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Preface

And so I raise my glass to symmetry
To the second hand and its accuracy

To the actual size of everything
The desert is the sand

You can’t hold it in your hand
It won’t bow to your demands

There’s no difference you can make
(Bright Eyes “I Believe in Symmetry”1)

Actually the title of the thesis already says it all: the aim of our work was to construct algebraic
curves and surfaces with previously fixed properties, namely symmetries and singularities. The
most prominent examples are what we called “Platonic stars” - algebraic surfaces with the sym-
metries of a Platonic solid and cusps in the vertices of the same solid. The idea was to produce
pictures that anyone would immediately identify as “stars”. Such a figures apparently must be
bounded and connected, have some symmetries, and most important have a certain number of
cusps. Even though in our construction we do not consider the first two properties we were able
to reach this goal. Still, as we will see in the examples, it was only possible by making some
“good” choices: Very often we were left with a number of free parameters, that can be chosen
almost arbitrarily. If chosen right we obtain the objects we want, if not, it might still have the
desired properties but becomes unbound or additional components appear. Therefore it might be
interesting to include these properties while constructing the surface.
The construction is based on some results on simples singularities and invariant theory. We will
present these results together with some basics from algebraic geometry and commutative algebra,
as well as a small excursion on group theory and polytopes in the first chapter. The second one
is dedicated to explaining the construction. First we describe all the steps in theory and give
arguments why it works, then we demonstrate it with two detailed examples, and motivate three
possible generalizations. The third and last chapter is basically a list of examples that should
give an idea of the possibilities, but maybe also disadvantages of our construction. Besides the
examples that illustrate our construction, some plane curves, the Platonic and Archimedean stars,
we also motivate the generalizations with some extra examples. In the appendix one finds some
technical details and recapitulatory tables.

All figures that appear through the following text are generated either with Wolfram Mathematica

1“Digital Ash in a Digital Urn”, Saddle Creek Records, 2005
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6 for Students2 or the free ray-tracing software POV-Ray3. The interested reader may download
the program at www.povray.org.
I want to express my gratitude to the people that made this thesis possible. Especially I want
to thank my parents for giving me all opportunities and my supervisor for his patience and en-
couragement and Clemens, Dennis, Dominique, Eleonore, Josef Schicho and Manfred Kuhnkies for
valuable disscussions, proof-reading and motivation. I am also thankful for the support by Project
21461 of the Austrian Science Fund FWF.

Love goes out to all my friends, without you I’m nothing. ♥
Innsbruck, December 11, 2009,

Alexandra Fritz.

2See www.wolfram.com/products/student/mathforstudents/index.html.
3Actually Figures 1.3, 1.4a, 2.1, 3.1, 3.3, 3.4, 3.5, 3.20a, 3.22, A.1 were produced with Mathematica, the remaining

ones with POV-Ray.



Chapter 1

Preparation

1.1 Basic notations and results from algebraic geometry and

commutative algebra

In the following K will always denote some field. A field is called algebraically closed if every
polynomial of positive degree in one variable with coefficients in K has at least one zero in K.
Note that we do not demand that the field K is algebraically closed if it is not stated explicitly.
Most of the time K will be the field of real numbers R, that is not algebraically closed. Only
sometimes we will work with the algebraic closure of R, the complex numbers C.
The letter R will, if not stated differently, denote a commutative ring. Most of the time the ring will
be graded, i.e., it permits a decomposition into a direct sum R =

⊕
i≥0Ri such that RiRj ⊂ Ri+j

for all i, j ≥ 0. The elements of Ri are called homogeneous elements of degree i.
A ring R is called Noetherian1 if it satisfies the following three2, equivalent, conditions. See for
example [AM69, p. 74− 76] for a proof of the equivalence.

1. Every increasing sequence of ideals p1 ⊆ p2 ⊆ . . . of R is stationary, (i.e., there exists a n ∈ N
such that pn = pn+1 = . . .).

2. Every non empty set of ideals of R has a maximal element.

3. Every ideal I ⊂ R is finitely generated.

A polynomial in n variables with coefficients in a ring R (or a field K) is the finite sum3

f(x1, . . . , xn) = f(x) =
∑

α1+...+αn≤d

aαx
α1
1 . . . xαn

n =
∑
|α|≤d

aαxα, aα ∈ R.

The integer d is called the (total) degree of f(x). All such polynomials form a ring, the ring of
polynomials in n variables with coefficients in R or polynomial ring . It is denoted by R[x1, . . . , xn].
We quote the important

Theorem 1 (Hilbert’s Basis Theorem). Let R be a Noetherian ring, then R[x1, . . . , xn] is also
Noetherian.

1Named after the German mathematician Emmy Noether, 1882 − 1935.
2Mostly only the first two are used for the definition and the third one is a theorem.
3Note that we use multiindices to write such terms more compact.

1



2 CHAPTER 1. PREPARATION

Proof. See [AM69, p. 81], Theorem 7.5 and Corollary 7.6. F

Any field K is Notherian, therefore, by Hilbert’s Basis Theorem, the polynomial ring K[x1, . . . , xn]
is also Noetherian. Hence any ideal I of K[x1, . . . , xn] is generated by some finite set of polynomials
{f1, . . . , fm} ⊂ K[x1, . . . , xn].
Let R ⊂ S be commutative rings. An element s ∈ S is called integral over R if R[s] is finitely
graded as an R-module. The ring S is called integral over R if all s ∈ S are integral over R. An
element s ∈ S is integral over R if and only if s is a rood of a monic polynomial with coefficients
in R, i.e., there exists a P (t) = td+ad−1t

d−1 + . . .+a1t+a0 ∈ R[t] such that P (s) = 0. A proof of
this statement can be found in any book on commutative algebra, see for example [BIV89, p. 78].
Let K ⊂ L be fields. Elements a1, . . . , am ∈ L are called algebraically independent if there exists
no polynomial 0 6= P (x1, . . . , xm) ∈ K[x1, . . . , xm] such that P (s1, . . . , sm) = 0.

The polynomial ring K[x1, . . . , xn] has even more structure, besides being a ring, it is a K-
algebra: A ring A is called an K-algebra if it has a scalar multiplication that is compatible
with its ring structure. A K-algebra is said to be finitely generated if there exist elements
a1, . . . , am ∈ A such that A = K[a1, . . . , am]. The ai need not be algebraic independent, i.e.,
the map K[x1, . . . .xm] → A : x 7→ a is surjective but not necessarily injective. A graded K-
algebra R is an K-algebra with a decomposition R = R0 ⊕ R1 ⊕ R2 ⊕ . . ., where R0 = K and
RiRj ⊂ Ri+j . Evidently the polynomial ring is naturally graded by the total degree. A homoge-
neous polynomial of degree i can be written as f(x) =

∑
|α|=i aαxα.

