COMPOSITIO MATHEMATICA

HERWIG HAUSER GERD MÜLLER Analytic curves in power series rings

Compositio Mathematica, tome 76, nº 1-2 (1990), p. 197-201. http://www.numdam.org/item?id=CM_1990__76_1-2_197_0

© Foundation Compositio Mathematica, 1990, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Analytic curves in power series rings

HERWIG HAUSER¹ & GERD MÜLLER²

¹Institut für Mathematik, Universität Innsbruck, 6020 Innsbruck, Austria; ²Fachbereich Mathematik, Universität Mainz, 6500 Mainz, FRG

Received 3 December 1988; accepted 20 July 1989

Let us state a standard result on algebraic group actions:

PROPOSITION. For an analytic map germ $\gamma: S \rightarrow (V, v)$, S a reduced analytic space germ and (V, v) the germ in v of a finite dimensional complex vector space V, together with an algebraic subgroup G of GL(V) the following holds:

(i) The germ T of points t in S for which $\gamma(t)$ lies in the orbit $G \cdot v$ of G through v is analytic.

(ii) There is an analytic map germ $\phi: T \to (G, 1)$ such that $\gamma(t) = \phi(t) \cdot v$ for all t in T.

Indeed, the orbit $G \cdot v$ is a locally closed submanifold of V, isomorphic to the homogeneous manifold G/G_v via the orbit map $G/G_v \to G \cdot v$, and the natural map $G \to G/G_v$ admits local sections.

The second part of the Proposition asserts that every analytic curve in a G-orbit is locally induced from an analytic curve in G. The object of the present article is to establish this statement in the case where $V = \mathcal{O}_n^p$ is a finite free module over the \mathbb{C} -algebra \mathcal{O}_n of convergent power series in *n* variables and $G = \mathscr{K} = \operatorname{GL}_p(\mathcal{O}_n) > \operatorname{Aut} \mathcal{O}_n$ is the contact group acting naturally on \mathcal{O}_n^p . Recall that the orbits of \mathscr{K} through f in \mathcal{O}_n^p just correspond to the isomorphism classes of the analytic space germs in $(\mathbb{C}^n, 0)$ defined by f. Thus we shall obtain analytic trivializations of local families of space germs whose members lie in the same isomorphism class.

DEFINITION. Let S always denote a *reduced* analytic space germ. A map germ $\gamma: S \to E$ with values in some subset E of \mathcal{O}_n^p is called analytic if there is an analytic map germ $G: (\mathbb{C}^n, 0) \times S \to \mathbb{C}^p$ such that $\gamma(s)(x) = G(x, s)$.

Choosing coordinates on $(\mathbb{C}^n, 0)$, the group Aut \mathcal{O}_n can be considered as a subset of \mathcal{O}_n^n . The analyticity of a map germ with values in Aut \mathcal{O}_n does not depend on this choice (cf. [M, sec. 6]) and thus analytic map germs with values in \mathscr{K} are defined. We then have:

THEOREM 1. Let $\gamma: S \to \mathcal{O}_n^p$ be an analytic map germ, S reduced.

- (i) The germ T of points t in S for which $\gamma(t)$ lies in the orbit $\mathscr{K} \cdot \gamma(0)$ is analytic.
- (ii) There is an analytic map germ $\phi: T \to \mathcal{K}$ with $\phi(0) = 1$ such that $\gamma(t) = \phi(t) \cdot \gamma(0)$ for all t in T.

Proof. For $m_n \subset \mathcal{O}_n$ the maximal ideal and $k \in \mathbb{N}$ consider $A_k = \mathcal{O}_n/m_n^{k+1}$ and the algebraic group $\mathscr{H}_k = \operatorname{GL}_p(A_k) \rtimes \operatorname{Aut} A_k$ acting rationally on the finite dimensional vector space $V_k = A_k^p$. The composition $\gamma_k \colon S \to (V_k, \gamma_k(0))$ of γ with the natural map $\mathcal{O}_n^p \to V_k$ is analytic. By the Proposition the germ T_k of points t in S with $\gamma_k(t) \in \mathscr{H}_k \cdot \gamma_k(0)$ is analytic. Clearly $T_{k+1} \subset T_k$. As \mathcal{O}_S is Noetherian the sequence becomes stationary, say $T_k = T^*$ for $k \gg 0$. The Proposition gives analytic $\phi_k \colon T^* \to (\mathscr{H}_k, 1)$ such that $\gamma_k(t) = \phi_k(t) \cdot \gamma_k(0)$ for $t \in T^*$. By Theorem 2 below there is an analytic $\phi \colon T^* \to \mathscr{H}$ with $\phi(0) = 1$ such that $\gamma(t) = \phi(t) \cdot \gamma(0)$ for all $t \in T^*$. This implies $T^* \subset T$. Obviously $T \subset T^*$ and Theorem 1 is proved.

