
EXCELLENT SURFACES AND THEIR TAUT RESOLUTION

Herwig Hauser

1. Introduction.

Purpose of the present paper is to reveal part of the beauty and delicacy of resolution of
singularities in the case of excellent two-dimensional schemes embedded in three-space
and defined over an algebraically closed field of arbitrary characteristic. The proof of
strong embedded resolution we describe here combines arguments and techniques of O.
Zariski, H. Hironaka, S. Abhyankar and the author.

Theorem 1. Let W be an excellent regular three-dimensional ambient scheme over an
algebraically closed fieldK of arbitrary characteristic. Consider a reduced hypersurface
X in W . There exists a sequence of blowups

Wn → . . .→W 0 = W

of closed centers Zi inside the singular locus of the (i − 1)-st strict transform Xi−1 of
X such that the last strict transform Xn is smooth and has normal crossings with the
exceptional divisor En.
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The centers Zi will be chosen inside the equimultiple locus of Xi. This is the subscheme
of points where X has maximal multiplicity. We allow singular and non reduced centers
as long as the intermediate ambient spacesW i remain smooth. By scheme we understand
a scheme of finite type over K, locally noetherian and quasi-compact. The surface X is a
closed reduced subscheme of W of codimension one.

The proof of the theorem splits into two parts: First, at each stage of the process the next
center to be blown up has to be chosen suitably. Then it has to be shown that when passing
to the strict transform X ′ of X the situation improves. This is done by exhibiting certain
local invariants of singularities which have dropped.

For different proofs we refer to the articles of Abhyankar and Lipman [Ab 2, Lp], as well
as to the contributions of Cossart and Lê in this volume [Co 3, Le].

Definition of center. The equimultiple locus S of a surface consists of a certain number
of irreducible curves and isolated points. This simplifies the definition of the centers
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substantially compared to higher dimensions: as long as there are singular curves in S,
blow up their singular points as to make them smooth. Using resolution of curves and
determining the equimultiple locus S′ of the blown up scheme X ′ it is seen that this
process yields in a finite number of steps a scheme whose equimultiple locus consists of
isolated points and smooth curves having at most normal crossings. Thus it suffices to
consider this situation. Here we blow up the whole equimultiple locus equipped with a
suitable non reduced structure at the intersection points of its components. This choice of
the center and the resulting blowup will be called taut. It would also be sufficient, though
less canonical w.r.t. extensions to higher dimensions, to blow up S with the reduced
structure, since the only singularities appearing on the ambient scheme W ′ are ordinary
double points which lie outside the strict transform X ′ of X and which can be resolved
easily by one point blowup.

It turns out that under the chosen blowup the highest multiplicity occurring on X either
drops or remains constant when passing to the strict transform X ′ of X . At any point
a′ of X ′ with the same multiplicity, it will be shown that the equimultiple locus S′ has
again at most normal crossings, thus allowing to repeat the process. Note that S′ need not
equal the strict transform of S since new components can appear. These components are
smooth.

Improvement of invariants: The second part of the proof consists in showing that
the preceding algorithm terminates, i.e. that after a finite number of steps the obtained
scheme is smooth. This is proven by induction. At each closed point a of X one defines
an invariant ia. It belongs to a well ordered subset Γ of QI4. Its first component is the
multiplicity, i.e. the order of the power series f defining locally X at a in W . The other
three components are orders of certain coefficient ideals associated to f which can be
expressed through the Newton Polyhedron of f . It will be shown that if X is singular, ia
drops when passing from a point a of S to a point a′ over it under the blowup as defined
above. An additional argument shows that this local improvement implies a drop of the
global multiplicity of X after finitely many blowups. By induction, a smooth surface is
achieved.

Structure of the paper. After recalling basic properties of blowups we define in section 3
the centers of blowup selected at each stage of the resolution process. In difference to the
classical treatment we allow singular centers of mild type, namely normal crossing curves
with embedded components at the intersection points. These components are chosen so
that the blown up ambient scheme remains regular. The choice of such centers is natural
because it preserves possibly existing local or global symmetries of the scheme which may
permute the two components of the normal crossing, and moreover reduces the number
of required induction invariants in comparison to the treatment of Bierstone-Milman and
Encinas-Villamayor [B-M, E-V 1, E-V 2]. Taking into account the history of the resolution
process by distinguishing old and young exceptional divisors becomes superfluous.

As a variation, we indicate what happens when changing the structure of the embedded
components at the intersection points of the center. For certain choices, the blown up
ambient scheme is again smooth, but the induction invariants do not necessarily improve.
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Section 4 follows Zariski’s exposition [Za] in showing how to reduce the equimultiple
locus to a normal crossings situation, and proving that this situation persists under taut
blowup (Theorem 2). This is a prerequisite to make the induction work.

In section 5 we introduce flags. By this we understand full flags of local regular schemes
centered at each point of the equimultiple locus. In three dimensions, a flag at a point
a consists of a smooth curve inside a smooth surface, both passing through a. Flags
are very useful to put some ordering on the coordinates and to reduce the number of
allowed coordinate choices. Local coordinates subordinate to the chosen flag are needed
to define the induction invariants from the Newton Polyhedron of the locally defining
equation by imposing in IN3 a hierarchy among the vertices of the polyhedron. This idea
appears implicitly already in resolution of plane curves when using the Weierstrass form
of the defining equation, and presents the latent basis of Hironaka’s argument in [Hi 1]
for surfaces. A key property of flags is their compatibility with blowup (in contrast to
e.g. a collection of coordinate hyperplanes appearing as components of the exceptional
divisor). A purely geometric argument allows to construct canonically from any flag at
a and transversal to the center an induced flag at any point a′ over a of the exceptional
divisor (Theorem 3). Therefore subordinate coordinates are preserved under blowup and
the induction invariants can be defined again in W ′ and compared with those in W . On
the way, we will have to show that transversality of the flag w.r.t. the equimultiple locus
is preserved under blowup (Theorem 4). For this, and for the control of the invariants
under blowup, it is shown that for any choice of a′ above a, one can perform a subordinate
local coordinate choice at a which makes the local blowup monomial in the resulting
coordinates. In this sense, flags are sufficiently restrictive to prohibit permutations of the
coordinates – these present one of the main difficulties of the topic –, and sufficiently
flexible to render blowups combinatorial without quitting the local setting when passing
from a to a′.

Section 6 is devoted to the construction of the induction invariants. We follow the
suggestion of Hironaka [Hi 1], being aware that this choice of invariants is very specific
to dimension three and has no evident extension to higher dimensions. The construction
is done by introducing first a vector of numbers which belongs to a certain ordered set and
which depends on the choice of the coordinates subordinate to the chosen flag. To make
them to genuine invariants, i.e., independent of the subordinate coordinate choice (though
dependent on the flag), it is natural and appropriate to define the invariant as the maximal
value of the vector over all subordinate coordinate choices. This has been done by many
authors in different contexts, e.g. [Ab 1, Hi 1, Mo], and reflects the observation that the
finest information on the singularity can be extracted in most specific coordinates. And
these turn out – according to the setting – to be maximizing coordinates. It has to be shown
that the maximum exists, at least within the set of formal coordinate choices. This is done
either directly or using the general argument of [Ha 2] based on the Artin Approximation
Theorem. Obviously the resulting invariant does not depend on the coordinates. In
characteristic zero, maximality is usually achieved by the existence of a hypersurface
of maximal contact, and it is known that this hypersurface accompanies the resolution
process along any sequence of points where the multiplicity remains constant. Moreover
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it allows to prove semicontinuity properties for the invariant. In arbitrary characteristic,
this reasoning breaks down, and one has to show that maximality of the vector persists
under blowup. Actually it suffices to realize the maximum on the blown up scheme, see
section 8 for more details. It seems that semi-continuity properties can be dispensed with
in the special case of surfaces.

The induction invariants proposed in [B-M, E-V 1, E-V 2] in characteristic zero are
inspired by Hironaka’s paper on idealistic exponents [Hi 3] and are more conceptional
then the ones described here. They cannot be used directly in positive characteristic, even
for surfaces, due to the failure of maximal contact. There is some perspective to adapt them
(simplifying them at the same time by discarding their memorative aspect on the history)
to the present setting and to make them work for surfaces of arbitrary characteristic. There
arises the need of complicated though probably straight forward combinatorial identities,
for which we have computer evidence but no explicit proof. Due to lack of time this
discussion could not be included in this article.

Section 7 establishes the induction step in the combinatorial situation. It is proven that
for taut monomial blowup (and fixed coordinates) the vector of invariants drops in the
lexicographic order (Theorem 5). This is done by explicit case by case calculations.
Experimentation shows that there is not much freedom in changing the invariant and still
having it drop.

The following section shows how to reduce an arbitrary local blowup to the combinatorial
situation (Theorem 6). For any point a′ of the exceptional divisor and sitting over a local
subordinate coordinates are chosen at a moving a′ to the origin of one chart and making
the blowup monomial. Moreover this can be done so that the vector realizes in the induced
coordinates at a′ the maximal value, i.e., equals the actual invariant.

Section 9 combines Theorems 5 and 6 for proving the existence of resolution for surfaces
(Theorem 1). Since the invariant is not obviously semi-continuous, the argument has to
make a small detour to show that after finitely many blowups the resulting surface has
smaller global multiplicity.

Many of the concepts presented in this article have analogues in higher dimensions,
viz flags, coefficient ideals, maximality of invariants, see [Ha 1] and [E-V 2]. They
lend themselves for approaching resolution in arbitrary dimension. Our exposition is
occasionally more explicit than necessary in order to stress this aspect. Others like the
invariants themselves or the reduction of the equimultiple locus to normal crossings have
fatal drawbacks already for threefolds. Observe that in the algorithms of [B-M, E-V 1,
E-V 2] the stratification used is much finer than the one given by the multiplicity and that
the smallest stratum defining the center is automatically regular.

