Compositio Mathematica

Herwig Hauser
 Comparing modules of differential operators by their evaluation on polynomials

Compositio Mathematica, tome 69, $\mathrm{n}^{0} 3$ (1989), p. 295-307.
http://www.numdam.org/item?id=CM_1989__69_3_295_0
© Foundation Compositio Mathematica, 1989, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Comparing modules of differential operators by their evaluation on polynomials

HERWIG HAUSER
Institut für Mathematik, Universität Innsbruck, A-6020 Innsbruck, Austria

Received 23 June 1987; accepted in revised form 27 June 1988

Introduction

Any non constant power series can be written for d sufficiently large as a linear combination of its derivatives of order less than d.

Conversely, given an integer d there always exists a power series which is not a linear combination of its derivatives of order less than d.

The first statement is obvious. The second seems obvious, too: if $d=1$ it just asserts the existence of a non-quasihomogeneous power series. This is immediate. If d is arbitrary, one may expect that any generic polynomial with sufficiently many summands should fulfil the assertion.

It turns out that even if d is small the search for a convenient polynomial is very unpleasant: the size and the coefficients of the systems of linear equations one has to solve increase rapidly with d. As a common phenomenon, generic objects are despite their number hard to grasp.

This paper proposes a general algorithm for computing such generic polynomials. Actually we shall construct a universal family \mathscr{P} of testing polynomials valuable for all finitely generated modules of differential operators: two modules will be equal if and only if their evaluations on a suitable polynomial of \mathscr{P} are equal. To make this more precise let us fix some notation.

Let A denote the ring of germs of analytic functions on \mathbb{C}^{n} at 0 and let \mathbb{D} be the A-module of differential operators on \mathbb{C}^{n} with coefficients in A. Given coordinates x_{1}, \ldots, x_{n} on \mathbb{C}^{n} we can write $A=\mathbb{C}\{x\}$ and $D=$ $\Sigma_{\alpha \varepsilon} c_{\alpha \varepsilon} x^{\alpha+\varepsilon} \partial^{\alpha} \in \mathbb{D}$ with $c_{\alpha \varepsilon} \in \mathbb{C}, \alpha \in \mathbb{N}^{n}, \varepsilon \in \mathbb{Z}^{n}, \alpha+\varepsilon \in \mathbb{N}^{n}$. Set $|\varepsilon|=$ $\varepsilon^{1}+\cdots+\varepsilon^{n} \in \mathbb{Z}$. For a differential operator $D \in \mathbb{D}$ and a finitely generated A-submodule \mathbb{F} of \mathbb{D} we introduce:

$$
\begin{aligned}
& \operatorname{supp} D=\text { support of } D=\left\{\alpha \in \mathbb{N}^{n}, \exists \varepsilon: c_{\alpha \varepsilon} \neq 0\right\} \subset \mathbb{N}^{n} \text { finite, } \\
& \operatorname{carr} D=\text { carrier of } D=\left\{\varepsilon \in \mathbb{Z}^{n}, \exists \alpha: c_{\alpha \varepsilon} \neq 0\right\} \subset \mathbb{Z}^{n}
\end{aligned}
$$

```
ord \(D=\operatorname{order}\) of \(D=\sup \{|\alpha|, \alpha \in \operatorname{supp} D\} \in \mathbb{N}\),
    \(\operatorname{lev} D=\operatorname{level}\) of \(D=\inf \{|\varepsilon|, \varepsilon \in \operatorname{carr} D\} \in \mathbb{Z}\),
    ord \(0=0\), lev \(0=\infty\),
    ord \(\mathbb{F}=\sup \{\operatorname{ord} D, D \in \mathbb{F}\} \in \mathbb{N}\),
    lev \(\mathbb{F}=\sup \left\{\operatorname{lev} D_{i} ; D_{1}, \ldots, D_{m}\right.\) minimal standard base of \(\left.\mathbb{F}\right\} \in \mathbb{Z}\)
```

(cf. sec. 1).

For a power series $z \in A$ denote finally by $\mathbb{F} z$ the ideal of evaluations, $\mathbb{F} z=\{D z, D \in \mathbb{F}\}$. We then have for all finitely generated A-submodules of \mathbb{D} :

Theorem: Assume $n \geqslant 2$. For any $d, e \in \mathbb{Z}$ there exists an explicit construction of a polynomial $z=z_{d e} \in A$ with the following universal property: Two A-submodules \mathbb{F} and \mathbb{G} of \mathbb{D} with ord \mathbb{F}, ord $\mathbb{G} \leqslant d$ and $\operatorname{lev}(\mathbb{F}+\mathbb{G}) \leqslant e$ are equal if and only if the ideals $\mathbb{F z}$ and $\mathbb{G} z$ are equal.