The affine space over a field K, AnK , is the vector space formed by all n-tubles of elements of K.
When it is evident over which field we work we just write An. An element p = (p1, . . . , pn)4 of AnK
is called a point.
Given a set of polynomials {f1, . . . , fk} in K[x1, . . . , xn] one calls the set of all point of the affine
space at which the polynomials vanish,

V (f1, . . . , fk) := {p = (p1, . . . , pn) ∈ AnK , fj(p1, . . . , pn) = 0, j = 1, . . . , k},

the zero set of f1, . . . , fk. Clearly if f1, . . . , fk vanish at a point p then all other polynomials in the
ideal generated by these polynomials, I := (f1, . . . , fk), also vanish at p, therefore we can write
V (f1, . . . , fk) = V (I). Note that the affine space AnK can be viewed as the zero set of the empty
set ∅ ⊂ K[x1, . . . , xn].
The zero set of some ideal, V (I), is also called an (affine) algebraic set . Given a subset X ⊂ AnK
then one defines the ideal of X as the ideal in K[x1, . . . , xn] of all polynomials that vanish at all
points of X:

I(X) := {f ∈ K[x1, . . . , xn], f(p) = 0 for all p ∈ X}.

We already mentioned that K[x1, . . . , xn] is Noetherian. Therefore for all algebraic sets X there
exist polynomials f1, . . . , fk ∈ K[x1, . . . , xn] such that I(X) = (f1, . . . , fk). For algebraically closed
fields Hilbert’s Nullstellensatz holds. It claims that if K is algebraically closed and X = V (J) is the
zero set of an ideal J ⊂ K[x1, . . . , xn] then the ideal of X is equal to the radical5 of J : I(X) =

√
J .

4For the sake of readability we write p as a row vector here, but when it comes to calculations all vectors should

be viewed as columns.
5The radical of an ideal J of some ring R is defined as

√
J := {f ∈ R, fk ∈ J for some k ∈ N}.
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See [Lan02, p. 380] for a proof.

A subset U ⊂ AnK is called Zariski-open if it is the complement of an algebraic set: U = AnK\V (I),
with I some ideal in the polynomial ring. The topology defined by these open sets is called the
Zariski-topology of the affine space. A subset A of a topological space B is called irreducible if
there exists no decomposition A = A1 ∪ A2, where A1 6= A2 are nonempty, proper subsets of A
and both are closed in B. An (affine) algebraic variety is an irreducible algebraic set.

There are various ways of defining the dimension of an algebraic variety. Following [Har77] we
start by defining the dimension of an topological space X as the supremum of the length of chains
of distinct, irreducible, closed subsets of X:

dim(X) = sup {r ∈ N, Z0 ⊂ Z1 ⊂ . . . ⊂ Zr, Zi 6= Zj ⊂ X irreducible and closed} .

The dimension of an affine algebraic variety is its dimension as a topological space (with the
induced topology from the Zariski-topology of the affine space.). One can also define the dimension
of algebraic varieties via the dimension of their (affine) coordinate rings, this will be convenient to
calculate the dimension. We need some new definitions: The (affine) coordinate ring of an affine
algebraic set X ⊂ AnK , denoted by K[X], is defined as the polynomial ring modulo the ideal of X:
K[X] := K[x1, . . . , xn]/I(X). The coordinate ring of the affine space AnK itself is evidently the
polynomial ring K[x1, . . . , xn]. The height of a prime ideal of a ring R, p ⊂ R, is defined as

ht(p) = sup {n ∈ N, p0 ⊂ . . . ⊂ pn = p, pi 6= pj ⊂ R, prime ideals} .

The (Krull) dimension of a ring R is the supremum of the heights of all prime ideals of R.
For K algebraically closed the dimension of an affine algebraic set X ⊂ AnK is equal to the (Krull)
dimension of its coordinate ring K(X). See [Har77, p. 6] for a proof6. By the statement above,
still for algebraically closed fields, the dimension of the affine space AnK is equal to the dimension
of its coordinate ring K[x1, . . . , xn] which is equal7 to n.
One calls an algebraic variety X ⊂ AnK of dimension n− 1 a hypersurface. If K is an algebraically
closed field then a variety X ⊂ AnK is a hypersurface if and only if it is the zero set of just one,
nonconstant, irreducible polynomial f ∈ K[x1, . . . , xn], [Har77, p. ]. If K is not algebraically closed
this is not true: [Ful89, p. 17, Problem 1-26] f(x, y) = y2 + x2(x− 1)2 is irreducible over R but its
zero set is not irreducible.
We will call algebraic sets of dimension one and two algebraic curves and surfaces respectively.

Let X ∈ AnK be an affine algebraic variety of dimension r and I(X) = (f1, . . . , fk) then we say X
is singular at a point p ∈ X if the Jacobean matrix 8 at p, Jf (p) := (∂fi/∂xj)(p) has rank smaller
than n− r. A singular point is also called a singularity . A point is called nonsingular or smooth if
the Jacobean matrix at the point has rank equal to n− r. Note that this definition is independent
from the choice of the generators of I(X). See for example [Har77]

6Sketch of the proof: The prime ideals of the coordinate ring K[X] = K[x1, . . . , xn]/I(X) are in a one to one

correspondence with the prime ideal in K[x1, . . . , xn] that contain I(X) For K algebraically closed the irreducible

closed subsets of X also correspond to the prime ideals in K[x1, . . . , xn] that contain I(X).
7For a proof of this statement see for example [Eis95, p. 281].
8The Jacobean matrix Jf of f = (f1, . . . , fk), is a k × n matrix with entries polynomials in K[x1, . . . , xn]. We

also write ∂xj fi = ∂fi/∂xj for the j-th partial derivative of fi.
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The set of singular points of a variety X is called the singular locus of X and denoted by

Sing(X) := {p ∈ X, rank(Jf (p)) < n− r}.

It can be shown that it is a proper, closed subset of X.
A singularity is called isolated if there exists a neighborhood of it in which there are no other
singular points.
For hypersurfaces of the form X = V (f), f ∈ R[x1, . . . , xn] the singular locus is Sing(X) =
V (f, ∂x1f, . . . , ∂xn

f). We proof this statement:

Sing(X) = {p ∈ X, rank(Jf (p)) < n− dim(X)} =

= {p ∈ Rn,p ∈ V (f), rank(Jf (p)) < 1} =

= {p ∈ Rn,p ∈ V (f), rank((∂x1f, . . . , ∂xnf)) < 1} =

= {p ∈ Rn,p ∈ V (f), (∂x1f, . . . , ∂xnf) = (0, . . . , 0)} = V (f, ∂x1f, . . . , ∂xnf). F

In Chapter 2 we want to construct algebraic hypersurfaces in the real space Rn, with certain
properties. To do that we construct a polynomial f ∈ R[x1, . . . , xn]. Because R is not algebraically
closed the zero set V (f) ⊂ Rn is not necessarily a hypersurface and it does not need to be
irreducible. In general we will only gain algebraic sets of dimension smaller or equal to n− 1.

