 · vα2k
k−1,

the image of the map ψP is de�ned as

P ? (x(t), y(t)) =
∑

cα · x(t)α1 · y(t)α2 · · ·x(k−1)(t)α2k−1 · y(k−1)(t)α2k .

Here for a convergent power series z(t) ∈ C{t}, z(t)(i) denotes the i-th derivative of z(t)
with respect to t.

Remark 3.2.1. In general, an n-tuple of convergent power series does not necessarily
parametrize an algebraic curve. For example the pair (t, et) ∈ C{t}2 cannot parametrize
any plane algebraic curve. As et is not an algebraic power series, for every polynomial
in two variables f ∈ C[x, y] we have f(t, et) 6= 0 in C{t}. However, in the di�erential
geometry, analytic curves in Cn are de�ned via their parametrizations by n-tuples of
convergent power series. So the pair (t, et) parametrizes a plane analytic curve.

A rational function R ∈ C(u0, . . . , vk) in 2(k + 1) variables, for any k ∈ N, is called
a rational invariant of order k if the associated map ψR is Aut(C{t})-equivariant. In
other words, R ∈ C(u0, . . . , vk) is a rational invariant if and only if for every reparametriza-
tion ϕ ∈ Aut(C{t}) and every pair of convergent power series (x, y) ∈ C{t}2 the equality

ψR(ϕ ∗ (x(t), y(t))) = ϕ ∗ ψR(x(t), y(t))

holds in C{{t}}. Note that we have the equalities

ψR(ϕ ∗ (x(t), y(t))) = R ? (x(ϕ(t)), y(ϕ(t)))

and

ϕ ∗ ψR(x(t), y(t)) = [R ? (x(t), y(t))] |t=ϕ(t).

Notice that to be a rational invariant does not depend on the pair of convergent power
series (x(t), y(t)). For each non-negative integer k ∈ N we set

Λk := {R ∈ C(u0, v0 . . . , uk, vk)|R is a rational invariant}

as the set of all rational invariants of order k. And furthermore, we de�ne the set of all
rational invariants (of an arbitrary order)

Λ :=
⋃
k∈N

Λk.

13



Remark 3.2.2. The sets Λ and Λk, k ∈ N are �elds.

Example 3.2.3. 1) For any polynomial in two variables p ∈ C[u, v], R1(u, v) = p(u, v)
is a rational invariant of order 0.

2) R2(u0, v0, u1, v1) =
u1
v1

is a rational invariant of order 1 because of

R2 ? (x(ϕ(t)), y(ϕ(t))) =
∂
∂tx(ϕ(t))
∂
∂ty(ϕ(t))

=
x′(ϕ(t)) · ϕ′(t)
y′(ϕ(t)) · ϕ′(t)

= [R2 ? (x(t), y(t))] |t=ϕ(t).

3) R3(u0, v0, . . . , u2, v2) =
u2v1 − u1v2

v21
is not a rational invariant. We have

R3 ? (x(ϕ(t)), y(ϕ(t))) =

=
∂2

∂tx(ϕ(t)) · ∂∂ty(ϕ(t))− ∂
∂tx(ϕ(t)) · ∂2∂t y(ϕ(t))

∂
∂ty(ϕ(t))2

=

=
x′′(ϕ(t)) · y′(ϕ(t))− x′(ϕ(t)) · y′′(ϕ(t))

y′(ϕ(t))2
· ϕ′(t) =

∂

∂t

(
x′(ϕ(t))

y′(ϕ(t))

)
but

[R3 ? (x(t), (t))] |t=ϕ(t) =
x′′(ϕ(t)) · y′(ϕ(t))− x′(ϕ(t)) · y′′(ϕ(t))

y′(ϕ(t))2
.

4) R4(u0, v0, . . . , u2v2) =
u2v1 − u1v2

v31
is a rational invariant of order 2 since

R4 ? (x(ϕ(t)), y(ϕ(t))) =
x′′(ϕ(t)) · y′(ϕ(t))− x′(ϕ(t)) · y′′(ϕ(t))

y′(ϕ(t))3ϕ′(t)
· ϕ′(t) =

=
x′′(ϕ(t)) · y′(ϕ(t))− x′(ϕ(t)) · y′′(ϕ(t))

y′(ϕ(t))3
= [R4 ? (x(t), y(t))] |t=ϕ(t).

Notice that there is a relationship between R2 and R3, namely for each pair of convergent
power series (x, y) ∈ C{t}2 we have:

R3 ? (x, y) =
∂

∂t
R2 ? (x, y).

And we introduce the concept of the modi�ed derivative. A rational function in an
even number of variables R ∈ C(u0, v0 . . . , uk, vk) is called the modified derivative of
S ∈ C(u0, v0 . . . , uk−1, vk−1) if for each pair of convergent power series (x, y) ∈ C{t}2 the
equality

R ? (x, y) =
∂

∂t
S ? (x, y)

14



holds in C{{t}}. We denote the modi�ed derivative of S by ∂S. For a polynomial in an
even number of variables

P =
∑

(α,β)∈N

cα,β · uα0
0 · · · · · ·u

αk−1

k−1 · v
β0
0 · · · v

βk−1

k−1 ,

where N is a �nite subset of N2k, the modi�ed derivative has the form

∂P =
∑

(α,β)∈N

k−1∑
i=0

αi · uα0
0 · · ·u

αi−1
i · uαi+1+1

i+1 · · ·uαk−1

k−1 · v
β0
0 · · · v

βk−1

k−1 +

+
∑

(α,β)∈N

k−1∑
i=0

βi · uα0
0 · · ·u

αk−1

k−1 · v
β0
0 · · · v

βi−1
i · vβi+1+1

i+1 v
βk−1

k−1 .

And using

∂R =
∂P ·Q− P · ∂Q

Q2

for a rational function R = P
Q , with P,Q polynomials, this extends to a formula of the

modi�ed derivative of an arbitrary rational function in an even number of variables.

For a plane algebraic curve X ∈ A2 we de�ne the set of the geometric invariants of
X of order k as

ΛX,k := {R ? (x(t), y(t))|R ∈ Λk, (x(t), y(t)) is a parametrization of X}

and the set of all geometric invariants of X to be the set

ΛX := {R ? (x(t), y(t))|R ∈ Λ, (x(t), y(t)) is a parametrization of X}.

Remark 3.2.4. As the geometric invariants of a plane algebraic curve are invariant
under reparametrization they depend only on the local geometry at a certain point of
the curve itself.

Let us consider a parametrization γ(t) = (x(t), y(t)) of a plane algebraic curve X ⊆
A2. Let z ∈ ΛY be a geometric invariant of a plane algebraic curve Y ⊆ A2. Then adding
z as the third component to γ gives the parametrization (x(t), y(t), z(t)) of new analytic
curve Xz ⊆ C3. However, it is not clear yet whether this triple parametrizes an algebraic
space curve or not. To clarify this problem, the following can be helpful.
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Lemma 3.2.5. Let X = V (f) ⊆ A2 be a plane algebraic curve and (x(t), y(t)) a

parametrization of X. Then there exists some p(t) ∈ C{{t}} so that the equality

(x′(t), y′(t)) = p(t) · (−fy(x(t), y(t)), fx(x(t), y(t)))

holds in C{{t}} .

Proof. We apply the chain rule to the equality f(x(t), y(t)) = 0 and get y′(t)
x′(t) = −fx(x(t),y(t))

fy(x(t),y(t))

in C{{t}}. This implies the existence of a factor p(t) ∈ C{{t}} as in the lemma.

Theorem 3.2.6. Let R be a rational function in 2(k + 1) variables. Then the following

are equivalent:

(i) R ∈ Λk.
(ii) There exist two modi�ed di�erential operators P,Q of order k,

P (h) =
∑
α∈N

aα
∏

0≤i,j≤k

(
∂i

∂x

∂j

∂y
h

)αi,j
,

Q(h) =
∑
β∈M

bβ
∏

0≤i,j≤k

(
∂i

∂x

∂j

∂y
h

)βi,j
,

with constants aα, bβ ∈ C and N,M �nite subsets of N(k+1)2, so that for each plane

algebraic curve X = V (f) ⊆ A2 and every parametrization (x(t), y(t)) of X the equality

R ? (x(t), y(t)) =

(
P (f)

Q(f)

)
(x(t), y(t))

holds in C{{t}}. Here
(
P (f)
Q(f)

)
(x(t), y(t)) denotes the modi�ed di�erential operators P

and Q applied to f and consecutive substitution of variables (x, y) 7→ (x(t), y(t)).

Proof. We proceed by induction on the order k. We set

fx := fx(x(t), y(t)), fy := fy(x(t), y(t)) etc. and x′ = x(t), y′ = y(t) etc.

Recall the existence of a factor p ∈ C{{t}} so that the equality

(x′, y′) = p · (−fy, fx)

holds in C{{t}}. Furthermore, for each pair of convergent power series (r(t), s(t)) ∈ C{t}2
we have (

∂

∂t
r(ϕ(t)),

∂

∂t
s(ϕ(t))

)
= ϕ′ · (r′(ϕ(t)), s′(ϕ(t))).

And we see from the above two equalities that for each rational function in 4 variables
S1(u0, v0, u1, v1) ∈ C(u0, v0, u1, v1) and every parametrization (x(t), y(t)) of X the fol-
lowing are equivalent:
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(i) S1 ? (r(ϕ(t)), s(ϕ(t))) = [S1 ? (r, s)] |t=ϕ(t), i.e. S1 ∈ Λ1.
(ii) S1(x, y, x

′, y′) = S1(x, y,−fy, fx).

And the claim is shown for each rational invariant of order 1. To see how the mechanism
of the proof works, let us now discuss the case of rational invariants of order 2. Let
us consider a rational function in 6 variables S2(u0, ..., v2) ∈ C(u0, ..., v2). For every
parametrization γ ofX, S2 induces a rational function in γ, γ

′ and γ′′, S2?(x, y). Similarly
as before, the derivative of the above equalities with respect to t and the substitution of
(x′, y′) = p · (−fy, fx) into the �rst one yields

(x′′, y′′) = p′ · (−fy, fx) + p2 · (fxyfy − fyyfx,−fxxfy + fxyfx)

and (
∂2

∂t
r(ϕ(t)),

∂2

∂t
s(ϕ(t))

)
= ϕ′′ · (r′(ϕ(t)), s′(ϕ(t))) + ϕ′2 · (r′′(ϕ(t)), s′′(ϕ(t))).

Successively, using the chain rule and substituing (x′, y′) = p · (−fy, fx) after each deriva-

tive gives for γ(k) and ∂k

∂t (r(ϕ(t)), s(ϕ(t))) again two equalities which are completely sym-
metric in the derivatives of p and ϕ. Thus, for an arbitrary rational function Sk, k ∈ N
in 2(k + 1) variables the following are equivalent:

(i) Sk ? (r(ϕ(t)), s(ϕ(t))) = [Sk ? (r, s)] |t=ϕ(t), i.e. Sk ∈ Λk.

(ii) Sk(x, y, x
′, y′, . . . , x(k), y(k)) = Sk(x, y,−fy, fx, fxyfy − fyyfx,−fxxfy + fxyfx, . . . ),

and the claim follows.

Theorem 3.2.7. Let X ⊆ A2 be an irreducible plane algebraic curve parametrized by

γ(t) = (x(t), y(t)). Let Ri ∈ Λ, i = 1, . . . , k be rational invariants and zi(t) = Ri ?
(x(t), y(t)) the corresponding geometric invariants of X. If ord0(zi(t)) ≥ 0 for all i, then
(x(t), y(t), z1(t), . . . , zk(t)) parametrizes an algebraic space curve Xz that is birationally

equivalent to X. Here ord0(zi(t)) denotes the t-adic order of the power series zi(t).

Proof. Let f ∈ C[x, y] be the de�ning polynomial of X. Let Pzi , Qzi be the to zi corre-
sponding modi�ed di�erential operators, i.e.

zi(t) =

(
Pzi(f)

Qzi(f)

)
(x(t), y(t)).