Problem 1. Extend the present proof to fields which are not necessarily algebraically
closed or to schemes defined over Z. The assumption algebraically closed is only used
in the lemma of section 4 and in the proofs of Theorems 1, 5 and 6 where we neglect
residually algebraic irrational points in the exceptional divisor. You may consult [Bn],
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[Co 1], Theorem 1, p. 218, of [Hi 2], Theorem 8 of [Ha 1] and the introduction of [E-V
2].

Problem 2. Extend the present proof to the case of surfaces embedded in a regular scheme
W of arbitrary dimension (non-hypersurface case).

Problem 3. Given a reduced hypersurface X in a regular four dimensional ambient
schemeW , assume that its equimultiple locus S consists of isolated points, smooth curves
and possibly smooth surfaces, all of them meeting with normal crossings. Define a non
reduced structure Z on S and local invariants of X such that blowing up Z in W gives
a regular scheme W ′ and a strict transform X ′ all of whose invariants have dropped.
Observe that the normal crossing structure of the equimultiple locus may get lost under
blowup, see [Ha 2, ex. 10].

In a first reading, it might to be desirable to proceed as follows: Start with the definition
of the center of blowup given in section 3 omitting the propositions given there. Taking
into account Theorems 2 and 3 pass directly to the construction of the invariants in section
6, followed by the study of their behaviour in section 7 and 8. Conclude by section 9
proving Theorem 1.

The author has profited from discussions with many people, among them O. Villamayor,
V. Cossart, S. Encinas, A. Quirós and M. Spivakovsky. It should be understood that
many of the ideas and concepts presented here have their source in the existing literature,
especially in the papers [Za, Hi 1, Hi 2, Ab 1, B-M, CGO, E-V 1, E-V 2, Mo, Sp 2].
The work on this article has been supported in part by the scientific exchange program
“Acciones Integradas".

2. Preliminairies

We collect several basic properties of blowups and multiplicities. For proofs and more
details, see [Bn, Gi, Hi 1, Hi 2, Ha 1, Ha 2]. In this section X and W may have arbitrary
dimension, whereX is reduced and closed inW regular. Let I be the defining ideal sheaf
of X in W with stalks Ia and local rings OX,a = OW,a/Ia. For a a closed point of X ,
let ma denote the maximal ideal of OW,a with residue field OW,a/ma = K. Let

oa = max {k ∈ IN, Ia ⊆ mk
a}

denote the order of X at a. It is invariant under completion of the local rings, upper-
semicontinuous w.r.t. deformation and localization and takes only finitely many values
(since X is noetherian). For a proof of this in characteristic zero, see [Hi 1], p. 106.
In arbitrary characteristic, we refer to [Hi 2], Thm. 1, chap. III 3, p. 218, [Bn] and
[E-V 2]. In particular, the maximum oX = maxa∈Xoa exists and the equimultiple locus
S = {a ∈ X, oa = oX} is a closed reduced subscheme of X , strictly contained and
non-empty in X if X is singular (by excellence). It does not depend on the embedding
of X in W . For non-hypersurfaces, the stratification given by the order can be (but not
necessarily) refined by the Hilbert-Samuel stratification [Bn].
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For Z a closed subscheme of X , let π : W ′ → W denote the blowup of W in Z, and
denote by X∗, respectively Xst, the total and the strict transform of X in W ′ under π.
Then Xst equals the blowup X ′ of X with center Z. Objects associated to X ′ in analogy
with X will be marked by a prime. Thus a′ will denote a point in X ′, S′ the equimultiple
locus of X ′, etc. Let E = π−1Z be the (reduced) exceptional divisor in W ′ and let Ea
denote the fibre π−1(a) of a point a of X . When a and a′ are fixed, we let R = OW,a and
R′ = OW ′,a′ denote the local rings with completions R and R′ w.r.t. the maximal ideals
M = ma and M ′ = ma′ . Let P in R be the stalk at a of the ideal sheaf defining Z in
W . For a ∈ X and a′ ∈ Ea we call the induced map R→ R′ the local blowup of R with
center P [Ha 2]. For a ∈ Z, a′ ∈ Ea and Z ⊆ S one has oa′ ≤ oa, see e.g. the appendix
to [Hi 1]. This implies that S′ is contained in the total transform S∗ of S if oX′ = oX .

Assume that Z is smooth and let a ∈ Z. For any closed point a′ over a there exist a
regular system of parameters x1, . . . , xn of R, a subset J of {1, . . . , n} and an element
j ∈ J such that

(a) xi, i ∈ J , generate P .
(b) W ′ is covered locally along E by the affine charts Spec R[ 1

xi
] with i ∈ J .

(c) y1, . . . , yn defined by yi = xi/xj for i ∈ J \ j and yi = xi for i 6∈ J \ j form a regular
system of parameters of R′.
(d) E is defined in W ′ locally at a′ by yj = 0.

See [Hi 2, chap. III], [Ha 2] or [Bn] for more details and a description of the situation
whenK is not algebraically closed. We then say that a′ is the origin of the xj-chart of the
blowup w.r.t. the coordinates x1, . . . , xn and that R→ R′ is monomial w.r.t. x1, . . . , xn.
Note that a regular system of parameters of R is also one for its completion. We often
write x for short and speak of local coordinates of W at a. As the affine charts of W and
W ′ at a and a′ are isomorphic we shall write again x for the coordinates y at a′ defined
above.

Passing to completion is compatible with local blowup, i.e. the diagram below commutes.

R′ → R′

↑ ↑
R → R

LetZ1, Z2 be two disjoint centers inW and denote byW ′12 andW ′21 the schemes obtained
from W by blowing up first Z1 and then the strict (= total) transform of Z2, respectively
inversely. Let W ′ be the scheme obtained by blowing up Z1 ∪ Z2. Then W ′, W ′12 and
W ′21 are canonically isomorphic.

Exercise 1. Let a ∈ Z be a point and let X be a hypersurface in W defined locally at a
by f ∈ R. Let homaf be the homogeneous polynomial of lowest degree appearing in the
Taylor expansion of f at a. Then the points of Ea where the multiplicity has remained
constant are the intersection of Ea with the strict transform of the zero set of homaf .

Exercise 2. (Resolution of plane curves) Show that blowing up the singular points of a
plane curve resolves the curve in a finite number of steps. To prove this, show that the pair
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ia = (oa, sa) drops in the lexicographic order when passing from singular points a ∈ X
to points a′ ∈ Ea of the strict transform X ′ of the curve. Here, sa denotes the maximum
over all coordinate choices of the slope of the first segment (from the left) of the Newton
Polygon of f (see section 6 for how to prove that sa is well-defined). You may use section
7 and 8 to find a proof with slightly different induction invariants.

3. Definition of the centers of blowup

From now onX denotes a singular reduced surface in a regular three-dimensional ambient
scheme W . We shall determine a convenient center to be blown up such that the invariant
defined later decreases when passing to the strict transform of X . The equimultiple locus
S of X consists of finitely many points and of finitely many irreducible curves. We say
that S has at most normal crossings at a ∈ S, if a is either an isolated point of S, or a
smooth point of a curve of S, or a normal crossing point of two or three components of
S. The last condition means that S looks locally at a like two or three coordinate axes in
three-space.

Exercise 3. The set T of points where S does not have at most normal crossings is finite.
In a normal crossing point there cannot pass three components of S (cf. with the proof of
Proposition 1, section 4).

Define the center Z in X as follows.

(a) If T is not empty, let Z = T .

(b) If T is empty, let Z be the closed subscheme of X supported by S with embedded
components at intersection points of S given in suitable local coordinates by the ideal P =
(x, yz)(x, y)(x, z) = (x, y)2∩(x, z)2∩(x, y, z)3 with generatorsx3, x2y, x2z, xyz, y2z2.
Clearly Z is reduced if there are no intersection points.

If the center is chosen in this way we call π : W ′ → W the taut blowup of X in Z (τ ò
αùτ óν, the same). We do not require in (b) that ordPX = ordaX for all a ∈ Z. As a
variant we shall also discuss the case where the embedded components equal the cube of
the maximal ideal of the intersection points. Both centers yield smooth ambient blown up
schemes, but the first choice makes the chosen invariant drop, whereas the second does
not.

Exercise 4. Blowing up the reduced ideal (x, yz) inW gives a threefoldW ′ with precisely
one singular point which is an ordinary double point defined locally in four-space by the
equation xw − yz = 0.

In the algorithms of [B-M] and [E-V 1, E-V 2], when applied to surfaces, the centers
are almost always points, and only at the very end of the process when the situation has
become almost combinatorial, also smooth curves are blown up. In occurrence of normal
crossing curves the ambiguity which component to choose is solved by blowing up the
intersection point, thus creating two old components, the strict transforms of the original
components, and a new component, the new exceptional divisor. There then appear inW ′
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two normal crossings, but the symmetry can now be untied by the “age" of the components,
and the two old curves are blown up. This, of course, requires additional invariants as
bookholders of the history. Compare this with Propositions 2’ and 3’ below, where the
chosen non-reduced center encapsulates in one blowup this composition of blowups.

Zariski shows that if one chooses for the center instead of normal crossings one of the
smooth components and then the strict transform of the other component, the resulting
strict transform ofX does not depend on the choice provided that the multiplicity remains
constant [Za] . This fails in higher dimension [Ha 2, Sp 2].

There is another possibility to get rid of normal crossings by localizing X along one
component and applying resolution of curves to make the localization smooth. This
allows to reduce the equimultple locus to a finite set of isolated points, but is not canonical
since there is no natural indication which component to choose (imagine that there is a
local but no global symmetry of X permuting the two components).