1.2 Some basics from group theory

As a preparation for the next chapter about invariant theory we want to recall some basics from
group theory9.

A group is a set G together with a map10 G × G → G : (x, y) 7→ xy that is associative, i.e.,
(xy)z = x(yz), has a neutral element 1 (1x = 1x = x) and such that for every element x ∈ G
there exists an element y ∈ G with xy = yx = 1. This element is called the inverse of x and is
written x−1. A group is called commutative or Abelian if xy = yx for all x, y ∈ G.

From now on let G be some group, not necessarily commutative.
The group G acts on a set X (from the left11) if there exists a map (the action) G × X → X :
(g, x) 7→ g · x that satisfies the following two conditions:

(i) For all x ∈ X: 1 · x = x.

(ii) For all g, h ∈ G and x ∈ X: g · (h · x) = (gh) · x.

One says that G acts transitively on X if for all x, y ∈ X there exists an element g ∈ G such that
g · x = y.
Let G be acting on the set X, then the orbit of an element x ∈ X is defined as G · x := {g · x ∈
X; for all g ∈ G} ⊂ X. The stabilizer of an element x of X is the set of all group elements g ∈ G
that leave x fixed, Gx := {g ∈ G; g · x = x} ⊂ G. The set of all elements x ∈ X that are fixed by
an element g ∈ G is denoted by Xg := {x ∈ X; g · x = x} ⊂ X.

9The main sources for this section are [Arm88], [Art98], [Lan02] and [Rot95].
10We write the map multiplicatively. One could also write it additively: x+y. Then the neutral element is usually

denoted by 0 and the group is often considered Abelian.
11There is also the notion of a right group action, defined in the obvious way.
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Groups as we defined them above sometimes are also called abstract groups, because the elements
of the set G stay abstract. Often it is usefull to use matrix representations of a group G. The
n-dimensional matrix representation of a group G as a homomorphism from G to the general linear
group GL(Kn) = {M ∈ Matn×n(K); M invertible}. A representation is said to be faithful if the
homomorphism is injective. Note that one group can be represented in various ways, and that some
properties might depend on the representation and not only on the group itself. Still, when it is
clear what we mean, we will often just speak of a group G ⊂ GL(Kn) and not of its n-dimensional
matrix representation.

In the following we are interested in symmetries of subsets of the Euclidean space, i.e., Rn with
the usual inner product. This means bijective linear maps in the Euclidean space that preserve
distances and map any point of the subset onto another point of the subset. Actually we just
consider maps that leave the origin fixed. All distance preserving maps that leave the origin fixed
form a group, the real orthogonal group. It is isomorphic to the group of all orthogonal n × n-
matrices: On(R) := {M ∈ GLn(R), MMT = MTM = In}. [Rot95, p. 65].
Any matrix group G ⊂Matn×n(K), i.e., a representation of a group consisting of n× n-matrices,
with entries in a field K, acts on the vector space Kn by (matrix) multiplication. A group acting
on Kn also acts naturally on the polynomial ring K[x1, . . . , xn]:

G×K[x1, . . . , xn]→ K[x1, . . . , xn] : (π, P ) 7→ π · P = P ◦ π,

where P ◦ π is defined as composition with the matrix12: (π · P )(x) = (P ◦ π)(x) = P (xπT ).
We prove this: Obviously In · P = P for all polynomials P , so we just have to show the second
condition of a group action: (π1π2) · P = π1 · (π2 · P ). But,

((π1π2) · P )(x) = P (x(π1π2)T ) = P (xπT2 π
T
1 ) = P ((xπT2 )πT1 ) = π1 · (P (xπT2 )) = π1 · (π2 · P (x)). F

Let G be a group acting on Kn and A ⊂ Kn be a subset, then we define the symmetry group of A
(in G), as Sym(A) = {M ∈ G, M(a) ∈ A for all a ∈ A} ⊆ G. In particular we will be interested in
the symmetry groups of object in the real Euclidean space Rn that are subgroups of the orthogonal
group On(R). Therefore, if we speak of the symmetry group of a subset A ∈ Rn, it will always be
the symmetry group13 in On(R).
In Section 1.5 about invariant theory we will need the following notation. We took this definition
from [Stu08, p. 44].

Definition 1. An element π of the general complex linear group GL(Cn) is called a reflection if all
but one of its eigenvalues are equal to one14. A reflection group is a finite subgroup G ⊂ GL(Cn)
that is generated by reflections.

Being a reflection group is an example of a property that does depend on the representation
of a group. For example the two-dimensional representation of the dihedral group Dm, i.e., the
symmetry group of regular polygon (see Section 1.3 on polytopes), is a reflection group while the
three-dimensional is not.

12Note that x = (x1, . . . , xn) is a row vector so we have to multiply the transpose matrix to it from the right.

This also guarantees that the second condition of a group operation are fulfilled.
13Often the symmetry group is defined as a subgroup of SOn(R) instead of On(R). The subgroup of On(R) we

consider here is referred to as a full symmetry group.
14Sometimes these reflections are called “generalized” or “pseudo-reflections”. A reflection by a hyperplane in Rn

has one eigenvalue equal to −1 and all the others equal to 1.
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1.3 Polytopes

In Chapter 2 we describe the construction of “stars” with the symmetries of a Platonic solid. These
solids are a special type of three-dimensional polytopes. This section gives a short introduction to
polytopes in general and then focuses on the 2- and 3-dimensional case. In the very beginning we
discuss some preliminaries.

A set S ⊂ Rn is called convex if the (line) segment15 between any two points x,y ∈ S lies entirely
in S. Given any set S ⊂ Rn one defines its convex hull , denoted by conv(S), as the set of all points
x ∈ Rn for which there exist points x1, . . . ,xm ∈ S and real numbers t1, . . . , tm ≥ 0,

∑m
i=1 ti = 1,

such that x =
∑m
i=1 tixi. Such a sum is called convex combination of the points x1, . . . ,xm.

Alternatively one can define the convex hull of S as the intersection of all convex sets that contain
S, see [Mat02, p. 5, 6].
A hyperplane in Rn is a set h = {x ∈ Rn, x1a1+. . .+xnan = b} for some 0 6= a = (a1, . . . , an) ∈ Rn

and b ∈ R. Hyperlanes have dimension n − 1. The plane h is the boundary of the (closed) half
space16 h+ = {x ∈ Rn, x1a1 + . . .+ xnan ≥ b}.