Then the map
τ : X → Ak+2

(x, y) 7→ (x, y,

(
Pz1(f)

Qz1(f)

)
(x, y), . . . ,

(
Pzk(f)

Qzk(f)

)
(x, y))

is de�ned on X\(
⋃
V (Qzi(f))). But since Qzi(f) is not divisible by the polynomial f for
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all i = 1, . . . , k, otherwise zi would not be well-de�ned, according to Proposition 3.1.13
the set X ∩ (

⋃
V (Qzi(f))) is �nite and so τ is de�ned on a dense subset of X. Hence,

X and Xz are birationally equivalent. It follows then from te Corollary 3.1.10 that Xz is
an algebraic space curve.

Corollary 3.2.8. Let X ⊆ A2 be an irreducible plane algebraic curve parametrized by

γ(t) = (x(t), y(t)). Let z1(t), . . . , zm(t) ∈ ΛX be geometric invariants of X that stem

all from the parametrization γ(t). Then the m-tuple (z1(t), . . . , zm(t)) parametrizes an

algebraic space curve Z ⊆ Am.

Proof. According to Theorem 3.2.7, (x(t), y(t), z1(t), . . . , zm(t)) parametrizes an alge-

braic space curve X̃. Now apply Lemma 3.1.11 to π(X̃), where π : Am+2 → Am,
(x, y, z1 . . . , zm) 7→ (z1, . . . , zm).

Let X ⊆ A2 be a plane algebraic curve. Assume that X has a singular branch
(Y, 0) at the origin. Let (x, y) be a parametrization of (Y, 0). W.l.o.g. we may assume
that (x(0), y(0)) = 0. The goal is to �nd a rational invariant R such that the triple
(x, y, z) := (x, y, R ? (x, y)) parametrizes a regular branch (Yz, (0, 0, z(0))) of a space curve
Xz. In general, even though we know the modi�ed di�erential operators de�ning z, it
is not easy to �nd the de�ning equations of the curve Xz. Thus, the de�nition of the
singular locus that uses Jacobian matrix is not helpful at the moment. And so, for further
work, it is necessary to develop a criterion which can read o� from parametrizations of
algebraic curves how their singular locus looks like.

Theorem 3.2.9. Let X = V (I) ⊆ An be an algebraic curve. Let I ⊆ C[x1, . . . , xn]
be a radical ideal. Assume that 0 ∈ X and that X is analytically irreducible at the

origin. If X can be parametrized at the origin by an n-tuple of convergent power series

(x1, . . . , xn) ∈ C{t}n with xi(0) = 0 for all i = 1, . . . , n and ord0(xi(t)) = 1 for at least

one i ∈ {1, . . . , n}, then X is regular at the origin.

Proof. Let (x1, . . . , xn) be a parametrization of X with xi(0) = 0 for all i = 1, . . . , n and
min{ord0(xi(t))} = 1. We can assume ord0(x1(t)) = 1. Using Proposition 5.1.16, the
density of the image of the parametrization

γ :

n⋂
i=1

D(xi(t))→ X

a 7→ (x1(a), . . . , xn(a))

implies the injectivity of the map

γ∗ : C[x1, . . . , xn]/I → C{t}

xi 7→ xi(t).

The map γ∗ induces
γ̂∗ : ÔX,0 = C[[x1, . . . , xn]]/I → C[[t]]
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xi 7→ xi(t).

Since X is analytically irreducible at the origin, the ring ÔX,0 is an integral domain.

As γ̂∗ maps between two integral domains, ker(γ̂∗) must be a prime ideal. Then either
ker(γ̂∗) = (xi, i = 1, . . . , n), because of 0 ∈ X, or ker(γ̂∗) = (0). But the case ker(γ̂∗) =
(xi, i = 1, . . . , n) is not possible because the image of γ is Zariski-dense in X. Hence,

ker(γ̂∗) = (0) and γ̂∗ is injective. We now show the regularity of ÔX,0 which implies,
according to the Theorem 3.1.7, the regularity of OX,0. Our claim is that for each i =
2, . . . , n there exist power series Fi(x1) so that the equality xi = Fi(x1) · x1 holds. This
implies then that the maximal ideal m̂X,0 can be generated by a single element and as
the the Krull-dimension of C[[x1, . . . , xn]]/I equals one, the statement follows.
As ord0(x1(t)) = 1 it follows that there exists a power series g(t) with ord0(g(t)) = 1
so that the equality g(x1) = t is ful�lled. And so we have Gi(x1) := (xi(g(x1)) = xi for
all i = 2, . . . , n. Because of xi(0) = 0, we get Gi(0) = 0 for all i = 1, . . . , n. Thus, we
can write Gi(x1) = G̃i(x1) · xm1 for a suitable power m > 0 and G̃i(x1) ∈ C[[x1]]

∗. Let
us consider the term Gi(x1) − xi ∈ C[[x1, . . . , xn]]/I. Evidently, we have the equality
γ̂∗(Gi(x1)−xi) = Gi(x1)− xi = 0. From the injectivity of γ̂∗ follows Gi(x1)−xi = 0 and
from the equality G̃i(x1) · xm1 = xi we get xi ∈ (x1) for all i = 2, . . . , n which �nishes the
proof.

For a parametrization γ = (x1, ..., xn) of an algebraic curve X ⊆ An at a point a ∈ X,
with (x1(b), ..., xn(b)) = a for some b ∈ C, we call the value

ordb(γ) := min
i∈[n]
{ordb(xi(t))}

the order of γ at b. Here ordb(xi(t)) is the (t− b)-adic order of xi(t).

Remark 3.2.10. Let X ⊆ An be an algebraic curve and a ∈ X a point of X.
(i) The regularity of X at a does not imply that each parametrization γ of X at a with
γ(b) = a has order 1 at b.
(ii) Only the existence of a parametrization γ at a of X with γ(b) = a, ordb(γ) = 1 does
not automatically imply the regularity of X at a.

To illustrate the problem of the remark let us consider the following three examples:

Example 3.2.11. 1) Let X be the plane algebraic curve that is parametrized by γ(t) =
(t, t2). The de�ning equation of X is f(x, y) = x2 − y. As X is analytically irreducible
at the origin, γ(0) = (0, 0) and ord0(γ) = 1, the proposition applies and tells us that X
is regular.

2) Let X be the plane algebraic curve parametrized by γ(t) = (t2, t4). Then X is de�ned
by the equation f(x, y) = x2−y as well and γ parametrizes the same curve as in example
1). Obviously the curve X is regular. But ord0(γ) > 1.

3) Let X be the plane algebraic curve parametrized by γ(t) = (t2−1, t3−t). The de�ning
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polynomial of X is f(x, y) = x2 +x3−y2. We have γ(−1) = γ(1) = (0, 0) and the Taylor
expansions of γ(t) at 1 and −1 are

γ(t) = (2(t− 1) + (t− 1)2, 2(t− 1) + 3(t− 1)2 + (t− 1)3)

and
γ(t) = (−2(t+ 1) + (t+ 1)2, 2(t+ 1)− 3(t+ 1)2 + (t+ 1)3).

Because of the terms ±2(t ± 1) in each component of γ we have ord±1(γ) = 1 and so
the branches of X that are parametrized by γ are regular. However the curve X itself
is singular at the origin. The reason for that is the analytical reducibility of X at the
origin. X has namely at the origin two branches de�ned by convergent power series
g1 = x

√
x+ 1− y, g2 = x

√
x+ 1 + y ∈ C{x, y}.
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3.3 Modi�ed higher curvatures of plane algebraic curves

The goal of this section is to introduce one system of rational invariants that will then
later play the key role in the resolution of singularities. We will also study the geometric
invariants of plane algebraic curves corresponding to this system of rational invariants,
the so-called modi�ed higher curvatures, and the behavior of their t-adic orders.

From now on let X ⊆ A2 be a plane algebraic curve and γ(t) = (x(t), y(t)) a
parametrization of X at the origin with γ(0) = 0. We denote a = ord0(x(t)), b =
ord0(y(t)) and assume that b ≤ a.

Proposition 3.3.1. The rational function

Rs :=
u1
v1
∈ C(u0, v0, u1, v1)

is a rational invariant. This induces the geometric invariant

s(t) =
x′(t)

y′(t)

of X.

Proof. See Example 3.2.3.

Lemma 3.3.2. Furthermore, we have in C{{t}} the equality

s(t) =
x′(t)

y′(t)
= −fy

fx
(x(t), y(t)).

Proof. Follows directly from Lemma 3.2.5.

Remark 3.3.3. The evaluation of the geometric invariant s(t) at 0 can be also interpreted
as one of the a�ne chart expressions of the projective point (y′(0) : x′(0)) ∈ P1

C which is
known from di�erential geometry and called the slope of the tangent vector of X at 0.
The other chart expression is given by 1

s(0) and stems from the geometric invariant 1
s(t) .

Both these expressions give us equivalent geometric informations about X at the points
parametrized by (x(t), y(t)) and therefore, it is enough to work with only one of them.

We will call in this thesis also the geometric invariants s(t) and 1
s(t) the slope of the

tangent vector. As for the t-adic order of s, we have the equality

ord0(s(t)) = ord0(x
′(t))− ord0(y

′(t)) = a− 1− (b− 1) = a− b.

The task now is to �nd further rational invariants. We can consider for example the
modi�ed derivative of Rs,

∂Rs =
u2v1 − u1v2

v21
.
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But, as we have already seen in Example 3.2.3, ∂Rs is not a rational invariant. It turns
out that a small modi�cation in the denominator of ∂Rs does yield a geometric invariant.
The multiplication of ∂Rs with the term

S(u0, v0, u1, v1) =
v21

(u1 + v1)3

is such a possible modi�cation. The rational function we get in this way,

Rκ :=
u2v1 − u1v2
(u1 + v1)3

,

is then a rational invariant. We namely have

Rκ ? (x(ϕ(t)), y(ϕ(t))) = ∂Rs ? (x(ϕ(t)), y(ϕ(t))) · S ? (x(ϕ(t)), y(ϕ(t))) =

= ϕ′(t) · [∂Rs ? (x(t), y(t))]|t=ϕ(t) ·
ϕ′(t)2 · y′(ϕ(t))2

ϕ′(t)3 · (x′(ϕ(t)) + y′(ϕ(t)))3
=

= [∂Rs ? (x(t), y(t))]|t=ϕ(t) · [S ? (x(t), y(t))]|t=ϕ(t) = [Rκ ? (x(t), y(t))]|t=ϕ(t).

Proposition 3.3.4. The rational function

Rκ :=
u2v1 − u1v2
(u1 + v1)3

∈ C(u0, . . . , v2)

is a rational invariant that induces the geometric invariant

κ(t) :=
x′′(t) · y′(t)− x′(t) · y′′(t)

(x′(t) + y′(t))3

of X.

Lemma 3.3.5. We have the equality

κ(t) =

(
fxxf

2
y + 2fxyfxfy − fyyf2x

(−fy + fx)3

)
(x(t), y(t))

in C{{t}}.

Proof. The invariance under reparametrization has been already shown.
Let us write x = x(t), y = y(t) and fx = fx(x(t), y(t)), fy = fy(x(t), y(t)), etc. We have

s′(t) =

(
−fy
fx

)′
= −(fyx · x′ + fyy · y′) · fx + (fxx · x′ + fxy · y′) · fy

f2x
.

Furthermore,
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y′2

(x′ + y′)3
=

f2x
p(t) · (−fy + fx)3

.

When we substitute (x′, y′) = p(t) · (−fy, fx) into the �rst equality for s′(t) and use that
fxy = fyx we get for κ the following equality

κ(t) =
fxxf

2
y − 2fxyfxfy + fyyf

2
x

(−fy + fx)3
.

Note that we have the equality ord0(κ(t)) = a− 2b.

Remark 3.3.6. The expression

κ(t) =
x′′(t)y′(t)− x′(t)y′′(t)

(x′(t) + y′(t))3

is closely related to

κ̃(t) :=
x′′(t)y′(t)− x′(t)y′′(t)√

(x′(t)2 + y′(t)2)3

which is the formula for the curvature of X of (x(t), y(t)) known from di�erential geom-
etry. Hence we call κ(t) the modified curvature of X.

