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TODAY’S MENU:

GEOMETRY AND RESOLUTION

OF SINGULAR ALGEBRAIC SURFACES
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Abstract. The courses are Triviality, Tangency, Transversality, Symmetry,
Simplicity, Singularity. These characteristic local plates serve as our invitation
to algebraic surfaces and their resolution. Please take a seat.
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Our menu consists of six geometric phenomena related to the resolution of sin-
gularities of algebraic surfaces. The courses are Triviality (soup), Tangency (salad),
Transversality (fish), Symmetry (roast), Simplicity (dessert) and Singularity (diges-
tif). In each course a selected singular surface will illustrate these concepts. On the
way, we will resolve the surface and depict its resolution process graphically. After
some appetizers we present the basic ingredients of our dinner. For the cooking we
will mostly use algebraic food. To keep the appetite alive, the more technical def-
initions (of singularities, blowups, resolution, normal crossings, . . . ) are relegated
to the appendix (after the meal). Nonetheless we provide a quick guide to the most
important notions (without proof or further explanation) that will be used in the
text. The pictures appearing later in the article will give vivid illustrations of these
notions.

Appetizers

Figure 1. Genesis of Astrix.

The Astroid is the real plane curve C in R2 that is traced by a marked point
on a circle rolling inside a circle of four times its radius. The trajectory of the
point has the parametrization t → (cos3 t, sin3 t). Alternatively, it can be given
by the implicit equation with rational exponents f : x2/3 + y2/3 = 1. Raising
powers and manipulating we obtain from f the polynomial equation 27x2y2 =
(1 − x2 − y2)3. The Astroid is a closed Hypocycloid with four cusp-like singular
points; the symmetries are those of a square, say the dihedral group D2 (Figure 1,
left).

Take the Cartesian product of the Astroid with the z-axis in R3. The resulting
surface is a cylinder in R

3 with the same equation as the Astroid, but now considered
as an equation in three variables (Figure 1, middle). In this equation replace the
variable y by the product yz. The result is 27x2y2z2 = (1 − x2 − y2z2)3, which
defines the surface Astrix in R3 (Figure 1, right).

Later on we will ask how to resolve surfacesX such as Astrix. By this we mean to
find a smooth surface X ′ together with a projection onto X that is an isomorphism
outside the singular locus of X. It is thus a parametrization of the singular surface
by a manifold. We may ask additionally that the symmetries of X lift to X ′, i.e.,
that the projection is equivariant. This is already less evident.

The Node in R2 is defined by the cubic equation y2 = x3 + x2. It looks like
the Greek character α. Take again the cylinder over this curve in R3. Along
the vertical z-axis it is singular; its local geometry there consists of two planes
intersecting transversally (see Figure 2, left).

Modify this construction by varying the size of the horizontal Node as it rises
along the z-axis. More specifically, the diameter of the loop shall equal the square
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of the height z. The respective equation is y2 = x2z2 + x3 and defines a surface
called Kolibri. At the origin it has a gusset-like shape (see Figure 2, right). The
intersection with the xy-plane z = 0 is the Cusp of equation y2 = x3.

Figure 2. Construction of Kolibri.

A bug walking along the z-axis will observe that in a small neighborhood the
singular shape of Kolibri develops smoothly as the angle between the two “planes”
varies continuously. Arriving at the origin, the local geometry changes drastically.
There, the singularity is much more involved. The origin is the most singular point,
whereas Kolibri is equisingular along the z-axis if we stay off 0. Later on this is
made precise by means of a Whitney stratification of a variety. An equisingular
stratification is a decomposition of the variety into smooth, locally closed subsets,
called strata, such that the variety has the same type (in a concrete sense) along
each stratum. One method to do this is to consider tangent planes at smooth
points together with their limits as the points approach a singularity. The resulting
stratification is very geometric and has an analytic counterpart, which is studied in
the section Triviality.

The Cylinder over the circle is the zeroset of x2 + y2 = 1, taken as an equation
in three variables on R3; see Figure 4, left. Substitute x and y by the fractions
(x− yz)/(yz) and y2/z. After clearing denominators we get the equation x2+y6 =
2xyz, which defines a surface called Eighty (see Figure 3).

Figure 3. Eighty.

Eighty is smooth everywhere except along the z-axis. We should see it as the
result of squeezing and deforming the Cylinder in a specific way. The algebra
behind this geometric operation is the substitution from above. Later on we will



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

376 E. FABER AND H. HAUSER

reverse this operation by reconstructing the Cylinder from Eighty via blowups. By
this we mean modifications on a variety that loosen its singularities and give the
variety more space to unfold. Each blowup improves the singularities so that a finite
number of them allow us to resolve the variety, i.e., transform it into a manifold.
For Eighty, three blowups are needed, and each of them is of a very simple nature,
e.g. given by a map such as (x, y, z) �→ (xy, y, yz). The intermediate stages can be
seen in Figure 4.

Figure 4. Construction of Eighty.

The composition of the three blowups turns out to be the map from R3 to
R3 sending (x, y, z) to ((x + 1)yz2, yz, yz2). Indeed, one checks that it maps the
Cylinder onto Eighty. Moreover, it is an isomorphism over the regular points of
Eighty, hence a resolution. It will be our task to realize this procedure in all
generality (for surfaces).

Ingredients

The surfaces live in affine three-space A3
K = K3, where K is a field (of charac-

teristic 0). Mostly we work over the ground field R of real numbers. Sometimes
computations are carried out over C. If so, it will be explicitly stated. Each of our
surfaces is an algebraic variety, i.e., it is given as the zeroset of one polynomial in
three variables. The points where a surfaceX is locally a manifold are called smooth
points. The remaining points of X are the singular points of X; their collection is
denoted by Sing(X). The singular locus of X is always a closed proper subvariety
of X. It therefore consists of curves and/or points or it is empty if X is smooth.
The interesting thing is to understand how X comes together at its singular points.
This is highly nontrivial and represents a major flavor of our meal.

The main idea to handle the singularities of a singular surface X is to parametrize
X by a smooth surface. One tries to find a surjective map ϕ from a two-dimensional

manifold X̃ to X such that ϕ is almost everywhere an isomorphism. Then one can

think of X as the projection or contraction of the smooth surface X̃ living in a

higher-dimensional manifold down to A3
K . We call ϕ : X̃ → X a resolution of the

singularities of X.
As we have already seen in the appetizers, the resolution map ϕ can be written as

a composition of simple maps, blowups. Additionally it satisfies some properties as
explained in the appendix. The existence of a resolution ϕ of a variety of arbitrary
dimension over a field of characteristic zero was proven by Hironaka [18]. For
positive characteristic there is still no proof of the existence of a resolution in
dimension ≥ 4.
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Since we consider all surfaces embedded in A3
K , the resolution ϕ : X̃ → X should

be induced by a morphism ψ : Ã3 → A3 of some three-dimensional manifold Ã3

onto A3. The surface X̃ lives in Ã3.
We now describe blowups, which make up the resolution map: these are certain

birational proper morphisms and will be our most important tool to resolve a
surface. A birational morphism is a map that is almost everywhere (on a Zariski-
dense subset) an isomorphism and proper means that the inverse image of a compact

set is compact. A blowup is then a proper birational morphism π : X̃ → X which
is associated in a specific way (see the appendix) to the choice of its center Z. The
center, which is a closed subvariety of X, is the locus of points above which π fails

to be an isomorphism. The variety X̃ is called the blowup of X. It turns out that

the blowup map π is induced by a blowup map τ : Ã3 → A3 of the ambient space
with the same center: if the center Z of a blowup of A3 is contained in X, then one

can show that π : X̃ → X, the blowup of X along Z, is equal to τ |
X̃
, the restriction

of the ambient blowup to X̃.

The exceptional locus or exceptional divisor of the blowup π : X̃ → X is the locus

in X̃ where the blowup is not an isomorphism. If we consider Z ⊆ X embedded

in A3 it is given as the inverse image D = τ−1(Z) ∩ X̃ of the center, and the
exceptional divisor of the ambient blowup is denoted by E = τ−1(Z). The total
transform X∗ of X under τ is the inverse image τ−1(X). The strict transform X ′

of X is the (Zariski) closure in Ã3 of the total transform minus the exceptional

locus, i.e., X ′ = τ−1(X\Z). The irreducible components of the intersection of the
strict transform X ′ with the exceptional divisor E, or equivalently, the components
of D, are called exceptional curves of the blowup of X.

The blowup Ã3 can be covered by affine charts, i.e., by charts that are isomorphic

to an (open subset of an) affine algebraic variety. From the blowup map τ : Ã3 → A
3

one obtains chart expressions of τ that make it possible to write equations for the
strict transform X ′ in each affine chart.

We start by providing a short description of the various courses.

Triviality (soup). Take a surface, pick a point on it and look at the geometry
at this point, locally in a small neighborhood. For most choices of this point the
geometry will be the same: flatland. These are the smooth points of the surface.
Now take a singular point. If it is isolated there will be only finitely many similar
points, and the local geometry at these points can be rather involved. If the singular
locus of your surface contains a curve, pick a point on this curve. What is the local
geometry of the surface at the chosen point? Two cases may occur: (a) The point
is a singular point of the curve. Then it will have only finitely many “twin-points”.
(b) The point is a smooth point of the curve. Then it makes sense to observe the
change of the local geometry of the surface as we move the point along the curve;
see Figure 5. We study in this way the local singularity type of the surface along
(a component of) its singular locus.

In the simplest case the surface is analytically isomorphic (locally at a fixed point
p of the singular curve Y ) to the Cartesian product of the curve with a transversal
cross section, i.e., the sections of the surface with a plane perpendicular to the
curve. In this case one says that the surface X is locally (analytically) trivial along
Y at p.
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Figure 5. Points in the singular locus: type (a) blue and type (b) red.

For example, consider X = V (xyz), the union of the three coordinate hyper-
planes in A3. The singular locus of X consists of the three coordinate axes. At
each point on one of these axes, except the origin, X is locally analytically iso-
morphic to the union of two planes that intersect transversally. The origin is a
somewhat more singular point because here all three planes meet; X looks different
there.

We will explain how to decompose any surface X into subsets along which it is
locally trivial. Fix a point p ∈ X. To study the local nature of X at p one considers
arbitrarily small open (Euclidean) neighbourhoods of p. This corresponds to taking
the germ of X at p. A theorem of Ephraim [8] states that, in any dimension, the
locus Y of points q ∈ X such that the germs of X in these points q are analytically
isomorphic to the germ of X in p is a submanifold of X. For surfaces, Y can
be the entire variety X (if it is smooth), or a collection of curves and/or points.
Furthermore, Ephraim proved that X is locally isomorphic around p to Y × Z for
some germ Z. So we obtain a decomposition of the surface X into its smooth points
and (not necessarily finitely many) locally closed curves and points along which X
is analytically trivial.

The situation is much more interesting when X is not locally analytically trivial
along an arbitrarily given curve Y on X. Still, the geometry of X may be sim-
ilar along Y . We then call X equisingular along Y . There are several ways to
interpret this phrase. One of the most used equisingularity criteria was given by
Whitney [41] and is discussed below. Similarly one can find algebraic or topological
equisingularity criteria; see Zariski [45] or Teissier [37], respectively.

Decomposing X into locally closed submanifolds along which it is trivial or
equisingular is an example of a rather general concept. A stratification of X is
a filtration X = Zd ⊇ Zd−1 ⊇ · · · ⊇ Z0, where each Zi is an algebraic subset of
X, i.e., Zariski-closed. The irreducible components Xα of Zi − Zi−1 are called the
strata of X. The Xi are differences of algebraic subsets and smooth, and we have
X =

⋃
α Xα. For a detailed description of a stratification, see the appendix.

Stratifications reflect the structure of a singular variety and can also be helpful
for the resolution of singularities. Here the idea is to stratify the singular variety
such that the strata measure the “intricacy” of the singularities. The stratum with
the worst singularities can be chosen as the center for a blowup, which should then
improve the singularities. However, we will see in the following that finding such a
stratification is a nontrivial problem.
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Tangency (salad). In the second course we will again work with stratifications.
We shall consider a very geometric stratification proposed byWhitney [41]. Suppose
we have found a stratification X =

⋃
α∈A Xα of a surface. We call a pair of

strata (Xα, Xβ) with Xβ ⊆ Xα\Xα adjacent. Then it is interesting to observe how
adjacent strata actually fit together.