THEOREM 2. For two analytic map germs $\gamma, \eta : S \to \mathcal{O}_n^p$, S reduced, the following conditions are equivalent:

(i) There exists an analytic $\phi: S \to \mathcal{K}$ with $\phi(0) = 1$ such that $\gamma(s) = \phi(s) \cdot \eta(s)$ for all $s \in S$.

(ii) For any $k \in \mathbb{N}$ there exist analytic $\phi_k : S \to \mathscr{K}_k$ with $\phi_k(0) = 1$ such that $\gamma_k(s) = \phi_k(s) \cdot \eta_k(s)$ for all $s \in S$.

Proof. Embed S in $(\mathbb{C}^m, 0)$ and choose $G, H: (\mathbb{C}^{n+m}, 0) \to \mathbb{C}^p$ such that one has $\gamma(s)(x) = G(x, s)$ and $\eta(s)(x) = H(x, s)$. We have to find $u(x, s) \in \operatorname{GL}_p(\mathcal{O}_{n+m})$ and $y(x, s) \in \mathcal{O}_{n+m}^n$ such that:

u(x, 0) = 1, y(x, 0) = x, y(0, s) = 0,

and

$$H(y(x, s), s) \equiv u(x, s) \cdot G(x, s) \mod I(S)$$

where I(S) is the ideal of \mathcal{O}_m defining S in $(\mathbb{C}^m, 0)$. By condition (ii) this system of equations can be solved up to order k. A generalization of Artin's Approximation Theorem by Pfister and Popescu [P-P, Thm. 2.5] and Wavrik [W, Thm. 1] yields the solutions u(x, s) and y(x, s).

Let us now indicate some applications of Theorem 1. We first determine the tangent spaces to the orbits of the contact group \mathscr{K} in \mathscr{O}_n^p :

DEFINITION. (a) The tangent vector in $\gamma(0)$ of an analytic curve $\gamma: (\mathbb{C}, 0) \to \mathcal{O}_n^p$

given by $G: (\mathbb{C}^n \times \mathbb{C}, 0) \to \mathbb{C}^p$ is defined as:

$$\frac{\mathrm{d}\gamma}{\mathrm{d}s}(0) = \frac{\partial G}{\partial s}\Big|_{s=0} \in \mathcal{O}_n^p.$$

(b) The tangent map at 0 of an analytic map germ $\gamma: (\mathbb{C}^m, 0) \to \mathcal{O}_n^p$ given by $G: (\mathbb{C}^n \times \mathbb{C}^m, 0) \to \mathbb{C}^p$ is defined as

$$T_0\gamma: \mathbb{C}^m \to \mathcal{O}_n^p, \quad v \to \sum_{i=1}^m v_i \cdot \frac{\partial \gamma}{\partial s_i}(0)$$

where

$$\frac{\partial \gamma}{\partial s_i}(0) = \frac{\partial G}{\partial s_i}\Big|_{s=0} \in \mathcal{O}_n^p$$

(c) For a subset E of \mathcal{O}_n^p and $g \in E$ let

$$T_g E = \left\{ \frac{\mathrm{d}\gamma}{\mathrm{d}s}(0) \in \mathcal{O}_n^p, \quad \gamma : (\mathbb{C}, 0) \to E \text{ analytic with } \gamma(0) = g \right\}.$$

COROLLARY. Let $g \in \mathcal{O}_n^p$ with \mathscr{K} -orbit $\mathscr{K} \cdot g$.

(i) $T_g(\mathscr{K} \cdot g) = I(g) \cdot \mathcal{O}_n^p + \mathfrak{M}_n \cdot J(g)$ where I(g) is the ideal of \mathcal{O}_n generated by the components of g and J(g) is the \mathcal{O}_n -submodule of \mathcal{O}_n^p generated by the partial derivatives of g.

(ii) Let $\gamma: (\mathbb{C}^m, 0) \to \mathcal{O}_n^p$ be analytic, $\gamma(0) = g$, restricting to $\gamma_{|S}: S \to \mathcal{K} \cdot g$ for some reduced $S \subset (\mathbb{C}^m, 0)$. Then $T_0\gamma(T_0S) \subset T_g(\mathcal{K} \cdot g)$.