Remarks: 1. It is equivalent to say that any two A-submodules $\mathbb{F} \subset \mathbb{G}$ of \mathbb{D} of order $\leqslant d$ and level $\leqslant e$ are equal if and only if $\mathbb{F} z$ and $\mathbb{G} z$ are equal.
2. The polynomial z of A is not unique: the construction algorithm we describe provides a whole range of suitable polynomials. But no matter how z is chosen, its degree and number of summands increase very quickly with d and e.
3. In practical computations the situation is generally more specific and allows the choice of simpler testing polynomials. Typically are given a differential operator D and a sub-module \mathbb{F} of \mathbb{D}; knowing that $D \notin \mathbb{F}$ one wants to find a $z \in A$ with $D z \notin \mathbb{F} z$. For instance, consider the case $n=2$, $D=1$ and \mathbb{F} the module generated by all $\partial_{x}^{i} \partial_{y}^{j}$ with $0<i+j \leqslant 2$. A possible polynomial z satisfying $z \notin \mathbb{F} z$ is

$$
z=x^{15}+x^{12} y^{3}+x^{9} y^{6}+x^{6} y^{10}+x^{3} y^{13}+y^{16} .
$$

This polynomial has two characteristic properties: its exponents have componentwise distance in \mathbb{N}^{n} strictly bigger than 2 (they are sufficiently spare), and the 6×6 matrix $\left((\gamma)_{\alpha}\right)$ has rank 6 , where γ (resp. α) runs over the exponents of z (resp. D and \mathbb{F}), and $(\gamma)_{\alpha} \in \mathbb{N}$ is defined by $\partial^{\alpha}(x, y)^{\gamma}=$ $(\gamma)_{\alpha} \cdot(x, y)^{\gamma-\alpha}$ (the γ 's are generic w.r.t. the α 's). These two features will form the basis of the construction of the testing polynomial z in general.

1. Division Theorem for differential operators

One ingredient for proofing the result stated in the Introduction is the Division Theorem for finitely generated modules of differential operators (cf. [B-M], [C]). We shall need a slightly different version of it and thus provide an independent presentation of the theorem.

Consider \mathbb{Z}^{n} equipped with the following total order: $\varepsilon<\dot{\varepsilon}$ if either $|\varepsilon|<|\varepsilon ́|$ or $|\varepsilon|=|\varepsilon ́|$ and $\varepsilon<_{\text {lex }} \varepsilon$, where $<_{\text {lex }}$ denotes lexicographical order. For a differential operator $D \in \mathbb{D}, D=\Sigma c_{\alpha \varepsilon} x^{\alpha+\varepsilon} \partial^{\alpha}$ and a finitely generated A-submodule \mathbb{F} of \mathbb{D} we define:

$$
\begin{aligned}
t c D & =\text { tangent cone of } D=\sum_{\alpha} c_{\alpha \varepsilon_{0}} x^{\alpha+\varepsilon_{0}} \partial^{\alpha} \quad \text { with } \varepsilon_{0}=\inf \text { carr } D, \\
i n D & =\text { initial term of } D=c_{\alpha_{0} \varepsilon_{0}} x^{\alpha_{0}+\varepsilon_{0}} \partial^{\alpha_{0}} \quad \text { with } \alpha_{0}=\inf \operatorname{supp}(t c D), \\
t c 0 & =\operatorname{in} 0=0 \\
t c \mathbb{F} & =(t c D, D \in \mathbb{F}) \cdot A \subset \mathbb{D} \\
\operatorname{in} \mathbb{F} & =(\text { in } D, D \in \mathbb{F}) \cdot A \subset \mathbb{D}, \\
\Delta \mathbb{F} & =\left\{D=\sum_{\alpha \varepsilon} c_{\alpha \varepsilon} x^{\alpha+\varepsilon} \partial^{\alpha} \in \mathbb{D}, x^{\alpha+\varepsilon} \partial^{\alpha} \notin \text { in } \mathbb{F} \text { if } c_{\alpha \varepsilon} \neq 0\right\} .
\end{aligned}
$$

Both $t c \mathbb{F}$ and $i n \mathbb{F}$ are A-submodules of \mathbb{D}, whereas $\Delta \mathbb{F}$ is only a \mathbb{C}-subspace. All three depend on the chosen coordinates x_{1}, \ldots, x_{n} on \mathbb{C}^{n} (however, [G, Th.2] suggests that in \mathbb{F} and $\Delta \mathbb{F}$ are constant for generic coordinates). One clearly has the direct sum decomposition $\mathbb{D}=i n \mathbb{F} \oplus \Delta \mathbb{F}$; the Division Theorem asserts that actually $\mathbb{D}=\mathbb{F} \oplus \Delta \mathbb{F}$. This provides a very effective description of the vector space \mathbb{D} / \mathbb{F}. We start with some elementary properties of "in" and " $t c$ ".

Lemma 1: (a) If D and $E \in \mathbb{D}$ with $t c D+t c E \neq 0$ then $t c(D+E)$ equals either tc D, tc E or tcD + tcE. The same holds for initial terms.
(b) If $D \in \mathbb{D}$ and $y \in A$ with $($ tcD $)($ iny $) \neq 0$ then in $(D y)=($ tcD) (iny).
(c) One has for $D \in \mathbb{D}: \operatorname{lev} D=\operatorname{lev}(i n D)=\operatorname{lev}(t c D)$.
(d) If D and $E \in \mathbb{D}$ satisfy tc $D+t c E \neq 0$ then lev $(t c(D+E)) \leqslant \operatorname{lev} D$.

Proof: (a) Follows from the definitions.
(b) Write $D=t c D+\dot{D}$ and $y=i n y+\dot{y}$. Then $D y=(t c D)(i n y)+$ (tcD) $\dot{y}+\dot{D}($ iny $)+\dot{D} \dot{y}$ and comparison of exponents gives (b).
(c) The two equalities follow from the definition and the choice of the total order on \mathbb{Z}^{n}.
(d) Follows from (a) and (c).