Now we are ready to define (real) polytopes in Rn. There are two ways to do that, either as
the convex hull of a finite set of points of Rn or as a bounded17 intersection of finitely many half
spaces of Rn. To see that the two definitions are equivalent, some work has to be done, see [Mat02,
p. 82f]. One defines the dimension of a polytope as the dimension of its affine hull18.
A face of a polytope P is either the polytope itself or of the form P ∩ h, where h is a hyperplane
such that P ⊂ h+ or P ⊂ h−. Evidently, the faces of a convex polytope are again convex poly-
topes. The 0-dimensional faces are called vertices, the 1-dimensional ones edges. If the polytope
has dimension m its (m− 1)-dimensional faces are called facets. One says that the empty set is a
face of dimension −1.

A 0-dimensional polytope is a finite set of points, a 1-dimensional one is a line segment. Polytopes
of dimension two are called polygons. Polygons are said to be regular if they are equilateral and
equiangular. Polytopes of dimension three are called solids. In the following we will only consider
convex polytopes, mostly of dimension three.

Given a set S ⊂ Rn one defines its dual set as S∗ := {z ∈ Rn, x1z1 + . . .+xnzn ≤ 1 for all x ∈ S}.
It is easy to verify that for any set S its dual S∗ is closed, convex and contains the origin.

Lemma 1. Let S be any subset of Rn. Then (S∗)∗ is equal to the closure19 of conv(S ∪ {0}). In
particular20, if S is a closed convex set containing 0 then (S∗)∗ = S.

Proof. We start with the first statement and begin with proving the inclusion cl(conv(S ∪{0})) ⊂
(S∗)∗. Suppose z ∈ conv(S ∪ {0}), then by definition of the convex hull there exist elements

15The (line) segment between two points x,y ∈ Rn is defined as the set {z = tx+(1− t)y ∈ Rn, t ∈ [0, 1]} ⊂ Rn.
16This is one of the two half spaces determined by the hyperplane h, the other one is h− = {x ∈ Rn, x1a1 + . . .+

xnan ≤ b}.
17If we do not require boundedness we speak of a polyhedron.
18The affine hull of a set S ⊂ Rn is the set of all affine combinations of points of S. The affine combination of

some points x1, . . . ,xm ∈ Rn is the set {x = t1x1 + . . .+ tmxm ∈ Rn,
Pm

i=1 t1 = 1}.
19The closure with respect to the Euclidean topology, denoted by cl(S), S ⊂ Rn.
20See [Mat02, p. 81].
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x1, . . . ,xm ∈ S ∪ {0} and non negative real numbers t1, . . . , tm with
∑m
i=1 ti = 1, such that

z =
∑m
i=1 tixi. We have to show that zy = z1y1 + . . . + znyn ≤ 1 for all y ∈ S∗. But zy =

(
∑m
i=1 tixi)y =

∑m
i=1 ti(xiy) and xiy = xi1 + . . . + xinyn ≤ 1 for all 1 ≤ i ≤ m, because

xi ∈ S ∪ {0} and y ∈ S∗. Therefore zy ≤
∑m
i=1 ti = 1 which proves that conv(S ∪ {0}) ⊂ (S∗)∗.

But (S∗)∗ is closed and therefore contains the closure of conv(S ∪ {0}).
To prove the second inclusion, we assume that C := cl(conv(S ∪ {0})) is strictly contained in
(S∗)∗, i.e., there exists an element z ∈ (S∗)∗ \ C. Consider D = {z}. Now we have two convex
closed sets C and D with C ∩ D = ∅ and D is bounded. By the separation theorem [Mat02,
Theorem 1.2.3, p. 6] exists a hyperplane h = {x ∈ Rn, ax = a1x1 + . . . + anxn = 1} in Rn such
hat C ⊂ h−, D ⊂ h+ and C ∩ h = D ∩ h = ∅. The inclusion C ⊂ h− implies that ax ≤ 1 for
all x ∈ C = cl(conv(S ∪ {0})). Since S ⊂ C we have a ∈ S∗. D ⊂ h+ means that az ≥ 1. But
z ∈ (S∗)∗ and therefore yz ≤ 1 for all y ∈ S∗. In particular, we have az ≤ 1. All together we
have az = 1 and hence z ∈ D ∩ h, which is a contradiction.
The second statement follows directly from the first one. F

Next consider a convex polytope P of dimension d containing the origin. By the lemma above its
dual P ∗ is again a convex polytope containing the origin and (P ∗)∗ = P . Even more is true: the
i-dimensional faces of P are in one-to-one correspondence with the (d − i − 1)-dimensional faces
of P ∗ for all i = −1, 0, . . . n, see e.g. [Mat02, p. 90]. Thus for three-dimensional convex polytopes
the faces correspond to the vertices of the dual solid and the edges to the edges.

A regular solid is a convex solid whose facets are identical regular polygons and at each of its
vertices the same number of facets meet. There are exactly five regular solids. We omit a proof of
this statement, see for example [Rom68, p. 24f ]. The five regular solids are also named Platonic
solids. They are called tetrahedron, octahedron, hexahedron, icosahedron and dodecahedron and
are displayed in Figure 1.1.
The tetrahedron has four vertices, six edges and four facets. It is dual to itself. Its symmetry
group, denoted by Td, has 24 elements. Octahedron and hexahedron are dual to each other. The
first has six vertices, twelve edges and eight facets, the second eight vertices, twelve edges and six
facets. Another name for the hexahedron is cube. Their symmetry group is denoted by Oh. It is of
order 48. The icosahedron has 12 vertices, 30 edges and 20 facets. It is dual to the dodecahedron,
with 20 vertices, 30 edges and 12 facets. Their symmetry group consists of 120 elements and is
denoted by Ih. For a list of generators of the symmetry groups of the Platonic solids, see Appendix
A.2.

(a) Tetrahedron. (b) Octahedron. (c) Hexahedron. (d) Icosahedron. (e) Dodecahedron.