Proposition 1. LetS = Sy∪Sz be a normal crossing at awith two smooth componentsSy
andSz . Choose local coordinatesx, y, z at a such thatSy andSz are defined byx = z = 0
and x = y = 0 respectively. Let Z be the center with ideal P = (x, yz)(x, y)(x, z). The
blowup W ′ of W in Z is smooth with five affine charts. For a′ a closed point over a the
local blowup R→ R′ is given as follows.

chart x3: R′ = K[x, yx ,
z
x ], (x, y, z)→ (x, xy, xz) E = (x) Ea = (x)

chart x2y: R′ = K[xy , y,
z
x ], (x, y, z)→ (xy, y, xyz) E = (xy) Ea = (y)

chart x2z: R′ = K[xz ,
y
x , z], (x, y, z)→ (xz, xyz, z) E = (xz) Ea = (z)

chart xyz: R′ = K[yzx ,
x
z ,

x
y ], (x, y, z)→ (xyz, xy, xz) E = (xyz) Ea = (xy, xz)

chart y2z2:R′ = K[ xyz , y, z], (x, y, z)→ (xyz, y, z) E = (yz) Ea = (y, z)

Proof. The assertions are checked by computation, using the fact that W ′ is covered
locally along E by the charts Spec R[ 1

ai
] with ai generators of P . 	

Exercise 5. Show that under taut blowup the order of the strict transform X ′ of X at a
point a′ over an intersection point a of S does not increase.

Proposition 2. The taut blowup of W over an intersection point a of S = Sy ∪ Sz is the
composition of the blowup of W in the reduced ideal (x, yz) of S followed by the blowup
of the unique singular point s obtained by this blowup. The exceptional divisor E has
three components Ey , Ez and Es, where Ey and Ez are the closures of π−1(Sy \ a) and
π−1(Sz \ a) in W ′ and where Es is the fiber over s under the second blowup. The fiber
Ea over a = Sy ∩Sz consists of a one-dimensional component Et = Ey ∩Ez ∼= IP1 and
a two-dimensional component Es ∼= IP2 intersecting in the origin c of the xyz-chart.

Proof. The blowup π1 : W 1 →W of S with reduced ideal (x, yz) in W has two charts:
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chart yz: R1 = K[x, y, z, xyz ] = K[ xyz , y, z] smooth, (x, y, z)→ (xyz, y, z).

chart x: R1 = K[x, y, z, yzx ] ∼= K[x, y, z, w]/xw − yz singular.

To resolve the singularity ofW 1, we embedW 1 into a four dimensional ambient space V
with local coordinates x, y, z, w and blow up the singular point s, getting π2 : W 2 →W 1.
Let I1 = (xw − yz) be the defining ideal of W 1 in V and I2 its strict transform in
R2. In addition to the smooth yz-chart we get four charts with smooth strict transforms
I2 = (w − yz), (xw − z), (xw − y) and (x− yz) and substitutions as follows.

chart x: R2 = K[x, yx ,
z
x ,

w
x ]/wx −

y
x
z
x = K[x, yx ,

z
x ] (x, y, z)→ (x, xy, xz)

chart y: R2 = K[xy , y,
z
y ,

w
y ]/xy

w
y −

z
y = K[xy , y,

z
x ] (x, y, z)→ (xy, y, xyz)

chart z: R2 = K[xz ,
y
z , z,

w
z ]/xz

w
z −

y
z = K[xz ,

y
x , z] (x, y, z)→ (xz, xyz, z)

chart w: R2 = K[ xw ,
y
w ,

z
w , w]/ xw −

y
w
z
w = K[xz ,

x
y ,

yz
x ] (x, y, z)→ (xyz, xy, xz).

Figure B: Normal crossing blowup

Et

EEy z
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Exercise 6. Show that the resulting 5 charts glue in a way which gives the blowup W ′ of
W in the ideal P = (x, yz)(x, y)(x, z).

Blowing up (x, yz) in W equals outside the origin the blowing up of a smooth curve.
Hence the inverse images π−1

1 (Sy \ a) and π−1
1 (Sz \ a) are isomorphic to (Sy \ a)× IP1

and (Sz \ a)× IP1. Let E1
y ∪E1

z be the closure in W 1 of π−1
1 (S \ a). The singular point

s of W 1 lies in the intersection E1
y ∩ E1

z and is blown up via π2. The fiber Es = π−1
2 (s)

is isomorphic to IP2. It follows that the exceptional divisor E of the blowup π has three
components Ey , Ez and Es, where the first two are the strict transforms under π2 of E1

y

and E1
z . The fiber Ea = (π2π1)−1(a) has two components, namely Ey ∩ Ez and Es.

Four of the charts cover Es, whereas the yz-chart covers (Ey ∩Ez) \ c. It is checked that
Ey ∩ Ez and Es intersect in the origin of the xyz-chart. We shall see in section 4 that
if S is the equimultiple locus of X the strict transform X ′ meets Ea only in the yz-chart
obtained already by the blowup π1. 	

Variation. There is an alternate non-reduced structure on normal crossings center which
yields under blowup a regular ambient scheme. It is less appropriate for resolution
purposes than the taut structure since the invariants we use may increase and additional
invariants are necessary to show that the situation improves, cf. with [B-M] and [E-V 1].
We include a description thereof because this blowup is the composition of the blowup
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of the intersection point of the normal crossing followed by the blowup of the strict
transforms of the two components. This is similar to the procedure used in loc. cit.

Proposition 1’. Let Z = Zy ∪ Zz be a normal crossing in W with embedded component
the cube of the maximal ideals at the intersection point a of the two smooth curves. The
blowup W ′ of W in Z is smooth with charts and substitutions as follows:

chart x3: R′ = K[x, yx ,
z
x ], (x, y, z)→ (x, xy, xz), E = (x), Ea = (x).

chart xy2: R′ = K[xy , y,
z
x ], (x, y, z)→ (xy, y, xyz), E = (xy), Ea = (y).

chart y2z: R′ = K[xz , y,
z
y ], (x, y, z)→ (xyz, y, yz), E = (yz), Ea = (y).

The charts xz2 and yz2 are symmetric to the charts xy2 and y2z respectively. The
remaining charts are open subsets of the preceding ones.

chart x2y: R′ = K[xy , (
y
x )−1, y, zx ] contained in chart xy2.

chart x2z: symmetric to the chart x2y.

chart xyz: R′ = K[xz , (
x
z )−1, yx , (

y
y )−1, z] contained in chart xz2.

Proof. This is verified by computation. 	

Proposition 2’. The blowup π : W ′ → W defined in the preceding proposition is the
composition of the point blowup of the intersection point a followed by the blowup of the
strict transforms of the two curves Sy and Sz . The exceptional divisor E of π has three
components Ea, Ey and Ez , where Ea ∼= IP2 and where Ey ∼= Sy × IP1, Ez ∼= Sz × IP1

are the closures in W ′ of π−1(Sy \ a) and π−1(Sz \ a) respectively.

Proof. The blow up of P = (x, y, z) has three charts. The strict transforms of the two
curves Sy and Sz lie in two of them.

chart x: R1 = K[x, yx ,
z
x ] with substitution (x, y, z)→ (x, xy, xz). The strict transforms

of Sy and Sz do not meet this chart.
chart y: R1 = K[xy , y,

z
y ] with substitution (x, y, z) → (xy, y, yz). Only the strict

transforms of Sy lies in this chart.
chart z: symmetric to preceding chart.

We next blow up in the y-chart the strict transform S1
y of Sy and get two charts. Denote

by x′ = x
y , y′ = y, and z′ = z

y the induced coordinates in this chart so that S1
y is defined

by x′ = z′ = 0.

chart x′: R2 = K[x′, y′, z′, z
′

x′ ] = K[x′, y′, z
′

x′ ] = K[xy , y,
z
x ] with substitution (x′, y′, z′)

→ (x′, y′, x′z′). The map R→ R2 is given by (x, y, z)→ (xy, y, xyz).

chart z′: R2 = K[x′, y′, z′, x
′

z′ ] = K[x
′

z′ , y
′, z′] = K[xz , y,

z
y ] with substitution (x′, y′, z′)

→ (x′z′, y′, z′). The map R→ R2 is given by (x, y, z)→ (xyz, y, yz).
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As a result we have five charts, namely x, (y, x′), (z, x′), (y, z′), (z, y′), with substitutions
(x, y, z) → (x, xy, xz), (xy, y, xyz), (xz, xyz, z), (xyz, y, yz), (xyz, yz, z). These
coincide with the ones obtained by blowing up P = (x, yz) ∩ (x, y, z)3.

Figure C: Variation normal crossing blowup

Ea

E

EE
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yz

z

Exercise 7. Show that the charts glue as the charts from Proposition 1’ and that the
exceptional divisor decomposes as asserted. 	

4. Transformation of equimultiple locus under blowup

Let π : W →W ′ be the taut blowup with centerZ. In this section, S need not have normal
crossings. Assume that the maximal multiplicity has remained constant, oX′ = oX . We
describe possible configurations of the equimultiple locus S′ of X ′ in terms of the strict
and total transforms Sst and S∗ = π−1S of S and the exceptional divisor E = π−1Z.

We shall need an invariant τ which is used by various authors as induction invariant. Here
it only plays an auxiliary role. Let a ∈ X and f ∈ R = OW,a be a defining equation
of X locally at a. Let f =

∑
ijk cijkx

iyjzk be the expansion of f in the completion
R ∼= K[[x, y, z]] of R. The order o = oa of f at a will be the minimal value i + j + k
with non zero coefficient cijk. Let homaf =

∑
cijkx

iyjzk be the homogeneous form of
lowest degree of f , where the sum ranges over those indices for which i + j + k = oa.
It defines the tangent cone TC of X at a. Let τa be the minimal number of variables
necessary to write homaf over all coordinate choices.

Exercise 8. Show that it suffices to consider only linear coordinate changes to realize τa.
More explicitly, show the following: Let ε be the graded reverse monomial order on IN3

and in εxf the initial monomial of f w.r.t. ε and x = (x, y, z). Set maxεf = maxxin εxf .
Then τa equals the index of the last variable appearing in maxεf , counting x, y, z in this
order [Ha 1].