Division Theorem: Let \mathbb{F} be a finitely generated A-submodule of \mathbb{D}.
(1) $\mathbb{F} \oplus \Delta \mathbb{F}=\mathbb{D}$.
(2) There exist generators D_{1}, \ldots, D_{m} of \mathbb{F} with in $\mathbb{F}=\left(\right.$ in D_{1}, \ldots, in $\left.D_{m}\right) \cdot A$ and $t c \mathbb{F}=\left(t c D_{1}, \ldots, t c D_{m}\right) \cdot A$.
(3) For such generators D_{1}, \ldots, D_{m} of \mathbb{F} there exist for any $D \in \mathbb{D}$ unique $y_{1}, \ldots, y_{m} \in A$ and a unique $E \in \Delta \mathbb{F}$ such that

$$
D=\sum y_{i} D_{i}+E
$$

and $\dot{y}_{i} \cdot \operatorname{in} D_{i} \notin\left(\operatorname{in} D_{1}, \ldots, \operatorname{in} D_{i-1}\right) \cdot A$ for all monomials \dot{y}_{i} of the expansion of y_{i}.
(4) For any finitely generated A -submodule \mathbb{G} of \mathbb{D} with $\mathbb{G} \subset \mathbb{F}$:

$$
\mathbb{G}=\mathbb{F} \Leftrightarrow \operatorname{in} \mathbb{G}=\operatorname{in} \mathbb{F} \Leftrightarrow t c \mathbb{G}=t c \mathbb{F} .
$$

Remark: Elements D_{1}, \ldots, D_{m} of \mathbb{F} are called a (minimal) standard base of \mathbb{F} (w.r.t. the given coordinates and the total order on \mathbb{Z}^{n}) if $\operatorname{in} \mathbb{F}=\left(\operatorname{in} D_{1}, \ldots, \operatorname{in} D_{m}\right) \cdot A$ (and $m \in \mathbb{N}$ is minimal for this property). A standard base is automatically a generator system and satisfies $t c \mathbb{F}=$ $\left(t c D_{1}, \ldots, t c D_{m}\right) \cdot A$: indeed, by (4) of the Theorem, the inclusions of A-modules $\left(D_{1}, \ldots, D_{m}\right) \cdot A \subset \mathbb{F}$ and $\left(t c D_{1}, \ldots, t c D_{m}\right) \cdot A \subset t c \mathbb{F}$ are actually equalities. Note moreover that the definition of the level of \mathbb{F} does not depend on the choice of the minimal standard base.

Proof: Clearly (3) $\Rightarrow(1) \Rightarrow(4)$ and (2) is immediate since inF is finitely generated. In order to prove (3) let us first show uniqueness. If $D=$ $\Sigma y_{i} D_{i}+E=\Sigma \bar{y}_{i} D_{i}+\bar{E}$ then $E-\bar{E} \in \Delta \mathbb{F} \cap \mathbb{F}=0$, thus $E=\bar{E}$ and $\Sigma\left(y_{i}-\bar{y}_{i}\right) D_{i}=0$. We may assume in $y_{i} \neq \operatorname{in} \bar{y}_{i}$ for all i. From $\operatorname{in}\left(\Sigma\left(y_{i}-\right.\right.$ $\left.\left.\bar{y}_{i}\right) D_{i}\right)=0$ follows similarly as in Lemma 1(a) that there is a set $I \subset\{1, \ldots, m\}$ such that $\Sigma_{i \in I} \operatorname{in}\left(\left(y_{i}-\bar{y}_{i}\right) D_{i}\right)=0$ and thus $\Sigma_{i \in I} \operatorname{in}\left(y_{i}-\right.$ $\left.\bar{y}_{i}\right) \operatorname{in} D_{i}=0$. Let $j=\sup$ I. Then $\operatorname{in}\left(y_{j}-\bar{y}_{j}\right) \operatorname{in} D_{j} \in\left(\operatorname{in} D_{1}, \ldots, \operatorname{in} D_{j-1}\right) \cdot A$ and contradiction. Therefore $y_{i}=\bar{y}_{i}$ for all i.

The proof of existence goes in several steps. Let $d=$ ord \mathbb{F}. It suffices to show (3) with \mathbb{D} replaced by $\mathbb{D}_{d}=\{D \in \mathbb{D}$, ord $D \leqslant d\}$. By abuse of notation we shall write \mathbb{D}^{\cdot} for \mathbb{D}_{d} throughout this proof. We have to show that the \mathbb{C}-linear map

$$
w: A^{m} \times \Delta \cdot \mathbb{F} \rightarrow \mathbb{D}^{\prime}:(y, E) \rightarrow \sum y_{i} D_{i}+E
$$

is surjective. This will be done by choosing suitable filtrations of $A^{m} \times \Delta^{\prime} \mathbb{F}$ and \mathbb{D}^{\cdot} by Banach spaces and proving surjectivity of the corresponding restrictions of w.
(a) Let o, δ : $\mathbb{Z}^{n} \rightarrow \mathbb{R}$ be injective linear forms. For $D \in \mathbb{D}^{j}, D=\Sigma c_{\alpha \varepsilon} x^{\alpha+\varepsilon} \partial^{\alpha}$ and $0<r \in \mathbb{R}$ define

$$
\|D\|_{r}=\sum\left|c_{\alpha \varepsilon}\right| \cdot r^{o(\varepsilon)+\dot{o}(\alpha)}
$$

and $\mathbb{D}_{r}^{\cdot}=\left\{D \in \mathbb{D}^{\cdot},\|D\|_{r}<\infty\right\}$. The \mathbb{D}_{r} are Banach spaces and $\mathbb{D}^{\cdot}=$ $U_{r>0} \mathbb{D}_{r}^{\cdot}$. Consider $A_{r}^{m} \times \Delta \mathbb{F}_{r}$ as the Banach space with norm