Consider a stratum Xα on our surface X. How does this stratum “run into”
an adjacent stratum Xβ? Whitney gave two conditions that a stratification should
satisfy: in condition (a) one considers limits of the tangent spaces of Xα along
a sequence of points {xi} in Xα that approach a point y ∈ Xβ . For condition
(b) one also looks at the limit of the secant lines of two sequences {xi} in Xα

and {yi} ∈ Xβ that approach the point y ∈ Xβ. Both conditions express the
behaviour of Xα along Xβ, locally at y, and are known as Whitney’s conditions
(a) and (b). If all pairs of adjacent strata satisfy Whitney’s conditions, then one
speaks of a Whitney stratification of X. A Whitney stratification always exists for
any analytic variety (in Cn or Rn); see [41]. Such a stratification is a useful tool in
studying equisingularity problems; see [38]. It is basic for many other constructions,
for example intersection homology; see [11].

In the Tangency section we will give a more detailed description of Whitney’s
conditions and consider an example of a surface, Kolibri, where the first condition
is satisfied whereas the second fails.

Transversality (fish). In this course we use the resolution of a flowery sur-
face called Iris to discuss questions about transversality. In differential geometry,
transversality between two smooth subvarieties of a manifold M means that their
tangent spaces at each point of the intersection span the whole tangent space of
M at that point. This notion clearly depends on the embedding in M . In our
algebraic setting, transversality has to be seen in a more general perspective, with
several options.

Two smooth algebraic varieties intersect cleanly if at each point of the intersec-
tion the intersection of the tangent spaces coincides with the tangent space of the
intersection. For a subvariety of An with several components, the classical notion
of transversality is that of normal crossings : We say a subvariety in An has nor-
mal crossings at a point p if the variety is at p locally isomorphic to the union of
coordinates subspaces of An. A variety has normal crossings if it has normal cross-
ings at any of its points. If the variety consists of just two smooth components, a
normal crossing is the same as the clean intersection of the two components. Two
normal crossing subvarieties of An are said to meet transversally if their irreducible
components have normal crossings at each point of their intersection.

These notions become relevant in the embedded resolution of singularities, where
it is required that the total transform has normal crossings. This is equivalent to
saying that the strict transform is smooth, that the exceptional divisor has normal
crossings, and that both meet transversally in the above sense [7, 15]. An embedded
resolution is needed in Hironaka’s proof of resolution [18], which uses induction over
the embedding dimension of the variety that has to be resolved. It is easy to see that
having normal crossings is preserved under blowups in smooth centers provided the
variety and the center meet transversally. Amongst others, the embedded resolution
is also important for the problem of finding compactifications of complex manifolds;
see for example [10].
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A subvariety of An is called mikado if it is locally at each of its points locally
analytically isomorphic to an arbitrary union of linear spaces. This is clearly a
more general concept than just having normal crossings. It is easier to achieve in
the resolution process of a variety. However we will give an example showing that
this property is not stable under blowups.

Symmetry (roast). In the next course we will discuss the concept of symmetry
for our surfaces. Consider the group G of automorphisms of A3 that fix a surface X
that is embedded in A3. The group G is called the symmetry group of X. Here, we
only take into account symmetries of finite order. In the case of A3

R
, the classification

of finite linear symmetry groups is well known; see for example [25]. Except for
the cyclic groups Ck

∼= Zk, where k ≥ 1 and k ∈ N and the dihedral groups
Dk with k ≥ 4 one finds three exceptional groups T,O and I, corresponding to the
symmetry groups of the Platonic solids: Tetrahedron, Octahedron and Icosahedron,
respectively.

In the appetizers, the surface Astrix, which is invariant under the action of
Z2 ×D4, was constructed. Its defining polynomial (x2 + y2z2 − 1)3 − 27x2y2z2 = 0
is invariant under the permutation of y and z. The symmetrization of a polynomial
obtained by inserting invariant polynomials instead of the variables may produce
new singularities that come from the fixed points of the symmetry automorphism.
It is somewhat mysterious how the symmetrization of a surface is related to its
blowups.

The singular locus of a symmetric surface X inherits the symmetries of X. This
affects the choice of the center of blowups for the resolution: we require that the
resolution preserves the symmetries of X. Such a resolution is then called equivari-
ant. Usually, centers are smooth subvarieties of X that lie in the singular locus
of X. The singular locus of a symmetric surface X consists in general of several
components, namely curves and points that are permuted by the action of the sym-
metry group of X. We can simply choose one of these components as the center
and start with blowing them up. This, however, may destroy the symmetries of X.

One way to preserve symmetries under blowups is to choose the intersection
point of the singular curves as the center. It can be checked that the singularities
of X will not necessarily improve under this blowup. One can also try to blow
up the whole singular locus of X in one step. Then the symmetries of X will be
preserved. The only problem in this approach is that the center will in general be
singular itself. Since a blowup of X is induced by a blowup of the ambient space,

the blowup Ã
3 of A3 with center Sing(X) might become itself singular. If we lose

the smooth ambient space it is hard to measure the improvement of the singularities
of X.

In the section on symmetry we will consider the surface Helix, which will be
resolved in four different ways in order to illustrate the problem of finding an
equivariant resolution.

Simplicity (mousse au chocolat). We consider the least involved type of point
singularities a surface can have, namely simple singularities. Loosely speaking, an
isolated singularity is simple if it can only be deformed into finitely many other types
of isolated singularities. There are amazing connections between simple singularities
and, e.g., real symmetry groups and quotient singularities. The beautiful paper of
Durfee [6] lists fifteen different characterizations of simple singularities. Just as
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an appetizer of the various connections, if we start with equations, then we find
Arnol’d’s [1] complete classification of analytic functions f : (C3, 0) → (C, 0) such
that the singularity (V (f), 0) = (f−1(0), 0) is simple (the classification is up to
local analytic isomorphism). These functions f are polynomials of order 2 at 0 and
are called ADE–functions; see [6, Table 1].

For us an interesting aspect of simple singularities is their resolution. If a surface
has an isolated singularity that can be resolved by a sequence of point blowups,
then this singularity is called absolutely isolated. Kirby [22] has shown that an
isolated singularity p of X is simple if and only if it is absolutely isolated and the
defining equation is of order 2 at p.

A simple singularity of a surface can also be characterized by data obtained
from its resolution, i.e., by its dual resolution graph (or Dynkin diagram); see [6,
Table 1]. The vertices of the dual resolution graph correspond to the exceptional

curves on the so-called minimal resolution X̃ of X. Two vertices are connected if
the respective exceptional curves intersect on X̃. The vertices are labeled with the
self-intersection numbers of the respective exceptional curves.

Singularity (digestif). Until now we have tried to resolve surface singularities. In
this section we look at the “inverse” problem of the construction of singularities. We
try to find equations for surfaces with a prescribed singular locus. It is interesting to
study surfaces with singular curves as a singular loci. In particular the construction
of such a surface can probably give us hints concerning its resolution. Since we know
how to improve singularities (blowup) we can use the inverse process (blowdown)
to produce singularities. A blowdown will be a map that contracts a hypersurface.
However, this procedure does not apply in a straightforward manner because an
arbitrary blowdown of a surface will not lead to the desired singularity. The choice
of the correct contraction is very subtle.

Example 1. We want a surface to have the plane Cusp {y2 = x3, z = 0} as a
singular locus. We try a straightforward method: suppose that X is a surface in
A3 with the Cusp in the xy-plane as a singular locus and whose equation we are
searching for. Take this Cusp as the center of a blowup of X, with the reduced

ideal (x3 − y2, z). A computation shows that in one chart the blowup Ã3 of A3 is

singular but in the other one Ã3 is smooth. In the latter chart the corresponding
affine blow-up map is

π : A3 → A
3, (x, y, z) �→ (x, y, (x3 − y2)z).

Restricting π over X, we obtain the affine chart expression of the strict transform
X ′ together with the blow-up map π : X ′ → X. We neither know equations of X ′

or X. Here X ′ can be any surface that is projected under π to a surface with the
Cusp as a singular locus. We may and will assume that X ′ is of a simple nature;
for example, we take X ′ to be the cone given by the equation x2 + y2 − z2 = 0. In
order to get X from X ′, apply the blow-down map

π−1 : X → X ′, (x, y, z) �→ (x, y,
z

x3 − y2
),

which is well defined outside X ∩ V (x3 − y2). Substituting z �→ z
x3−y2 in X ′ and

multiplying with (x3 − y2)2 yields the equation for X : z2 = (x2 + y2)(x3 − y2)2;
see Figure 6, left.
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It is easy to see that the generic transversal section with a plane perpendicular
to the singular locus of X, the Cusp, consists locally of two crossing lines. This
means that X has locally along its singular locus normal crossings. By replacing
z2 with z3 we obtain the surface X : z3 = (x2 + y2)(x3 − y2)2, and the generic
transversal section becomes an irreducible singular curve. The result is shown in
Figure 6, right.

Figure 6. Surfaces with Cusp as singular locus.

Now the dinner starts. Enjoy your meal!

Triviality: Whitney umbrella x2 = y2z

Our menu starts with a cold soup, aGazpacho. The sample surface is theWhitney
Umbrella. This is a singular surface X in A3, defined by the equation x2− y2z = 0;
see Figure 7. It is also called a pinch point singularity.

Figure 7. The Whitney Umbrella.

Let us describe its geometry in A3
R
. The Whitney Umbrella seems to consist of

two components, namely the z-axis and a plane that is bent around the positive
part of the z-axis in such a way that it intersects itself. As the defining polynomial
f = x2 − y2z is prime in R[x, y, z] the surface X is irreducible. The fact that X
looks like the union of a two-dimensional and a one-dimensional component arises
from the visualization in real space: at each point in A3

R
with negative z-coordinate

the equation f = 0 has just one solution, a point on the z-axis.
At points outside the z-axis the Whitney Umbrella is smooth and hence a man-

ifold. The geometry along the singular locus Sing(X), the z-axis, is clearly more
interesting. In Figure 7 one observes that in A3

R
the singular locus is split into three
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different parts: at points with positive z-coordinate, X looks locally like the union
of two planes, and if z < 0, then the Whitney Umbrella is locally one-dimensional.
Only at the origin is the type of the singularity more involved.

We try to detect these local geometric properties by constructing a decomposi-
tion of Sing(X) into (locally closed) algebraic subsets along which X looks locally
the same. In the following we consider the Whitney Umbrella over the complex
numbers, where it looks locally the same (again like two transversal planes) along
the whole z-axis minus the origin.

The Euclidean topology together with analytic functions defined on open neigh-
borhoods of points provides more flexibility regarding isomorphisms than the Zariski
topology and regular functions on Zariski-open sets. We therefore view our alge-
braic surface X for the moment as a complex analytic variety in C3. We say that
X is locally analytically isomorphic at two points p and q if there is a (Euclidean)
neighborhood U of p in C3 and an analytic isomorphism ϕ : U → V onto an open
neighborhood V of q sending U ∩X onto V ∩X. In the language of germs, this is
denoted by (X, p) ∼= (X, q). For fixed p we call

Trivp X = {q ∈ X : (X, q) ∼= (X, p)}
the trivial locus of X at p. By a theorem of Ephraim [8, Thm. 0.2], Trivp X is
a submanifold of X and the germ (X, p) is isomorphic to the Cartesian product
(Trivp X, p)× (Z, r) for some germ of an analytic variety (Z, r). We then say that
X is locally at p (analytically) trivial along Trivp X. It can happen that Trivp X is
reduced to the point p. This happens for instance if X has an isolated singularity
at p. In contrast, if X is smooth, Trivp X coincides with X for all p.1

Let us now investigate the Whitney Umbrella with respect to this concept of local
triviality. In any point p = (p1, p2, p3) of X the germ of X in p is isomorphic to the
germ (V (fp), 0) at 0, where V (fp) denotes the zeroset of fp = f(x+p1, y+p2, z+p3),
which is just the Taylor expansion of f in p. The singular locus of X is the whole
z-axis. To determine whether X is analytically trivial along this axis we use the
following Characterization of Local Analytic Triviality [4, Thm. 9.1.7]:

A family {(Yt, 0)}t∈C ⊆ (Cn, 0) of germs of analytic varieties parametrized an-
alytically by t ∈ C with Yt = V (gt), defined by some analytic function gt =
g(x1, . . . , xn, t) in x1, . . . , xn and t, is trivial at t = 0 if and only if the deriva-
tive of gt with respect to t lies in the ideal of the convergent power series ring
C{x, t} generated by gt and the product of the maximal ideal with the Jacobian
ideal,

∂tgt ∈ (gt) + (x1, . . . , xn)(∂x1
gt, . . . , ∂xn

gt).