In the same way we got a new geometric invariant of X from the modi�ed deriva-
tive of the slope of the tangent vector, we can de�ne further geometric invariants of X
recursively.

Proposition 3.3.7. Let R ∈ C(u0, v0, . . . , uk, vk), for some k ∈ N, be a rational invari-

ant. Let G(u0, v0, u1, v1) ∈ C[u0, v0, u1, v1], G 6≡ 0, be a polynomial in four variables that

satis�es the equality

G ? (x(ϕ(t)), y(ϕ(t))) = [G ? (x(t), y(t))]|t=ϕ(t) · ϕ′(t)

for all pairs of convergent power series (x(t), y(t)) ∈ C{t}2 and all reparametrizations

ϕ ∈ Aut(C{t}). Then the rational function

∂R

G
∈ C(u0, v0, . . . , uk+1, vk+1)

is a rational invariant as well. Furthermore, for all pairs of convergent power series

(x(t), y(t)) ∈ C{t}2 that satisfy ord0(R ? (x(t), y(t))) > 0 we have the inequality

ord0(R ? (x(t), y(t))) > ord

((
∂R

G

)
? (x(t), y(t))

)
.
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Proof. For each pair of convergent power series (x(t), y(t))) ∈ C{t}2 and each reparametriza-
tion ϕ ∈ Aut(C{t}) we have

∂

∂t
(R ? (x(ϕ(t)), y(ϕ(t)))) = [∂R ? (x(t), y(t))]|t=ϕ(t) · ϕ′(t).

With the conditions on G we get(
∂R

G

)
? (x(ϕ(t)), y(ϕ(t))) =

∂
∂t(R ? (x(ϕ(t)), y(ϕ(t))))

G ? (x(ϕ(t)), y(ϕ(t)))
=

=
[∂R ? (x(t), y(t))]|t=ϕ(t) · ϕ′(t)
[G ? (x(t), y(t))]|t=ϕ(t) · ϕ′(t)

=

[(
∂R

G

)
? (x(t), y(t))

]
|t=ϕ(t).

Hence, the rational function ∂R
G is a rational invariant. Regarding the order of R ?

(x(t), y(t)), the equalities

ord0(∂R ? (x(t), y(t))) = ord0(R ? (x(t), y(t)))− 1

and
ord0(G ? (x(t), y(t))) ≥ 0

imply

ord0

((
∂R

G

)
? (x(t), y(t))

)
≤ ord0(R ? (x(t), y(t)))− 1 < ord0(R ? (x(t), y(t))).

Thus, in the way described in Proposition 3.3.7 we can generate a sequence of ge-
ometric invariants of X of decreasing order. We can recursively construct the rational
invariants

Rs :=
u1
v1
∈ C(u0, v0, u1, v1),

Rκ :=
∂Rs

u1 + v1
∈ C(u0, v0, . . . , u2, v2),

Rκ1 :=
∂Rκ

u1 + v1
∈ C(u0, v0, . . . , u3, v3),

...

Rκn :=
∂Rκn−1

u1 + v1
∈ C(u0, v0, . . . , un+2, vn+2),

...

that induce the following geometric invariants of X:
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s(t) :=
x′(t)

y′(t)
with ord0(s(t)) = a− b,

κ(t) :=
s′(t)

x′(t) + y′(t)
with ord0(κ(t)) = a− 2b,

κ1(t) :=
κ′(t)

x′(t) + y′(t)
with ord0(κ1(t)) = a− 3b,

...

κn(t) :=
κ′n−1(t)

x′(t) + y′(t)
with ord0(κn(t)) = a− (2 + n)b,

...

We call each κi(t), i ∈ N a modified higher curvature of X.
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4 Resolution of singularities of plane algebraic curves via

geometric invariants

4.1 Resolution of analytically irreducible plane algebraic curves

In this section we will put into practice the knowledge about rational and geometric
invariants we gained in the last chapter. We will use certain properties of geometric
invariants to get an idea how to construct an algorithm that resolves with help of rational
invariants singularities of analytically irreducible plane algebraic curves. More precisely,
for an analytically irreducible plane algebraic curve X ⊆ A2 with a singularity at the
origin the algorithm will construct a rational invariant R = R1

R2
so that the Zariski-closure

of the graph ∆ of the map
δ : X\Z → P2

(x, y) 7→ (R1(x, y) : R2(x, y))

is the blowup of X with center Z = X ∩ V (R1, R2) and is regular at the points lying
over the origin. Repated use of this algorithm to each singular point together with an
additional ingredient will then construct for an arbitrary analytically irreducible plane
algebraic curve a regular blowup of the curve with a suitable center.

As already mentioned, we will use some important properties of geometric invari-
ants for the construction of the algorithm. We will even prove with help of Puiseux
parametrizations and geometric invariatns of plane algebraic curves that the algorithm
really works. The main component of the proof will be Theorem 3.2.9 which uses orders
of parametrizations of an algebraic curve to decide whether a point on the curve is reg-
ular or singular. To guarantee that the Theorem 3.2.9 applies in the situation described
above let us prove the following proposition:

Proposition 4.1.1. Let X ⊆ A2 be a plane algebraic curve parametrized by (x(t), y(t))
at the origin. Consider rational invariants Ri ∈ Λ, i = 1, . . . k and the correspond-

ing geometric invariants zi(t) = Ri ? (x(t), y(t)) ∈ ΛX with ord0(zi) ≥ 0 for all i. If

X is analytically irreducible at the origin, then the algebraic curve Xz ⊆ Ak+2 that is

parametrized by (x(t), y(t), z1(t), . . . , zk(t)) is analytically irreducible at the points lying

over (0, 0).

Proof. Let f ∈ C[x, y] be the de�ning polynomial of X. For all i ∈ {1, . . . , k} let Pzi , Qzi

be the to zi corresponding modi�ed di�erential operators. Let c ∈ Xz be a point lying
over (0, 0). If Xz were not analytically irreducible at c, then Xz would have at least two
distinct branches (Y1, c) and (Y2, c) at this point. We distinguish two cases:
1) Assume that there exists a representative Ỹ1 of (Y1, c) and a representative Ỹ2 of (Y2, c)
such that π(Ỹ2) = π(Ỹ1) for the projection

π : A2+k → A2

(x, y, z1, . . . , zk) 7→ (x, y).

26



This means that the only di�erences between the points of Ỹ1 and Ỹ2 are their (z1, . . . , zk)-
coordinates. But the (z1, . . . , zk)-coordinates of almost all points lying onXz are uniquely

determined by zi =
(
Pzi (f)

Qzi (f)

)
(x, y). Hence, π|Xz is injective locally at c and this situation

can not appear.
2) Assume that for all representatives Ỹ1 of (Y1, c) and Ỹ2 of (Y2, c) the images π(Ỹ1)
and π(Ỹ2) are representatives of two distinct branches of X at the origin. But this is a
contradiction to the assumption that X itself is analytically irreducible at the origin.

Remark 4.1.2. The statement of Proposition 4.1.1 is in general no longer true for
algebraic space curves parametrized by (x, y, z), with an arbitrary convergent power series
z(t) ∈ C{t}. To illustrate the problem let us consider the following example:
The pair (0, t2−1) parametrizes the y-axis in A2 which is an anlytically irreducible curve
at each point (0, c), c ∈ C. We set z(t) = t3 − t. Then the curve Xz that is parametrized
by (0, t2−1, t3− t) is the node in the yz-plane and is analytically reducible at the origin.

Corollary 4.1.3. Let X ⊆ A2 be a plane algebraic curve and 0 ∈ X. Assume that X is

analytically irreducible at the origin. Let z1, . . . , zk ∈ C{t} be geometric invariants of X
that stem all from the same parametrization γ = (x, y) of X at the origin. Let Xz be the

algebraic space curve parametrized by (x, y, z1, . . . , zk). Consider the map

π : A2+k → A2

(x, y, z1, . . . , zk) 7→ (x, y)

and the restriction of this map π|Xz . Then the �ber

π|−1Xz
(0, 0) = {(0, 0, z1(0), . . . , zk(0))}

consists of only one point.

Proof. Assume that the �ber π|−1Xz
(0, 0) consists of at least two di�erent points c1, c2, c1 6=

c2. Let
γ1(t) = (tn, s1(t), . . . , sk+1(t)), γ2(t) = (tm, r1(t), . . . , rk+1(t))

be the Puiseux parametrizations of the branches (Y1, c1) and (Y2, c2) of X at c1 and c2,
respectively. Then (tn, s1(t)), (t

m, r1(t)) parametrize two distinct branches of X at the
origin, according to the discussion in the case 1) in the proof of Proposition 4.1.1. But
this is a contradiction to the assumption of the analytical irreducibility of X at 0.

We consider from now on an irreducible plane algebraic curve X = V (f) ⊆ A2 with
a singularity at the origin. Assume that X is analytically irreducible at the origin. Let
γ(t) = (x(t), y(t)) be a parametrization of X at the origin with a = ord0(x(t)) > 0, b =
ord0(y(t)) > 0. W.l.o.g. we may assume b 6= a. Because if we had the equality a = b,
then we could use the coordinate change (x, y) 7→ (x, x − c · y) for a suitable constant
c ∈ C to reach a parametrization with components of di�erent t-adic orders. Let R ∈ Λ
be a rational invariant which induces the geometric invariant z = R ? (x, y) of X with
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ord0(z(t)) = 1. We conclude then from Theorem 3.2.9, Proposition 4.1.1 and Corollary
4.1.3 that adding z as the third component to the parametrization γ gives us the triple
(x, y, z) that parametrizes an algebraic space curve Xz that is regular at the origin and
that is birationally equivalent to X. Thus, the goal is to construct from γ such a geo-
metric invariant z of X of t-adic order one.

We already know, using Theorem 3.2.7, that each triple γi(t) = (x(t), y(t), κi(t)), i ∈
N ∪ {0,−1} parametrizes an algebraic space curve if ord0(κi(t)) ≥ 0. Here κ−1(t) :=
s(t), κ0(t) := κ(t). Even more, we have ord0(γi(t)) > ord0(γi+1(t)) for all i ∈ N∪{0,−1}
which can be interpreted as a betterment of the singularity of X at the origin. But we are
still missing a geometric invariant of X of order one to be able to construct a resolution
of X at the origin. To do so, we proceed stepwise. Firstly, we construct by iterative use
of the formulas for modi�ed higher curvatures a geometric invariant of X of t-adic order
equal to gcd(a, b).

Proposition 4.1.4. Applying iteratively in a particular manner the formulas for modi�ed

higher curvatures to the parametrization (x, y) yields a geometric invariant of X of t-adic
order equal to gcd(a, b).

Proof. Let us w.l.o.g. assume that a > b. Let i1 ∈ N be chosen such that c1 :=
ord0(κi1(t)) > 0 and c1 − b < 0. Then the triple (x, y, κi1) parametrizes an algebraic
space curve X1. Let us consider the projection map

π : A3 → A2

(x, y, z) 7→ (y, z).

Then π(X1) is a plane algebraic curve according to Lemma 3.1.11 and it is parametrized
by γ1(t) = (y(t), κi1(t)). Here π(X1) denotes the Zariski-closure of π(X1). Then we have
the inequality

b = ord0(γ) > ord0(γ1) = c1.

We proceed now in the same way on π(X1). We choose i2 ∈ N such that c2 :=
ord0(κi2(t)) > 0 and c2 − c1 < 0, where κi2(t) denotes a modi�ed higher curvature
of π(X1) that stems from the parametrization (y(t), κi1(t)). Then again the triple
(y(t), κi1(t), κi2(t)) parametrizes an algebraic space curve X2 and π(X2) is a plane alge-
braic curve parametrized by γ2(t) = (κi1(t), κi2(t)) with

c1 = ord0(γ1) > ord0(γ2) = c2.