$$
\|(y, E)\|_{r}=\sum\left\|y_{i} i n D_{i}\right\|_{r}+\|E\|_{r}
$$

where $A_{r}=A \cap \mathbb{D}_{r}$ and $\Delta \mathbb{F}_{r}=\Delta \mathbb{F} \cap \mathbb{D}_{r}^{*}$. Then the

$$
w_{r}: A_{r}^{m} \times \Delta \mathbb{F}_{r} \rightarrow \mathbb{D}_{r}^{\cdot}:(y, E) \rightarrow \sum y_{i} D_{t}+E
$$

are well defined \mathbb{C}-linear maps between Banach spaces for all $r>0$ for which $D_{\imath} \in \mathbb{D}_{r}$. If we show that w_{r} is surjective for all sufficiently small $r>0$ then w itself will be surjective.
(b) Setting $\bar{D}_{i}=D_{\imath}-\operatorname{in} D_{i}$ the maps w_{r} decompose into $w_{r}=u_{r}+v_{r}$ where

$$
\begin{aligned}
& u_{r}(y, E)=\sum y_{i} \cdot \text { in } D_{i}+E \\
& v_{r}(y, E)=\sum y_{i} \cdot \dot{D}_{i} .
\end{aligned}
$$

By definition of $\Delta^{\prime} \mathbb{F}_{r}, u_{r}$ is already surjective and it suffices to show that v_{r} is small enough not to destroy the surjectivity. By the criterion of $[\mathrm{H}$, Lemma 1, p. 47] one has to prove that the norm of v_{r} is strictly smaller than the conorm of $u_{r}:\left\|v_{r}\right\|<\operatorname{con} u_{r}$.
(c) con $u_{r} \geqslant 1$ for all $r>0$: For $D \in \mathbb{D}_{r}$ there exist unique $y_{1}, \ldots, y_{m} \in A_{r}$ and a unique $E \in \Delta \cdot \mathbb{F}_{r}$ with

$$
D=\sum y_{t} \cdot i n D_{i}+E
$$

and such that $\dot{y}_{i} \cdot \operatorname{in} D_{i} \notin\left(\operatorname{in} D_{1}, \ldots, \operatorname{in} D_{i-1}\right) \cdot \mathrm{A}$ for all monomials \dot{y}_{i} of y_{i}. From this and the definition of the norms one obtains:

$$
\begin{aligned}
\|D\|_{r} & =\left\|\sum y_{i} \cdot i n D_{i}+E\right\|_{r}=\left\|\sum y_{i} \cdot i n D_{i}\right\|_{r}+\|E\|_{r} \\
& =\sum\left\|y_{i} \cdot i n D_{i}\right\|_{r}+\|E\|_{r}=\|(y, E)\|_{r} .
\end{aligned}
$$

This proves con $u_{r} \geqslant 1$.
(d) $\left\|v_{r}\right\|<1$ for suitable o, ó: $\mathbb{Z}^{n} \rightarrow \mathbb{R}$ and sufficiently small $r>0$: Let $D \in \mathbb{D}^{\circ}$ and set $D=D-\operatorname{in} D$. The choice of the total order on \mathbb{Z}^{n} used to
define $t c D$ and $\operatorname{in} D$ allows to choose $o: \mathbb{Z}^{n} \rightarrow \mathbb{R}$ such that $o(\varepsilon)-o\left(\varepsilon_{0}\right)>2 c$ for some constant $c>0$ and $\varepsilon_{0}=$ carr inD and all $\varepsilon \in \operatorname{carr} D$. Setting $\dot{o}=t \cdot o$ with $0<t \in \mathbb{R}$ small enough one can then achieve

$$
o(\varepsilon)-o\left(\varepsilon_{0}\right)+\dot{o}(\alpha)-\dot{o}\left(\alpha_{0}\right)>c
$$

for $\alpha_{0}=\operatorname{supp} \operatorname{in} D$ and all $\alpha \in \operatorname{supp} \bar{D}$. Consider now

$$
\frac{\|\dot{D}\|_{r}}{\|i n D\|_{r}}=\frac{\Sigma\left|c_{\alpha \varepsilon}\right| \cdot r^{o(\varepsilon)+\dot{o}(\alpha)}}{\left|c_{\alpha_{0} \varepsilon_{0}}\right| \cdot r^{o\left(\varepsilon_{0}\right)+\dot{o}\left(\alpha_{0}\right)}}=\left[\sum \frac{\left|c_{\alpha \varepsilon}\right|}{\left|c_{\alpha_{0} \varepsilon_{0}}\right|} \cdot r^{o(\varepsilon)-o\left(\varepsilon_{0}\right)+\dot{o}(\alpha)-\dot{o}\left(\alpha_{0}\right)-c}\right] \cdot r^{c} .
$$