This criterion plays an important role in the classification of isolated hypersurface
singularities. It can also be used to prove the theorem of Mather–Yau and Gaffney–
Hauser [30, 16].2

Let us apply the criterion to the Whitney Umbrella X. Consider the family
{(Xt, 0)}t∈C, where Xt = V (ft) and ft = f(x, y, z+ t) = x2− y2(z+ t) corresponds
to the germ of X in a point (0, 0, t) of the z-axis. A computation shows that ∂tft
is not contained in the ideal (ft) + (x, y, z)(∂xft, ∂yft, ∂zft). Hence the Whitney

1 The same type of question occurs when considering an analytic family of germs (Xt, pt)
parametrized by some space germ (T, 0). In this case one asks for the locus of points t where
(Xt, pt) is isomorphic to (X0, p0). Then the analogous result holds again; see [17].

2This theorem states that two analytic hypersurface germs are isomorphic if and only if their
Tjurina algebras (i.e., the quotient of C{x} by the equation and the Jacobian ideal) are isomorphic.
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Umbrella is not locally at 0 analytically trivial along the z-axis. This corresponds
to our impression from the real picture; cf. Figure 7.

Let us determine the trivial locus of X at other points along the z-axis: in the
point (0, 0, 1) we have (X1, 0) = (V (f1), 0) with f1 = x2 − y2z − y2. It is easy
to see (cf. [13, I, example 5.3.6]) that (X1, 0) is locally isomorphic to the germ
of V (x2 − y2) = V (x + y) ∪ V (x − y), two transversal planes, at 0. If t �= 0, one
can use the analytic isomorphism ϕt : Xt → X1, (x, y, z) �→ (x,

√
ty, z

t ) to establish
(X1, 0) ∼= (Xt, 0). This shows that the trivial locus is the whole z-axis minus the
origin. We have locally obtained at p = (0, 0, t) with t �= 0 a decomposition of X
into a Cartesian product, namely

(X, p) ∼= (V (x, y), p)× (V (x2 − y2, z), 0).

We conclude that the origin is the most singular point of X.
In the algebraic category and taking biregular isomorphisms, the same type of

questions is considerably more difficult:

Problem 1. Let X be an algebraic variety over a field K. Let p be a fixed point
on X. Consider Trivp X = {q ∈ X : (X, q) ∼= (X, p)}, where (X, p) now denotes
the (algebraic) germ of X in p with respect to the Zariski topology and ∼= means
biregularly isomorphic. Is Trivp X a (smooth) algebraic subset of X? Is there a
local decomposition (X, p) = (Trivp X, p)× Y for some algebraic germ Y ?

Let us now discuss the resolution of the Whitney Umbrella X by blowups. The
pictures will again be in A3

R
, though our reasoning is mostly based on the complex

setting. At the beginning we need to choose the locus of points where X will

be modified, i.e., the center of the first blowup. As a blowup π : X̃ → X is an
isomorphism outside its center Z and we do not want to alter the smooth points of
our variety, we require that Z lies inside the singular locus Sing(X). Furthermore,
we prefer to have a smooth center Z. Blowups in singular centers are not well
understood because they may introduce singularities in originally smooth varieties
(e.g., in A

3). In the section Symmetry this topic is raised with more detail.
Since Sing(X) is in our case just the z-axis, the only smooth subvarieties of

Sing(X), and hence possible centers, are points on the z-axis given by ideals
(x, y, z − t), where t ∈ K, or the whole axis, given by the ideal (x, y). In the
preceding discussion we have seen that the origin is the most singular point of the
surface. So we try the origin Z = V (x, y, z) as the center of the blow up. Let

π : Ã3 → A3 be the blow-up map of the ambient space with center Z (by abuse
of notation we will sometimes also denote the ambient blow-up map with π). The

blowup Ã3 of A3 is covered by three affine charts. The corresponding blow-up maps
are

πx : A3 −→ A
3, (x, y, z) �→ (x, xy, xz),

resp.
πy : A3 −→ A

3, (x, y, z) �→ (xy, y, yz)

and
πz : A3 −→ A

3, (x, y, z) �→ (xz, yz, z).

We shall see that in the x-chart the singularity has disappeared and that it
has “improved” in the y-chart whereas the singularity in the z-chart has remained
the same. In the x-chart we get the total transform X∗ = V (f∗), where f∗ =
x2(1− xy2z). The strict transform f ′ = 1− xy2z is smooth and does not intersect
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the exceptional component, which is the plane x = 0. Thus the singularity of X is
resolved in the x-chart; cf. Figure 8.

In the y-chart the strict transform f ′ = x2 − yz defines a cone with vertex at
the origin. Clearly the singularity has improved along the z-axis because all points
not equal to the origin have become smooth in the y-chart. However, the origin
is still singular. So we ask if this singularity at the origin has somehow improved.
There is no unique way to answer this question. The most natural idea is to use
the order of the defining ideal in each point of X as a measure: for a singular point
the order is strictly greater than one and if the order has dropped to one the point
has become smooth. In our case the order has remained constant at the origin, so
one has to consider a finer measure. We will not go into detail but with the help of
resolution invariants one can detect an improvement of this singularity; for details
see [2, 3, 15]. Now there is just one chart missing, the z-chart. This is the critical
chart, where our attempt of a resolution will come to an abrupt end. The strict
transform is f ′ = x2 − y2z. Then f = f ′, that is, X ′ has the same singularity as X
in this chart. So there is no way to declare X ′ less singular than X. We conclude
that the center of the blowup was too small to resolve or to improve the singularity
of X.

Figure 8. The three charts of the point blowup (x-chart, y-chart
and z-chart, exceptional divisor in red).

The origin was geometrically a reasonable center, as we saw with the decom-
position of X into locally trivial strata. But this decomposition turns out to be
misleading for resolution purposes. Instead, we use the stratification induced by
the local order ordp(f) of the defining function. It is the order of the Taylor expan-
sion of f in p. Denote top(f) = {p ∈ A

3, ordp(f) is maximal}, the top locus of f .
Choosing the center of the blowup in the top locus of X is very suitable since then,
as can be shown without much effort, the order does not increase under blowup. If
it drops, one can apply induction; if it remains constant, a second invariant has to
be defined in order to exhibit an improvement of the singularities.

For f = x2− y2z the order of f is 2 at all points of the z-axis and f is of order 1
at any other point of X. Hence top(f) is the z-axis defined by the ideal (x, y). Now
consider the blowup of A3 with center the z-axis. This blowup is covered by two
affine charts, corresponding to the two generators x and y of the ideal of the center:
in the x-chart the total transform f∗ is defined by the equation x2(1 − y2z) = 0.
The strict transform is the Cartesian product of a hyperbola and the x-axis and
intersects the exceptional plane V (x) in the hyperbola V (x, 1− y2z); see Figure 9.
In this figure the exceptional plane V (x) is depicted in blue. The total transform
X∗ has normal crossings. Therefore the singularity is resolved in this chart; see
Figure 9.
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In the y-chart the strict transform is f ′ = x2 − z, the Cartesian product of
a parabola in the xz-plane with the y-axis; see Figure 9. The strict transform is
smooth and intersects the exceptional plane V (y) transversally. The total transform
X∗ has normal crossings in this chart; therefore we are done.

We have now resolved the Whitney Umbrella X with a single blowup. The
blowup X ′ lives in A3 × P1. To describe how the two charts patch together we
compute the affine chart expressions of the blow-up map. This yields the transition
maps between the two charts: from the x- to the y-chart,

ϕxy : X ′
x −→ X ′

y, (x, y, z) �→ (
1

y
, xy, z),

and from the y- to the x-chart,

ϕyx : X ′
y −→ X ′

x, (x, y, z) �→ (xy,
1

x
, z).

Let z go to infinity in both charts; see Figure 9. All lines parallel to the xy-plane
in the x-chart stay parallel in the y-chart. In these pictures the blue resp. green
parts in the x-chart have to be glued together with the corresponding blue resp.
green parts in the y-chart. In Figure 10, a schematic picture of the result of the
patching can be seen: As the transition maps suggest, the orientation of X ′ has to
change between the two charts. This is indicated in Figure 10 by a Moebius band
in the blue part. The blue rectangles in the picture indicate the exceptional planes.

Figure 9. x-chart (left) and y-chart (right).

Tangency: Kolibri y2 = x2z2 + x3

Let us move on to the next course, a fresh salad. What kind of dressing would
you like? In this course we study the surface Kolibri. Its singularities are perfectly
suited for illustrating limits of tangent planes. The singular locus of Kolibri is a
line, the z-axis, along which the singularity type is, outside the origin, that of two
transversal planes. Only at the origin is the singularity more complicated. Recall
the appetizers section where we constructed Kolibri: we took the plane Node with
equation y2 = x3 + x2 and placed it in three-space on a horizontal plane at height
z = 1. We moved this plane with the curve downwards while contracting the Node
(keeping the intersection point on the z-axis) and got the equation of Kolibri

K : y2 = x2z2 + x3.
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Figure 10. Patching the two charts of the blowup of the Whitney Umbrella.

Figure 11. Kolibri flying and Whitney’s (b) condition.

The plane section z = 0 is the Cusp x3 = y2, and the surface is symmetric with
respect to ±z; see Figure 11, right.

Let us now describe the limits of tangent planes as the tangency point (this is
the base point of the tangent plane) moves from the smooth part into the singular
locus Y of our surface K. If the limit point in Y is different from the origin,
everything behaves as expected: the limiting plane contains the tangent line to
the singular locus. This also holds if the sequence of points approaches the origin:
let p = (a, b, c) ∈ K be a smooth point close to the origin. The tangent plane is
given by Tp(K) : (2ac2 + 3a2)x − 2by + 2a2cz = 0. Taking the limit as p goes to
0, the limiting tangent plane contains the z-axis. Therefore Whitney’s condition
(a) is satisfied at any point along Y (see the appendix or [37, 38] for a detailed
description of Whitney’s conditions).

A finer notion of “fitting together” of the two parts of Kolibri, namely K\Y and
Y , is obtained by considering limits of secants xiyi of sequences of points xi in K\Y
and yi in Y , both approaching y ∈ Y . If the limit of these secants is contained
in the limit of the tangent spaces of the xi for all possible sequences of xi and yi
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(for which the limit exists) the adjacent pair of strata (K\Y, Y ) is said to satisfy
Whitney’s condition (b) at y.

Whitney’s condition (b) holds at any point on the z-axis minus the origin. But if
the sequence of points converges to the origin it is checked (consider the intersection
of Kolibri with the plane defined by y = 0) that there are limits of secants that
are not contained in the limit of the respective tangent planes. Thus condition (b)
does not hold at 0. In Figure 11 (right), a part of the intersection curve of Kolibri
with the plane y = 0 and a sequence of points violating Whitney’s condition (b)
are sketched. Condition (b) allows us to distinguish the origin from the remaining
points of Y as a singular point with higher complexity. This is expressed by saying
that K satisfies Whitney’s condition (a), but not (b), along the stratum Y , locally
at 0.