Lemma. Let a be a point of S and assume that S has at most normal crossings at a. If
τa = 3 then a is an isolated point of S. If a is a smooth point of S, then τa ≤ 2, and
τa = 2 implies that there are coordinates in which S is given by the ideal (x, y). If a is an
intersection point of two smooth components of S with normal crossing then τa = 1 and
there exist local coordinates such that homaf = xo and S is defined by the ideal (x, yz).

Proof. Assume that S contains a smooth curve C through a. Choose coordinates such
that C is defined by the ideal (x, y). For b ∈ C a closed point, local coordinates at b are
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obtained from the coordinates x, y, z at a by translations (x, y, z + s) with s ∈ K. The
Taylor expansion

∑
ijk cijkx

iyj(z + s)k of f at b has order ≥ o for all b in C if and only
if the sum ∑

ijkl

cijk

(
k

l

)
xiyjzk−lsl

over all i, j, k, l with i + j + k − l < o and 0 ≤ l ≤ k is identically zero for all s ∈ K.
As K is algebraically closed and hence infinite, this holds if and only if for all l∑

ijk

cijk

(
k

l

)
xiyjzk−l = 0

where the sum ranges over all i, j, k with i + j + k − l < o and k ≥ l. This implies
cijk = 0 for all i, j, k with i + j + k = o and k > 0, hence τa ≤ 2. If there is a second
component of S passing through a the coordinates can be chosen so that it is defined by
the ideal (x, z). The same argument yields cijk = 0 for all i, j, k with i+ j + k = o and
j > 0, hence τa = 1. 	

Example. Take f = x2 + y2 + yz(1 + z) + z2(1 + z)2 at a = 0 over the field with
two elements. Here τa = 3 but the equimultiple locus S is the curve defined by the ideal
(x, y).

Theorem 2. Let W ′ → W be the taut blowup of X in Z. Assume that the multiplicity
has remained constant.
(a) If S has singular irreducible components or smooth components not intersecting
transversally, S′ is the strict transform of S augmented possibly by a curve isomorphic to
IP1. If this curve meets another smooth component of S′ the intersection is transversal.
(b) If the equimultiple locus has at most normal crossings singularities S′ has again at
most normal crossings singularities.

It follows from (a) and resolution of curves in three-space that by a finite sequence of
point blowups the equimultiple locus can be transformed into a normal crossings curve
as above. Then its components will be blown up until the highest occurring multiplicity
drops (Theorem of Beppo Levi, see section 6 and 7 and [Za, p. 522]).

The theorem will be proven through three propositions which describe the possible trans-
formations of the equimultiple locus in each case. We suppose throughout to be in the
situation of the theorem.

Proposition 1. Assume that the center Z = a is a point of S, S being an isolated point or
an arbitrary curve. Let a′ be a point over a where the multiplicity has remained constant.
Then, locally at a′, either S′ = Sst or S′ = Sst ∪ (E ∩X ′) with E ∩X ′ ∼= IP1. In the
second case, and if S has only smooth components, Sst and E ∩X ′ meet transversally.

The assertion does not hold in higher dimensions, see [Ha 2, ex. 10].
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Proof. [Za, Thm. 1 and Lemma 3.2, p. 479]. As we blow up a, π : W → W ′ is an
isomorphism outside a and hence X \ a ∼= X ′ \ E and S \ a ∼= S∗ \ E. This implies
that S∗ \ E ⊆ S′. As S′ is closed, the strict transform Sst of S is formed by certain
components of S′. Therefore S′ is contained in the union of Sst andE∩X ′. Observe that
E ∼= IP2 and that E ∩X ′ could a priori be a reducible and singular curve. We distinguish
two cases. If τa ≥ 2 only finitely many points of X ′ ∩ E can have order o, namely, by
exercise 1, the intersections with E of the strict transforms of the zero set of homaf (if
τa = 3, the multiplicity drops in all points of E.) This implies that S′ = Sst.

If τa = 1 we have for suitable local coordinates x, y, z in W at a that f ≡ xo modulo
Mo+1. At the origin of the x-chart the multiplicity drops [and also at all points, by an
argument as in the proof of the next proposition]. Similarly, in the y-chart it drops at all
points of E except those where x = 0, since X ′ ∩ E is given by (y−of(xy, y, zy), y) =
(xo, y). The situation in the z-chart is symmmetric to the preceding one. Hence S′ =
Sst ∪ (X ′ ∩ E) ∼= Sst ∪ IP1. Assume that S has only smooth components. Choose one.
It is given in suitable coordinates of R by x = z = 0. The strict transform Sst only
appears in the y-chart and has the same equations x = z = 0. Therefore it is transversal
to X ′ ∩ E. 	

Figure D: Equimultiple locus and point blowup
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E
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S
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Proposition 2. Asumme that Z = S is a smooth curve. Let a′ be a point over a where
the multiplicity has remained constant. Then S′ ⊆ E ∩X ′. If S′ has a one dimensional
component, S′ = E ∩X ′ ∼= S under π.

For reduced but possibly singular centers see [Za], Thm. 2, p. 484, and its Corollary, p.
485. See also [Hi 1, p. 109].

Proof. The components of S different Z (and hence disjoint to Z) will transform to
components of S′ since π is an isomorphism outside Z and since S′ is closed. Let a ∈ Z.
Observe that τa ≤ 2 by the lemma. If τa = 2 the multiplicity drops at all points of E. So
we may assume τa = 1, say f = xo + g(x, y, z) with g ∈Mo+1. In the x-chart the total
transform f∗ of f is of form f∗ = xo ·(1+

∑
cijkx

i+j+k−oyjzk) = xo ·f ′ with i+j+k >
o. It follows that f ′ does not vanish at the origin. The translationx, y+s, z+t preserves the
unit since the x-exponents in the sum remain≥ 1. Hence f ′ does not vanish in the x-chart.
In the y-chartX ′∩E is given by the ideal (y−of(xy, y, z), y) = (xo+y−og(xy, y, z), y)
where f = xo + g(x, y, z). This intersection is only o-fold if the variety defined by
xo + y−og(xy, y, z) in y = 0 is o-fold, i.e. an o-th power (x+ h(x, z))o for some h. The
curve inW ′ given by the ideal (x+h(x, z), y) is isomorphic to Z given by (x, y) inW .	
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Figure E: Equimultiple locus and curve blowup
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Proposition 3. Let S have normal crossing at a. Then X ′ ∩ E lies inside the y2z2-
chart. If the multiplicity has remained constant every one-dimensional component of S′

is isomorphic to a component of S under π.

Proof. The lemma implies τa = 1. Choose local coordinates x, y, z such thatZ is defined
by the ideal P = (x, yz)(x, y)(x, z) locally at a. We write

f = xo +
∑

cijkx
iyjzk

where the sum runs over all triples i, j, k satisfying i+ j ≥ o, i+k ≥ o, i+ j+k > o and
0 ≤ i < o. We consider the total transform f∗ of f at a′ in the various charts covering E.

chart x3: We have f ′ = 1 +
∑
cijkx

i+j+k−oyjzk at the origin of this chart, and the sum
remains in the ideal generated by x under the translations (x, y + s, z + t) of this chart.
Hence f ′ is invertible everywhere and X ′ does not meet this chart.

chart x2y: We have f ′ = 1 +
∑
cijkx

i+k−oyi+j+k−ozk at the origin of this chart, and
the sum remains in the ideal generated by y under the translations (x, y+ s, z + t) of this
chart. Hence f ′ is invertible everywhere and X ′ does not meet this chart.

chart x2z: symmetric to preceding chart.

chart xyz: We have f ′ = 1 +
∑
cijkx

i+j+k−oyj+i−ozk+i−o at the origin of this chart,
and the sum remains in the ideal generated by x under the translations (x, y+ s, z + t) of
this chart. The other translation (x + s, y, z) requires the following argument. The sum
lies in the ideal generated by y and z except possibly if j + i = o and k + i = o, hence
j = k = o − i. This implies f ′ = 1 +

∑
cijkx

o−i and X ′ may intersect E in this chart
in a point of the x-axis off the origin. Such points lie in the y2z2-chart and will be treated
there.

chart y2z2: We have f ′ = xo +
∑
cijkx

iyj+i−ozk+i−o at the origin of this chart.
Translations are (x + s, y, z). It follows that X ′ intersects the x-axis in isolated points
given by xo +

∑o−1
i=0 ci,o−i,o−ix

i = 0. The component Ey of E is given by z = 0, which
gives f ′|Ey

= xo ·
∑
ij ci,j,o−ix

iyj+i−o. To have there an o-fold curve requires that
f ′|Ey

= (x+ a(y))o for some series a(y). Therefore this curve is isomorphic to Sy . This
shows that each component of S′ is isomorphic to a component of S, and two components
can only meet on the x-axis of this chart. 	

Figure F: Equimultiple locus and crossing bloup
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The first proposition proves (a) of the theorem. The other two show that if the multiplicity
remains constant, S′ will consist of smooth irreducible curves intersecting transversally
and isomorphic to certain components of S, isolated points and possibly a IP1. If C ′ is a
one dimensional component of S′ then eitherC ′ is the strict transform of some component
C of S, or C ′ ∼= S and S is smooth or C ′ = E ∩X ′ ∼= IP1. This concludes the proof of
the theorem. 	

Variation. We describe the transformation of the equimultiple locus when we change the
embedded components of the normal crossing center Z at the intersection points.

Proposition 3’. LetZ be a normal crossing center with embedded components the cubes of
the maximal ideal at the intersection points. Assume that oX′ = oX . If a one dimensional
component of S′ lies inside E ∩X ′ then E ∩X ′ is irreducible, equal to this component
and isomorphic to a component of S under π. Moreover, S′ meets E only in the y2z- or
yz2-chart.