From the above inequality follows that the term in the brackets remains bounded as $r \rightarrow 0$. Thus there exists a $0<a<1$ such that for $r>0$ sufficiently small one has

$$
\left\|\left\|_{r} \leqslant a \cdot\right\| i n D\right\|_{r} .
$$

It is then clear that by suitable choices of o and o such an inequality can be achieved simultanously for finitely many D 's, in particular for the generators D_{1}, \ldots, D_{m} of \mathbb{F}. We thus get

$$
\begin{aligned}
\left\|v_{r}(y, E)\right\|_{r}= & \left\|\sum y_{i} \dot{D}_{i}\right\|_{r} \leqslant \sum\left\|y_{i} \dot{D}_{i}\right\|_{r} \leqslant \sum\left\|y_{i}\right\|_{r}\left\|\dot{D}_{i}\right\|_{r} \\
& \leqslant a \cdot \sum\left\|y_{i}\right\|_{r}\left\|i n D_{i}\right\|_{r}=a \cdot \sum\left\|y_{i} \cdot i n D_{i}\right\|_{r} \\
= & a \cdot\|(y, 0)\|_{r} \leqslant a \cdot\|(y, E)\|_{r} .
\end{aligned}
$$

This establishes $\left\|v_{r}\right\|<1$ and concludes the proof of the Theorem.

2. Combinatorics

A subset Γ of \mathbb{Z}^{n} will be called spare w.r.t. a couple (S, T) of subsets of \mathbb{Z}^{n} if for all $\gamma \neq \dot{\gamma} \in \Gamma$ one has $\gamma-\gamma^{\prime} \notin S-T+\mathbb{N}^{n} \subset \mathbb{Z}^{n}$:

Proposition 1: Let $\Gamma \subset \mathbb{N}^{n}$ be spare w.r.t. a couple (S, T) of subsets of \mathbb{Z}^{n}. Let $\mathrm{D}, \mathrm{E} \in \mathbb{D}$ be differential operators satisfying $\operatorname{carr}(t c D) \subset T$ and carr $E \subset S$. If for some $\gamma \in \Gamma$:

$$
D x^{\gamma}=\sum_{j \neq \gamma} E x^{i}
$$

then

$$
(t c D) x^{\gamma}=0
$$

Proof: Let carr $t c D=\{\varepsilon\}$ and assume $(t c D) x^{\gamma} \neq 0$. By Lemma 1(b), $\operatorname{in}\left(D x^{\gamma}\right)=(t c D) x^{\gamma} \neq 0$ and therefore

$$
x^{\gamma+\varepsilon} \in \sum_{j \neq \gamma} \sum_{\dot{\varepsilon} \in \operatorname{carr} E} A \cdot x^{j+\varepsilon} .
$$

This implies $\gamma \in \bigcup_{\beta \neq \gamma} \bigcup_{\varepsilon}\left(\gamma^{\prime}+\varepsilon^{\prime}-\varepsilon+\mathbb{N}^{n}\right)$ and contradiction.
We next prove that there exist sufficiently many spare sets.
Lemma 2: Assume $n \geqslant 2$. Let $T \subset \mathbb{Z}^{n}$ be finite, $\delta \in \mathbb{Z}^{n}, S \subset \delta+\mathbb{N}^{n}$ and $t \in \mathbb{N}$. For $\zeta \in \mathbb{Z}^{n t}=\left(\mathbb{Z}^{n}\right)^{t}$ set $\Gamma_{\zeta}=\left\{\gamma \in \mathbb{Z}^{n}, \gamma\right.$ is a component of $\left.\zeta\right\}$. The set of $\zeta \in \mathbb{N}^{n t}$ such that $\Gamma_{\zeta} \subset \mathbb{N}^{n}$ is spare w.r.t. (S, T), contains balls of $\mathbb{N}^{n t}$ of arbitrary radius.

Proof: The set T being finite we may assume that $S-T+\mathbb{N}^{n} \subset \delta+\mathbb{N}^{n}$ replacing possibly δ. Moreover we can choose $\delta \in(-\mathbb{N})^{n}$. Let $\bar{\delta} \in \mathbb{N}^{n-1} \times(-\mathbb{N})$ be defined by

$$
\begin{aligned}
& \bar{\delta}^{i}=-\delta^{i}+1 \quad 1 \leqslant i \leqslant n-1 \\
& \bar{\delta}^{n}=\delta^{n}-1 .
\end{aligned}
$$

The set $\nabla=\bar{\delta}+\mathbb{N}^{n-1} \times(-\mathbb{N})$ is closed under addition and does not intersect $\pm\left(\delta+\mathbb{N}^{n}\right)$: the first assertion is clear since $\delta \in \mathbb{N}^{n-1} \times(-\mathbb{N})$. Furthermore, if α would belong to ∇ and $\pm\left(\delta+\mathbb{N}^{n}\right)$ then either

$$
\alpha^{i} \in\left(-\delta^{i}+1+\mathbb{N}\right) \cap\left(-\delta^{i}-\mathbb{N}\right) \quad 1 \leqslant i \leqslant n-1
$$

or

$$
\alpha^{n} \in\left(\delta^{n}-1-\mathbb{N}\right) \cap\left(\delta^{n}+\mathbb{N}\right)
$$