For j ≥ 3 we de�ne recursively κij as the modi�ed higher curvature that stems from the

parametrization γj−1(t) = (κij−2(t), κij−1(t)) of the plane algebraic curve π(Xj−1) and
that satis�es the inequalities cj := ord0(κij (t)) > 0 and cj−cj−1 < 0. The algebraic space
curve Xj let be the curve parametrized by the triple (κij−2(t), κij−1(t), κij (t)). Notice
that cj is exactly the value we get in the j-th step of the Euclidean algorithm applied to
the constants a and b. Therefore, there exists k ∈ N so that ord0(κik(t)) = gcd(a, b) = d.
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It can be shown by induction that κin(t) is a geometric invariant of X for all n ∈ N.
Notice that for such a κin(t) there exist polynomials in two variables P,Q ∈ C[x, y] so
that the equality

κin(t) =
P (κin−2(t), κin−1(t))

Q(κin−2(t), κin−1(t))

is ful�lled. By the induction hypothesis there exist polynomials in two variablesR1, . . . , R4 ∈
C[x, y] so that we have the equalities

κin−1(t) =
R1(x(t), y(t))

R2(x(t), y(t))
, κin−2(t) =

R3(x(t), y(t))

R4(x(t), y(t))
.

Thus,

κin(t) =
P
(
R1(x,y)
R2(x,y)

, R3(x,y)
R4(x,y)

)
Q
(
R1(x,y)
R2(x,y)

, R3(x,y)
R4(x,y)

)
from which it follows that also κik(t) is a geometric invariant.

We denote from now on the modi�ed higher curvature of t-adic order d = gcd(a, b)
constructed in the way described in the proof of Proposition 4.1.4 by κ∗(x, y).

Corollary 4.1.5. Let z1, . . . , zm be geometric invariants of X that stem all from the

parametrization (x, y) with ki = ord0(zi(t)). Then a geometric invariant of X of t-adic
order gcd(k1, . . . , km) can be constructed from z1, . . . , zm by repeated use of the formulas

for modi�ed higher curvatures.

Proof. According to Corollary 3.2.8, the m-tuple (z1, . . . , zm) parametrizes an algebraic
space curve Z ⊆ Am. Let us consider the projection

π : Am → A2

(x1, . . . , xm) 7→ (xm−1, xm).

Then π(Z) is a plane algebraic curve and it is parametrized by the pair (zm−1, zm).
We compute the modi�ed higher curvature κ∗(zm−1, zm). As for its t-adic order we
have ord0(κ

∗(zm−1, zm)) = gcd(km−1, km). For each i = 1, . . . ,m − 1 we can construct
recursively the modi�ed higher curvature

κ∗(zi, κ
∗(zi+1, κ

∗(. . . , κ∗(zm−1, zm))))

of t-adic order equal to

gcd(ki, gcd(ki+1, gcd(. . . , gcd(km−1, km)))) = gcd(ki, . . . , km).

Hence, the modi�ed higher curvature

κ∗(z1, . . . , zm) := κ∗(z1, κ
∗(. . . , κ∗(zm−1, zm)))

is of t-adic order gcd(k1, . . . , km). Finally, it can be shown in the same way as in the
proof of Proposition 4.1.4 that κ∗(z1, . . . , zm) is a geometric invariant of X.
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For each �nite set of geometric invariants z1, . . . , zm of X that stem from the same
parametrization of X we denote by κ∗(z1, . . . , zm) a modi�ed higher curvature of t-adic
order gcd(ord0(zi(t)), i = 1, . . . , k) that is constructed in the way we described in the
proof of Corollary 4.1.5.

Lemma 4.1.6. Let s(t) ∈ PuiseuxC(t) be a Puiseux series and n = ν(s) its polydromy

order. Assume that s(tn) ∈ C{t}. For a reparametrization ϕ let us denote sϕ(t) =

ϕ(s(tn)). Then the polydromy order of sϕ(t
1
n ) equals n as well.

Proof. We assume indirectly that the polydromy order of sϕ(t
1
n ) is smaller than n. Then

there is a constant c ∈ N, c 6= 1 so that n and each i ∈ supp(sϕ) are divisible by c and
we can write

ϕ(s(tn)) =
∑
i≥0

ait
c·i

for some constants ai ∈ C. Hence each term of s(tn) = ϕ−1(ϕ(s(tn))) is (up to a mul-
tiplication with a constant) a product of the monomials ait

c·i and has a power that is
divisible by c. But as n is the polydromy order of s(t), there exists a subset {i1, . . . , ir} ⊆
supp(s(tn)) of the support of s(tn) such that gcd(n, i1, . . . , ir) = 1, a contradiction.

Theorem 4.1.7. Let η(t) = (u(t), v(t)) be a Puiseux parametrization of X at the origin.

Then a geometric invariant z(t) of t-adic order one of X can be constructed from the

parametrization η(t) by iterative use of the formulas for modi�ed higher curvatures.

Proof. We may assume that a is the polydromy order of v(t
1
a ). Let b = ord0(v(t)).

According to Proposition 4.1.4 there exists a modi�ed higher curvature z1 = κ∗(u, v) of
t-adic order d1 = gcd(a, b). Then the triple (u, v, z1) parametrizes an algebraic space
curve X1. Furthermore, there is a reparametrization ϕ1 such that ϕ1(z1) = td1 . Thus,
applying the reparametrization ϕ1 to the triple (u, v, z1) gives us another parametrization
of X1,

(ϕ1(u), ϕ1(v), td1),

with ord0(ϕ1(u(t))) = a, ord0(ϕ1(v(t))) = b. Via a polynomial triangular coordinate
change, the curve X1 is isomorphic to the curve parametrized by

(ϕ1(u), ϕ1(v)− k · (td1)q, td1) = (x1, y, t
d1)

for q = b
d1

and suitable k ∈ C with ord0(y(t)) > b. If gcd(a, ord0(y(t)), d1) = d1, we
reapply a triangular coordinate change to increase again the order of y(t). By Lemma
4.1.6 this process must terminate after �nitely many steps when achieving y1 so that

gcd(a, ord0(y1(t)), d1) < d1.

Furthermore, by Lemma 4.1.6 we �nd a �nite subset {i1, . . . , ir1} ⊆ supp(y1) of the
support of y1 so that the equality gcd(a, d1, i1, . . . , ir1) = 1 holds. Now, according to
Corollary 4.1.5 there exists a modi�ed higher curvature z2 = κ∗(x1, y1, t

d1) of t-adic
order equal to d2 = gcd(a, ord0(y1(t)), d1). We apply again a suitable reparametrization
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and a triangular coordinate change to the algebraic space curve X2 parametrized by
(x1, y1, t

d1 , z2) and get an isomorphic algebraic space curve parametrized by (x2, y2, s1, t
d2)

for suitable x2, y2, s1 ∈ C{t} with ord0(x2) = a, ord0(y2) = ord0(y1), ord0(s1) = d1 so that
the inequality

gcd(a, ord0(y2), d1, d2) < d1

holds. By an iterative use of this procedure we achieve an m-tuple

(xm−3, ym−3, s1, . . . , sm−3, zm−2)

of geometric invariants of X that satisfy

gcd(ord0(xm−3), ord0(ym−3), ord0(s1), . . . , ord0(sm−3), ord0(zm−2)) = 1.

Now, from Corollary 4.1.5 the rest follows.

Let us now assume that X has more than the only one singularity at the origin. Let
s1, . . . , sm = Sing(X)\{0} be the other �nitely many singularities of X. We consider at
each singularity si a Puiseux parametrization γi(t) = (xsii , y

si
i ) of X with γi(bi) = si for

some bi ∈ C and construct then for each i = 1, . . . ,m according to Theorem 4.1.7

zsii =
Pi(x

si
i , y

si
i )

Qi(x
si
i , y

si
i )
,

a geometric invariant of X of (t − bi)-adic equal to one. Here Pi, Qi ∈ C[x, y] for all

i = 1, . . . ,m. If z = P0(x,y)
Q0(x,y)

denotes the geometric invariant of X of t-adic order one that

stems from the parametrization (x, y) of X, then the (m+ 3)-tuple

η(t) =

(
x, y,

P0(x, y)

Q0(x, y)
,
P1(x, y)

Q1(x, y)
, . . . ,

Pm(x, y)

Qm(x, y)

)
parametrizes one chart expression of the blowup X̃ of X with the center

(P0 ·
∏
i≥1

Qi, P1Q0 ·
∏
i 6=1

Qi, . . . , PmQ0 ·
∏
i 6=m

Qi, Q0 ·
∏
i≥1

Qi).

Even more, since for each i = 1, . . . ,m there is according to Corollary 4.1.3 only one point
s̃i lying on the curve parametrized by η(t) over si, and since the curve parameatrized by
η(t) is at each point s̃i parametrized by

ηi(t) =

(
xsi , ysi ,

P0(x
si , ysi)

Q0(xsi , ysi)
,
P1(x

si , ysi)

Q1(xsi , ysi)
, . . . ,

Pm(xsi , ysi)

Qm(xsi , ysi)

)
with ηi(bi) = s̃i and with one component zsii satisfying ordbi(z

si
i (t)) = 1, it is regular at

each point. And the regularity of X̃ follows. Thus, we have already proven the following
statement:
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Theorem 4.1.8. Let Sing(X) = {s1, . . . , sm}. Then by repeatedly using the formulas

for modi�ed higher curvatures to the parametrization (x, y) geometric invariants

κsi(t) =

(
κ
(1)
si (f)

κ
(2)
si (f)

)
(x(t), y(t)), i = 1, . . . ,m,

can be constructed so that the (m+ 2)-tuple

(x, y, κs1 , . . . , κsm)

parametrizes one of the a�ne chart expressions of a regular blowup X̃ of X with a

suitable center. Here κ
(j)
si (f) ∈ C[x, y], j = 1, 2 denotes a modi�ed di�erential operator

κ
(j)
si applied to f .

However, there is still a little problem with the implicit equations for X̃. Even though
we can compute the center of the blowup and also the exceptional divisor, to �nd the
de�ning equations of X̃ is in general a very complicated process. The reason for that
is that it is generally not straightforward to factor out the equations of the exceptional
divisor from the equations of the total transform of X.
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4.2 Resolution of analytically reducible plane algebraic curves

We will now use the knowledge we have from the previous section about the resolution of
analytically irreducible curves to discuss how the resolution of an analytically reducible
curve can be constructed with the help of rational invariants. The most important part
here will play the discussion of the separation of di�erent branches at one point via geo-
metric invariants.

Let X ⊆ A2 be a plane algebraic curve with a singularity at the origin. Let us assume
thatX is analytically reducible at the origin and that (Y1, 0), . . . , (Ym, 0) are the branches
ofX at the origin. Note that we have already seen in the section 4.1 how to resolve each of
the branches of X at the origin. Hence, we can transform the original question asking for
the resolution of an arbitrary analytically reducible plane algebraic curve to the problem
of searching for a resolution of a space algebraic curve with regular branches. It is clear
that two regular branches of an algebraic space curve can meet at a point in di�erent
ways. We will in this section distinguish between two types of how the branches can meet.

At �rst notice that the concept of geometric invariants was de�ned only for plane
aglebraic curves. Hence, for the construction of the resolution of algebraic space curves
a new strategy has to be �gured out.

1. Two branches with di�erent tangent vectors at the meeting point:

In this case the separation of these two branches can be done via the Nash modi�cation
that takes the slope of the tangent vector as a new coordinate.

2. Two branches with the same tangent vectors at the meeting point:

Let Z ⊆ An be a blowup of X with a suitable center and let (Z1, 0) and (Z2, 0) be
two distinct branches of Z with the same tangent vector at the origin. We consider the
projection

π : An → A2

(x1, . . . , xn) 7→ (x1, x2).

Let (X1, 0), (X2, 0) be the projections of the branches (Z1, 0) and (Z2, 0) of Z under π, re-
spectively. Then (X1, 0), (X2, 0) are two distinct branches of X at the origin. Let us con-
sider the Puiseux parametrizations (x1(t), y1(t)), (x2(t), y2(t)) of the branches (X1, 0) and
(X2, 0), respectively. Then the goal is to �nd a rational invariant R ∈ C(u0, v0, . . . , uk, vk)
such that

[R ? (x1(t), y1(t))]|t=0 6= [R ? (x2(t), y2(t))]|t=0.