Now we turn to the problem of resolving Kolibri. By the above considerations,
the origin is the most singular point of our surface. If we choose it as the center
of the blowup, the singularity does not improve (in the z-chart, the new equation
is y2 = x2z2 + x3z). So, despite the reasonable strategy to try to get rid of the
worst singularities first, this was not a suitable choice. We therefore apply a curve
blowup with center the entire singular locus of K. Taking this line blowup, it can
easily be seen what happens along the singular locus of K at points outside the
origin. As K locally looks there like the union of two planes meeting transversally
along the z-axis, the blowup separates these two local components. Moreover, both

components meet the ambient exceptional divisor (recall: this is a “plane” in Ã3)
transversally, as long as we avoid the origin. So the interesting transformation
happens above the origin. The fibre over 0 in the blowup X ′ does not meet the
y-chart and consists of two transversal lines in the x-chart; see Figure 12.

Figure 12. The x- and y-chart of the blowup of the singular z-axis.

It is therefore sufficient to consider the x-chart of the blowup. A computation
yields that in this affine chart the equation of the strict transform K ′ of K is

x + z2 = y2, a saddle. It is smooth. The exceptional divisor E in Ã3 is locally
given as the plane x = 0. The exceptional divisor E ∩K ′ in K ′ consists of the x-
chart of the two lines defined by V (y2 − z2, x). Since E∪K ′ does not have normal
crossings, Kolibri is not yet resolved (recall that we want to achieve an embedded
resolution). The origin of the x-chart is the only point where E∪K ′ does not have
normal crossings; hence we use it as the center of the next blowup. This blowup will
separate the two components of E∩K ′. After the blowup the total transform (K∗)∗

of K ′ consists of its strict transform K ′′, the transform of the old exceptional plane
(depicted in red in Figure 13) and the new exceptional plane (depicted in green in
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Figure 13). The xx-chart can be discarded since here the strict transform is smooth
and does not meet any of the two exceptional components.

Figure 13. The xy- and the xz-chart of the point blowup of the saddle.

We now have three exceptional curves on K ′′, which are smooth and intersect
transversally in two points marked in red in Figure 13. These two intersection
points are contained in the xy- and the xz-chart. Notice the symmetry of the xy-
and the xz-chart via the coordinate transformation (x, y, z) �→ (x,−z, y). However,
we are not finished yet.

For our goal, an embedded resolution, the total transform ofK must have normal
crossings everywhere. As one can see in Figure 13 the strict transform K ′′ meets
the red exceptional plane tangentially in the intersection points mentioned above.
If we just blow up the two points, we will not improve the situation, because in
one chart we get the same strict transform as before. Therefore we choose a larger
center: we blow up the line joining the two “bad” points (this line is contained in
the strict transform K ′′). One can see in Figure 14 that in the resulting charts the
total transform has everywhere normal crossings. Hence Kolibri is resolved.

Figure 14. Normal crossings in the xzx- and the xzz-chart after
three blowups.
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In the diagram one can see the blowups that led to the resolution of Kolibri:

K

x

��

y

�����������

K ′
x

x

����
��

��
��

�
y

��

z

����
��

��
��

� K ′
y

K ′′
xx K ′′

xy

x
����������

y

��

K ′′
xz

x

��

z

����
��

��
��

�

K ′′′
xyx K ′′′

xyy K ′′′
xzx K ′′′

xzz

Transversality: Iris, x2y + y2z = z4

Figure 15. Iris, x2y + y2z = z4.

Our menu continues with a plate of fish or seafood. We consider a surface called
Iris, which looks like a blossom. It consists of a calyx and a leaf bent around it,
connected just at one point; see Figure 15. This point, the origin, is the singular
locus of Iris. The surface is irreducible; hence one cannot separate the two parts
algebraically. However, if we consider a small Euclidean neighborhood of the origin,
Iris looks locally like the union of the cone x2 + yz = 0 with the plane y = 0.
One can resolve the cone by blowing up the origin, which leaves the plane y = 0
unchanged. This observation suggests that a point blowup could already smooth
Iris. Indeed, one point blowup will make the strict transform smooth; however,
the total transform has not yet normal crossings. We have chosen Iris because its
resolution led us to discuss various notions of transversality: clean intersection,
normal crossings and mikado. We start with explaining these different concepts.

1. Clean intersection. Two smooth varieties X,Y ⊆ An defined by radical
ideals IX , resp. IY , intersect cleanly if their intersection Z = X ∩ Y = V (IX + IY )
is smooth and if the tangent spaces satisfy

Tp(Z) = Tp(X) ∩ Tp(Y ) for all p ∈ Z.

Equivalently, at all points of the intersection of X and Y , there is a local analytic
isomorphism of An mapping X and Y onto linear subspaces. This equivalence can
be easily shown using the implicit function theorem.
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In [27, Fact 5.1], Li Li gives the following characterization of clean intersections:
let X,Y be smooth varieties in An defined by radical ideals IX , IY . Then X and
Y intersect cleanly if and only if their set-theoretical intersection X ∩ Y is smooth
and the ideal IX∩Y := IX + IY is radical. We then also say that the intersection
X ∩ Y is scheme-theoretically smooth.

2. Normal crossings. The next notion is used to characterize intersections of
several components. Let X1, . . . , Xk in A

n be smooth varieties. Then X1, . . . , Xk

have normal crossings at p if there exists a local system of coordinates around p
such that each Xi is defined by the vanishing of some of the coordinates. We say
that X1, . . . , Xk have normal crossings in An if they have normal crossings at any
of their points.

We say that a variety X has normal crossings or that X is a normal crossings
variety if its irreducible components X1, . . . , Xk have normal crossings. Let Y be
another normal crossings variety with irreducible components Y1, . . . Yl. We say
that X is transversal to Y if X1, . . . , Xk, Y1, . . . , Yl have normal crossings.

3. Mikado. Smooth subvarieties X1, . . . , Xk of An are mikado if all possible
intersections ⋂

j∈J

Xj with J ⊆ {1, . . . , k}

are scheme-theoretically smooth. If X1, . . . , Xk have normal crossings, then they
are mikado. For two surfaces in A

3, mikado and clean intersection are equivalent.
Let us now see how these notions appear in a resolution process of a variety. In

the case of Iris we will find that after the first blowup (with center the origin) the
strict transform is smooth. The total transform is singular since it is the union of
the strict transform and the exceptional plane E. Both intersect in a curve. We see
that X is resolved (in the embedded sense) if and only if X ′ is transversal to the
exceptional locus E. After k blowups the total transform X∗ of a surface X will
consist of k exceptional surfaces plus the strict transform X(k) of X.

Let X ⊂ A
3 be a surface having normal crossings and let Y be a variety transver-

sal to X. If we blow up in a smooth center transversal to X and contained in X∩Y ,
then the blowup of X will again have normal crossings and the strict transform of
Z will have a clean intersection with the exceptional divisor. However, achieving
normal crossings can be a lengthy and tedious procedure. Often it is convenient to
aim only at mikado singularities. But this notion need not be stable under blowup.3

Therefore we pose the following

Problem 2. Let Y = (Y1, . . . , Yk) be mikado in A
n. Characterize all subvarieties

Z ⊆ Y such that the blowup of An in Z transforms Y again into mikado.

3 Example 2 (communicated by Li Li). Let M be the union of the z-axis l, the xy-plane
P and the large diagonal x = z, denoted by Q, in A3. Then M is defined by the product ideal
(x, y)(z)(z−x) = (xz(z−x), yz(z−x)). We see that M is mikado. Consider the blowup of A3 with
center the z-axis. We get two affine charts (corresponding to the two generators of the center). In
the y-chart the total transform M∗ is defined by the ideal (xyz(z−xy), yz(z−xy)). We see that the
strict transform P ′ of P remains unchanged but Q is transformed into the saddle Q′ = V (z−xy).
The line l becomes the exceptional component E = V (y). However, M∗ = P ′ ∪ Q′ ∪ E is not
mikado since P ′ ∩Q′ = (z, xy) is the union of two intersecting lines and is thus singular.
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We now resolve Iris in three blowups. Below is a table in which one can see how
the resolution works. We denote Iris by T : x2y + y2z − z4 = 0.

T : Iris

x
��������������

y

��
z

��������������

T ′
x : resolved T ′

y : resolved T ′
z : smooth

y
��������������

z

��������������

T ′′
zy : Tülle

x3
��������������

y2

�� z2
�������������

xy

��������������������������
xz

��																																			 T ′′
zz : resolved

res. res. res. res. res.

The first blowup with center the origin produces a smooth strict transform T ′.
In the x- and y-chart one can easily see that the exceptional divisors and the strict
transform have normal crossings; see Figure 16, left and middle. However, in the
z-chart, the strict transform x2y + y2 = z and the exceptional divisor do not have
normal crossings since the intersection curve is singular at the origin.

Figure 16. The three affine charts of the point blowup of Iris.

We have to perform another blowup. We could again choose the origin of the z-
chart as center but a computation shows that things do not improve. For example,
in the zx-chart the strict transform and the exceptional component V (z) do not
meet transversally.

In order to improve the situation we choose a larger center, for instance the x-axis
in the z-chart. This axis is a component of the intersection T ′

z ∩ E. The blowup is
covered by two affine charts. In the zz-chart the strict transform T ′′

zz is smooth and
meets the exceptional component V (z) transversally; see Figure 17. In the zy-chart
the total transform T ∗

zy = V (yz(x2+y−z)) is the union V (y)∪V (z)∪V (x2+y−z).
This surface is called Tülle; see Figure 17.

For Tülle, all pairwise intersections of the three components are smooth: the
x-axis is the intersection of the two exceptional surfaces, and T ′′

yz defined by the

equation x2 + y = z intersects each exceptional component in a parabola. But
the three intersection curves meet tangentially at the origin. Said differently, the
intersection of the three components of Tülle is the origin with non-reduced ideal
(x2, y, z), which is not radical. Hence Tülle is not mikado (it is the simplest such
example).

In order to obtain normal crossings we could blow up the origin of Tülle again
since it is the only point that is an obstacle to being mikado. A computation shows
that this blowup would indeed yield mikado but still no normal crossings for the
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Figure 17. Second blowup of Iris: zy-chart Tülle (left), zz-chart (right).

total transform. So we try to blow up the nonreduced ideal (x2, y, z), which defines
the common intersection of the three components of Tülle. Blowing up this ideal

yields a singularity in the ambient space Ã
3. As with the cross for Helix, see the

section Symmetry, we use an ideal whose associated blowup leaves the ambient
space smooth. The ideal that works is (x2, y, z)(x, y, z) = (x3, y2, z2, xy, xz). The

resulting blowup Ã3 is isomorphic to the blowup of the origin in A3 followed by
the blowup of the origin of the hereby obtained x-chart (just compute the chart
expressions).

In the xy-chart and the x3-chart the total transform of Tülle is a union of four
planes, whose pairwise and triple intersections are smooth and whose quadruple
intersection is empty. It has normal crossings and hence is also mikado. In the y2-
chart the strict transform is a saddle-surface defined by the equation x2y + 1 = z.
Moreover the total transform T ∗

zy(y2) is the union of the saddle and two coordinate

planes; see Figure 18. The common intersection of its three components is empty.
An easy computation shows that T ∗

zy(y2) has normal crossings. The expressions of

the total transforms in the two remaining charts are similar to the xy- resp. y2-
chart, and one can go from one to the other by permuting y with z. Hence we are
also finished in these two charts.

Figure 18. The y2-chart of the third blowup of Iris.

Symmetry: Helix x4 + y2z2 = x2

In the second main course, a roast, we study the surface Helix. It fascinates us
by its twofold symmetry: four petals emerge from the positive and negative y- and
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z-axes. Along these axes a transversal plane section exhibits the figure eight curve
Lemniscate (see Figure 19).

Figure 19. Helix.

The singular locus of Helix is a cross, namely the two axes in the y- and z-
direction, which is formed as the intersection of two smooth transversal sheets as
long as we stay outside the origin. At the origin the geometry is more involved
because on each of the four rays the two sheets of the surface approach each other
(see Figure 20).

Figure 20. Helix sliced open near the origin.

If one only looks at the real part of Helix the x-coordinate of the points on the
surface remains bounded by 1. The variable x can be expressed as a double root

x = ± 1
2

√
2± 2

√
1− 4y2z2.