The linear isomorphism $\mathrm{L}: \mathbb{Z}^{n t} \rightarrow \mathbb{Z}^{n t},\left(\zeta_{1}, \ldots, \zeta_{t}\right) \rightarrow\left(\zeta_{1}, \zeta_{1}+\zeta_{2}, \ldots, \zeta_{1}+\right.$ $\left.\ldots+\zeta_{t}\right)$, sends the t-fold cartesian product ∇^{t} of ∇ to some nt-dimensional cone $L\left(\nabla^{t}\right)$. Let Δ denote the n -dimensional diagonal in $\mathbb{N}^{n t}=\left(\mathbb{N}^{n}\right)^{t}$, $\Delta=\left\{\left(\omega_{1}, \ldots, \omega_{t}\right) \in \mathbb{N}^{n t}, \omega_{i}=\omega_{j}\right\}$. For any t-tuple $\zeta=\left(\gamma_{1}, \ldots, \gamma_{t}\right)$ of $\Delta+L\left(\nabla^{t}\right) \subset \mathbb{Z}^{n t}$ the differences $\gamma_{i}-\gamma_{j}$ for $i>j$ are sums of elements of ∇ by definition of L. As ∇ is closed under addition and $\nabla \cap \pm\left(\delta+\mathbb{N}^{n}\right)=\phi$, the $\gamma_{i}-\gamma_{j}$ do not belong to $\pm\left(\delta+\mathbb{N}^{n}\right) \supset S-T+\mathbb{N}^{n}$. This shows that $\Gamma_{\zeta}=\left\{\gamma_{1}, \ldots, \gamma_{t}\right\}$ is spare w.r.t. (S, T). Moreover $L\left(\nabla^{t}\right) \subset \mathbb{Z}^{n t}$ contains balls of $\mathbb{Z}^{n t}$ of arbitrary radius. For any such ball B there exists an $\omega \in \Delta$ such that $\dot{B}=\omega+B \subset \mathbb{N}^{n t}$ proving the Lemma.

For γ and α in \mathbb{N}^{n} define $(\gamma)_{\alpha} \in \mathbb{N}$ by the formula $\partial^{\alpha} x^{\gamma}=(\gamma)_{\alpha} x^{\gamma-\alpha}$, say

$$
(\gamma)_{\alpha}=\prod_{i=1}^{n} \frac{\gamma^{i}!}{\left(\gamma^{i}-\alpha^{i}\right)!}
$$

A set $\Gamma \subset \mathbb{N}^{n}$ is called generic w.r.t. some finite set $R \subset \mathbb{N}^{n}$ if the matrix

$$
\left((\gamma)_{\alpha}\right)_{\gamma \in \Gamma, \alpha \in R}
$$

has rank equal to the cardinality of R.
Proposition 2: Let $\Gamma \subset \mathbb{N}^{n}$ be generic w.r.t. to some finite $\mathrm{R} \subset \mathbb{N}^{n}$. Let $D \in \mathbb{D}$ be a differential operator with $\operatorname{supp}(t c D) \subset R$. If $D x^{\gamma}=0$ for all $\gamma \in \Gamma$ then $D=0$.

Proof: Assume $D \neq 0$. Then $t c D=\Sigma_{\alpha \in R} c_{\alpha \varepsilon_{0}} x^{\alpha+\varepsilon_{0}} \partial^{\alpha} \neq 0$. From $D x^{\gamma}=0$ follows by Lemma 1(b) that ($t c D) x^{\gamma}=\Sigma_{\alpha \in R} c_{\alpha \varepsilon_{0}}(\gamma)_{\alpha} x^{\varepsilon_{0}+\gamma}=0$ for all γ. In matrices:

$$
\left(c_{\alpha \varepsilon_{0}}\right)_{\alpha \in R} \cdot\left((\gamma)_{\alpha}\right)_{\gamma \in \Gamma, \alpha \in R}=0
$$

Hence $c_{\alpha \varepsilon_{0}}=0$ for all $\alpha \in R$.

Lemma 3: Let $R \subset \mathbb{N}^{n}$ be finite, $t=$ card R and let Γ_{ζ} be defined as in Lemma 2. The set Z of $\zeta \in \mathbb{N}^{n t}$ for which Γ_{ζ} is generic w.r.t. R is a non-empty Zariski-open subset of $\mathbb{N}^{n t}$.

Proof: We only have to show that Z is non-empty. This signifies that the polynomial

$$
\operatorname{det}\left(\left(x_{i}\right)_{\alpha}\right)_{1 \leqslant i \leqslant t, \alpha \in R}
$$

is not identically zero, where $x_{i}=\left(x_{i}^{1}, \ldots, x_{i}^{n}\right)$ denote variables on \mathbb{N}^{n} for all i. But $\alpha<\alpha$ w.r.t. the total order on \mathbb{Z}^{n} implies that $\alpha^{j}<\alpha^{j}$ for some components α^{j}, $\dot{\alpha}^{j}$ of α and $\dot{\alpha}$. Thus $\left((\alpha)_{\dot{\alpha}}\right)_{\alpha, \dot{\alpha} \in R}$ is a triangular matrix with non-zero entries on the diagonal. It follows that $\operatorname{det}\left(\left(x_{i}\right)_{\alpha}\right) \not \equiv 0$.

Proposition 3: For any finite $R \subset \mathbb{N}^{n}, T \subset \mathbb{Z}^{n}$ and any $S \subset \delta+\mathbb{N}^{n}\left(\delta \in \mathbb{Z}^{n}\right)$ there exists a subset Γ of \mathbb{N}^{n} which is spare w.r.t. (S, T) and generic w.r.t. R.

Proof: This is an immediate consequence of Prop. 1 and 2.