This means that we must have ord0(R ? (xi(t), yi(t))) = 0 for at least one i = 1, 2 and
if we had ord0(R ? (xi(t), yi(t))) = 0 for both i = 1, 2, then it would be necessary that
the geometric invariants R ? (x1(t), y1(t)) and R ? (x2(t), y2(t)) have di�erent constant
terms. We denote ai = ord0(xi(t)), bi = ord0(yi(t)) for i = 1, 2. If we have the inequality
a1
b1
6= a2

b2
then there exist positive integers c, d ∈ N such that

c · a1 − d · b1 = 0, c · a2 − d · b2 6= 0.
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Then we have for the rational invariant R =
uc0
vd0
∈ C(u0, v0) the following:

ord0(R ? (x1(t), y1(t))) = 0, ord0(R ? (x2(t), y2(t))) 6= 0.

There is also the possibility to use the formulas for modi�ed higher curvatures for
the construction of the searched rational invariant. Remember that for the modi�ed
higher curvature κj that stems form the parametrization (x1, y1) we have the equality
ord0(κj(t)) = a1 − (j + 2)b1. Thus, we can construct from the parametrization (x1, y1)
the modi�ed higher curvature κd−2(t) of t-adic order a1 − d · b1 and then continue with
the pair ( 1

κd−2
, x1) and construct from this the modi�ed higher curvature κc−3 of t-adic

order ord0(κc−3(t)) = d ·b1−c ·a1 = 0. Then κc−3 is clearly a geometric invariant of X as
well and the corresponding rational invariant S satis�es the required conditions. Thus,
if η(t) = (x, y, z1, . . . , zn−2) is a parametrization of Z, then the addition of the geometric
invariant S ? (x, y) or R ? (x, y) as a new component to the parametrization η(t) sepa-
rate the both branches (Z1, 0), (Z2, 0) and the (n+ 1)-tuple (x, y, z1, . . . , zn−2, S ? (x, y))
parametrizes one chart expression of a blowup of X with a suitable center. However, if
there are more than two branches at the origin, this strategy does not apply. Also in the
case that the equality a1

b1
= a2

b2
holds it is still open how to separate the branches.
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5 Appendix

5.1 Puiseux parametrizations of plane algebraic curves

The aim of this section is to present the concept of Puiseux parametrizations of branches
of plane algebraic curves. We will present in this section the Newton-Puiseux algorithm
which constructs these parametrizations.

Let us now brie�y introduce the concept of Puiseux series. The field of Puiseux
series over C is de�ned as

PuiseuxC(x) :=
⋃
n≥1

C((x
1
n )).

The elements are Laurent series with rational exponents with a �xed denominatorm ∈ N,

s(x) =

∞∑
i=i0

ai · x
i
m , i0 ∈ Z,

with coe�cients ai ∈ C, called Puiseux series over C. The choice of m is not unique
but after reduction of all fractionary exponents we may take the minimal one, i.e., m
and the set of integers {i ∈ Z|ai 6= 0} have no non-trivial common divisor. The minimal
value m is called the polydromy order of s(x) and denoted by ν(s).

Let us �x the coordinates x, y in A2 and let f(x, y) ∈ C[x, y] be a non-constant
squarefree polynomial and X = V (f) ⊆ A2 the corresponding plane algebraic curve. We
suppose from now on 0 ∈ X. Let f = f1 · · · fr, fi 6= fj for i 6= j be the factorization of f
into irreducible factors fi ∈ C[x, y]. If r ≥ 2, the curve X is reducible and in this case X
cannot be parametrized by a pair of convergent power series (x(t), y(t)) (for the de�nition
of a parametrization of an algebraic curve or its branches see Section 3.1). This can be
seen indirectly in the following way:
Assume the existence of a parametrization (x(t), y(t)) ofX. Then the equality f(x(t), y(t)) =
0 holds in C{t}. But then fi(x(t), y(t)) = 0 for one i ∈ {1, . . . , r}. This means that
(x(t), y(t)) parametrizes already the irreducible component Xi ( X and, as Xi is the
Zariski-closure of the image of the map

γ : D(x(t)) ∩D(y(t))→ X

a 7→ (x(a), y(a)),

it parametrizes none of the other irreducible components Xj , j 6= i. Therefore, the
pair(x(t), y(t)) cannot parametrize the whole curve X.

We will therefore look only at irreducible plane algebraic curves for searching for a
parametrization. But even in this case, there could be a similar problem with analytical
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irreducibility. We hence look at the decomposition of the curve X in its branches at
one point. We will ask whether there exists a parametrization of each branch of X at 0.
Moreover, we will look for a special type of parametrizations called Puiseux parametriza-
tions. A Puiseux parametrization of a branch (Y, 0) of X at 0 is a parametrization of
the branch of the form (x(t), y(t)) = (tm, s(t)) or (x(t), y(t)) = (s(t), tm), for some m ∈ N
and s(t) ∈ C{t}. Note that for a parametrization (tm, s(t)) of X we have the equality

f(t, s(t
1
m )) = 0 in PuiseuxC(t). Hence, the Puiseux parametrizations are closely related

to Puiseux series. However, as required s(t) to be a power series and not allowed to be a
Laurent series with a negative order in t, we do not have a 1:1 correspondence between
Puiseux series and Puiseux parametrizations.

Let g(x1, . . . , xn) ∈ C[[x1, . . . , xn]] be a power series. An n-tuple of Puiseux series
(x1(t), . . . , xn(t)) ∈ PuiseuxC(t)n is called a zero of g if the equality

g(x1(t), . . . , xn(t)) = 0

is ful�lled in PuiseuxC(t). A Puiseux series s(t) ∈ PuiseuxC(t) is said to be an xi-root
of g if we have after substituing s(t) for the variable xi and t for all other variables the
equality

g(t, . . . , t, s(t), t, . . . , t) = 0

in PuiseuxC(t). Let J ⊆ C[[x1, . . . , xn]] be an ideal. An n-tuple of Puiseux series
(x1(t), . . . , xn(t)) ∈ PuiseuxC(t)n is said to be a zero of J if it is a zero of all power
series g ∈ J . For an algebraic plane curve X = V (f) it is clear, using the fact that the
ring of Laurent series is an integral domain, that a Puiseux series s(t) is an x- or y-root
of f if and only if it is an x- or y-root of a power series de�ning one of the branches of
X.

Proposition 5.1.1. For every zero (tm, s(t)) or (s(t), tm),m ∈ N of a polynomial f ∈
C[x, y] with s ∈ C[[t]] the power series s is convergent.

Proof. From the equalities f(s(t), tm) = 0 and f(tm, s(t)) = 0 we conclude that s(t) is a
zero of f(x, tm) or f(tm, x), respectively. As they are polynomials in x with coe�cients
in the polynomial ring C[t], the power series s is algebraic and hence convergent.

Let g(x, y) ∈ C[[x, y]] be a formal power series without constant term such that
g(0, y) = yn · h(y) for some integer n ∈ N and some formal power series h(y) with
h(0) 6= 0. A power series of this form is said to be y-regular of order n. The x-regularity
is de�ned in the same way.

We will show that each y-regular power series g ∈ C[[x, y]] possesses a y-root y(x).
Let us brie�y look at one concrete example, at the polynomial f(x, y) = x2− y3 which is
y-regular of order 3. Then we see in general it is not possible y(x) to be a power series.

The only y-roots of f are y(x) = ζjx
2
3 , where ζ = e

2πi
3 is a third primitive root of unity

and j = 0, 1, 2. And we see that y(x) is a polynomial with fractional exponents. Thus, in
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general there is no hope to �nd a y-root which would be a power series. However, there
is still the possibility that y(x) ∈ C[[x

1
m ]] for some �xed integer m. And this is what we

will show. Even more, we will show that this root is of the form y(x) = φ(x
1
m ), where

φ(x) ∈ C{x} and m is the y-regularity order of g.

Lemma 5.1.2. For each power series g ∈ C[[x, y]], there exists a change of coordinates

(x, y) 7→ (x + λy, y), λ ∈ C such that g is y-regular of order o = ord0(g). Here ord0(g)
denotes the t-adic order of g.

Proof. Let us write the power series g as follows:

g =
∑
i+j≥o

ai,jx
iyj .

Let

homo(g) :=
∑
i+j=o

ai,jx
iyj =

o∑
j=0

aj,o−jx
jyo−j

be the homogeneous part of g of degree o. We apply the change of coordinates λ :
(x, y) 7→ (x+ λy, y) for a constant λ ∈ C and we get

homo(g ◦ λ) =
o∑
j=0

aj,o−j(x+ λy)jyo−j =
o∑
i=0

o∑
j=i

aj,o−j

(
j
i

)
λj−i︸ ︷︷ ︸

ãi,o−i(λ)

xiyo−i

with

ã0,o(t) =

o∑
j=0

aj,o−jt
j .

Indeed ã0,o is a non-zero polynomial in the variable λ, thus ão,0 has only �nitely many
zeros in C. For a generic λ ∈ C we therefore have ã0,o(λ) 6= 0 and so we can �nd a
change of coordinates so that the term yo appears with a non-zero coe�cient in the
Taylor expansion of g(x+ λy, y).

Thus we can w.l.o.g assume that each power series g ∈ C[[x, y]] we are working with
is y-regular. Let us sketch the main ideas of the Newton-Puiseux algorithm. We show
the existence of a y-root φ(t) of each y-regular power series g ∈ C[[x, y]] of order n by
induction on the integer n. But �rst let us discuss the case that g = ym for some m ∈ N.
Then g is parametrized by the pair (t, 0) which is a Puiseux parametrization. For an
arbitrary power series g ∈ C[[x]] of y-regularity order n = 1 we have gy(0, 0) 6= 0 and
according to the Implicit functions theorem there exists a unique power series y(x) ∈
C[[x]] with g(x, y(x)) = 0, y(0) = 0. Let us now consider n > 1. For a power series
g ∈ C[[x, y]] we will seek a y-root y(x) of the form

y(x) = φ(x
1
m ) = xν(c0 + φ0(x

1
m )),
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with constants c0 ∈ C\{0}, ν ∈ Q+ and φ0(x) ∈ C[[x]] without constant term. The
substitution of the searched y-root y(x) into g with o = ord0(g) must satisfy

g(x, y(x)) =
∑
i+j≥o

ai,jx
iy(x)j =

∑
i+j≥o

ai,jx
i+νj(c0 + φ0(x

1
m ))j = 0.

Thus, we look for constants ν, c0 and a Puiseux series φ0(x
1
m ) as above such that the last

equality holds. When we set µ = min{i+ νj|ai,j 6= 0}, we can write

g(x, y(x)) = xµ
∑

i+νj=µ

ai,jc
j
0 + xµ

∑
i+νj=µ

ai,j

j−1∑
k=0

(
j
k

)
ck0φ0(x

1
m )j−k+

+xµ
∑

i+νj>µ

ai,jx
i+νj−µ(c0 + φ0(x

1
m ))j = xµ

∑
i+νj=µ

ai,jc
j
0 + xµh(x

1
m )

for some h(x) ∈ C[[x]]. Notice that h(x) has no constant term as φ0 has not niether.
Therefore, to achieve the equality g(x, y(x)) = 0, we must have∑

i+νj=µ

ai,jc
j
0 = 0.

And we conclude that at least two distinct constants am,n, ak,l with m+νn = µ = k+νl
are non-zero (by assumption c0 6= 0).