In the description of Helix (the name comes from the Greek ειλειν: to turn, rotate)
the word symmetry has already appeared. We now describe particular symmetries
of Helix and study how they are related to the construction of this surface. Looking
at the real picture (Figure 19) one immediately sees that one can rotate the surface
90, 180 and 270 degrees around the x-axis, or reflect it with respect to the xy-, yz-
or xz-plane without changing its shape and position in A3. These automorphisms
are contained in the symmetry group of the Helix.

The symmetry group Aut(Y ) of an algebraic variety Y ⊆ An is the group of all
polynomial automorphisms of An that fix Y , i.e., Aut(Y ) = {ϕ ∈ Aut(An) : ϕ(Y ) =
Y }. Note that for Y = V (g) a hypersurface, Y is invariant under the action of a
group G ⊆ Aut(An) if g(x1, . . . , xn) = λg(ϕ−1(x1, . . . , xn)) for every ϕ ∈ G and
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some λ = λϕ ∈ K∗. Of course one can test if the surface Y is invariant under a
specific group G ⊆ Aut(A3

R
), but there seem to be no general results. However, the

computation of Aut(Y ) is not straightforward since the group Aut(An
K) for n ≥ 2

is hard to understand.4

Let X denote Helix viewed in A3
R
. Since the group Aut(X) of polynomial auto-

morphisms is rather complicated we will look at the group of linear symmetries of
Helix

Autlin(X) = {ϕ ∈ Aut(X) : ϕ linear}.
Its elements can be represented by 3× 3 matrices. This group is generated by the
matrices (here all signs are independent)⎛

⎝±1 0 0
0 1 0
0 0 1

⎞
⎠ ,

⎛
⎝1 0 0
0 ±λ 0
0 0 ± 1

λ

⎞
⎠ ,

⎛
⎝1 0 0
0 0 ±λ
0 ± 1

λ 0

⎞
⎠ , λ ∈ R

∗ .

It is isomorphic to the group Z2 ×G, where G is generated by the 2× 2 matrices

M0(λ) =

(
λ 0
0 1

λ

)
,M1(λ) =

(
λ 0
0 − 1

λ

)
,M2(λ) =

(
0 λ
1
λ 0

)
,M3(λ) =

(
0 λ
− 1

λ 0

)
.

The group G consists of the identity component G0
∼= R

∗ generated by M0(λ) and
the connected components Gi consisting of matrices of the form Mi(λ) for i = 1, 2, 3.
Denote gi = Mi(1) for i = 1, 2, 3. Then G is generated by M0(λ) and the gi.

The torsion subgroup of finite symmetries of Autlin(X) is Z2 × H, where H
denotes the subgroup of G that is generated by g1, g2, g3. We easily compute that
H is isomorphic to D4. Note that Z2 ×H is contained in O3(Z) ⊆ GL3(Z).

One can construct Helix similarly to Astrix in the appetizer section by sym-
metrization: First one deforms the circle x2 + y2 = 1 in A2 by contracting the
y-axis in A

2 to a point via (x, y) → (x, xy). The resulting curve is the figure eight
curve Lemniscate in A2 given by the equation x4 + y2 = x2. Then consider the
Cartesian product of the Lemniscate with a line. The so constructed surface C
lives in A3 and is still defined by the equation x4 − x2 + y2 = 0. Then substitute
y by yz in C in order to obtain Helix. This last substitution corresponds to the
restriction to C of the blowup of A3 with center the x-axis. Notice that this axis is
not contained in C and that the blowup creates more complicated singularities.

This construction of Helix is very simple. It is, however, not clear how to invert
it: Assume given Helix from scratch. We ask for the reconstruction of a smooth
surface that projects birationally onto Helix as in the construction above. This will
be a (nonembedded) resolution. Moreover, one can ask if the symmetries of Helix
are preserved: Suppose G ⊆ Aut(A3) is a group acting on X. Is there a resolution

π : Ã3 → A3 such that this action can be lifted to the resolved X̃ ⊆ Ã3? The answer
to this question is ‘yes’ and was first given in arbitrary dimension by Villamayor
[40]. More precisely, if G acts on X ⊆ A3 one can find a resolution of X that is
a composition of blowups in centers invariant under the action of G. Therefore,

4One knows for example that a polynomial map ϕ : An
C
→ An

C
is an automorphism if and only if

it is bijective; see [23, Lemma II.3.4]. Another interesting fact is that Aut(A2
C
) is the amalgamated

free product of the subgroup of affine transformations Autaff(A
2) = {ϕ = (ϕ1, ϕ2) ∈ Aut(A2) : ϕi

affine linear} and the Jonquière subgroup J2 = {ϕ = (ϕ1, ϕ2) ∈ Aut(A2) : ϕ1 ∈ C[x1], ϕ2 ∈
C[x1, x2]} over their intersection. This result is due to Jung [21] and Van der Kulk [39]. For
higher dimensions the situation is much more complicated; see for example [24, 33, 35].
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the action can be lifted at each step of the resolution. Such a resolution is called
equivariant.

To resolve Helix, there are four candidates for the first blowup. We discuss them
separately.

(a) Blowup of origin.
(b) Blowup of line.
(c) Blowup of cross.
(d) Blowup of augmented cross.

(a) Blowup of the origin. This center is the only smooth subvariety of the singular
locus which respects the symmetries of Helix. But it turns out to be too small to
yield a clear improvement of the singularities. Let X ′ be the strict transform. The
singularities of X ′ do not lie in the x-chart of the blowup. In the y-chart the strict
transform is X ′

y : x4y2 + y2z2 = x2; see Figure 21. The equation seems to be
more complicated, and neither the singular locus has changed nor the order of the
equation has dropped at any of the singular points of X ′. There is, however, a
subtle improvement. The two singular axes of Helix have been separated. They
can now be chosen simultaneously as the (smooth) center of the next blowup. Note
that a blowup with center the z-axis of X ′

y and the y-axis of X ′
z will preserve the

symmetries of X. In the strict transform X ′′, which is covered by 5 charts (one
stemming from the x-chart of X ′, and two at a time from the y- and z-chart), the
singular locus consists of two one-dimensional components: the y-axis in X ′′

yy and
the z-axis in X ′′

zz. The intersection of these two lines is empty. Therefore we can
blow them up simultaneously in order to obtain X ′′′. A computation shows that
X ′′′ is already resolved. This resolution is not the most economic one but it is by
construction equivariant.

Figure 21. Blowup of Helix in the origin: X ′ after point blowup
(left), and X ′′ after line blowup of X ′ (right).

(b) Blowup of line. The singular locus of Helix is the union of the y- and the
z-axis, the zeroset V (x, yz). We have two equal choices for centers if we drop the
requirement that the symmetries of X should be preserved and just demand smooth
centers: the z-axis and the y-axis. We illustrate the resolution by choosing the z-
axis as the first center of the blowup (first blowing up the other axis would yield a
symmetric blowup and can be obtained by permuting y and z).

In the x-chart the strict transform X ′
x is already smooth; see Figure 22. It

intersects the exceptional plane V (x) in two hyperbolas and has normal crossings
with this plane. Thus Helix is resolved in this chart.
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Figure 22. Blowup of Helix in the z-axis: x-chart (left) and y-
chart (right), the exceptional component in red.

In the other chart the strict transform is singular, but the situation has clearly
improved: the singular locus of X ′

y is just the y-axis; see Figure 22. Thus we
choose it as the center for the second blowup. In the yx-chart we get the same
strict transform as in the x-chart of the preceding blowup (after the coordinate
change (x, y, z) �→ (z, y, x)). The exceptional curves, i.e., the intersection curves
of X ′′

yx with the exceptional hyperplanes V (x) and V (y), are four distinct lines,
which intersect pairwise transversally in two points on X ′′

yx; see Figure 23, left. A
computation shows that X ′′ and the exceptional hyperplanes have normal cross-
ings everywhere. In the yz-chart the total transform is defined by the equation
y2z2(x4y2z2 − x2 + 1) = 0; see Figure 23. As in the yx-chart, the total transform
has normal crossings everywhere. Helix is resolved after only two blowups. But the
symmetry has been destroyed.

Figure 23. Blowup of Helix: second blowup of the axes, yx-chart
(left), yz-chart (right).

(c) Blowup of the cross. How can we improve our resolutions by making as
few blowups as possible? In (a) we needed four blowups, in (b) we cut down to
two (losing the equivariance of the resolution), and now we try to resolve Helix
in one step. One could think of resolving Helix with one blowup with center the
whole singular locus of X, i.e., the union of the y- and z-axis, with reduced ideal
(x, yz). We call this ideal the cross. A blowup with center the cross preserves the
symmetries of Helix. But there is a substantial difference to the blowups from (a)

and (b): the center itself is singular. A blowup π : Ã3 → A3 is defined for any

center that is a subvariety of A3, but for a singular center the blowup Ã3 of the
ambient space can also be singular. This is in particular the case for the cross.
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The x- and the yz-chart cover Ã3. In the latter chart the affine coordinate ring
of the ambient space is K[ x

yz , y, z], and the strict transform of Helix is defined by

the equation x4y2z2 − x2 + 1 = 0 with exceptional components V (y) and V (z).

The total transform coincides with X
′′

yz of the preceding resolution; see Figure 23,
left. The problems appear in the second chart. Here the affine coordinate ring is

isomorphic to K[x, y, z, w]/(xw − yz). Thus in this chart Ã
3 can be realized as

a three-dimensional variety in A4 with an isolated singular point at the origin (a
cone). The strict transform X ′ of Helix is given as V (xw − yz, x2 − 1 + w2) ⊆ A4

in the x-chart. It does not touch the singularity of Ã3 and even the exceptional
curves on it are smooth. So Helix is resolved. One could fix the problem with

the singular ambient space: in this example, the singularity of Ã3 is resolved by
blowing up its singular point. Since a blowup is an isomorphism outside the center,
the transformation has no effect on the strict transform of Helix.

A blowup with center the cross resolves Helix. But in general the strict transform

of a surface with singular locus the cross will meet the singular point in Ã
3 such

that we will lose control of the singularities of the surface that we want to resolve.
Nonetheless we can state

Problem 3. Let X be a surface in A3 with Sing(X) = V (x, yz). Consider the

blowup π : Ã3 → A3 with center the cross V (x, yz). Characterize all surfaces X
such that the strict transform X ′ does not meet the singular point of the ambient

Ã3.

(d) Blowup of the augmented cross. In the last approach we refine our method
by equipping the ideal of our singular center with a nonreduced structure. By
a clever choice of such a structure the ambient space remains smooth and, as
an extra, Helix will be resolved in one step. We shall use the nonreduced ideal
(x, yz)(x, y)(x, z) = (x3, x2y, x2z, xyz, y2z) for the cross. This ideal will be called
the augmented cross. The blowup in this center is the composition of the blowup

of the cross in A3 followed by the blowup of the unique singular point of Ã3. For
the detailed description of this center and computations of the charts, see [14].

In each of the five charts the total transform of Helix has normal crossings. Thus
Helix is resolved. In Figure 24 only three affine charts are depicted since the strict
transform of Helix looks similar in the other two charts.

Figure 24. Blowup of Helix, center the augmented cross: the
three relevant charts.

This resolution is the most economic one since one needs just one blowup and
the ambient space remains smooth; moreover it respects all symmetries of Helix.
However, it is not obvious how to generalize the resolution to higher dimensions or
to a more complicated structure of the singular locus.
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Problem 4. Let X be a singular surface in A3. Determine a (possibly singular
and nonreduced) center to resolve X with one blowup. Can you choose this center
in a way that it respects the symmetries of X?5

Simplicity: Sofa x2 + y3 + z5 = 0

Let us relax and sit down on Sofa. It is perfectly suited for the dessert of our
menu. Sofa is defined by the equation f : x2 + y3 + z5 = 0 and looks nearly
smooth except at the origin; see Figure 25. Its coordinate ring K[x, y, z]/(f) is
isomorphic to the invariant ring of the icosahedral symmetry group. Sofa has
an isolated singularity at the origin, namely a simple singularity of type E8 (the
concept of simple singularities will be defined below). Although the singular locus
is just a point, the (nonembedded) resolution of Sofa will be lengthy (in total, eight
point blowups will be needed to achieve smooth strict transforms in all charts).
After introducing simple singularities and their ADE-classification we will compute
explicitly the resolution of Sofa by a sequence of point blowups. At the end of the
section we will describe and construct the associated dual resolution graph.