3. Proof of the Theorem

For $d, e \in \mathbb{N}$ define the following sets:

$$
\begin{aligned}
R & =\operatorname{supp}\{D \in \mathbb{D}, \text { ord } D \leqslant d\}=\left\{\alpha \in \mathbb{N}^{n},|\alpha| \leqslant d\right\} \\
S & =\operatorname{carr}\{D \in \mathbb{D}, \text { ord } D \leqslant d\}=\left\{\varepsilon \in \mathbb{Z}^{n}, \exists \alpha \in R \text { with } \alpha+\varepsilon \in \mathbb{N}^{n}\right\} \\
T & =\operatorname{carr}\{t c D, D \in \mathbb{D}, \text { ord } D \leqslant d, \operatorname{lev} D \leqslant e\} \\
& =\left\{\varepsilon \in \mathbb{Z}^{n},|\varepsilon| \leqslant e, \exists \alpha \in R \text { with } \alpha+\varepsilon \in \mathbb{N}^{n}\right\}
\end{aligned}
$$

Both R and T are finite and $S \subset \delta+\mathbb{N}^{n}$ for some $\delta \in \mathbb{Z}^{n}$. By Prop. 3 there exists a finite subset Γ of \mathbb{N}^{n} which is spare w.r.t. (S, T) and generic w.r.t. R. We define the polynomial $z=z_{d e} \in A$ as:

$$
z=\sum_{\gamma \in \Gamma} x^{\gamma} .
$$

Let now \mathbb{F} and \mathbb{G} be submodules of \mathbb{D} as in the assertion of the Theorem. Assume $\mathbb{F} z=\mathbb{G} z$. We shall deduce that $t c(\mathbb{F}+\mathbb{G}) \subset t \mathbb{F}$. Part (4) of the Division Theorem will then imply that $\mathbb{F}+\mathbb{G}=\mathbb{F}$ and by symmetry we will obtain $\mathbb{F}=\mathbb{G}$.

Choose a minimal standard base D_{1}, \ldots, D_{m} of $\mathbb{F}+\mathbb{G}$. We have $\operatorname{lev} D_{i} \leqslant \operatorname{lev}(\mathbb{F}+\mathbb{G}) \leqslant e$. As $\left(t c D_{1}, \ldots, t c D_{m}\right) \cdot A=t c(\mathbb{F}+\mathbb{G})$ the inclusion $t c(\mathbb{F}+\mathbb{G}) \subset t c \mathbb{F}$ will follow if we show that $t c D_{i} \in t c \mathbb{F}$ for all i. Actually we shall prove more generally that for any $D \in \mathbb{D}$ of order $\leqslant d$ and level $\leqslant e$ the inclusion $D z \in \mathbb{F} z$ already implies $t c D \in t c \mathbb{F}$.

Let us write $D z=E z$ with $E \in \mathbb{F}$ and assume that $t c D \neq t c E$. By Lemma $1(d)$ we have $\operatorname{lev}(t c(D-E)) \leqslant \operatorname{lev} D \leqslant e$ and therefore $\operatorname{carr}(t c(D-E)) \subset T$. Let $\gamma \in \Gamma$ and write $D z=E z$ as

$$
(D-E) x^{\eta}=\sum_{\gamma \neq \gamma}(E-D) x^{i} .
$$

As carr $(E-D) \subset S$ and Γ is spare w.r.t. (S, T) Prop. 1 implies that for all $\gamma \in \Gamma$

$$
\operatorname{tc}(D-E) x^{\eta}=0
$$

But $\operatorname{supp}(t c(D-E)) \subset R$. As Γ is generic w.r.t. R, Prop. 2 implies that $t c(D-E)=0$, i.e. $D=E$. This proves the Theorem.

4. Examples

In this section we compute the polynomial z of the Theorem in more specific situations and show possible simplifications. Namely we assume given a differential operator $D \in \mathbb{D}$ and a finitely generated submodule \mathbb{F} of \mathbb{D} such that $D \notin \mathbb{F}$. Adding to D a convenient element of \mathbb{F} we may assume by the Division Theorem that $t c D \notin t c \mathbb{F}$. Our aim is to find explicitly a polynomial $z=\Sigma_{\gamma \in \Gamma} x^{\gamma} \in A$ such that $D z \notin \mathbb{F} z$.

In this situation one can proceed as follows. Set:

$$
\begin{aligned}
R & =\operatorname{supp}(t c D) \cup \operatorname{supp}\{t c E, E \in \mathbb{F}, \operatorname{carr}(t c E) \leqslant \operatorname{carr}(t c D)\} \\
S & =(\operatorname{carr} D \cup \operatorname{carr} \mathbb{F})+\mathbb{N}^{n} \\
T & =\operatorname{carr}(t c D) \cup \operatorname{carr}\{t c E, E \in \mathbb{F}, \operatorname{carr}(t c E) \leqslant \operatorname{carr}(t c D)\}
\end{aligned}
$$

Choose a (finite) subset Γ of \mathbb{N}^{n} which is spare w.r.t. (S, T) and generic w.r.t. R, and set

$$
z=\sum_{\gamma \in \Gamma} x^{\gamma}
$$

The three sets R, S, T are generally smaller than the one defined in the proof of the Theorem. Nevertheless, the proof applies as well, for if we would have $D z=E z$ for some $E \in \mathbb{F}$ then

$$
\operatorname{supp}(t c(D-E)) \subset R, \quad \operatorname{carr}(E-D) \subset S, \quad \operatorname{carr}(t c(D-E) \subset T
$$

And this will yield by the same arguments $t c D=t c E$ and contradiction.
Let us carry out the above procedure in three examples of modules of differential operators on \mathbb{C}^{2} :