Figure G: Variation equimultiple locus and crossing blowup
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S' S'
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Proof. Let us place at an intersection point a ∈ Z. Choosing local coordinates x, y, z we
may assume a = 0 and Z defined by the ideal P = (x, yz) ∩ (x, y, z)3 locally at a. By
the lemma, τa = 1, and we can write

f = xo +
∑

cijkx
iyjzk

where the sum runs over all triples i, j, k satisfying i+ j ≥ o, i+ k ≥ o and 0 ≤ i < o.
We consider the total transform f∗ in the various charts.

chart x3: The substitution is (x, xy, xz), hence f∗ = xo +
∑
cijkx

i+j+kyjzk = xo ·
(1 +

∑
cijkx

i+j+k−oyjzk) = xo · f ′. Possible translations are (x, y + s, z + t). We
may restrict by symmetry to translations y + s. This changes only those monomials of
the expansion of f ′ where j ≥ 1. As i + k ≥ o for all i, j, k these monomials have x-
exponent i+ j + k− o ≥ 1. As the x-exponent remains unchanged under the translation,
the resulting f ′ is again a unit. Hence X ′ does not meet this chart.
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chart xy2: The substitution is (xy, y, xyz), hence f∗ = xoyo +
∑
xi+kyi+j+kzk =

xoyo·(1+
∑
cijkx

i+k−oyi+j+k−ozk) = xoyo·f ′. Possible translations are (x, y+s, z+t)
or (x+s, y, z+t). Translations y+s affect only those monomials where i+j+k−o ≥ 1.
If i + k − o ≥ 1 or k ≥ 1 the resulting series f ′ remains a unit after the translation. So
assume i + k − o = 0 and k = 0 so that these monomials are of form yj with j ≥ 1.
This implies that in the expansion of f there appeared monomials xoyj . This case can
be excluded by supposing f in Weierstrass form. Translations z + t affect only those
monomials where k ≥ 1 and hence y-exponent i + j + k − o ≥ 1, i.e. f ′ has no zeroes
in this chart of E. Translations x + s affect only those monomials where i + k − o ≥ 1
and hence y-exponent i+ j + k − o ≥ 1, i.e. f ′ has no zeroes in this chart of E.

chart y2z: The substitution is (xyz, y, yz), hence f∗ = xoyozo+
∑
cijkx

iyi+j+kzi+k =
yozo ·(xo+

∑
cijkx

iyi+j+k−ozi+k−o) = yozo ·f ′. HereE is given by yz = 0 andX ′∩E
by the ideal (f ′, yz) = (xo+

∑
cijkx

iyi+j+k−ozi+k−o, yz) = (xo+
∑
ij x

iyj , yz). This
is a curve in E. If it belongs to the equimultiple locus S′ of X ′, the series xo +

∑
ij x

iyj

must have order o along this curve, which implies that xo +
∑
ij x

iyj = (x + h(x, y))o

is an o-th power. Then S′ = Sst ∪ (E ∩X ′) and E ∩X ′ is a subscheme of X ′ locally
isomorphic to S under π.

The charts xz2 and yz2 are symmetric to the preceding ones, the charts x2z, x2y and xyz
are contained in the preceding charts as open subsets.

Summarizing, S′ can only lie in the y2z-chart with equation x = y = 0 or in the yz2-chart
with equation x = z = 0 or inside Ey or Ez . As we restrict to a ∈ S the intersection
point and hence a′ ∈ Ea, only the first two cases will be relevant. 	

The assertion of the last proposition can also be proven by interpreting the blowup as a
composition of blowups of points and smooth curves and applying Propositions 1 and 2.

5. Transformation of flags under blowup

A flag in a regular ambient schemeW at a point a is a full chain of local regular subvarieties
Fi of dimension i of W at a. Flags will be needed to define the induction invariant. Let
X be a surface in three-space W and let a be a closed point of the equimultiple locus S
of X . We assume that S has at most normal crossings at a. The flag F at a consists of
a smooth curve F1 contained in a smooth surface F2 in W , both passing through a. It is
called transversal to S if one of the following cases occurs.

If a is an isolated point of S, F1 and F2 can be arbitrary. If a is on precisely one smooth
curve of S, either F1 and F2 are both transversal to this curve, or F1 is transversal to S and
F2 containsS. If a is the intersection point of two smooth curves ofSmeeting transversally
at a, F1 is transveral to both curves and F2 contains one curve and is transversal to the
other. We don’t intend the choice of F to be canonical.

Local coordinates x, y, z at a are called subordinate to the flag F if F1 and F2 are defined
by y = z = 0 and z = 0 respectively. In the construction of the invariants we will work
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in the completion R and choose coordinates there. Subordinate coordinate changes are of
type (x+ a, y + b, z + c) where a ∈ R is arbitrary, b belongs to the ideal (y, z) and c to
the ideal (z) of R. Without loss of generality it will suffice to consider only coordinate
changes where a ∈ K[[y, z]], b ∈ K[[z]] and c = 0, compare with the Gauss-Bruhat
decomposition of Aut R from Theorem 2 of [Ha 1].

The flag is called partially transversal to the tangent cone TC of X if F1 is transversal to
the maximal linear space along which TC is a product [Hi 4]. This is a void condition if
τa = 3. In subordinate coordinates, it signifies that the variable x appears in at least one
monomial of homaf .

Theorem 3. Assume that S has at most normal crossing at a. Let π : W ′ → W be
the taut blowup of X with center Z and let a′ be a point over a. Assume that either S
is smooth at a or, in case where S has normal crossing at a, that a′ belongs to the one
dimensional component Ey ∩ Ez of Ea. For any flag F in W at a transversal to S and
partially transversal to TC there exist formal subordinate local coordinates x of W at a
such that π is monomial at a′ w.r.t. x and Z is defined locally at a by the ideals (x, y, z),
(x, y), (x, z) or (x, yz)(x, y)(x, z).

For normal crossing centers, it seems impossible to achieve monomiality at all points
a′ ∈ Ea. Variation: If Z has embedded components of form (x, yz) ∩ (x, y, z)3 at
the intersection points, this is possible, see the proof below, but destroys the form of
P = (x, yz) ∩ (x, y, z)3.

Proof. For blowups of smooth centers in regular schemes of arbitrary dimension this
has been proven in Theorem 5(a) of [Ha 1]. We adapt the proof to dimension three,
complementing it by the case of normal crossing centers.

Start with any formal subordinate coordinates x in R. We first simplify by subordinate
coordinate changes the ideal P defining Z. If S is a point, P = (x, y, z). If S is
a smooth curve, partial transversality of F w.r.t. TC implies that P can be written
(x + b(y, z), y + cz + d(y, z)) or (x + b(y, z), z + d(y)) with series b and d of order
≥ 2 and a constant c ∈ K. The obvious subordinate coordinate change transforms P
to (x, y) or (x, z + d(y)). Transversality of F with S forces in the second case d = 0.
If S is a normal crossing, at least one component of S is defined by an ideal of form
(x+ b(y, z), y+ cz+d(y, z)), hence, after subordinate coordinate change, of form (x, y).
The other component is defined by an ideal of form (x, cy+z+d(y, z)), and transversality
of F with S implies c = d = 0. The asserted form of P follows in all cases.

(1) Point blowup. Decompose Ea ∼= IP2 into the origin of the x-chart, the x-axis of the
y-chart and the affine xy-plane of the z-chart. If a′ is the origin of the x-chart, the local
blowup is already monomial at a′. If a′ lies in the x-axis of the y-chart, apply a translation
v = (x− s, y, z) in Ea to move a′ to the origin of the y-chart. This translation is induced
by the local subordinate coordinate change u = (x − sy, y, z) of W at a. Clearly, u
preserves the ideal P , and π has become monomial at a′. For a′ in the z-chart, apply
a translation v = (x − s, y − t, z) in Ea to move a′ to the origin of the z-chart. This
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translation is induced by the local subordinate coordinate change u = (x− sz, y − tz, z)
of W at a. Clearly, u preserves the ideal P , and π has become monomial at a′.

(2) Curve blowup. If S is a smooth curve defined by (x, y) or (x, z), a similar argument
applies. Here, Ea ∼= IP1 decomposes into the origin of the x-chart and the x-axis in the
y-, respectively z-chart. We leave the details as exercise.

(3) Crossing blowup. Let S be defined by the ideal (x, yz). We have seen earlier that
Ea has two components Ey ∩ Ez ∼= IP1 and Eb ∼= IP2 intersecting at the origin of the
xyz-chart. Let a′ ∈ Ey ∩ Ez . If it equals this origin, π is monomial at a′. Else a′ lies
in the y2z2 chart. As Ey ∩ Ez is the x-axis in this chart, there is a translation in W ′ of
type (x− s, y, z) which moves a′ to the origin. This translation is induced from the local
subordinate coordinate change (x− syz, y, z) in W at a. It preserves P . This proves the
assertion. 	

Variation: Let P = (x, yz) ∩ (x, y, z)3. Here, Ea ∼= IP2 will be decomposed into the
affine plane z = 0 in the yz2-chart (in which Ea is given by z = 0), the x-axis in the
xz2-chart (which is the projective line at infinity of IP2 of the preceding chart) and the
origin of the x3-chart (which is the point at infinity of the preceding curve). In the first
two charts translations (x− s, y− t, z) and (x+ s, y, z) inEa move a′ to the origin of the
chart. They correspond, by the substitution formulas for π, to local subordinate coordinate
changes (x − sy, y − sz, z) and (x− sz, y, z) in W at a. The local blowup has become
monomial. Note that the coordinate changes in W at a affect the equations of Z, yielding
the ideals (x− sy, yz − sz2) ∩ (x, y, z)3, respectively (x− sz, yz) ∩ (x, y, z)3.

Theorem 4. Assume that S has at most normal crossings and let π : W ′ →W be the taut
blowup ofX with center Z. Let F be a flag at a transversal to S and partially transversal
to the tangent cone TC ofX . Let a′ be a closed point over a. If a′ is an intersection point
of S we suppose that a′ lies in the one dimensional component Ey ∩ Ez of Ea, or equals
one of the origins of the remaining charts. There exists a canonically defined induced flag
F ′ at a′, and subordinate coordinates at a induce canonically subordinates coordinates
at a′. For a′ ∈ S′ with oa′ = oa, the flag F ′ is transversal to the equimultiple locus S′

and partially transversal to the tangent cone TC ′ of X ′ in a′.