Figure 1.1: The five Platonic solids.
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Remark 1. The notation for the symmetry groups of the Platonic solids has its origin in the
context of crystallography and the study of symmetries of molecules. In contrast to how we
defined symmetry groups in Section 1.2, in crystallography the definition is usually stated in a
more heuristic way as the group of all transformations that preserve the distance between any
two points of the object (i.e. the molecule or crystal) and bring it to coincide with itself. Such
transformations are rotations, reflections and translations. When studying finite objects such as
molecules, only rotations and reflections are possible and they have to be combined such that at
least one point is left fixed under the action of the whole group. Such groups are called point
groups. In our case the fixed point is the origin and we use certain matrix representations of the
groups.
The usual approach to describe and find all these groups is to first consider only rotations. In this
way one obtains the cyclic groups Cn, consiting of rotations about one axis by 2π/n, the dihedral
groups Dn and the rotational symmetry groups of the Platonic solids, dentoted by T , O and I,
for the tetrahedral, octahedral and icosahedral group respectively. In a second step reflections are
added to the rotations. For every rotational group all manners of adding a reflection such that the
resulting groups is again a point group are considered. The groups that are obtained this way are
denoted by the same letters as the rotational groups, attached with indices that indicate how the
planes of reflections lie with respect to the axes of rotation. In the case of the tetrahedral group
there are two possibilities how to add the reflections: the first one is adding a plane of reflection
trough one edge and the midpoint of the opposite edge of the tetrahedron. If one considers a cube
that shares four vertices with the tetrahedron this plane lies “diagonally” in it, see Figure 1.2a.
Therefore the resulting group is denoted by Td. It is the full symmetry group of the tetrahedron.
The other possibility is a plane of reflection that parallel to two facets of the cube. This group is
denoted Th, the h stands for “horizontal”, see Figure 1.2b. Both have 24 elements, but evidently
Th contains symmetries that the tetrahedron does not have. For the octahedral and the icosahedral
groups the situation is different: there exists only one possibility to place the plane of reflection.
The resulting groups are called Oh and Ih respectively. See [Ham62] for details.

(a) One of the reflection planes

of Td.

(b) One of the reflection planes of

Th.

Figure 1.2: Two possibilities of adding reflection planes to T .

After this small excursion on the notation, we introduce an important propertie of Platonic solids:
They are examples of vertex-transitive solids, i.e., their symmetry group acts transitively on the
set of their vertices. They are also facet-transitive and edge-transitive. Given a Platonic solid
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P , we call the planes through the origin parallel to the planes containing a facet of the solid the
centerplanes21 of P .

A complex solid that has regular polygons as facets and that is vertex transitive is called semi-
regular . The Platonic Solids, the prisms and the antiprisms22 satisfy this condition. Besides these
three families there are exactly 13 more solids that are semi-regular. These 13 solids are called
Archimedean solids and are displayed in Figure 1.3. Note that the Archimedean solids are often
defined as solids that have more than one type of regular polygons as facets but do have identical
vertices in the sense that the polygons are situated around every vertex in the same way. This
definition admits, besides the Platonic solids, prisms, antiprisms and the 13 Archimedean solids, an
additional 14th solid called pseudo rhomb-cub-octahedron or elongated square gyrobicupola. Note
its difference to the rhomb-cub-octahedron: the lower part of the first one is turned by π/4 with
respect to the other one, see Figures 1.3n and 1.3e.
Some authors also include prisms and antiprisms when speaking of Archimedean solids. It is mostly
due to this confusion of definitions that the existence of the pseudo rhomb-cub-octahedron has of-
ten been overseen. Also the sources we used, namely [Rom68, p. 47− 59] and [Cro97, p. 156f and
p. 367], are not very clear about it, see [Grü09]23. We use the definition via vertex transitivity
because that is a property we use in the construction described in Chapter 2.

The duals of the Archimedean solids are called Catalan solids24 or Archimedean duals. Catalan
solids are not semi-regular since they have vertices of more than one type and their facets are not
regular polygons. Obviously they are still convex.
The symmetry groups of each Archimedean and Catalan solid is one of the three symmetry groups
of the Platonic solids or a subgroup of them that only consists of the rotational symmetries and
no reflections. With other words some of the Archimedean and Catalan solids do not have the
full symmetry group of a Platonic solid but just the rotational symmetry group of the octahedron,
O ⊂ SO3(R), or the icosahedron, I ⊂ SO3(R). For a table of all Archimedean and Catalan solids
and their symmetry groups see Appendix A.1.
The Archimedean solids are vertex-transitive whereas the Catalan solids are not. But they are,
unlike the Archimedean solids, facet-transitive25.
The full symmetry group of a regular polygon26 with m vertices is called the dihedral group, has
order 2m and denoted by Dm ⊂ O2(R). The finite subgroups of O2(R) are precisely the cyclic and
the dihedral groups, see e.g. [Arm88, p. 104]

In the 4-dimensional space R4 there exist exactly six convex regular polytopes. This statement
is due to Ludwig Schläfli, a 19th-century mathematician from Switzerland, who first considered
regular polytopes in dimension higher than three. See [Cox48, p.136 and 141f ].

21We follow the notation from [Pie08].
22For a prism or antiprism to be semi-regular, all edges must be of the same length.
23In [Grü09] the 13 Archimedean solids and the pseudo rhomb-cub-octahedron are called Archimedean and the

13 we called that way are called uniform or semi-regular.
24Named after Eugène Charles Catalan, who characterized certain semi-regular solids.
25This follows directly from the duality of Archimedean and Catalan solids and the vertex-transitivity.
26Its symmetry group in SO2(R) is the cyclic group Cm with m elements. One obtains the dihedral groups from

the cyclic groups by adding axes of reflection like described for the symmetry groups of Platonic solids in Remark

1.
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(a) Truncated

tetrahedron.

(b) Cubocta-

hedron.

(c) Truncated

octahedron.

(d) Truncated

cube.

(e)

Rhomb-cub-

octahedron.

(f) Great-

rhomb-cub-

octahedron.

(g) Icosi-

dodecahedron.

(h) Truncated

icosahedron.

(i) Truncated

dodecahedron.

(j) Snub cube. (k)

Rhomb-icosi-

dodecahedron.

(l) Great

rhomb-icosi-

dodecahedron.

(m) Snub

dodecahedron.

(n) Pseudo

rhomb-cub-

octahedron

Figure 1.3: The 13 Archimedean solids and the pseudo rhomb-cub-octahedron.

1.4 Normal forms of simple singularities

For the construction of stars, Chapter 2, we need a tool that allows us to prescribe singularities
in a previously chosen point. This section will provide us with this tool, namely a theorem that
gives necessary conditions for simple singularities in a certain point. It is a result used in the
classification of critical points. We will only introduce whats absolutely necessary to formulate the
theorem. For more details and proofs we refer to [AGZV85, p.192ff].
Note that in [AGZV85] a more general situation is considered. In the following chapters we only
need statements about polynomials f ∈ C[x1, . . . , xn]. The way we present the material here is
therefore general enough.
A (formal) power series in n variables over a field K is a (possible) infinite sum,

f =
∑
k∈Nn

akx
k1
1 . . . xkn

n , ak ∈ K.