Figure 25. Sofa x2 + y3 + z5 = 0.

We need some concepts from local analytic geometry. Let On = C{x1, . . . , xn}
be the ring of convergent power series at 0 and consider the group G of local
automorphisms of (Cn, 0). We write

G × On → On, (ϕ, f) �→ ϕ · f = f ◦ ϕ−1

for the canonical group action. For an element f ∈ On the right equivalence class of
f is the orbit of f under the above group action, denoted by G · f = {ϕ · f : ϕ ∈ G}.
Let m = {f ∈ On : f(0) = 0} be the maximal ideal of On and let πk : On → Jk =
C{x1, . . . , xn}/mk+1 be the projection map on the k-jet space Jk. Each Jk is a
finite-dimensional C-vector space isomorphic to some C

N with the usual Euclidean
topology on it. Take the coarsest topology on On such that all πk are continuous.

5 Some remarks on this problem: We know that there exists a sequence of blowups in smooth
centers that resolve any algebraic variety in characteristic 0. By [13, Thm. 7.17], this sequence
corresponds to one blowup in a possibly very complicated center. However, it is not clear how to
find this center. It is in general singular and nonreduced, but even in concrete examples little is
known. Similarly, it is quite hard to determine whether the blowup in a singular center leaves the
ambient space smooth. For centers defined by monomial ideals the question is more tractable; see
Rosenberg [34] and Faber [9]. Even if one succeeds in finding a nonreduced center such that the
ambient space stays smooth, it is not obvious how to determine whether the singularities of the
embedded subvariety improve.
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We say that an element f is simple if there exists an open neighborhood U of f
such that the number of orbits G · f that intersect U is finite. It is well known that
simple germs (V (f), 0) have an isolated singularity of order 2 at the origin, i.e., a
double point ; see [4, chapter 9]. Only a finite number of nonequivalent singularities
appear in any of their deformations [4, Exercise 9.2.16].

Now we restrict our considerations to C3 and f ∈ C{x, y, z}. Arnol’d has shown
that every simple f is right equivalent to one of the so-called ADE-singularities;
see [1, 4, 6]. They come in two infinite families, Ak: x

2 + y2 + zk+1, for k ≥ 1 and
Dk: x2 + y2z + zk−1, for n ≥ 4, together with the three exceptional singularities
E6: x

2 + y3 + z4, E7: x
2 + y3 + yz3, E8: x

2 + y3 + z5. A simple element g is called
adjacent to f if g is in the closure of the G-orbit through f . This signifies that a
small perturbation may deform g into f . We thus get a partial order on the set of
simple singularities according to their “complexity” [1, 25]:

A1 A2
		 A3
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		 A5
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		 A7

		 A8
		 . . .		
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In a different vein, simple surface singularities can be characterized by their resolu-
tion: all simple singularities can be resolved by a sequence of point blowups. Such
a singularity is called absolutely isolated. For example, an A1-singularity is the or-
dinary cone x2+y2 = z2 and can be resolved by a single point blowup, whereas the
E8-singularity is quite complicated and requires, as mentioned above, eight point
blowups. Kirby [22] has shown that an analytic hypersurface germ (V (f), 0) is sim-
ple if and only if f has an absolutely isolated double point. It is then interesting
to see how the type of the singularity changes after each blowup: this change can
be followed by subsequently deleting vertices from the associated dual resolution
graph. As we will see later in this section, such a graph is uniquely determined
for each ADE-singularity and codifies the combinatorics of its so-called minimal
resolution. By computing the resolution of simple singularities case by case one can
determine which vertices must be deleted.

There are several other characterizations of simple singularities, for example, as
rational double points or quotient singularities. The articles of Greuel [12] and
Durfee [6] provide an overview of these characterizations.

In this section we compute a nonembedded resolution, so that the last strict
transform ofX does not need to have normal crossings with the exceptional divisor.6

Resolution of Sofa. Let us now describe how to resolve the E8-singularity of the
surface Sofa S by a sequence of blowups. We will keep track of the blowups,
the change of the type of the singularity and the exceptional curves and their
intersections. The configuration of the exceptional curves on the strict transform
is important for computing the Dynkin diagram associated to the singularity. This

6For surfaces, one could also obtain a resolution by repeatedly normalizing and then blowing
up the singular points. This method is due to Zariski [44], based on the work by Jung [20]. The
article of Lipman [29] gives a general overview of resolution techniques. Resolution of normal
surface singularities is discussed in great detail in Laufer’s book [26].
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diagram codifies the combinatorics of how the components of the exceptional divisor
meet.

In the diagram below one can see how the type of the singularity changes under
point blowups.

A1
4 �� resolved

E8
1 ��E7

2 ��D6

3



3

��













 A1
6 �� resolved

D4

5

������������

5

������������
5 ��A1

7 �� resolved

A1
8 ��resolved

We see that the E8-singularity is transformed into E7 after the first blowup
and into D6 after the second blowup. Then the singularity splits up into two
singularities: one A1-singularity, which can be resolved by a single point blowup,
and one D4-singularity, which needs a total of four point blowups for its resolution.
In the diagram below the strict transforms and centers are indicated:

S : Sofa
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x

������������
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S(6) S(6) S(6)

x

���������������������
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�����������
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��

S(6) S(6)

y+1

��

x

����
��

��
�� z
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��

S(6)

S(7) S(7) S(7) S(8) S(8) S(8)

In the following we illustrate the resolution of Sofa (as in the diagram) more
explicitly. We denote the components of the exceptional divisor E with E1, . . . ,E8,
where Ei is the exceptional surface in the ambient space that is obtained by the
i-th blowup. We denote the exceptional curves, i.e., the intersection of Ei and the
strict transform, by Di. Sofa has an isolated singularity at the origin, which is the
first center of the blowup. The resulting total transforms S∗

x, S
∗
y , S

∗
z in the three

charts are shown in Figure 26. Here the first exceptional surface E1 is shown in
red.
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Figure 26. The charts of the total transforms S∗
x, S

∗
y , S

∗
z of Sofa.

We directly see that the strict transform in the x- and y-chart is smooth. In the
y-chart the total transform is defined by the equation y2(x2 + y + y3z5) = 0. It
does not have normal crossings since the two components have a common tangent
plane at 0 (the xz-plane). The exceptional z-axis D1 is smooth.

In the z-chart the strict transform S′
z is defined by the equation x2+y3z+z3 = 0.

This equation, which appears in Arnol’d’s list of ADE-singularities [6, Table 1] as
an E7-singularity, is less complicated than E8. We have only obtained a small
success, so let us blow up the origin of S′

z. Note that the origin is not contained in
any other chart. Hence the other charts do not play a role in the further resolution
and can be discarded.

The new total transforms S∗
zx, S

∗
zy, S

∗
zz of Sofa are shown in Figure 27. The new

exceptional component E2 is depicted in green.

Figure 27. S∗
zx, S

∗
zy, S

∗
zz: The three total transforms of S∗

z under
point blowup.

Now the strict transform S′′ is smooth in two of the three new charts (the zx-
and zz-chart). Moreover the exceptional curve D2 on S′′

zz is nonsingular and S′′
zx

does not meet the exceptional divisor E1 ∪ E2.
In the zy-chart the strict transform S′′

zy, which is defined by the equation x2 +

y2z + yz3 = 0, consists locally at the origin of three components. At first sight
the singularity looks more complicated than the singularity of S′

z. The defining
polynomial of S′′

zy is not in the table of ADE-functions [6, Table 1] but it is right
equivalent to a function that appears in the table. Applying the coordinate change
y � y− 1

2z
2, the equation x2+y2z+yz3 = 0 is transformed into x2+y2z− 1

4z
5 = 0.

The singularity of this surface is of type D6. The exceptional curve D2 on S′′ is
smooth and intersects the transform of the first exceptional curve D1 transversally
in the origin of the zy-chart.

Since S′′
zx and S′′

zz are smooth we will proceed with the resolution only in the zy-
chart. For the third blowup we choose the only reasonable center: the origin of the
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zy-chart. Figure 28 shows the three new chart expressions of the total transform
with E3 painted in yellow.

Figure 28. S∗
zyx, S

∗
zyy, S

∗
zyz: The three chart expressions of the

total transform of S∗
zy under point blowup.

The strict transform S′′′ is smooth in the zyx-chart; in the other two charts, it is
still singular. There are two different singular points on S′′′. The strict transform
S′′′
zyy is defined by the equation x2 + yz + y2z3 = 0. It is clearly equivalent to

x2 + yz = 0, an A1-singularity.
Before turning to the last chart of blowup number three, let us comment on

the further resolution in the zyy-chart: on S′′′
zyy the exceptional curves D1 and D3

meet transversally in the singular point. The singular point can be resolved by
one blowup. This blowup, being number 4, produces a new exceptional component
D4, which intersects D1 transversally in the origin of the zyyy-chart of the strict
transform and D3 transversally in the origin of the zyyx-chart. The exceptional
curve D4 on S(4) does not meet E2.

Now we return to the chart of the third blowup that contains the worst singu-
larity, namely the zyz-chart. Here the strict transform still consists of three “com-
ponents”. The origin of the strict transform S′′′

zyz defined by x2 + y2z + yz2 = 0 is
of order 2 of type D4. We have to blow up this surface a fifth time.

We blow up the only singular point of S′′′, the origin of the zyz-chart. Now the
singularity has clearly changed; see Figure 29. The new exceptional plane E5 is
painted blue.

Figure 29. S∗
zyzx, S

∗
zyzy, S

∗
zyzz: The three total transforms of S∗

zyz.

In the zyzx-chart the strict transform does not meet the exceptional compo-
nents. But in the other two charts of S(5) we can see two remarkable things. First

observation: the strict transforms S
(5)
zyzy and S

(5)
zyzz are isomorphic via the automor-

phism that interchanges y and z. Second observation: the origin in both charts is
still singular but we get another singular point in each chart, namely V (x, y, z+1)
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in the zyzy-chart and V (x, y + 1, z) in the zyzz-chart. A computation shows that
these two points globally correspond to the same point (use change of charts for-
mula). Hence, on S(5) there are altogether three singular points: the origins of the
two charts and an additional point. Thus the fifth blowup has finally separated
the three “components” of S′′′

zyz. All three singular points are of type A1. Let us
not forget the exceptional curves: in the zyzy-chart, D3 and D5 intersect transver-
sally in one point and in the zyzz-chart, D5 and D2 intersect transversally in two
different points.

For the sixth blowup we have two choices of the center in both charts: the origin
and the new singular point. But each singularity will be resolved with one blowup
since they are both of type A1. We start with blowing up the new point V (x, y, z+1)
in the zyzy-chart. The other chart is similar. Two of the three resulting charts are
displayed in Figure 30; this time the new exceptional component E6 is orange.

Figure 30. S∗
zyzyy, S

∗
zyzy(z+1): The interesting transforms after

the sixth blowup.

We do not provide a picture of the resolved S∗
zyzyx; it looks like all preceding

resolved total transforms. The strict transform X
(6)
zyzyy is smooth, and D6 can be

seen as a smooth parabola in this chart; the other exceptional divisors do not

intersect S
(6)
zyzyy. In the zyzy(z + 1)-chart we can view our progress; there is only

one singular point left, the origin. The equation of the strict transform S
(6)
zyzy(z+1)

is x2 + yz = 0, a cone. Everything looks similar in the zyzz(y + 1)-chart. Here
the exceptional divisor D6 is a line and intersects D3 and D5 transversally in two
different points. So we are ready for the final blowups, number seven and eight,
of the last two singular points. In Figure 31 one of the three charts is displayed,
namely S∗

zyzy(z+1)z , with E7 in violet.