Example 1: Let $D=1$ and $\mathbb{F} \subset \mathbb{D}$ be generated by $\partial_{x}^{i} \partial_{y}^{j}$ with $0<i+$ $j \leqslant 2$. Then

$$
\begin{aligned}
R & =\left\{(i, j) \in \mathbb{N}^{2}, 0 \leqslant i+j \leqslant 2\right\} \\
S & =\left\{(p, q) \in \mathbb{Z}^{2},-2 \leqslant p+q \leqslant 0\right\}+\mathbb{N}^{2} \\
T & =\left\{(p, q) \in \mathbb{Z}^{2},-2 \leqslant p+q \leqslant 0\right\} .
\end{aligned}
$$

Note that $S-T \subset\left[(-2,-2)+\mathbb{N}^{2}\right] \cup\left[(2,2)-\mathbb{N}^{2}\right]$ and hence $(3,-3)+\mathbb{N} \times(-\mathbb{N})$ does not intersect $\pm(S-T)$. It follows that

$$
\Gamma=\{(15,0),(12,3),(9,6),(6,10),(3,13),(0,16)\}
$$

is spare w.r.t. (S, T). One then checks by computation that the matrix $\left((\gamma)_{\alpha}\right)_{\gamma \in \Gamma, \alpha \in R}$ has rank 6, i.e., that Γ is generic w.r.t. R. Thus $z=x^{15}+$ $x^{12} y^{3}+x^{9} y^{6}+x^{6} y^{10}+x^{3} y^{13}+y^{16}$ does not belong to $\mathbb{F} z$.

Example 2: Let again $D=1$ and \mathbb{F} be now generated by $\partial_{x}^{i} \partial_{y}^{\prime}$ with $0<i+$ $j \leqslant 3$. Analogous considerations as before yield for instance

$$
\begin{aligned}
z= & x^{36}+x^{32} y^{4}+x^{28} y^{8}+x^{24} y^{13}+x^{20} y^{17}+x^{16} y^{21}+x^{12} y^{25} \\
& +x^{8} y^{30}+x^{4} y^{34}+y^{38} .
\end{aligned}
$$

In both examples the polynomial z is relatively complicated and not the simplest one satisfying $z \notin \mathbb{F}$. But aside of the computation of the rank of the matrix $\left((\gamma)_{\alpha}\right)_{\gamma \in \mathrm{T}, \alpha \in R}$ its construction is very easy.

Example 3: We conclude with an example where inspite of the complicated structure of D and \mathbb{F} the polynomial z is simple. Let

$$
D=x^{2} \partial_{x x}+y^{2} \partial_{y y},
$$

and $\mathbb{F} \subset \mathbb{D}$ be generated by E_{1}, \ldots, E_{6}, where:

$$
\begin{array}{ll}
E_{1}=x y \partial_{x y}+y^{3} \partial_{y y} & E_{4}=x y \partial_{x x}+x^{2} \partial_{x y} \\
E_{2}=x \partial_{x x}+x y \partial_{y y} & E_{5}=x y \partial_{y}+x^{2} y^{2} \partial_{x x} \\
E_{3}=y \partial_{x y}+y^{2} \partial_{y y} & E_{6}=x y \partial_{x}+x^{3} \partial_{x y} .
\end{array}
$$

Then $t c D=D$ and $E_{2}, E_{3}, E_{5}, E_{6}, E_{7}, E_{8}$ form a minimal standard base of \mathbb{F}, where:

$$
E_{7}=y^{3} \partial_{y y}-x y^{2} \partial_{y y} \quad E_{8}=x^{2} \partial_{x y}-x y^{2} \partial_{y y} .
$$

Note that $t c D \notin t c \mathbb{F}=\left(x \partial_{x x}, y \partial_{x y}, x y \partial_{y}, x y \partial_{x}, y^{3} \partial_{y y}, x^{2} \partial_{x y}\right) \cdot \mathbb{C}\{x, y\}$. Computation gives

$$
\begin{aligned}
R & =\{(2,0),(1,1),(0,2)\}, \\
S & =\{(-1,0),(1,-1)\}+\mathbb{N}^{2}, \\
T & =\{(0,0),(-1,0),(-1,1)\}
\end{aligned}
$$

One observes that $S-T \subset\left[(-1,-2)+\mathbb{N}^{2}\right] \cup\left[(1,2)-\mathbb{N}^{2}\right]$ and that $(2,-3)+\mathbb{N} \times(-\mathbb{N})$ does not intersect $\pm(S-T)$. Thus

$$
\Gamma=\{(4,0),(2,3),(0,6)\}
$$

is spare w.r.t. to (S, T) and one checks immediately that Γ is also generic w.r.t. R. Therefore, $z=x^{4}+x^{2} y^{3}+y^{6}$ satisfies $D z \notin \mathbb{F} z$ as desired.

Acknowledgements

We would like to thank A. Dür and A. Ostermann for valuable contributions to section 2, resp. section 4 .

References

[B-M] J. Briançon and P. Maisonobe: Idéaux de germes d'opérateurs différentiels à une variable, L'Ens. Math. 30 (1984) 7-38.
[C] F. Castro: Calcul de la dimension et des multiplicités d'un \mathscr{D}-module monogène, $C . R$. Acad. Sc. Paris 302, sér. I, n ${ }^{\circ} 14$ (1986) 487-490.
[G] A. Galligo: A propos du théorème de préparation. Lecture Notes in Mathematics, Springer, no 409 (1973) 543-579.
[H] H. Hauser: La construction de la déformation semi-universelle d'un germe de variété analytique complexe. Ann. E.N.S. Paris 18 (1985) 1-56.