Canonical means that the flag F ′ is invariant under local isomorphisms of W ′ induced by
automorphisms of W at a preserving F . The assertion of the theorem holds for blowups
of smooth centers in any dimension [Ha 1].

Proof. (1) Point blowup. Define F ′ at a′ as follows. Let F st1 and F st2 be the strict
transforms of F1 and F2 under π. They intersect the exceptional divisor E transversally
in a point F st1 ∩E and a smooth curve F st2 ∩E. If a′ = F st1 ∩E is the intersection point
(which is the origin of the x-chart), let F ′1 = F st1 and F ′2 = F st2 . If a′ lies on F st2 ∩ E
but not on F st1 (i.e., in the y-chart), let F ′1 = F st2 ∩ E and F ′2 = F st2 . If a′ 6∈ F st2 (i.e., in
the z-chart), set F ′2 = F st2 and let F ′1 be the projective line in E = IP2 connecting a′ with
F st1 ∩ E.
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Exercise 9. In each case, letting x, y, z denote the coordinates at a′ induced by the usual
formulas, show that F ′1 and F ′2 will be defined by y = z = 0 and z = 0.

Figure H: Flag and point blowup
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By Proposition 1 of section 4, we know that S′ equals the strict transform of S, possibly
augmented byE ∩X ′ ∼= IP1. In the latter case, by the same proposition, S′ does not meet
the x-chart, and has equation x = z = 0 in the y-chart, respectively x = y = 0 in the
z-chart. Hence F ′1 and S′ are always transversal, and F ′2 and S′ are either transversal or
S′ ⊆ F ′2.

(2) Curve blowup. (a) If F1 and F2 are both transversal to S, choose coordinates x, y, z at
a such that S is defined by x = y = 0. Define F ′ as follows.

Figure I: Flag and curve blowup
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If a′ = F st1 ∩ Ea (which is the origin of the x-chart) let F ′1 = F st1 and F ′2 = F st2 . If
a′ ∈ Ea \ F st1 ∩Ea (i.e., a′ lies in the y-chart), set F ′1 = Ea and F ′2 = F st2 . Observe that
Ea is a curve. In both cases F ′1 and F ′2 are defined by y = z = 0 and z = 0 respectively.

Consider now S′. If S′ is a point, nothing is to show. If S′ is a curve it must lie inside
E ∩X ′ and by Proposition 2 of section 4, S′ = E ∩X ′ and S ∼= S′. Moreover S′ lies in
the y-chart and is given there by x+ h(z) = y = 0 for some h. As the flag F ′ is given by
y = z = 0 and z = 0 it is transversal to F ′1 = Ea and F ′2.

(b) If F1 is transversal to S and S ⊆ F2 choose coordinates such that S is defined by
x = z = 0. If a′ ∈ F st1 ∩ Ea (which is the origin of the x-chart) let F ′1 = F st1 and
F ′2 = F st2 . If a′ ∈ Ea \ F st1 ∩ Ea (i.e., a′ lies in the y-chart), set F ′1 = Ea and F ′2 = E.
Again Ea is a curve. In both cases F ′1 and F ′2 are defined by y = z = 0 and z = 0.

By Proposition 2 of section 4, S′ = E ∩X ′ ∼= S lies in the z-chart and is defined there
by x + h(y) = z = 0. The flag F ′ being given by y = z = 0 and z = 0 we have S′

transversal to F ′1 and contained in F ′2.
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(3) Crossing blowup. Let S = Sy ∪ Sz at a. Let a′ ∈ Ea be a point of Ey ∩ Ez or an
origin of the other charts. By Theorem 3 there is a subordinate coordinate change in W
at a such that S is defined by the ideal (x, yz) and such that the local blowup R → R′ is
monomial. In particular, a′ moves by the induced translation in Ea ⊆W ′ to the origin of
one of the charts.

With this prior choice of coordinates it suffices to define F ′ at the origins of the charts. In
the x3-chart, set F ′1 = F st1 and F ′2 = F st2 .

Exercise 10. Check that F st1 ∩ Ea is the origin of this chart.

In the x2y-chart, set F ′1 = Ea ∩ F st2 and F ′2 = F st2 .

Exercise 11. Check that F st2 contains the origin of that chart.

In the x2z-chart, the component of Ea containing the origin is isomorphic to IP2. Let F ′1
be the line in IP2 through the origin of this chart and the origin of the x3-chart, and set
F ′2 = Ea. In the xyz-chart and in the y2z2-chart, set F ′1 = Ey ∩ Ez and F ′2 = Ey .

Exercise 12. Check that the substitutions of the coordinates associated to the blowup and
described in Proposition 2 of section 3 define coordinates at a′ which are subordinate to
F ′.

Exercise 13. Prove that if the multiplicity remains constant, F ′ is partially transversal to
the tangent cone TC ′ of X ′. 	

Variation: (3’) Let P = (x, yz) ∩ (x, y, z)3 define Z where S is a normal crossing of
two smooth curves Sy and Sz at a. For any a′ over a, the flag F ′ is defined as follows.
Choose subordinate coordinates such that S is given by (x, yz). If a′ = F st1 ∩Ea (which
is the origin of the x3-chart), set F ′1 = F st1 and F ′2 = F st2 . If a′ ∈ Ea ∩F st2 \F st1 (i.e., a′

lies in the xy2-chart) set F ′1 = F st2 ∩ Ea and F ′2 = F st2 .

If a′ ∈ Ea \ F st2 we distinguish several cases. Let τ : W 1 → W denote the blowup of
W in the intersection point a of S, and denote by S1

z the strict transform of Sz . There is
a unique line C1 in the exceptional divisor E1

a = τ−1a ∼= IP2 going through F 1
1 ∩ E1

a

and S1
z ∩E1

a. Let C be the inverse image of C1 under the blowup of S1
z in W 1. This is a

curve in Ea which goes through the origins of the x3-chart and the xz2-chart.

(i) If a′ ∈ Ea ∩ Ez \ C (i.e., a′ lies in the yz2-chart) set F ′1 = Ea ∩ Ez and F ′2 = Ea.
(ii) If a′ ∈ Ea \ (Ez ∪ C) (i.e., a′ lies in the x3-chart) let F ′1 be the unique line in
Ea \ (Ey ∪Ez) ∼= E1

a \ (S1
y ∪ S1

z ) ∼= IP2 \ {two points} going through a′ and F st1 ∩Ea
and set F ′2 = Ea. (iii) If a′ ∈ C ∩ Ez (i.e., a′ is the origin of the xz2-chart) set F ′1 = C
and F ′2 = Ea.

It is checked that in all casesF ′1 andF ′2 are defined in the induced coordinates by y = z = 0
and z = 0.

The equimultiple locus S′ does not appear in the charts x3, xy2 and xz2, since at any point
there the multiplicity has dropped, see Proposition 3’ of section 4. In the two remaining
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charts y2z and yz2, we may assume that S′ is a curve. By the same proposition, S′ is
defined in both charts by x+ h(y) = yz = 0 for some series h(y). Hence it meets F ′ as
prescribed. 	

Exercise 14. Replace the construction of the flag F ′ for normal crossings of the variation
by interpreting the blowup as a composition of blowups in smooth centers.

6. Construction of the induction invariant

This section is largely inspired by Hironaka’s definition of the invariants used in [Hi 1]. We
fix again a hypersurface X in a regular three dimensional scheme W whose equimultiple
locus S has at most normal crossings. Let Z be the corresponding non reduced center
with support S and embedded components of type (x, yz)(x, y)(x, z) at the intersection
points of S (cubes of the maximal ideal for the variation).

The local invariant ia we shall associate to a closed point a ∈ X will be defined by first
constructing a quadruple iax ∈ QI4 which depends on the choice of coordinates x at a and
by then specifying a set of formal coordinates for which iax takes the same value. We will
then set ia = iax for x in this set of coordinates. All points considered will be closed.

Coordinate dependent definition: Let f ∈ R = OW,a be a local equation of X in W at
a. For coordinates x = (x, y, z) in the completion R of R let f =

∑
cijkx

iyjzk be the
expansion of f w.r.t. x at a. We set

iax = (oa, βy, sβγ , |β|)

with oa = ordaf the order of f at a. The components βy , sβγ and |β| are defined as
follows.

Figure J: Projection of Newton Polyhedron

x

y

z

(o,0,0)
NP

NPyz

 
δ

β
γ

Let NPyz ⊆ QI2+ be the projection from (oa, 0, 0) of the Newton Polyhedron NP of f ,
neglecting the portion of NP in (oa, 0, 0) + QI3+. A point (δx, δy, δz) with δx < oa is
sent to ( oaδy

oa−δx
, oaδz

oa−δx
). Let β be the vertex of NPyz which is closest to the y-axis, i.e.,

with minimal second component βz (i.e. the point of NPyz which is minimal w.r.t. the
inverse lexicographic order in QI2+). If β does not exist, f equals in the given coordinates
the monomial xoa times a unit of R and nothing is to prove. So we may discard this case.
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Let γ be the vertex of the segment of NPyz adjacent to β, i.e., the vertex of NPyz with
second component γz minimal among the vertices of NPyz \ β (γ exists if and only if
NPyz is not a quadrant).

With these choices, βy will denote the first component of β and sβγ the slope of the
segment from β to γ, i.e., sβγ = βy−γy

βz−γz
∈ QI− (we draw the y-axis vertically). We set

sβγ = −∞ if γ does not exist. We may equally take instead of βy the slope of the segment
in QI2+ between (oa, 0) and (0, βy). Observe that βy + βz ≥ o and 0 > sβγ ≥ −∞. We
anticipate that sβγ and |β| are only used when a is an isolated point of S.