All the other charts look quite similar (you may compute the equations yourself).
It can be seen that the strict transform S(8) is smooth and in each chart the ex-
ceptional curves are smooth and meet pairwise transversally. Hence we are finished
(except for the normal crossings of the strict transform and the exceptional divi-
sor, which can be obtained by a line blowup). The intersections of the exceptional
curves will be computed at the end of this section.

Resolution and Graphs. So far we have resolved Sofa via a sequence of blowups
of points. We now turn to graphs, namely the Dynkin diagrams representing the
resolution tree of E8; see [20, 19, 26].
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Figure 31. Finally smooth!

Consider a resolution π : X̃ → X, where X is a surface that has only isolated

singularities and X̃ is a manifold. Let D = π−1(Sing(X)) denote the exceptional
divisor. It consists of a finite union D1 ∪ . . . ∪ Ds of irreducible smooth curves. A
resolution π : X̃ → X is called minimal if for any other resolution π′ : X̃1 → X

there exists a unique map ρ : X̃1 → X̃ such that π′ = π ◦ ρ. Equivalently, a
resolution is minimal if and only if it does not contain any rational irreducible
exceptional curve Di with self-intersection number Di · Di = −1.7 For details see
[26].

For every resolution π : X̃ → X we can draw its dual resolution graph. It is
a tree and encodes the combinatorics of the resolved surface M ; one can read off
the configuration of the exceptional curves from the graph. Let us assume that

π : X̃ → X is a so-called good resolution. This means that the components of
the exceptional divisor π−1(Sing(X)) intersect in a nice way (the exact definition
can be found in the Appendix). Then a vertex v corresponds to an irreducible
component Dv of the exceptional divisor D. Two vertices v and w are connected
by k edges if they intersect each other in k distinct points. To each vertex v we
associate the self-intersection number of Dv · Dv.

If π is not a good resolution the construction of the resolution graph becomes
more involved because we have to codify more combinatorial data. The details can
be found in [26, 31]. In these sources one can also find the resolution graph of E8:

�

−2
�

−2

�

−2

�

−2

�−2

�−2

�−2

�−2

7This number is the first Chern class of the normal bundle of the embedding of Di in X̃.
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We compute the graph of our resolution of Sofa and see that it is equal to the graph
of E8. The computation of the self-intersection numbers can be found in [5]; the
result is that Di · Di = −2 for all i. This implies that our resolution is a minimal
resolution.8

In the first part of this section we already remarked in which charts which ex-
ceptional divisors intersect. Now the results will be collected: the first charts in
which exceptional curves intersect are (after the 4th blowup) the zyyy-chart and
the zyyz-chart. Here D4 intersects D1, and D2 intersects D4 transversally in the
origin of the respective chart. These are two different points on S(4). Hence the
first part of the resolution tree looks as follows:

�

D4
�

D1
�

D3

For the remaining charts we have to proceed to blowups number 7 and 8. Explic-
itly, the four relevant total transforms are: in the zyzy(z+1)y-chart the exceptional
curves D7 = {y = 0} and D3 = {z = 0} intersect transversally on the strict trans-

form S
(8)
zyzy(z+1)y given as V (x2 + z). Similarly D8 = {z = 0} and D2 = {y = 0}

intersect the strict transform S
(8)
zyzz(y+1)z given by V (x2 + y) transversally. On

the strict transform S
(8)
zyzz(z+1)z the exceptional curve D5 = {y = 0} intersects

D7 = {z = 0} in the origin and it intersects D6 = {z + 1 = 0} in the point
(0, 0,−1). In the zyzz(y + 1)y-chart, D5 = {z = 0} intersects D8 = {y = 0} in the
origin and it intersects D6 = {z + 1 = 0} in the point (0,−1, 0). A computation
shows that (0, 0,−1) and (0,−1, 0) correspond globally to the same point, so D5

intersects D6 transversally in one point. The resolution tree has the required form:

�

D7
�

D3
�

D4
�

D1
�

D5
�

D8
�

D2

�D6

Singularity: Daisy (x2 − y3)2 = (z2 − y2)3

We are pleased to offer a digestif. Suppose that now, instead of eliminating sin-
gularities, we want to produce singularities. More precisely, we intend to construct
a surface with certain prescribed types of singularities. Until now, the surfaces had
points or lines as the singular locus. Can we find surfaces whose singular locus is it-
self a singular curve? Moreover, can we prescribe the geometry of the surface along
this curve, for instance, its generic transversal section with a plane perpendicular
to the singular locus?

8 One can show that a minimal resolution of the singularities of a normal surface by a sequence
of point blowups (and possibly normalizing) can only be achieved if the surface has rational
singularities; see [28].
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There seems to be no systematic method to answer these questions. We shall
give a partial solution by using the inverse process to blowups, so-called blowdowns.
These correspond to contractions of subvarieties of dimension 2 of the ambient
A3 and allow us to produce a certain range of singularities. We exhibit these
constructions in a concrete example. However, there is still a lot of trial and error
involved.

First have a look at the following surface, called Daisy (see Figure 32):

Figure 32. Daisy (x2 − y3)2 = (z2 − y2)3.

This surface looks like a double cone which is folded along four edges. These
edges form its singular locus: Sing(D) consists of two plane cusps meeting “transver-
sally” at their common singular point. The cusps are the zerosets of the two ideals
(x2 − y3, y ± z).

Now assume that by mistake we have lost or forgotten the equation for Daisy.
How can we recover it from the geometric appearance of the surface? We shall
use a procedure similar to the construction of the surface Eighty: Start with the
cylinder over the ellipse x2 − 2xy + 2y2 − 1 = 0. Fold it along two parallel lines
by contracting the two tangential planes y = −1 and y = 1 in A

3 to lines via the
rational contraction map ϕ1 : A3 → A3, (x, y, z) �→ ((x − y)/(y2 − 1), y, z). The
singular locus of the resulting “cylinder” (this is now a cylinder over the singular
plane curve with equation x2+3y2−2xy3−3y4+2y6 = 1) has two line components;
see Figure 33.

Figure 33. Construction of Daisy: Two tangent planes (left), and
the contracted surface together with the xy- and the yz-plane
(right).
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In the next step we produce a new singular line on our surface by contracting
the xy-plane in A3 (blue in Figure 33) to a line, the y-axis, via the contraction
map ϕ2 : A3 → A

3, (x, y, z) �→ (x/z, y, z). Now the singular locus of this surface,
defined by the equation x2 − 2xy3z − z2 + 3y2z2 − 3y4z2 + 2y6z2 = 0, consists of
three lines that intersect pairwise cleanly. Then we transform the “old” singular
lines into parabolas by contracting the xy-plane in A3 to the y-axis via ϕ3 : A3 →
A

3, (x, y, z) �→ (x, y, z/x). In the last step, the xy-plane is contracted to the origin
via ϕ4 : A3 → A3, (x, y, z) �→ (x/z, y/z, z). The result is the surface Daisy.

The construction of a surface X with a given plane curve Y as its singular
locus can be realized through the following recipe. Let Y be given by the equation
f(x, y) = 0 and denote IY = (f, z) ⊆ K[x, y, z]. Choose a surface S : g(x, y)− zk =
0, for k ≥ 0, such that the singular locus of the plane curve g(x, y) = 0 in A2 is
either contained in Y or does not meet Y . Then we define X : gfk − zk = 0. The
surface S then corresponds to the f -chart expression of the blowup of X when we
use IY as center.

The next interesting case is to search a surface with a given space curve Y as
its singular locus. The blowup of A3 with center Y will in general be singular in
each chart (each chart corresponds to a defining equation for Y ). In particular, the
chart expressions of the associated blow-up maps will not be maps from A3 → A3.
Consider the following example:

Example 3. We construct a surface X whose singular locus is the singular space
curve Y parametrized by (t3, t4, t5), in A3. This curve is ideal-theoretically not
a complete intersection since its defining ideal I = (x3 − yz, y2 − xz, z2 − x2y)
is minimally generated by three polynomials. Consider the blowup of A

3 with

center I. The resulting ambient space Ã3 is singular in all three charts. Look

at the (y2 − xz)-chart. Its coordinate ring is K[x, y, z, x3−yz
y2−xz ,

z2−x2z
y2−xz ]. We take

as Ansatz the surface X ′ : x2 + y − z2 = 0 in A
3 and substitute φ : (x, y, z) �→

(x
3−yz

y2−xz , y
2−xz, z2−x2y

y2−xz ) to find a surface X in A3, which is defined by the equation

(x3 − yz)2 + (y2 − xz)3 − (z2 − x2y)2 = 0. Indeed, X has the singular space curve
Y as singular locus (see Figure 34, left)!

Example 4 (this is due to Robert Bryant). One can construct a surface X with the
same twisted space curve Y as singular locus as in example 3 by using a different
method. The curve Y is defined in A

3 by the ideal I = (x3 − yz, y2 − xz, z2 −x2y).
Putting the weights 3, 4 and 5 on x, y and z this ideal is weighted homogeneous.
For X = V (f) having singular locus Y we will therefore require that

√
J(f) = I,

where J(f) denotes the Jacobian ideal of f generated by the partial derivatives.
It is now plausible to look for a weighted homogeneous f . By the Euler relation,
any weighted homogeneous polynomial f is contained in J(f). Since we want

f ∈
√
J(f) we take f as a K[x, y, z]-linear combination of the generators of

√
J(f)

as Ansatz, i.e., f = a ·(x3−yz)+b ·(y2−xz)+c ·(z2−x2y), with a, b, c ∈ K[x, y, z].
These polynomials should again be weighted homogeneous and have a weighted
degree so that f is also weighted homogeneous. Increasing successively the degrees
of a, b and c the first feasible choice turns out to be a = x2, b = xy and c = z. This
results in f = x5 + xy3 + z3 − 3x2yz. The surface X = V (f) is called Clip (see
Figure 34, right). Unfortunately, we do not see the singular curve Y here, since
outside the origin the surface is a C1-manifold. So even though the construction
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was neat, we will have to keep an eye on obtaining the desired local geometry of
the surface at its singular points.

Figure 34. Twisted space curve as singular locus: Construction
by contraction (left), and by weighted homogeneous Ansatz (right).

Problem 5. Let Y be an irreducible curve in A3. Give a systematic construction
of a surface X for which Sing(X) = Y holds. Is it furthermore possible to prescribe
the geometry type of a transversal section along the singular locus?

After this short excursion to the construction of singular surfaces we will resolve
Daisy. Here is the diagram of blowups and charts expressions required for the
resolution.

D′
z

z ��

x

��













 D′′
zz res.

Daisy

x

���
��

��
��

��
y ��

z

�����������
D′

y D′′
zx

x

���
��

��
��

��
z ��D′′′

zxz

y−1��

x−1

����
��

��
��

��
D

(4)
zxz(y−1)

x−1 ��

y+1

�����������
res.

D′
x D′′′

zxx D
(4)
zxz(x−1)

The leaves with label “Dabc” do not signify that Daisy is resolved in the corre-
sponding chart. We just do not pursue the resolution in these charts because the
singularities are not so interesting there. We will rather focus on the most impor-
tant charts in the resolution of Daisy. A quick overview of our partial resolution:
The singular locus of Daisy consists of two singular curves. It is not clear how to
control the blowup of A3 and of Daisy if we take these curves as center. There
would appear new singularities. Instead, we will follow the traditional approach;
we will only use regular centers for blowups.

The first blowup will be a point blowup with center the origin, since it is the
most singular point of our surface. Our preliminary goal will be to separate the
two components of the singular locus of Daisy and to make them then smooth. The
blowup has three charts; see Figure 35.

In the x-chart (left) the singular locus of the strict transform consists of two
smooth curves, which do not intersect. In the y- and z-chart we get similar pictures;
the strict transforms have singular loci that consist of the union of a line and two
smooth plane parabolas. In the y-chart the pairwise intersections of these three
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Figure 35. D∗
x, D

∗
y, D

∗
z : The three total transforms of Daisy un-

der the blowup of the origin (exceptional plane in red).

curves are empty, and in the z-chart the intersection of the two parabolas, which are
in Sing(D), is empty and the line intersects each parabola in one point. Therefore
the strict transform of Daisy is not smooth after the first blowup. The singularities
are most involved in the z-chart. In the visualization of D′

z in A3
R
one can see very

well how Daisy is altered after the blowup of the origin. We therefore proceed in
this chart.