Let us now recall the concept of the Newton polygon which is the key tool of the
Newton-Puiseux algorithm. The set N (g) := {(i, j)|ai,j 6= 0} ⊆ R2

≥0 lying in the (i, j)-
plane is called the Newton cloud of g. The Newton polygon of g, NP(g), is de�ned as
the boundary of the convex hull of the set N+(g) := N (g) + R2

≥0. The bounded edges,
i.e., edges of �nite length, of the Newton polygon are called segments. We denote the
segments of the Newton polygon by s1, s2, . . . , sl. The �rst segment s1 is the closest
one to the j-axis. The points on the Newton polygon where two edges meet are called
vertices. We can note that the line de�ning the �rst segment of the Newton polygon is
of the smallest slope. Furthermore each line de�ning one segment si is of smaller slope
than the line de�ning the segment si+1 lying on the right side of the segment si. Notice
that there is a geometric interpretation of µ = min{i + νj|ai,j 6= 0}. The constant µ
is the minimal value d ∈ R for which the line i + νj = d crosses the Newton polygon.
And hence it is also the minimal value lying on the intersection of the i-axis and the line
i+ νj = d crossing the Newton polygon. By the de�ntion of µ, the line i+ νj = µ meets
the Newton polygon in exactly one vertex or contains one whole segment of the Newton
polygon.

In the case that the line i + νj = µ contains one whole segment sk of the Newton
polygon, the value − 1

ν equals the slope of the segment sk. We call the number ν the
inclination of the segment sk.
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Remark 5.1.3. The �rst segment of the Newton polygon has the smallest inclination.

Remark 5.1.4. The polynomial ∑
i+νj=µ

ai,jc
j
0

then consists of the terms ai,jc
j
0, where (i, j) lies on the segment of the Newton polygon

with the inclination ν.

But now back to the induction step in the proof of the existence of Puiseux parametriza-
tions. The induction step from n−1 to n consists of several parts. For the simplicity, we
handle these parts separately. But all parts are connected and each part uses the results
and de�nitions from the previous parts. So the individual parts cannot be understood
individually without reading the previous parts. The following steps work only for a
power series g 6= ym,m ∈ N. Hence, for the further procedure we will consider only
y-regular power series g with at least one �nite segment of the Newton polygon.

1st part :

Let ν0 = l
h be the inclination of the �rst segment of the Newton polygon NP(g) of

the power series

g(x, y) =
∑
i+j≥o

ai,jx
iyj , o = ord0(g).

We chose a constant c0 ∈ C such that c0 6= 0 and the equation∑
i+ν0j=µ

ai,jc
j
0 = 0.

is ful�lled. As g 6= ym for all m ∈ N, the �rst segment of NP(g) lies above the j-axis
and this choice of c0 is possible. We study now the e�ect of the change of variables

x = xh1
y = xl1(c0 + y1)

on the power series g. The substitution of the new variables into g and using the de�nition
of µ as before together with the fact

i+ ν0j ≥ µ⇔ hi+ lj ≥ µh

yields

g(xh1 , x
l
1(c0 + y1)) =

∑
i+j≥o

ai,jx
hi+lj
1 (c0 + y1)

j =
∑

hi+lj≥µh
ai,jx

hi+lj
1 (c0 + y1)

j =
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= xµh1
∑

hi+lj≥µh
ai,jx

hi+lj−µh
1 (c0 + y1)

j

︸ ︷︷ ︸
=:g̃(x1,y1)

.

So we get the following factorization

g(xh1 , x
l
1(c0 + y1)) = xµh1 g̃(x1, y1)

with

g̃(0, y1) =
∑

i+ν0j=µ

ai,j(c0 + y1)
j .

Since g(0, y) = ynh(y), h(0) 6= 0, we know that a0,n 6= 0. Therefore, the point (0, n) is
the left-boundary point of the �rst segment of NP(g) and it is also the point lying on
the line i+ ν0j = µ. Thus, the term a0,n(c0 + y1)

n must appear in the Taylor expansion
of g̃(0, y1) and so the y1-order of g̃(0, y1) is smaller or equal to n. Because of the choice of
c0 as a root of the polynomial

∑
i+ν0j=µ

ai,jc
j
0, the y1-order of g̃(0, y1) is strictly greater

than 0. Even more, there is a necessary and su�cient condition for y1-order of g̃(0, y1)
to be equal to n:

Proposition 5.1.5. The y1-order of g̃(0, y1) is equal to n if and only if c0 is a root of

multiplicity n of the polynomial ∑
i+ν0j=µ

ai,jt
j

.

Proof. ⇐: Let c0 be a root of ∑
i+ν0j=µ

ai,jt
j = 0

of multiplicity n. Then we have the equality∑
i+ν0j=µ

ai,jt
j = b(t− c0)n

with some constant b 6= 0 and �nally

g̃(0, y1) =
∑

i+ν0j=µ

ai,j(c0 + y1)
j = b(c0 + y1 − c0)n = byn1 .

⇒: If the multiplicity m of the root c0 is strictly smaller than n, then we have the
factorization ∑

i+ν0j=µ

ai,jt
j = b(t− c0)m(t− d0)r0 · · · (t− ds)rs ,

40



with m + r0 + · · · + rs = n and some constants b 6= 0, di 6= dj for i 6= j and di 6= c0 for
all i = 1, ..., s. After substituting t 7→ c0 + y1 into

∑
ai,jt

j we get for g̃ the following

g̃(0, y1) =
∑

i+ν0j=µ

ai,j(c0 + y1)
j = b(c0 − d0)r0 · · · (c0 − ds)rs︸ ︷︷ ︸

6=0

ym1 .

And so g̃(0, y1) has y1-order m < n.

Let us now discuss the case that the y1-order of the power series g̃(0, y1) equals n,
i.e., c0 ∈ C is a root of multiplicity n of the polynomial

∑
i+ν0j=µ

ai,jt
j . Then we have

the following equality

∑
i+ν0j=µ

ai,jt
j = b(t− c0)n = b

n∑
k=0

tn−k(−1)kck0,

with some constant b 6= 0. Comparing the terms a0,nt
n (we already know that (0, n) lies

on the line i + ν0j = µ) and btn, we get b = a0,n. Furthermore, comparing the terms
aµ−ν0(n−1),n−1t

n−1 and −a0,nc0tn−1 yields the equality aµ−ν0(n−1),n−1 = −a0,nc0 6= 0.
This implies the existence of a positive integer i′ such that i′ + ν0(n − 1) = µ. Then
i′ = µ− ν0n︸︷︷︸

=µ

−ν0 = ν0 and we get the following proposition:

Proposition 5.1.6. If the y1-order of g̃(0, y1) equals n, then ν0 is a positive integer.

Furthermore, comparing the coe�cients of t0 in the above equality ensures that
aν0n,0 = (−1)na0,nc

n
0 6= 0. Thus, the �rst segment of NP(g) connects the points (0, n)

and (ν0n, 0) which correspond to the monomials yn and xν0n. Analogously, we can com-
pute the other coe�cients ai,j with (i, j) ∈ NP(g) satisfying the condition i + ν0j = µ
and we see that:

Remark 5.1.7. If the y1-order of g̃(0, y1) equals n, then g can be written in the following
way

g(x, y) =
∑

i+ν0j=µ

ai,jx
iyj +

∑
i+ν0j>µ

ai,jx
iyj = a0,n(y − c0xν0)n +

∑
i+ν0j>µ

ai,jx
iyj

and the �rst segment is therefore the only bounded segment of NP(g).

2nd part :

If the y1-order of g̃(0, y1) equals n, we apply to g the following change of variables

x 7→ x
y 7→ y + c0x

ν0 .
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Substituting these newly de�ned variables into g and using Remark 5.1.7 yields

g1(x, y) := g(x, y + c0x
ν0) = a0,ny

n +
∑

i+ν0j>µ

ai,jx
i(y + c0x

ν0)j =

= a0,ny
n +

∑
i+ν0j>µ

j∑
k=0

(
j
k

)
ai,jc

k
0x

i+ν0kyj−k.

Notice that the point (0, n) is a vertex of NP(g1). Furthermore, the other terms appear-
ing in the above sum are of the form xi+ν0kyj−k with i+ν0k+ν0(j−k) = i+ν0j > µ = ν0n
(because of the special choice of c0). But this is equivalent to

i
n−j > ν0 from which we

conclude that the inclination of the �rst segment of NP(g1) is strictly greater than ν0.
Here ν0 is the inclination of the �rst segment of NP(g). And we obtain the following
proposition from our observation:

Proposition 5.1.8. If the y1-order of g̃(0, y1) equals n, then g1 is y-regular of order

n. Moreover, NP(g1) still contains the point (0, n) and ν1 > ν0, where ν1 denotes the

inclination of the �rst segment of NP(g1).

3rdpart : induction step

a) If g̃(x1, y1) = yn1 , then φ(t) = t is a y-root of g̃. Or if the y1-order of g̃(0, y1) is
strictly smaller than n, then by the induction hypothesis there exists a positive integer

m1 and a Puiseux series φ1(x
1
m1
1 ) ∈ C[[x

1
m1
1 ]] ful�lling the equality

g̃(x1, φ1(x
1
m1
1 )) = 0.

For g we then have:

g(xh1 , x
l
1(c0 + φ1(x

1
m1
1 )) = xµh1 g̃(x1, φ1(x

1
m1
1 )) = 0.

Setting x = xh1 , m = m1h and φ(x
1
m ) = x

l
h (c0 + φ1(x

1
m )) = xν0(c0 + φ1(x

1
m )) yields

g(x, φ(x
1
m )) = 0 which �nishes the proof in this case.

b) Let us now discuss the case that the y1-order of g̃(0, y1) equals n and g̃(x1, y1) 6= yn1 .
Because of Proposition 5.1.8, the inclination of the �rst segment of NP(g1), which we
denote by ν1, is strictly greater than ν0. Now we have to apply the procedure described
in parts 1− 3 again to the power series g1. We then get the corresponding power series
g̃1(x2, y2) and observe its behavior after substituing x2 = 0. If its y2-order is strictly
smaller than n or g̃1(x2, y2) = yn2 , we can apply the induction hypothesis. We then �nd

a positive integer m2 and a Puiseux series φ2(x
1
m2
2 ) ∈ C[[x

1
m2
2 ]] ful�lling the equality
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g̃1(x2, φ2(x
1
m2
2 )) = 0.

For g1 we then have

g1(x
h1
2 , x

l1
2 (c1 + φ2(x

1
m2
2 ))) = xµ1h12 g̃1(x2, φ2(x

1
m2
2 )) = 0,

where ν1 = l1
h1

is the inclination of the �rst segment of NP(g1) and µ1 the correspond-
ing minimal value d ∈ R for which the line i+ν1j = d crossesNP(g1). Finally for g we get

g(xh12 , x
l1
2 (c1 + φ2(x

1
m2
2 )) + c0x

h1ν0
2 ) = g1(x

h1
2 , x

l1
2 (c1 + φ2(x

1
m2
2 ))) = 0.

And the claim follows when setting x = xh12 , m = m2h1 and φ(x
1
m ) = x

l1
h1 (c1+φ2(x

1
m ))+

c0x
ν0 = c0x

ν0 + xν1(c1 + φ2(x
1
m )).

If this is not the case and the y2-order of g̃1(0, y2) is equal to n again and g̃1(x2, y2) 6= yn2 ,
we have to de�ne the power series g2(x, y) realizing the change of the variables

x 7→ x
y 7→ y + c0x

ν0 + c1x
ν1 .

Because of Proposition 5.1.8, the inclination ν2 of the �rst segment of NP(g2) is strictly
greater than ν1 and we get the inequalities ν0 < ν1 < ν2. Now two cases have to be
discussed. The �rst one is the situation where after �nitely many repetitions of steps
1-3 we come to some p ∈ N so that the power series g̃p−1(0, yp) has strictly smaller
yp-order than n or g̃p−1(xp, yp) = ynp . Then, by the induction hypothesis, there exists

a power series with fractional exponents φp(x
1
mp
p ) ∈ C[[x

1
mp
p ]] which ful�lls the equality

g̃p−1(xp, φp(x
1
mp
p )) = 0. And analogously as above we can show that the searched y-root

of g has the form

y(x) = c0x
ν0 + c1x

ν1 + · · ·+ xνp−1(cp−1 + φp(x
1

mphp−1 )).