This ad-hoc definition of the invariant ia may seem little natural. It depends highly on
the ordering chosen among x, y, z and leaves rather unclear how to extend it to higher
dimensions. However, without taking into account exceptional divisors when defining
the invariant for the strict transforms, experimentation shows that there is not too much
flexibility how to choose ia such that it drops under taut blowup. Observe that β and sβγ
may also serve as invariants for resolution of plane curves, see exercise 2. Projecting the
Newton Polyhedron from (oa, 0, 0) to the yz-plane explains why in many expositions the
case where f has form f = xoa + g(y, z) is considered as representative for the problem.

As the slopes sβγ are negative and may become arbitrarily small it is not immediate that
the invariant belongs to a well ordered set. Let Γ be the set of quadruples (a, b, c, d) with
a, b, d ∈ IN and c of form c = −pq with p, q in IN and p ≤ b (allowing c = −∞). By
construction, iax ∈ Γ.

Exercise 15. Show that Γ is well ordered.

Example. Let f = x3 +y4z+y2z2 +yz7 +z14. Then iax = (3, 4,− 1
2 , 5) and β = (4, 1),

γ = (2, 2).

A more conceptual definition of the pseudo-invariant through coefficient ideals goes as
follows [E-V 2, Ha 3]. Set o = oa. For any ideal I of R, let

Iyz =
∑
i

(ai(y, z), f ∈ I)
o!

o−i

be the coefficient ideal of I w.r.t. x and o. Here ai(y, z) denote the coefficients of elements
f ∈ I given by the expansion f ≡

∑o−1
i=0 ai(y, z)x

o−i modulo xo ·M . Observe that Iyz is
compatible with coordinate changes in y, z but not in x. For a principal ideal I = (f) with
f expanded as above it is in general not true that Iyz = (ai(y, z)

o!
o−i , i = 0, . . . , o−1). This

can be seen in the example of S. Encinas where f = x3 +xy4 + z5 with Iyz = (y12, z10).
Multiplying f by the unit 1 − x of R gives Iyz = (y12 + y8z5, z10). Consider now the
Newton Polygon of Iyz

NPyz =
⋃
g∈Iyz

⋃
α∈supp g

α+ QI2+.

Then β equals the inverse lexicographically minimal vertex of 1
(o−1)! · NPyz . In [E-V

1, E-V 2] the second component of the invariant is defined as the order of Iyz . This
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order generally increases under blowup. It is necessary to factor suitable powers of the
exceptional divisor from the transform (I ′)yz to get the weak transform of Iyz with non-
increasing order. There arise, however, serious problems when making the reasoning
coordinate independent, since the exceptional divisors loose their monomial form when
changing coordinates.

Example. Let f = x2 + y10 + y3z3 + z10 with isolated singular point at zero. Hence
S = 0 and Iy = (y10 + y3z3 + z10) has order 6. Blowing up the origin yields in the
y-chart a strict transform f ′ = x2 + y8 + y4z3 + y8z10 with (I ′)y = (y8 + y4z3 + y8z10)
of order 7. However β = (10, 0) has transformed into β′ = (8, 0) and the first component
has dropped.

Coordinate free definition: We specify the coordinates which we shall select to define
ia. The coordinates will have to be subordinate to a well chosen flag, and, secondly,
have to maximize iax lexicographically over all formal subordinate coordinate choices at
a (restricted slightly by maximizing also βz). Hironaka calls such coordinates well and
very well prepared [Hi 1].

We first choose and then fix forever a flag F in W at a, transversal to S and partially
transversal to the tangent cone TC of X (section 5). Given such a flag, we will only
consider coordinates x, y, z in the completion R which are subordinate to F . Hence F1

and F2 are defined in R by y = z = 0 and z = 0 respectively. Among all subordinate
coordinates, consider those for which the vector (βz, βy, sβγ , |β|) ∈ QI4 becomes maximal
w.r.t. the lexicographic order on QI4 [instead of sβγ we may also maximize the projection
of γ to QI+, and |β| is maximized automatically through (βz, βy)]. Observe that we first
maximize βz which does not appear as a component of iax. It can be seen, either directly or
using arguments similar to the ones used to prove Theorem 3 of [Ha 1], that the maximum
actually exists and is achieved by some formal coordinates. In the algebraic setting it is
convenient to work in the completion R. For analytic spaces the maximum also exists in
the analytic category, see [Ha 1]. In all cases, β = (βy, βz) and sβγ are the same for such
coordinates. Then set

ia = iax = (oa, βy, sβγ , |β|)

where x are coordinates in R subordinate to F and maximizing (βz, βy, sβγ , |β|) lexico-
graphically. Note that instead of the slope sβγ one could as well projectNyz from β to the
z-axis QI+ and take the slope of this line. However, the (unique) vertex of the projection
may increase under blowup if one does not factor an appropriate power of the exceptional
divisor.

7. Transformation of iax under monomial blowup.

In the situation of the last paragraph, let π : W ′ →W be the taut blowup associated to the
singular surface X with center Z. Let a ∈ X be a closed point inside S. We shall show
in this and the next section that for all closed points a′ ∈ X ′ above a one has ia′ < ia
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in the lexicographic order on QI4. As the set Γ where ia can vary is well ordered, there
cannot occur an infinite sequence of points a′, a′′, ... over a along which the invariant
does not stabilize. The stage at which it stabilizes depends on the choice of a, and a priori
moving a in S may produce strictly decreasing sequences of arbitrary length. This does
not guarantee resolution of X and we will have to show in section 9 that all sequences
stabilize uniformly at a certain stage independent of a. Observe that it is not clear whether
ia takes only finitely many values on S.

The proof that ia decreases under blowup splits into a combinatorial argument on monomial
blowups and a reduction argument which reduces the general case to the combinatorial
situation.

Theorem 5. Let R → R′ be a monomial blowup w.r.t. formal coordinates x of R
subordinate to a chosen flag F at a. Assume that F is transversal to S and partially
transversal to TC. Denote by x also the induced coordinates at a′. Then ia′x < iax.

Proof . The assumption implies that the point a′ sits in one of the origins of the various
affine charts induced in W ′ by the coordinates x. We denote by S′, β′, γ′, F ′ etc. all
objects associated to the strict transformX ′ ofX as was done before forX . An asterisque
∗ will denote objects inW ′ obtained from below by applying the monomial substitution of
the variables and factoring the exceptional divisor oa-times. For instance, β∗ will equal in
the z-chart of a point blowup the vector (βy, βz +βy−oa) which may equal β′ but may as
well have moved to the interior of the projected Newton Polygon NP ′yz of f ′. If the latter
occurs, a new vertex of NP ′yz assumes the role of β′, i.e, is the inverse lexicographically
minimal vertex of NP ′yz . In each case we will precise in the concrete setting what is
meant. The proof is purely computational and goes case by case:

(1) Point blowup. This only occurs when S has an isolated point at a. The argument has
inductive character w.r.t. the components of iax and the three charts. We shall show that
in all charts ia′x < iax lexicographically.

(a) Behaviour of oa. First consider the x-chart. A vertex α = (αx, αy, αz) of the Newton
Polygon NP of f transforms into the point α∗ = (αx + αy + αz − oa, αy, αz) which
may be a vertex of NP ′ or not. Take for α an exponent of the tangent cone homaf of
f , viz satisfying |α| = αx + αy + αz = oa. Since the coordinates are subordinate to the
flag F which is partially transversal to TC, it follows that αx > 0 for at least one such α.
This implies αy + αz < oa for this α and hence |α∗| < oa, say oa′ < oa and ia′x < iax
in this chart.

Exercise 16. Show that oa′ ≤ oa in the y-chart and z-chart. Determine when equality
occurs.

(b) Behaviour of βy . We may assume oa′ = oa, which reduces by (a) to the y- and
z-chart. In the y-chart we argue as follows. As S has an isolated point at a there exists
a vertex δ of NP satisfying δx + δz < oa (else the curve defined by x = z = 0 would
lie in S). Projecting δ from (oa, 0, 0) to QI2+ yields the point ( oaδy

oa−δx
, oaδz

oa−δx
) in NPyz .

This shows that β = (βy, βz) has second component < oa. A short computation gives
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β∗ = (βy + βz − oa, βz), hence βz remains constant and β∗ has again minimal second
component among all vertices of the projected polyhedron NP ′yz . Therefore β∗ = β′.
Moreover, since βz < oa, we get β′y = βy + βz − oa < βy . We have shown ia′x < iax
in this chart.

Now consider the z-chart. Here, β∗ = (βy, βz − oa). If β∗ lies in the interior of the
projected polyhedron, it is replaced by a vertex β′ with smaller first component because βy
was maximal among all vertices of the projected polyhedron (recall that βz was minimal).
In this case β′y < βy . If β∗ remains a vertex, it equals necessarily β′, and its first
component β′y has remained constant, say β′y = βy . In both cases we have β′y ≤ βy .

(c) Behaviour of sβγ and |β|. We may assume that oa′ = oa by (a) and that β∗ = β′ by
(b). Hence we are left with the z-chart. By definition, the vertex γ = (γy, γz) satisfies,
if it exists, that βy > γy and βz < γz . The slope sβγ equals βy−γy

βz−γz
. After blowing up

it becomes βy−γy

βz−γz+βy−γy
. If the denominator is negative the slope has decreased since

βy − γy > 0. If it is ≥ 0 the vertex γ∗ = (γy, γz + γy − oa) has second component
less or equal β∗ = (βy, βz + βy − oa) which contradicts β∗ = β′. Therefore the slope
has dropped. If γ does not exist, NPyz = β + QI2+ is a quadrant and S can only be an
isolated point if both βz and βy are < oa. Clearly, NP ′yz is then again a quadrant and
|β′| = |β∗| = βy + β∗z = βy + βz + βy − oa < |β|. This gives ia′x < iax also in this
chart.