We say “formal” because the above sum does not necessarily need to converge. The formal power
series over a field K form a ring, denoted by K[[x1, . . . , xn]]. The polynomial ring is a subring of
the ring of formal power series, K[x1, . . . , xn] ⊂ K[[x1, . . . , xn]], in a canonical way.
As the polynomial ring is, the ring of formal power series is naturally graded by the degree. We
denote the homogeneous parts of degree k by K[x1, . . . , xn]k or K[[x1, . . . , xn]]k respectively.
The (weighted) degree (with weight vector ω = (ω1, . . . , ωn) ∈ Qn) of a monomial xk = xk11 . . . xkn

n

is defined as ωk = ω1k1 + . . .+ ωnkn. Obviously the “usual” degree can be viewed as a weighted
degree with weight vector ω = (1, . . . , 1).
The order of a polynomial (or a power series) is the maximal integer d such that all its monomials
have degree d or higher. Note that apparently the order can also be either a weighted order or the
“usual” one with weights (1, . . . , 1).

We want to prescribe singularities of a certain type at a previously chosen point p. Without loss of
generality we can assume that this point is 0 = (0, . . . , 0). If not, say we want to have a singularity
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at p = (p1, . . . , pn), we consider the polynomial f(x1 + p1, . . . , xn + pn) ∈ K[x1, . . . , xn] instead.

We say that the function f : Cn → C has a critical point at 0 if the first derivative of f at 0
vanishes, i.e., (∂f/∂x1(0), . . . , ∂f/∂xn(0)) = 0. Note that this is the same as to say that 0 ∈ Cn

is a singular point of the hypersurface X = V (f) of f . The multiplicity of the critical point 0 of
the function f is the dimension27 below,

µ := dimC C[[x1, . . . , xn]]/(∂f/∂x1, . . . , ∂f/∂xn). (1.1)

An analytic function f : Cn → C with f(0, . . . , 0) = 0 is called quasihomogeneous of degree d
with weights ω = (ω1, . . . , ωn) if for all λ > 0 the following equation holds f(λω1x1, . . . , λ

ωnxn) =
λdf(x1, . . . , xn). In the following we will only allow rational weights, ω ∈ Qn and consider the
power series expansion of f =

∑
fkx

k. In this case for f to be quasihomogeneous of degree d
means that all indices lie in a hyperplane {k = (k1, . . . , kn) : ω1k1 + . . .+ ωnkn = d} ⊂ Qn. If the
degree d equals one we call this hyperplane the diagonal and denote it by Γ.
A quasihomogeneous function f is said to be nondegenerate if 0 is an isolated critical point, which
is the same as to say that the multiplicity µ of 0 is finite. See [Dim87].
If a polynomial or power series f can be written as the sum of a nondegenerated quasihomogeneous
polynomial f0 of degree d with weights ω1, . . . , ωn and a polynomial (or power series) f ′ of weighted
order strictly greater than d, f = f0+f ′, it is called semiquasihomogeneous of degree d with weights
ω1, . . . , ωn.
One says f has a simple singularity at 0 if it is nondegenerate and the multiplicity µ equals one.
With other words, a simple singularity is an isolated critical point of multiplicity one.

Remark 2. Every quasihomogeneous power series of degree one with weights 0 < ωi ≤ 1/2 is
automatically a polynomial, [AGZV85, p. 192].
Suppose f is a power series, i.e., f =

∑
k∈A akx

k, A ⊂ Nn. Being quasihomogeneous of degree 1
means that for all λ > 0 the following is true f(λω1x1, . . . , λ

ωnxn) =
∑
k∈A akλ

ω1k1+...+ωnknxk =
λ
∑
k∈A akx

k. Hence ω1k1 + . . . ωnkn = 1 for all k ∈ A. If f is not a polynomial then A has
infinite cardinality, i.e., we have an infinite system of linear equations that the weights must sat-
isfy. Such a system of equation must generally not have solutions, hence f must be a polynomial. F

In the following, for the sake of simplicity, we will restrict our self to the case of finite multiplicity,
µ < ∞, i.e., nondegenerate functions. Let f0 be a quasihomogeneous or semiquasihomogeneous
polynomial or power series of degree d with fixed weight vector (ω1, . . . , ωn). Fix a system of
monomials that form a basis of C[[x1, . . . , xn]]/(∂f0/∂x1, . . . , ∂f0/∂xn). A monomial is said to be
lying above (below or on) the diagonal if it has (weighted) degree greater than (less than or equal
to) d. Let e1, . . . , es denote all monomials of the previously chosen basis that lie above the diagonal.

We say a function is equivalent to another, written f ∼ f ′ if there exists a biholomorphic28 change
that turns one into the other. Now we are ready to formulate the main theorem of this section.

Theorem 2. Every semiquasihomogeneous function with quasihomogeneous part f0 is equivalent
to a function of the form f0 +

∑s
k=1 ckek, ck constants.

27Note that this is the dimension of C[[x1, . . . , xn]]/(∂f/∂x1, . . . , ∂f/∂xn) as a C-vector space.
28A function is called biholomorphic, if it is holomorphic, i.e., complex-differentiable, bijective and its inverse is

also holomorphic.
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For the proof of this theorem the following lemma is used,

Lemma 2. Let g1, . . . , gr be all basis monomials of degree d′ > d. Every power series (polynomial)
of the form f0 + f1, with the order of f1 being strictly greater than d is equivalent to f0 + f ′1, where
f ′1 is of the form f ′1 = (monomials of f1 of degree < d′) + (c1g1 + . . .+ crgr).

Proof. For a proof of this lemma we refer to [AGZV85, p. 209f ]. F

Proof of Theorem 2. Apply the lemma repeatedly. See [AGZV85, p. 209f ]. F

One part of the classification of singularities is a complete list of simple singularities, i.e., every
simple singularity of a function in n variables is equivalent to one of the normal forms in Table
1.1. See [AGZV85, p. 245].

Ak xk+1
1 + x2

2 + . . .+ x2
n, k ≥ 1

Dk xk−1
1 + x1x

2
2 + x2

3 + . . .+ x2
n, k ≥ 4

E6 x4
1 + x3

2 + x2
3 + . . .+ x2

n,
E7 x3

1x2 + x3
2 + x2

3 + . . .+ x2
n,

E8 x5
1 + x3

2 + x2
3 + . . .+ x2

n,

Table 1.1: Normal forms of simple singularities.