But it is also possible that the yj-order of g̃j(0, yj+1) remains equal to n and g̃j(xj+1, yj+1) 6=
ynj+1 for every j ∈ N. This is the second case we have to discussat the moment. In this
case we have an integer sequence ν0 < ν1 < · · · < νk < . . . of the inclinations of the �rst
segments of the associated Newton polygons NP(gj) and the formal power series

φ∞(x) = c0x
ν0 + c1x

ν1 + · · ·+ cjx
νj + · · · ∈ C[[x]].

Therefore, the inclination of the �rst segment of the Newton polygon of the limit g∞(x, y)
is equal to ∞. Here g∞(x, y) can be obtained from g(x, y) with the change of variables

x 7→ x
y 7→ y + φ∞(x).
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Furthermore, we have

g(x, c0x
ν0 + c1x

ν1 + · · ·+ cjx
νj ) = gj(x, 0)

which converges to g∞(x, 0) as j tends to ∞. But because of ν∞ = ∞, the power series
g∞ must be divisible by yn and we can write

g∞(x, y) = ynh(x, y),

for some unit of the power series ring h ∈ C[[x, y]]∗. Thus, we �nally get the equality

g(x, φ∞(x)) = 0

which �nishes the proof of the existence of a y-root of a power series g.

Remark 5.1.9. The choice of the constants ci's determines completely the Puiseux series
produced by the Newton-Puiseux algorithm.

Newton-Puiseux theorem (�rst version) 5.1.10. Let g ∈ C[[x, y]] be a y-regular

power series. Then there exists a y-root g, namely g(x, y(x
1
m )) = 0, with y(x) ∈ C[[x]]

for and some positive integer m ∈ N.

And using Lemma 5.1.1 we see that the Newton-Puiseux algorithm even produces
parametrizations of branches of plane algebraic curves.

Newton-Puiseux theorem (second version) 5.1.11. Let X ⊆ A2, be a plane alge-

braic curve. Then each branch of X at an arbitrary point of X can be parametrized by a

pair of convergent power series.

There is an even more general theorem saying that the �eld of Puiseux series is
algebraically closed:

Newton-Puiseux theorem 5.1.12. The algebraic closure of the �eld C{{x}} (resp.

C((x))) is the �eld
⋃
n≥1C{{x

1
n }} (resp.

⋃
n≥1C((x

1
n )) ).

Here C{{x}} := Quot(C{x}).

Now, to show that each Puiseux parametrization of a branch is indeed a parametriza-
tion of the curve itself, we need to show the Zariski density of the image of the Puiseux
parametrization. To see the density of the parametrization, the following lemma can be
helpful :

Lemma 5.1.13. Let X,Y ⊆ An be two irreducible algebraic curves with X 6= Y and

0 ∈ X ∩ Y . Let (Xi, 0), i ∈ I be the branches of X at 0 and (Yj , 0), j ∈ J the branches of

Y at 0, with suitable index sets I and J . Then (Xi, 0) 6≡ (Yj , 0) for all i ∈ I and j ∈ J .
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Proof. We assume indirectly that there exist some i ∈ I and j ∈ J so that (Xi, 0) ≡
(Yj , 0). Let Z be a representative of this equivalence class. Then the Zariski-closure of
Z must equal X and also Y as Z is a representative of a branch of X and of a branch of
Y and as X and Y are irreducible. But this is impossible as X 6= Y.

Lemma 5.1.14. Let I, J ⊆ C{x1, . . . , xn}, I 6= J, be two prime idelas of height n −
1. Then I and J cannot have the same zero γ(t) = (x1(t), . . . , xn(t)) ∈ C{t}n, with
convergent power series xi(t) 6= const. for all i = 1, . . . n.

Proof. Let us indirectly assume that γ(t) is a zero of I and J . Let us consider the map

γ∗ : C{x1, . . . , xn} → C{t}
x1 7→ x1(t)

...
xn 7→ xn(t).

At �rst notice that γ∗ is a map between two integral domains. Hence, ker(γ∗) is a prime
ideal in C{x1, . . . , xn}. As xi(t) 6= const. for all i = 1, . . . n, the height of ker(γ∗) is at
most n − 1. Since (x1(t), . . . , xn(t)) is a zero of I, the height of ker(γ∗) equals n − 1.
Then we have I, J ⊆ ker(γ∗). But then ker(γ∗) = I = J because I, J and ker(γ∗) are
prime ideals of the same height.

Corollary 5.1.15. Two not associated irreducible convergent power series g1, g2 ∈ C{x, y},
g1, g1 6= 0, cannot have the same zero γ(t) = (x(t), y(t)) ∈ C{t}2, with convergent power

series x(t), y(t) 6= const.

Proposition 5.1.16. Let X = V (I) ⊆ An be an algebraic curve and I ⊆ C[x1, . . . , xn]
its de�ning ideal. Consider the following map

γ :
n⋂
i=1

D(xi(t))→ X

t 7→ (x1(t), ..., xn(t)),

where xi(t) ∈ C{t} are convergent power series for all i = 1, ..., n. Let

γ∗ : C[x1, ..., xn]/I → C{t}

xi 7→ xi(t)

...

xn 7→ xn(t)

be the induced map. Then the image of γ is Zariski-dense in X if and only if γ∗ is

injective.
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Proof. ⇒: If the map γ∗ was not injective, then there would exist a polynomial h ∈
C[x1, . . . , xn]\I so that h(x1(t), ..., xn(t)) = 0 in C{x1, ..., xn}. Then ker(γ∗) would be
a prime ideal of height at least 1. But then the Zariski-closure of the image of γ is an
algebraic variety of codimension n and therefore strictly contained in X.
⇐: Assume that the image of γ is not Zariski-dense in X. Then the Zariski-closure of the
image of γ is an irreducible algebraic curve Y = V (J) for some ideal J ⊆ C[x1, . . . , xn]
with I ( J . But the n-tuple (x1(t), ..., xn(t)) must be then a zero of the ideal J and
consequently the map γ∗ is not injective.

Hence, for the density of the image of a non-constant map γ : D(x1(t))∩D(x2(t))→
X, with γ(t) a root of a convergent power series gi de�ning a branch (Xi, 0) of a plane
algebraic curveX = V (I) ⊆ A2, it is su�cient to show the injectivity of the corresponding
map γ∗ de�ned as in Proposition 5.1.16. But according to Lemma 5.1.13 and 5.1.14 and
Corollary 5.1.15, the map γ∗ is injective. And we deduce the following lemma:

Lemma 5.1.17. Let X ⊆ A2 be a plane algebraic curve. Let (Xi, 0) be the branches of
X at the origin and gi ∈ C{x, y} the de�ning power series of the branches. Then we have
the correspondences:

(xi(t), yi(t)) zeros of gi
constructed by the

Newton− Puiseux alg.

←→
{

(xi(t), yi(t)) Puiseux parametrizations
of the branches (Xi, 0)

}
.

Even more:
(xi(t), yi(t)) zeros of gi

constructed by the
Newton− Puiseux alg.

←→
{

(xi(t), yi(t)) Puiseux
parametrizations of X

}
.

Proof. Notice that an irreducible convergent power series g ∈ C is either y- or x-regular.
Hence, after a suitable coordinate change, the Newton-Puiseux algorithm applies to each
branch of X. Let (x, φ(x

1
n )) be a zero of g ∈ C{x, y}, where g de�nes a branch of X.

Then x 7→ xn is the correspondence between Puiseux parametrizations of the branches of
X or X itself and the zeros of the de�ning power series of the branches of X constructed
due to the Newton-Puiseux algorithm. The rest follows from the discussion before.

And we conclude the existence of a parametrization of an arbitrary irreducible plane
algebraic curve.

Theorem 5.1.18. Each irreducible plane algebraic curve can be parametrized by a pair

of convergent power series (x(t), y(t)). In addition, each branch of a plane algebraic curve

can be parametrized by a Puiseux parametrization.

Even more, for a parametrization (x(t), y(t)) of a branch of a plane algebraic curve
the orders ord0(x) and ord0(y) can be read o� from the Newton-Puiseux algorithm.

Lemma 5.1.19. Let X ⊆ A2 be a plane algebraic curve and (Y, 0) one of the branches

of X at the origin with de�ning power series g ∈ C{x, y}. Let ν = l
h be the inclination

of the �rst segment of NP(g). If g 6= yk, k ∈ N, then for a Puiseux parametrization

(x(t), y(t)) of (Y, 0) we have x(t) = th and ord0(y) = l.
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Proof. This is a direct consequence of the construction of y-roots according to the
Newton-Puiseux algorithm

Lemma 5.1.20. If y(t) is a y-root of a y-regular polynomial f , then it is one of the

series the Newton-Puiseux algorithm gives rise to.

Proof. If y(t) = 0 then f = y · g(x, y) and the parametrization of V (y) was discussed at
the beginning of the Newton-Puiseux algorithm.

So let y(t) 6= 0.We write y(t) = t
l
h (c0 + y1(t)) with

l
h the inclination of the �rst segment

of the Newton polygon of f , some constant c0 6= 0 and power series y1 ∈ C[[t]]. Then
using the de�nition of f̃ from the Newton-Puiseux algorithm we see that if f(t, y(t)) = 0,
then f(th, tl(c0 + y1(t

h))) = tµhf̃(t, y1) = 0 and so we get f̃(t, y1) = 0. And the claim
follows by iteration.

We will now discuss some more properties on Puiseux parametrizations of plane al-
gebraic curves. Finally, we show that if a polynomial f factors into a product of formal
power series f = gs11 · · · gsnn , gi ∈ C[[x, y]], then the factorization is already unique up to
a multiplication with a unit and all the factors (except the unit) are already convergent
power series.

For each n-th root of unity ζ ∈ {ξ ∈ C|ξn = 1} we de�ne the automorphism

σζ : C((x
1
n ))[[y]]→ C((x

1
n ))[[y]]

x
1
n 7→ ζx

1
n

y 7→ y.

For a Puiseux series

s(x) =
∑
i≥i0

aix
i
n ,

with i0 ∈ Z, n ∈ N �xed, the image of s under σζ is then

σζ(s) =
∑
i≥i0

ζiaix
i
n ,

and is called a conjugate of s. It is clear, by de�nition, that the image under σζ of a
Puiseux series of polydromy order n is again a Puiseux series of polydromy order n . The
set of all conjugates of s is called the conjugacy class of s.

Lemma 5.1.21. The number of di�erent conjugates of a Puiseux series equals its poly-

dromy order.
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Proof. Let

s(x) =
∑
i≥i0

aix
i
n ,

be a Puiseux series of polydromy order n = ν(s). We select the indices i1, ..., ir ∈ Z such
that aij 6= 0 for all j = 1, ..., r and gcd{n, i1, ..., ir} = 1. If the equality σζ(s) = ση(s)
holds for some ηn = ζn = 1, then the equalities ηijaij = ζijaij and so ηij = ζij are
satis�ed for all j = 1, ..., r. But from gcd{n, i1, ..., ir} = 1 it follows that η = ζ. Thus
s(x) has n di�erent conjugates.

Lemma 5.1.22. A Puiseux series y(x
1
n ) ∈ C[[x

1
n ]] is y-root of g ∈ C[[x, y]] if and only

if g(x, y) = (y − y(x
1
n )) · h(x

1
n , y) holds for some h ∈ C[[x

1
n , y]].

Proof. Consider the automorphism

ϕ : C[[x
1
n , y]]→ C[[x

1
n , y]]

g 7→ ϕ(g) := g(x, y + y(x
1
n )).

Then ϕ(y − y(x
1
n )) = y and (ϕ(g))(x, 0) = g(x, y(x

1
n )). Thus we can w.l.o.g. assume

that y(x
1
n ) = 0. But in this case we have g(x, y) = y · h(x, y) for some h ∈ C[[x, y]].

Lemma 5.1.23. If a Puiseux series y(x
1
n ) ∈ C[[x

1
n ]] is a y-root of a power series g ∈

C[[x, y]], then all its conjugates are again y-roots of g.