In the z-chart we have three possible choices for the next center. We recall that
we just blow up points or smooth curves inside the singular locus, which consists of
the y-axis and the two parabolas. We choose the y-axis because then no symmetries
of the strict transform will be destroyed. We get two new charts:

In the zz-chart the singular locus is the union of two hyperbolas, whose inter-
section is empty; see Figure 36. In the zx-chart the progress is small. The singular
locus of the strict transform D′′

zx still consists of three components, namely the
y-axis again and the two parabolas, which have been transformed into two lines.
We proceed with blowing up in the zx-chart.

Figure 36. D∗
zx, D

∗
zz: The second transforms of Daisy in the zx-

chart (left) and zz-chart (right), with the new exceptional plane in
green.

There are three natural choices for the center of the third blowup: the two lines
or the y-axis. We choose the y-axis as center; see Figure 37. There appears a
significant improvement of the singularities of D′′′. The singular locus consists now
of two disjoint lines. The strict transform D′′′

zxz is a Cartesian product of a plane
curve with two cusps and the z-axis.

We will proceed in the zxz-chart, where we choose as center one of the two
singular lines lying in this chart, e.g. x = y = 1. In the resulting zxz(x − 1)-chart
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Figure 37. D∗
zxx, D

∗
zxz: The third transforms of Daisy in the zxx-

chart (left) and zxz-chart (right), the new exceptional plane in
blue.

the strict transform looks as if the cylinder had been torn apart. The singular locus

of D
(4)
zxz(x−1) is just one line, parallel to the z-axis. The exceptional components

are the three planes x = 0, x = 1 and z = 0. Clearly, they intersect transversally.
The strict transform in the other chart of this fourth blowup behaves similarly; see
Figure 38.

Figure 38. D∗
zxz(x−1), D

∗
zxz(y−1): The fourth total transforms of

Daisy in the two charts of the fourth blowup with the new excep-
tional divisor in yellow.

As the two charts have similar singular loci, we perform blowup number 5 in
that chart in which the equations are the easiest: the zxz(x − 1)-chart. Then the
“canonical” center is the singular line x− 1 = y+1 = 0. The blowup produces two
new charts; see Figure 39.

In the zxz(y−1)(x−1)-chart the strict transform is smooth. The bad news is that
the intersection with the exceptional components is not smooth. We would have to
perform more blowups to achieve mikado or normal crossings. In the zxz(y−1)(y+
1)-chart the surface is a Cartesian product of the ellipse 2y2−2xy+x2 = 1 with the
z-axis and therefore smooth. But the exceptional components y = 1 and y = −1
are tangent since the intersection consists of the two “double” lines defined by the
ideals (y − 1, (x− 1)2) and (y − 1, (x+ 1)2). To achieve normal crossings one first
has to make the intersections with the exceptional components transversal; resp.,
one has to separate the components. This is a combinatorial problem that we do
not pursue further here.
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Figure 39. D∗
zxz(y−1)(x−1), D

∗
zxz(y−1)(y+1): The total transforms

of Daisy in the two charts of the fifth blowup with the exceptional
plane in orange.

Appendix: Basic concepts

Throughout this text, K denotes a fixed perfect field and An
K = An denotes the

affine n-space over K. The Zariski topology on An is defined by taking algebraic
subsets of An as closed sets, i.e., sets of the form V (S) = {p ∈ A

n : f(p) = 0 for all
f ∈ S}, where S is any set of polynomials in K[x1, . . . , xn]. Let X = V (f1, . . . , fk),
where fi ∈ K[x1, . . . , xn], be an algebraic variety in An. We assume that the ideal
of K[x1, . . . , xn] generated by the fi is a radical ideal. A point p ∈ X is then
called smooth or regular if the rank of the matrix ∂fi(xj) at p equals n− r, where
r denotes the (Krull-)dimension of X at p (which is the topological dimension of
X with respect to the Zariski topology). The remaining points of X are called
singular points. They form a closed subset of X, the singular locus of X, denoted
by Sing(X).

When speaking of the tangent space Tp(X) in our algebraic context we mean
the Zariski tangent space. In An it is defined by the system of linear equations

n∑
i=1

∂fj
∂xi

(p)(xi − pi) = 0, for j = 1, . . . , k.

A local ring R of (Krull)-dimension n with maximal ideal m is called regular
if m can be generated by n elements. Such a system of generators is minimal
and then called a regular system of parameters for R. By a system of coordinates
x = (x1, . . . , xn) around p ∈ A

n we mean that the xi form a regular system of
parameters of the regular local ring OAn,p = {f/g : f, g ∈ K[x1, . . . , xn] and g(p) �=
0}.

Let X1, . . . , Xk in An be a collection of closed algebraic varieties. We say that
X1, . . . , Xk have normal crossings at a point p ∈ A

n if there exists a system of
coordinates locally around p, such that each Xi is either defined as the zeroset
of some of the coordinates or it is empty. We say that X1, . . . , Xk have normal
crossings in An if they have normal crossings at any point of An.

Let E be the exceptional divisor of a blowup of a variety X ⊆ A
n, and let Y

be a variety. We say that Y is transversal to the exceptional locus E if Y and the
components of E have normal crossings.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

GEOMETRY AND RESOLUTION OF SINGULAR ALGEBRAIC SURFACES 413

Stratification. Let X be a variety over R or C of dimension d. A filtration of X
is a sequence of subvarieties

X = Zd ⊇ Zd−1 ⊇ · · · ⊇ Z1 ⊇ Z0,

such that each difference Zi − Zi−1 is an i-dimensional smooth open subvariety of
Zi, or is empty. Each connected component Xα of Zi − Zi−1 is called a stratum.
Hence X is a disjoint union of smooth strata; the collection of strata {Xα}α∈A is
called a stratification of X. It satisfies the frontier condition if for all α, β such
that Xα ∩Xβ �= ∅, one has Xα ⊆ Xβ . Since the strata are disjoint this means that

Xα = Xβ or that Xα ⊆ Xβ\Xβ. In the latter case we call (Xα, Xβ) adjacent.
Now let X be embedded in a smooth ambient variety M . Working locally we

assume that M is the affine space An over R or C. An adjacent pair (Xα, Xβ)
satisfies Whitney’s condition (a) at y ∈ Xβ, if for all sequences {xi} ∈ Xα conver-
gent to y ∈ Xβ such that the sequence of tangent spaces {Txi

(Xα)} converges (in
the Grassmannian of dimXα-subspaces of An, or, more accurately, of the tangent
bundle TAn of An) to a space T , we have Ty(Xβ) ⊆ T . The pair (Xα, Xβ) is said
to satisfy Whitney’s condition (b) along Xβ at y ∈ Xβ if given a sequence of points
{xi} in Xα converging to y and a sequence of points {yi} in Xβ also converging to
y, and such that again {Txi

(Xα)} converges to a space T , and also the secants xiyi
in An converge to a line l, we have l ⊆ T . It can be shown easily that condition (b)
implies (a); see [42].

A stratification X =
⋃

α∈A Xα satisfying the frontier condition and Whitney’s
conditions (a) and (b) at the points of the smaller stratum of any adjacent pair
(Xα, Xβ) is called a Whitney stratification. For different types of stratifications we
refer to [38].

Blowup. We start with the most intuitive definition of a blowup, the blowup of a
point in a plane. We may assume that we blow up A2 in the origin. The idea is to
lift all lines through the origin to A

2 × P
1 by associating to each point (x, y) the

slope z of the line through 0 and the point (x, y). This means to consider the map

σ : A2\{0} → A
2 × P

1, (x, y) �→ (x, y, (x : y)).

By taking the third coordinate in projective space, the slopes y
x and x

y are treated

on equal footing. So we have to consider two affine charts of the blowup. Since
the image of the origin is still missing, we define the blowup of A2 with center the

origin, denoted Ã2, to be the Zariski closure of σ(A2\{0}) in A2 × P1. It comes

along with the projection π : Ã2 → A2.
For a curve C ⊆ A2 the blowup C ′ is the Zariski closure σ(C\{0}) ⊆ A2 × P1.

Through this construction a curve C is lifted to a higher-dimensional space where
it has more room to spread out such that it becomes smooth.9

A more general definition: A blowup of a smooth variety W is a variety W ′

together with a projection π : W ′ → W , the associated blow-up map. To each

9For the construction of the blowup of C we used secants. We could also associate to each point
(a1, a2) on C the tangent line. If we use this transformation, known as the Nash modification of
C, it is a priori only defined for points on C and not on the whole plane A2. However, one can
show that the Nash modification corresponds to blowing up the Jacobian ideal of the curve, i.e.,
the ideal generated by the partial derivatives of the defining equation, and is therefore defined on
the whole plane; see, for example, [32].

Nash modifications are an alternative to blowing up, but they are not easy to handle in higher
dimensions; see [32, 36] for a general treatment and [43] for a generalization of Nash modifications.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

414 E. FABER AND H. HAUSER

blowup a center Z, a closed subvariety of W , is attached, which determines the
blowup completely. The center Z is the locus of points above which π is not an
isomorphism.

In order to obtain the most explicit description of the map π : W ′ → W we work
locally. We consider the neighborhood of a point a in Z, where we may assume
that W = An and that a = 0 is the origin. Then Z = V (I) is the zeroset of an ideal

I = (g1, . . . , gk) ⊆ K[x1, . . . , xn]. The blowup Ãn of An with center Z is defined as
the Zariski closure of the graph of the map

σ : An\Z → P
k−1, p �→ (g1(p) : . . . : gk(p)),

which lives in Ãn ⊆ An×Pk−1. It is easy to show that different choices of generators

of I lead to isomorphic results. We call the projection π : Ãn → An on the first
factor the blow-up map of An with center Z (or with center I), and the preimage
E = π−1(Z) = Z × Pk−1 the exceptional locus. The morphism π contracts the
second factor Pk−1 to the center along the exceptional locus E.

The blowup Ãn can be described by the projective equations

yigj = giyj , (y1 : . . . : yk) ∈ P
k−1 , i, j ≤ k.

One can cover Ãn by k affine charts, each corresponding to a generator of I. The
coordinate ring of the i-th chart is given by

K[x1, . . . , xn,
g1
gi
, . . . ,

gk
gi

].

The inverse of an affine chart expression of a blowup is called a blowdown or
contraction.

Resolution. There are various notions of resolution in use. We start with the sim-
plest form, the nonembedded resolution of singularities. A nonembedded resolution

of singularities of an algebraic variety X is a proper birational map ϕ : X̃ → X

with X̃ smooth, such that ϕ is an isomorphism over X\ Sing(X).
Let X be a singular variety embedded in a smooth ambient variety W . An

embedded resolution of singularities of X is a proper birational morphism ϕ : W ′ →
W where W ′ is also smooth and satisfies the following condition:

(i) The strict transform X ′ of X is smooth and transversal to the exceptional
locus in W ′. This means that the total transform of X in W ′ has only normal
crossings.

One can impose additional requirements on the embedded resolution; see, for
example, [15]. Two of the requirements used in the text are the so-called explicitness
and equivariance:

(ii) ϕ is a composition of blowups of W in smooth closed centers Z transversal
to the exceptional loci.

(iii) If a group acting on W is also acting on X ⊆ W , then the action can be
lifted to one on X ′ ⊆ W ′.

Consider a resolution π : X̃ → X of a surface X with exceptional divisor E =
π−1(Sing(X)). Then E = E1 ∪ . . . ∪ Es, where the Ei are irreducible components.
We call π a good resolution if E is a normal crossings divisor, i.e., E = E1∪ . . .∪Es,
where each Ei is smooth, the Ei intersect each other transversally and no three
components meet: Ei ∩ Ej ∩ Ek = ∅ for different i, j, k. A good resolution is not
unique. One can always achieve a good resolution by additional blowups.
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A resolution π : X̃ → X is called minimal if for any other resolution π′ : X̃1 → X

there exists a unique morphism ρ : X̃1 → M such that π′ = π ◦ ρ. A minimal
resolution is not necessarily good.
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