Note that we want to construct real curves and surfaces. As in the chapter about invariant theory,
also here the theory has been worked out over the algebraically closed field of the complex numbers,
but again we can make use of it in the real setting as well. Theorem 2 allows to decide what kind
of singularity a given polynomial has, considering complex transformations. In Chapter 2 we use
it the other way around. We construct a polynomial that satisfies the conditions of Theorem 2
and then apply only real coordinate changes to it. So we still have the equivalence to the desired
simple singularity, but we can not construct any polynomial equivalent to it, as we do not allow
all biholomorphic transformations.

(a) Plane A2-singularity,

x3 + y2 = 0.

(b) The A++
2 -singularity,

x3 + y2 + z2 = 0.

(c) A+−
2 : x3 + y2 − z2 = 0.

Figure 1.4: Singularities of type A2.

The real zero-set of an A2-singularity for n = 2, 3, i.e., V (x3 + y2) respective V (x3 + y2 + z2) is a
cusp, see Figures 1.4a and 1.4b. To construct “stars” we will only use singularities of this type. As
was already mentioned, in the construction we will only admit real coordinate change and hence
have to consider signs. Because of this, for n = 3 we will have A++

2 with normal form x3 + y2 + z2

and A+−
2 with equation x3 + y2 − z2 = 0 (see Figure 1.4c) instead of just A2.
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1.5 Some invariant theory

The construction of (Platonic) stars described in Chapter 2 is, among other things, based on
some invariant theory. In Chapter 2 and the examples in Chapter 3 we will only be interested in
polynomials with real coefficients (in two or three variables) that are invariant under the action
of subgroups of the real orthogonal group. Since most sources29 work in an algebraically closed
setting we also start by giving some results on the structure of invariant rings of finite subgroups
of the complex general linear group GL(Cn) over C[x1, . . . , xn]. While introducing them, when
needed, we will also quote some results from commutative algebra. In the last part of this section
we shall give an argument why the results still hold if we replace the complex numbers C by the
real ones R.

1.5.1 The invariant ring of finite subgroups of GL(Cn)

For the rest of this section let G ⊂ GL(Cn) be a subgroup of the complex general linear group.
G acts naturally on Cn and hence30 on the polynomial ring C[x1, . . . , xn]. A polynomial f ∈
C[x1, . . . , xn] is called invariant under the action of the group G if it remains unchanged under this
action. Evidently the set of all invariant polynomials is closed under addition and multiplication,
hence it is a subring of the polynomial ring. It is called the invariant ring of G, denoted by
C[x1, . . . , xn]G:

C[x1, . . . , xn]G := {f ∈ C[x1, . . . , xn], f = π · f, for all π ∈ G}. (1.2)

Before we can present the theorems that are important for us we have to introduce an important
tool: the so called Reynolds operator . Following [Stu08, p. 25f ] we define it only for the special
case of a finite group G ⊂ GL(Cn) as:

r : C[x1, . . . , xn]→ C[x1, . . . , xn]G : f 7→ r(f) :=
1
|G|

∑
π∈G

π · f. (1.3)

Lemma 3. The Reynolds operator r is a C-linear map, its restriction to the invariant ring
C[x1, . . . , xn]G is the identity and it is a C[x1, . . . , xn]G-module homomorphism.

Proof. Verifying the first statement, i.e., showing that r(a f + b g) = a r(f) + b r(f), f, g ∈
C[x1, . . . , xn] and a, b ∈ C is an easy calculation,

r(af + bg) =
1
|G|

∑
π∈G

π · (af + bg) =
1
|G|

∑
π∈G

(aπ · f + bπ · g) =

=
1
|G|

a
∑
π∈G

πf +
1
|G|

b
∑
π∈G

πg = a r(f) + b r(g).

The second statement is also evident: Suppose f ∈ C[x1, . . . , xn]G then r(f) = 1
|G|
∑
π∈G π · f =

1
|G|
∑
π∈G f = f = id(f). Finally the third statement is also easy to verify by showing that

r(fg) = fr(g) for all f ∈ C[x1, . . . , xn]G and g ∈ C[x1, . . . , xn]. F

29For the parts on invariant theory we mostly follow [Stu08], the result on commutative algebra can be found in

any book on that subject, we primarily used [AM69] and [BIV89].
30See Section 1.2 for details.
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In general a Reynolds operator for a group is defined as a map satisfying the conditions from this
lemma. Note that not any group has to admit a Reynolds operator. Groups that do admit one
are called reductive. Now we are ready for a very important theorem in invariant theory, namely
Hilbert’s finiteness theorem. It can also be stated more generally than we do31. Namely with G

being a reductive group and any algebraically closed field K, see [DK02, p. 46 and 49].

Theorem 3 (Hilbert’s finiteness Theorem). The invariant ring C[x1, . . . , xn]G of a finite subgroup
G ⊂ GL(Cn) is finitely generated as a C-algebra.

Proof. Let IG ∈ C[x1, . . . , xn] be the ideal generated by all homogeneous invariants of posi-
tive degree. By the properties of the Reynolds operator from Lemma 3 it follows that any
invariant of G is a linear combination of the symmetrized monomials r(xk11 . . . xkn

n ). There-
fore IG = (r(xk11 . . . xkn

n ), (0, . . . , 0) 6= (k1, . . . , kn) ∈ Nn). By Hilbert’s Basis Theorem IG is
finitely generated, i.e., there exist finitely many homogeneous invariants f1, . . . , fm such that
IG) = (f1, . . . , fm). Now we show that every homogeneous invariant is an element of C[f1, . . . , fm].
Suppose that this is not true. Let f ∈ C[x1, . . . , xn]G\C[f1, . . . , fm] be homogeneous and of mini-
mal degree with these properties. As f ∈ IG we have f =

∑m
j=1 ajfj where the aj ∈ C[x1, . . . , xn]

are homogeneous polynomials of degree less than f . We apply the Reynolds operator:

f = r(f) = r(
m∑
j=1

ajfj) =
m∑
j=1

r(aj)fj .

The r(aj) are homogeneous invariants of degree less then the degree of f . We assumed that f has
minimal degree among the polynomials in C[x1, . . . , xn]G\C[f1, . . . fm], therefore the r(aj) must
be contained in C[f1, . . . fm], but this implies that f ∈ C[f1, . . . fm], which is a contradiction. F

Hilbert’s finiteness Theorem says that for any finite subgroup G ⊂ GL(Cn) there exist invari-
ants, say g1, . . . , gk ∈ C[x1, . . . , xn]G such that any invariant h can be written as a polynomial
in g1, . . . , gk. With other words C[x1, . . . , xn]G = C[g1, . . . , gk]. Note that the gj need not be
algebraically independent, i.e., there might exist an algebraic relation, 0 6≡ R ∈ C[y1, . . . , yk] such
that R(g1, . . . , gk) = 0.