Proof. By the previous lemma we have g(x, y) = (y − y(x
1
n )) · h(x

1
n , y) for some h ∈

C[[x
1
n , y]]. Furthermore, we have the equality g(x, y) = σζ(g(x, y)) = (y − y(ζx

1
n )) ·

h(ζx
1
n , y) for each n-th root of unity ζ. Using the previous lemma again we get the

claim.

For a Puiseux series s ∈ C[[x
1
n ]] of polydromy order ν(s) = n, we de�ne the following

power series

gs =

ν(s)∏
i=1

(y − σζi(s)) ∈ C[[x]][y],

where ζ is a primitive n-th root of unity and so σζ(s), ..., σζn(s) are the di�erent conjugates
of s. The fact gs ∈ C[[x]][y] can be seen in the following way. Note that for each

j, k = 1, ..., n there exists i ∈ {1, ..., n} such that σζk(σζj (s)) = σζi(s) ∈ C[[x
1
n ]] is

ful�lled. Furthermore, for i 6= j we have σζi(s) 6= σζj (s). Thus, we conclude the equality
σζj (gs) = gs for all j = 1, ..., n from which it follows that the polydromy order of gs
equals 1 and so gs(x) ∈ C[[x]][y]. Then using Lemmata 5.1.21, 5.1.22 and 5.1.23 we can
show the following:

Lemma 5.1.24. A Puiseux series s ∈ C[[x
1
n ]] is a y-root of a power series g ∈ C[[x, y]]

if and only if the equality g(x, y) = gs(x, y) ·h(x, y) is ful�lled for some h(x, y) ∈ C[[x, y]].
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Proof. ⇐: This direction is straightforward with Lemmata 5.1.22 and 5.1.23.
⇒: Let the equality g(x, s(x)) = 0 be ful�lled. Then g = (y − s) · h1 for some h1 ∈
C[[x

1
n , y]]. By Lemma 5.1.23, σζ(s), with ζ a primitive n-th root of unity, is a y-root of

g and hence of h1. Thus we get h1 = (y − σζ(s)) · h2 for some h2 ∈ C[[x
1
n , y]] and so

g = (y−s)·(y−σζ(s))·h2. Iteratively, we obtain g = (y−s) · · · (y−σζn−1(s))·hn = gshn for

some hn ∈ C[[x
1
n , y]] and since g ∈ C[x, y] and gs ∈ C[[x]][y], we have hn ∈ C[[x, y]].

Lemma 5.1.25. Let s ∈ C[[x
1
n ]] be a Puiseux series. Then the power series gs is

irreducible in the power series ring C[[x, y]].

Proof. If we had gs = h1 · h2 for some power series h1, h2 ∈ C[[x, y]], then s would have
to be a y-root of h1 or h2. Let us assume that s is a y-root of h1. But then gs has to
divide the power series h1 and so h2 ≡ 1.

With these last results we are now able to show the convergence of power series
appearing in the factorization of a polynomial in the power series ring.

Corollary 5.1.26. Let X = V (f) be a plane algebraic curve with 0 ∈ X. Then there exist

unique Puiseux series s1, ..., sk, unit u ∈ C[[x, y]]∗ and non-negative integers l1, l2 ≥ 0
such that f factors into f = u · xl1yl2 · gs1 · · · gsk , with gsi ∈ C{x, y} for all i = 1, . . . , k.
Especially, the branches of X at 0 are unique.

Proof. The existence of unique non-negative integers l1, l2 that ful�l the equality f =
xl1yl2 f̃ with some polynomial f̃ , which is not divisible by x and y, is clear. So let us
further assume that f is not divisible by y and w.l.o.g. let f be y-regular. We proceed
now by induction on the order of y-regularity of f . If f is y-regular of order one, then by
the Implicit functions theorem there exists a Puiseux series s of polydromy order 1 that
is a y-root of f and hence f = (y−s) ·u = gs ·u for some power series u with u(0, 0) 6= 0.
As for the case that the y-order of f is strictly bigger than 1 we shall construct, using the
Newton-Puiseux algorithm, a Puiseux series s1 that is a y-root of f . Then f satis�es the
equality f = gs1 ·f1 for some power series f1 ∈ C[x, y]. As s1 is a convergent power series,
gs1 is convergent as well. Obviously the order of y-regularity of f1 is strictly smaller than
the y-regularity order of f . Hence the induction hypothesis applies to f1 and we get the
claim. The uniqueness of such a factorization is then clear.
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5.2 Puiseux parametrizations of algebraic space curves

In the previous section we saw how to construct parametrizations of irreducible plane al-
gebraic curves according to the Newton-Puiseux algorithm. We will discuss now whether
for every algebraic space curve X ⊆ An and a point a ∈ X there exists a parametrization
of X at a. The key role in the answer to this question will play the knowledge about
Puiseux parametrizations of plane algebraic curves from the previous section.

There is also a modi�cation of the Newton-Puiseux algorithm for plane algebraic
curves to algebraic space curves. This modi�ed algorithm replace the inclination of the
�rst segment of the Newton polygon by the so-called tropism of the de�ning ideal of an
algebraic space curve. The algorithm is very similar to the Newton-Puiseux algorithm
for plane algebraic curves. However, some steps are more technical and need more esti-
mations and arguments.

Let X ∈ An be an algebraic space curve. Assume that 0 ∈ X. We will investigate
the branches of X at the origin by looking at the projections of the branches to the
coordinate planes. We de�ne for each i = 2, . . . , n the map

πi : An → A2

(x1, . . . , xn) 7→ (x1, xi)

to be the projection of An to the (x1, xi)- coordinate plane. For a branch (Y, 0) of X at

the origin we de�ne πi((Y, 0)) := πi(Ỹ ) for a representative Ỹ of (Y, 0). Here πi(Ỹ ) is the
Zariski-closure of πi(Ỹ ). As two di�erent plane algebraic curves have distinct branches
and any two di�erent branches can meet only at �nitely many points, the de�nition
of πi((Y, 0)) does not depend on the choice of a representative Ỹ of (Y, 0). Hence, the
de�nition is well-de�ned.

Lemma 5.2.1. Let (Y, 0) be a branch of X at the origin. If (Y, 0) 6≡ (V (x1), 0), then
dimπi((Y, 0)) = 1 for all i = 2, . . . , n.

Proof. Let J = (g1, . . . , gk) ⊆ C{x1, . . . , xn} be the de�ning ideal of the branch (Y, 0). It
is enough to show that the image of one representative Ỹ of (Y, 0) under each projection
πi contains in�nitely many points. This implies dimπi((Y, 0)) > 0. And as the dimension
under morphisms cannot increase the claim follows. We will show this by a contradiction.
Let Ỹ = V (J). Let us assume that there exists some j ∈ {2, . . . , n} for which the
projection πj(Ỹ ) consists only of �nitely many points {(0, 0), (a1, b1), . . . , (am, bm)} ⊆
A2. This means that Ỹ consists only of points with the �rst coordinate from the set
{0, a1, . . . , am}. Because of (Y, 0) 6≡ (V (x1), 0) we have Ỹ * V (x1) and so ai 6= 0 for
at least one ai. Thus, we can write J = (x1(x1 − a1) · · · (x1 − am), g1, . . . , gk) with at
least one ai di�erent from 0. We claim that (x1(x1 − a1) · · · (x1 − am), g1, . . . , gk) =
(x1, g1, . . . , gk) ∩ (x1 − a1, g1, . . . , gk) ∩ · · · ∩ (x1 − am, g1, . . . , gk). The inclusion ′′ ⊆′′
is easy to see, so let us discuss the other inclusion, ′′ ⊇′′ . Let h ∈ (x1, g1, . . . , gk) ∩
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(x1 − a1, g1, . . . , gk) ∩ · · · ∩ (x1 − am, g1, . . . , gk). Then there are following possibilites
of what this h could be. Either h ∈ (g1, . . . , gk) or h 6= 0 in ((x1, g1, . . . , gk) ∩ (x1 −
a1, g1, . . . , gk) ∩ · · · ∩ (x1 − am, g1, . . . , gk))/(g1, . . . , gk). As for the second case, as h ∈
(x1, g1, . . . , gk), we have h = x1·h0+(g1, . . . , gk) for some h0 ∈ C{x, y}. Analogously from
h ∈ (x1 − a1, g1, . . . , gk) we get h = x1(x1 − a1) · h1 + (g1, . . . , gk) for some h1 ∈ C{x, y}.
Iteratively we get h = x1(x1−a1) · · · (x1−am) ·hm+ (g1, . . . , gk) for some hm ∈ C{x, y}.
Thus, h ∈ (x1(x1 − a1) · · · (x1 − am), g1, . . . , gk) and the claim follows. But this is a
contradiction to the analytical irreducibility of Ỹ .

Lemma 5.2.2. Let (Y, 0) be a branch of X with (Y, 0) 6≡ (V (x1), 0). Then for each

representative Ỹ of (Y, 0) and all i = 2, . . . , n, we have πi(Ỹ ) ⊆ V (gi), with gi ∈ C{x1, xi}
an irreducible xi-regular convergent power series.

Proof. Using Lemma 5.2.1 we already know that πi(Ỹ ) de�nes a branch at the origin
of a plane algebraic curve. Hence πi(Ỹ ) = V (gi) for some convergent power series
gi ∈ C{x, y}. Clearly V (gi) contains the origin and so gi has no constant term. Let
us write gi =

∑
ck,lx

kyl with c0,0 = 0. Then gi = xs · yr · g̃i for some s, r ∈ N and
some convergent power series g̃i ∈ C{x, y} with g̃i(0, y) 6= 0 and so g̃i is y-regular. Thus,
we have three possibilities, either (πi(Ỹ ), 0) ≡ (V (x), 0) or (πi(Ỹ ), 0) ≡ (V (y), 0) or
(πi(Ỹ ), 0) ≡ (V (g̃i), 0). But because of the assumption (Y, 0) 6≡ (V (x1), 0), the case that
(πi(Ỹ ), 0) ≡ (V (x), 0) is not possible.

From these two lemmata we conclude directly a generalization of the Newton-Puiseux
theorem to algebraic space curves.

Generalized Newton-Puiseux Theorem for algebraic space curves 5.2.3. Let

(Y, 0) be a branch at the origin of an algebraic space curve X ⊆ An. Assume that

(Y, 0) 6≡ (V (x1), 0). Then there exist convergent power series s2(t), . . . , sn(t) ∈ C{t} and
a positive integer m ∈ N such that the n-tuple (tm, s2, . . . , sn) parametrizes (Y, 0) at the

origin.

Proof. Let Ỹ be a representative of (Y, 0). As Ỹ is not contained in the x1-coordinate
hyperplane, each projection πi(Ỹ ), i = 2, . . . n, is a branch of a plane algebraic curve and
is de�ned by a convergent power series g̃i ∈ C{x, y} that is y-regular. For the branch
(πi(Ỹ ), 0) ≡ (V (g̃i), 0) we get according to the Newton-Puiseux algorithm a Puiseux
parametrization (tmi , si(t)), si ∈ C{t} with si(0) = 0. From the Puiseux parametriza-
tions (tmi , si(t)) of the projections πi(Ỹ ) for all i = 2, . . . n, we can easily reconstruct a
parametrization of (Y, 0). We set now m = m2 · · ·mn and obtain n-tuple of convergent
power series

(tm, s2(t
m
m2 ), . . . , sn(t

m
mn ))

parametrizing the branch (Y, 0) at the origin.
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As we are always able to transform an algebraic space curve to an algebraic space
curve all whose branches at the origin are not contained in the x1-coordinate hyperplane,
we are able to construct in this way a parametrization of each branch of an arbitrary
algebraic space curve. Even more, using the results from the last section, we know that
these are already parametrizations of the curve itself. And so the following theorem was
proven:

Theorem 5.2.4. Each branch at a point a, (Y, a), of an algebraic space curve X ⊆ An
can be parametrized by an n-tuple of convergent power series (s1(t), . . . , sn(t)), si(t) ∈
C{t} for all i = 1, . . . , n.
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