Proof. (i) If $G(x, s) = u(x, s) \cdot g(y(x, s))$ with u(x, 0) = 1, y(x, 0) = x, then

$$\frac{\partial G}{\partial s}\Big|_{s=0} = \frac{\partial u}{\partial s}\Big|_{s=0} \cdot g + \frac{\partial g}{\partial x} \cdot \frac{\partial y}{\partial s}\Big|_{s=0}$$

Theorem 1 therefore implies " \subset ". The other inclusion is obvious.

(ii) Since any analytic $S \to \mathscr{K}$ can be extended to an analytic $(\mathbb{C}^m, 0) \to \mathscr{K}$, Theorem 1 gives an analytic map germ $\delta: (\mathbb{C}^m, 0) \to \mathcal{O}_n^p$, $\delta(0) = g$, such that $\delta(s) \in \mathscr{K} \cdot g$ for $s \in (\mathbb{C}^m, 0)$ and $\delta(s) = \gamma(s)$ for $s \in S$. Clearly $T_0 \delta(\mathbb{C}^m) \subset T_g(\mathscr{K} \cdot g)$ and $T_0 \delta(v) = T_0 \gamma(v)$ for $v \in T_0 S$.

Next, let us interpret Theorem 1 geometrically.

For an analytic $\gamma: S \to \mathcal{O}_n^p$ given by $G: (\mathbb{C}^n, 0) \times S \to \mathbb{C}^p$ consider the space germ X defined in $(\mathbb{C}^n, 0) \times S$ by G. For fixed $s \in S$ the vector $\gamma(s) \in \mathcal{O}_n^p$ defines the germ in $\sigma(s) = (0, s)$ of the fiber of $\pi = pr_{|X}: X \to S$ over s. Conversely, a morphism $\pi: X \to S$ of space germs with section $\sigma: S \to X$ has an embedding $X \subset (\mathbb{C}^n, 0) \times S$ over S with $\sigma(S) = 0 \times S$, see [F, 0.35]. Moreover an analytic $\Phi: S \to \operatorname{Aut} \mathcal{O}_n$ given by $\Phi(s)(x) = y(x, s)$ induces an automorphism ϕ of $(\mathbb{C}^n, 0) \times S$ over S mapping $0 \times S$ onto itself: $\phi(x, s) = (y(x, s), s)$.

Combining these remarks we get:

THEOREM 1'. For a morphism of analytic space germs $\pi: X \to S$, S reduced, with section $\sigma: S \to X$ denote by $X_t, t \in S$, the germ in $\sigma(t)$ of the fiber of π over t.

(i) The germ T of points t in S with $X_t \simeq X_0$ is analytic.

(ii) For any base change $\alpha: S' \to S$ with S' reduced the induced morphism $\pi': X' = X \times_S S' \to S'$ is trivial along the induced section $\sigma': S' \to X'$ if and only if α maps into T. (We say that π' is trivial along σ' if there is an isomorphism $X' \simeq X_0 \times S'$ over S' mapping $\sigma'(S')$ onto $0 \times S'$.)

The universal property of (ii) applies in particular to the base change $T \subset S$ and then reads as follows: A local analytic family of analytic space germs with isomorphic members is trivial. This is a local analogon of a result of Fischer and Grauert [F-G] and Schuster [Sch, Satz 4.9]: A flat analytic family of compact analytic spaces with isomorphic members is locally trivial.

Theorem 1' can be extended to the case where π does not come with a section σ :

THEOREM 3. For a morphism of analytic space germs $\pi: X \to S$ with S reduced denote by X(a), $a \in X$, the germ in a of the fiber of π through a.

(i) The germ Y of points a in X with $X(a) \simeq X(0)$ is analytic.

(ii) The restriction $\pi_Y \colon Y \to S$ is a mersion (i.e., has smooth special fiber Y(0) and there is a germ $T \subset S$ such that π_Y maps into T and $Y \simeq Y(0) \times T$ over T).

(iii) For any base change $\alpha: S' \to S$ with S' reduced the induced morphism $\pi': X' = X \times_S S' \to S'$ is trivial if and only if α maps into T.

(iv) There is a germ Z with $X(0) \simeq Y(0) \times Z$.