(2) Curve blowup. The lemma of section 4 implies τa = 1. If P equals (x, y), the x-chart
is irrelevant since X ′ does not pass there. In the y-chart a vertex (δx, δy, δz) transforms
into (δx, δy+δx−oa, δz) which shows that oa′ ≤ oa. If oa′ = oa, the vertex β = (βy, βz)
moves to β∗ = (βy − oa, βz). As the second component remains constant, β∗ = β′ and
βy has dropped. If P equals (x, z) we may restrict, similarly as before, to the z-chart
and oa′ = oa. Here β moves to β∗ = (βy, βz − oa). If β∗ = β′ we get β′y = βy and
sβγ < sβγ , provided γ exists. If it does not exist we have |β′| < |β|. If β∗ 6= β′, then
β′y < β∗y = βy . In all cases we conclude by ia′x < iax. Only the first two components of
iax were used.

(3) Crossing blowup. LetP = (x, yz)(x, y)(x, z). Again we have by the lemma of section
4 that τa = 1. In Proposition 3 of section 4 it was shown thatX ′ meetsEa only in the chart
y2z2. There the blowup is given by (x, y, z) → (xyz, y, z) with E and Ea defined by
yz = 0, respectively y = z = 0. Therefore the strict transform of f = xoa +

∑
cijkx

iyjzk

is given by f ′ = xoa +
∑
cijkx

iyj+i−oazk+i−oa . Hence oa′ ≤ oa. Let (δx, δy, δz) project
to β. By definition ofNPyz we have δx < o. Then (δx, δy+δx−oa, δz+δx−oa) projects
to β′, hence β′y = oa

oa−δx
· (δy + δx − oa) < oa

oa−δx
· δy = βy . This gives ia′x < iax.

Again only the first two components of iax were used.

Variation: (3’) Let P = (x, yz) ∩ (x, y, z)3. By Proposition 3’ of section 4, only the
y2z- and yz2-charts are relevant. We show that iax may increase. In the y2z-chart the
vertices of NP move according to (δx, δy, δz) → (δx, δy + δx + δz − oa, δz + δx − oa)
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and if βz remains minimal, the component βy may increase to β′y = βy + δx + δz − oa.
Observe here that δx + δz ≥ oa since S contains the curve defined by x = z = 0. Hence
ia may increase in this chart.

In the yz2-chart, nevertheless, the invariant decreases. Here a vertex (δx, δy, δz) moves to
(δx, δy+δx−oa, δz+δx+δy−oa). Consider β = (βy, βz) moving to (βy, βz+βy−oa).
If β survives, say β∗ = β′, then βz + βy − oa must again be minimal, and we have
β′y = β∗y = βy−oa < βy , hence βy drops. If β moves to the interior ofNP ′yz and the new
vertex is β′ = δ∗ for some vertex δ ofNPyz , then β∗z = βy+βz−oa > δ∗z = δy+δz−oa
and βz < δz . Hence β′y = δ∗y = δy − oa < βy − oa < βy and βy drops. 	

8. Reduction to monomial blowup.

We show that for local blowups R → R′ the improvement ia′ < ia follows from the
improvement of iax under monomial blowup. We work as in section 6 with the completions
of the local rings.

Theorem 6. Given π : W ′ →W and a ∈ S a closed point, let a′ ∈W ′ be a closed point
over a where the multiplicity oa′ of X ′ has remained constant. Assume chosen a flag F
at a transversal to S and partially transversal to the tangent cone TC of X . There exist
formal subordinate coordinates x at a ∈W such that R→ R′ is monomial w.r.t. x, βz is
maximal and such that the induced coordinates in R′ maximize β′z and realize ia′ up to
the relevant component.

The various cases of the proof of Theorem 5 show that it suffices for the induction on
ia - according to the blowup and the chart considered - to maximize ia′x only up to the
component which drops under the corresponding monomial blowup. This is the meaning
of the relevant component in Theorem 6. If oa′ has dropped, a new flag transversal to the
S′ and TC ′ has to be chosen at a′ in W ′.

Proof. The argument is inspired by the proof of Theorem 6 in [Ha 1]. Start with any
subordinate coordinates in R. By Theorem 3 of section 5, we may apply a subordinate
coordinate change in R which makes the blowup monomial and hence moves a′ to the
origin of one of the charts. For crossing blowup, we have seen already that X ′ ∩ E lies
in the y2z2-chart, so Theorem 3 does apply in this case as well. Denote by x also the
induced coordinates in R′.

By Theorem 3 of section 5 and since oa = oa′ , the induced flagF ′ inR′ is again transversal
to S′.

We now maximize (β′z, β
′
y, s
′
βγ , |β′|) by subordinate coordinate changes in R′. By the

Gauss-Bruhat decomposition, see Theorem 2 of [Ha 1], we only have to consider subordi-
nate coordinate changes in R′ of type (x+ a(y, z), y + b(z), z) to maximize β′z and ia′x.
We shall show that there exists such a change in R′ which is induced from subordinate
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coordinate changes in R and leaves R → R′ monomial. Simultaneously, βz will be
maximized in R.

Exercise 17. Show that in the z-chart of point blowup the change v = (x+ ykzk−2, y, z)
with k ≥ 2 in R′ is not induced by a change in R, though v fixes the exceptional divisor
in this chart.

(1) Point blowup. It suffices to consider the y- and z-chart which cover all of E = Ea
except the origin of the x-chart where we already know that the multiplicity drops. In
the y-chart we will maximize (β′z, β

′
y) lexicographically and can discard the remaining

components by the proof of Theorem 5. It is immediate from the definition that only
changes (x + a(y, z), y, z) can alter β′. Now observe that in the induced coordinates in
R′,NP ′yz is contained in the cone {(j, k) ∈ QI2+, j ≥ k−oa} because points (j, k) ofNPyz
move under monomial blowup in this chart to (j + k− oa, k). Set a(y, z) =

∑
ajky

jzk.
If v = (x+ a(y, z), y, z) maximizes (β′z, β

′
y) the sum in a(y, z) can be chosen over pairs

(j, k) for which j ≥ k − 1, since we wish to eliminate in f ′ only monomials whose
projection lies in NP ′yz . This can be seen inductively, first eliminating all monomials in
the expansion of f ′ whose projection gives β′, and then starting again with the new β′.

Exercise 18. Write down this argument in all details and compare it with Lemma 3(b) of
[Ha 1]. Note that it is characteristic independent.

Once we can restrict to changes of this form, it is immediate to see that v is induced from
the subordinate change u = (x+

∑
j≥k−1 ajky

j−(k−1)zk, y, z) inR and that this change
preserves the monomiality of the blowup (use the constancy of multiplicity and j+k ≥ 1.
If a change (x+ y, y, z) would be needed to maximize βz , oa would have dropped at a′).

Exercise 19. Show that since v maximizes β′z , u maximizes βz .

We next treat the z-chart, where all components of ia are relevant. To maximize (β′z, β
′
y)

inR′ and βz inR the argument is the same as before with the role of y and z interchanged.
To maximize s′βγ in R′ we will need more general changes of type v = (x+ a(y, z), y +
b(z), z). These are products of changes of type (x + a(y, z), y, z) and (x, y + b(z), z).
For the first, the preceding reasoning applies again, since we may require that v does not
create new monomials outside NP ′yz . For the second, it suffices to observe that changes
(x, y + b(z), z) are induced under point blowup in the z-chart from changes in R which
have the same coordinate expression.

(2) Curve blowup. For P = (x, y) and P = (x, z) it suffices to consider the y- and z-chart
respectively, and to restrict to maximizing (β′z, β

′
y). It is then straightforward to see that

any change of type (x + a(y, z), y, z) in R′ is induced from a subordinate change in R
which preserves monomiality of the blowup and that βz is maximal if β′z is maximal.

(3) Crossing blowup. Only the y2z2-chart and β′ are relevant. The monomial substitution
R → R′ is given by (x, y, z) → (xyz, y, z). Therefore any change of type (x +
a(y, z), y, z) inR′ is induced from a subordinate change inRwhich preserves monomiality
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of the blowup. Check again that βz is maximal if β′z is maximal. This concludes the proof
of the theorem. 	

9. Proof of Theorem 1.

We start with a singular reduced surfaceX in a regular three-dimensional ambient scheme
W . By Proposition 1 of section 4 we may assume that after a finite number of point
blowups the equimultiple locus S of X consists of finitely many isolated points and
finitely many smooth curves which have at most normal crossings. Let π : W ′ → W be
the taut blowup ofX with centerZ as defined in section 3. It yields the strict transformX ′

ofX and an exceptional divisorE inW ′. Choose at each point a of S a flagF transversal
to S and partially transversal to the tangent cone TC of X .

Since it is not clear whether ia takes finitely many values on S we cannot argue by
stratifying S according to the invariant. Stratifications only work well for invariants
which are semi-continuous.

Instead, we show first that any smooth componentC of S dissolves after a finite number of
taut blowups into finitely many isolated points (possibly none) with the same multiplicity.
By Propositions 2 and 3 of section 4 we know that if the component persists after one
blowp with the same multiplicity, no new component has appeared and the components C
andC ′ are isomorphic under π. Assume that this happens infinitely many times, producing
an infinite sequence of components C, C ′, C ′′, ... of the equimultiple loci of the strict
transforms of X . Choose in each component C(k) a point a(k) over a where the invariant
takes its minimal value on C(k). Such points exist because ia varies in a well ordered set.
By Theorem 5 and 6 the sequence ia(k) strictly decreases yielding the contradiction.

Consider now an isolated point a of S. Its fibre Ea ∩X ′ under π may be a component of
S′, necessarily isomorphic to IP1. It is disjoint from the other components, cf. Proposition
1 of section 4. By the preceding observation, finitely many further blowups decompose it
into finitely many points of the same multiplicity as a. Using again Theorem 5 and 6 we
know that for each of these points a′ we have ia′ < ia.

It follows that after finitely many blowups, the multiplicity must drop at each point a′ over
any point a of S. Hence the maximal multiplicity occuring on the surface has dropped
and finitely many taut blowups yield a smooth surface.

Exercise 20. Show that further blowups make the intersection of the surface and the
exceptional divisor transversal.

This proves Theorem 1 and concludes the paper. 	
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