Proof. Choose embeddings $X \subset (\mathbb{C}^n, 0) \times S$ over S and $S \subset (\mathbb{C}^m, 0)$ and let $F:(\mathbb{C}^n \times \mathbb{C}^m, 0) \to \mathbb{C}^p$ define X. Let $\gamma: (\mathbb{C}^n \times \mathbb{C}^m, 0) \to \mathcal{O}_n^p$ be given by $\gamma(a)(x) = F(x + a_1, a_2)$. For fixed $a \in X$ the germ $\gamma(a) \in \mathcal{O}_n^p$ defines X(a). Hence Theorem 1 yields the analyticity of Y.

Let Y(a) be the germ in a of the fiber of π_Y through a. For $a \in Y$ fixed its reduction red Y(a) is the germ of those points $b \in X(a)$ with $X(b) \simeq X(a)$. As X(a) and X(0) are isomorphic, red Y(a) and red Y(0) are isomorphic. In particular, dim $Y(a) = \dim Y(0)$ for all $a \in Y$.

By the Corollary we have for $g = \gamma(0) \in \mathcal{O}_n^p$ and $v \in T_0 Y(0) = T_0 Y \cap (\mathbb{C}^n \times 0)$:

$$\sum_{i=1}^n v_i \cdot \frac{\partial g}{\partial x_i} \in I(g) \cdot \mathcal{O}_n^p + m_n \cdot J(g).$$

As g defines X(0) in $(\mathbb{C}^n, 0)$ this signifies that there are $d = \dim T_0 Y(0)$ vectorfields ξ_1, \ldots, ξ_d on X(0) with $\xi_1(0), \ldots, \xi_d(0)$ linearly independent. A Theorem of Rossi [F, 2.12] implies $X(0) \simeq (\mathbb{C}^d, 0) \times Z$ for some Z. Hence, by definition, Y(0) must have dimension at least d and therefore $Y(0) \simeq (\mathbb{C}^d, 0)$. This gives (iv). Moreover π_Y is a mersion by [F, 2.19, Cor. 2]. The universal property of (iii) is then a consequence of Theorem 1'.

We conclude by some remarks: In the absolute case S = 0 we have recovered a result of Ephraim [E, Thm. 0.2]. Another Corollary is Teissier's economy of the semi-universal deformation: In the semi-universal deformation of an isolated singularity X(0) there are no fibers isomorphic to X(0), [T, Thm. 4.8.4].

Finally, it is possible to provide the germs Y and T of Theorem 3 with canonical non-reduced analytic structures. The universal property then holds for arbitrary base changes. A detailed exposition of this non-reduced case is given in [H-M]. We also refer to results of Flenner and Kosarew [F-K] and Greuel and Karras [G-K]. Using deformation theory and Banach-analytic methods they treat the case of flat morphisms.

Acknowledgements

We would like to thank G.-M. Greuel and H. Flenner for stimulating discussions and suggestions.

References

- [E] Ephraim, R.: Isosingular loci and the cartesian product structure of complex analytic singularities. *Trans. Am. Math. Soc.* 241 (1978) 357–371.
- [F] Fischer, G.: Complex analytic geometry. Springer Lect. Notes 538, 1976.
- [F-G] Fischer, W., Grauert, H.: Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten. Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. II 6 (1965) 89–94.
- [F-K] Flenner, H., Kosarew, S.: On locally trivial deformations. Publ. Res. Inst. Math. Sci. 23 (1987) 627-665.
- [G-K] Greuel, G.-M., Karras, U.: Families of varieties with prescribed singularities. Compos. Math. 69 (1989).
- [H-M] Hauser, H., Müller, G.: The trivial locus of an analytic map germ. To appear.
- [M] Müller, G.: Deformations of reductive group actions. Math. Proc. Camb. Philos. Soc. 106 (1989) 77-88.
- [P-P] Pfister, G., Popescu, D.: Die strenge Approximationseigenschaft lokaler Ringe. Invent. Math. 30 (1975) 145-174.
- [Sch] Schuster, H.W.: Zur Theorie der Deformationen kompakter komplexer Räume. Invent. Math. 9 (1970) 284-294.
- [T] Teissier, B.: The hunting of invariants in the geometry of discriminants. In: Real and complex singularities, Oslo 1976, 565–677. Holm, P., (ed.) Sijthoff & Noordhoff 1977.
- [W] Wavrik, J.J.: A theorem on solutions of analytic equations with applications to deformations of complex structures. *Math. Ann.* 216 (1975) 127-142.