Theorem 4. The invariant ring C[x1, . . . , xn]G has the same (Krull) dimension as the polynomial
ring C[x1, . . . , xn]:

dim(C[x1, . . . , xn]G) = dim(C[x1, . . . , xn]) = n.

Proof. In Section 1.1 we have allready stated that the dimension of the C[x1, . . . , xn] is n. It
remains to be shown that dim(C[x1, . . . , xn]G) = dim(C[x1, . . . , xn]). By Proposition 9.2 from
[Eis95] we have dim(R) = dim(S) if the ring S is integral over the ring R. In our situation this
means that if we only have to show that C[x1, . . . , xn] is integral over C[x1, . . . , xn]G.
Suppose the order of G is m. For all i we can define the polynomial

Pi(t) :=
∏
π∈G

(t− (π · xi)) = tm + ai,1t
m − 1 + . . .+ ai,m−1t+ ai,m ∈ C[x1, . . . , xn][t].

It is invariant under the action of G and hence also its coefficients are invariants, i.e., Pi ∈
C[x1, . . . , xn]G[t] for all i = 1, . . . , n. Obviously xi is a root of Pi or with other words, all the
xi are integral over C[x1, . . . , xn]G. Hence C[x1, . . . , xn] is integral over C[x1, . . . , xn]G. F

31We refer to [Stu08, p. 26] for this version and proof of the theorem.
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Lemma 4 (Noether’s Normalization Lemma). Let R be a finitely generated C-algebra of dimen-
sion n that does not contain zero divisors. Then there exist elements y1, . . . , yn ∈ R, that are
algebraically independent upon C, such that R is a finitely generated as a C[y1, . . . , yn]-module.
If R is additionally graded then the yi may be chosen homogeneously.

Proof. For the proof we refer to [Eis95, p. 283] or [HB93, p. 37]. F

For any graded algebra R we say that a set of homogeneous element {u1, . . . , un} ⊂ R, of positive
degree is called a homogeneous system of parameters32 if R is finitely generated as a C[u1, . . . , un]-
module and the u1, . . . , un are algebraically independent.
We have just proven that there exists a homogeneous system of parameters for the invariant ring of
any finite groupG ⊂ GL(Cn). Before we go on we resume shortly how. Hilbert’s finiteness Theorem
guarantees that C[x1, . . . , xn]G is a finitely generated C-algebra. By Theorem 4 it has dimension
n. Hence we can apply (the graded version of) Noether’s Normalization Lemma, which says that
there exist n homogeneous, algebraically independent (upon C) elements, say u1, . . . , un, such that
the invariant ring is finitely generated as a C[u1, . . . , un]-module, i.e., that form a homogeneous
system of parameters.
Having a homogeneous system of parameter is already quite good, but even more is true: we
will see in Theorem 6 that C[x1, . . . , xn]G is a free finitely generated C[u1, . . . , un]-module. Such
modules are called Cohen-Macaulay. With the help of the next theorem we make this concept
precise.

Theorem 5. Let R be a graded C-algebra with homogeneous system of parameters u1, . . . , un.
Then the following two conditions are equivalent.

1. R is a free, finitely generated C[u1, . . . , un]-module, i.e., there exist elements s1, . . . , st ∈ R
such that R =

⊕t
j=1 sjC[u1, . . . , un].

2. For all choices of homogeneous systems of parameters v1, . . . , vn the algebra R is a free,
finitely generated C[v1, . . . , vn]-module.

A graded C-algebra R with homogeneous system of parameters u1, . . . , un is called Cohen-Macaulay
if the two equivalent conditions from Theorem 5 hold.
During the proof of Theorem 5 we need the notion of a regular sequence and the following lemmas
about it. Let R be a (commutative) ring. A sequence y1, . . . , yr ∈ R is called regular if y1 is not a
zero divisor in R, yi is not a zero divisor in R/(y1, . . . , yi−1) for 2 ≤ i ≤ r and R 6= (y1, . . . , yr).

Lemma 5. Let R is a graded C-algebra of dimension n and y1, . . . , yn ∈ R homogeneous elements
of positive degree and algebraically independent upon C. Then y1, . . . , yn form a regular sequence
if and only if R is a free module over the subring C[y1, . . . , yr].

Proof. We refer to [Sta79, Lemma 3.3]. F

Lemma 6. Let R be a graded C-algebra.

1. For a1, . . . , an ∈ N positive one has: u1, . . . , un ∈ R homogeneous of positive degree form
a homogeneous system of parameters (or regular sequence) if and only if ua1

1 , . . . , u
an
n are a

homogeneous system of parameters (or regular sequence).
32This definition is taken from [DK02, p. p.61], in [Stu08, p. 37] it is claimed that the algebraic independence

follows from the other conditions.
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2. Let u1, . . . un be a homogeneous system of parameters of R with deg(ui) = deg(uj) for all
1 ≤ i, j ≤ n and v1, . . . vn any other homogeneous system of parameters of R. Then there
exist c1, . . . , cn ∈ C such that v1, . . . , vn−i, c1u1 + . . .+ cnun is again a homogeneous system
of parameters.

Proof. See [Stu08]. F

Now we are ready for the,

Proof of the Theorem 5. The implication from the second to the first condition is obvious. So
lets assume that R a finitely generated free C[u1, . . . , un]-module. By Lemma 5 this means that
the homogeneous system of parameters u1, . . . , un is a regular sequence. Let v1, . . . , vn be any
homogeneous system of parameters. Again by Lemma 5 it is sufficient to show that the v1, . . . , vn
is a regular sequence. We do that by induction on n.
n = 1: Let u ∈ R be homogeneous, deg(u) > 0 and regular, i.e., u is not a zero divisor and v ∈ R
a homogeneous parameter of positive degree but not regular, i.e., v is a zero divisor. Then we can
choose a homogeneous element of positive degree 0 6= f ∈ R such that vf = 0. This means that v is
an element of the annihilator of f , Ann(f) := {g ∈ R, gf = 0}. Therefore also the ideal generated
by v is contained in the annihilator: (v) ⊂ Ann(f). But v is a parameter of the one-dimensional
ring R. It follows that R/(v) and hence also R/Ann(f) have dimension zero. Therefore um = 0 in
R/Ann(f) for some m ∈ N , i.e., um is a zero divisor in R and hence not regular. By the first part
of Lemma 6 this is a contradiction to the assumption that u is regular which proves the statement.
(n − 1) → n: Again by the first part of Lemma 6 we can assume that deg(ui) = deg(uj) for all
i, j ∈ {1, . . . , n}. Now choose u as in the second part of Lemma 6, i.e., u = c1u1 + . . .+cnun, ci ∈ C
such that v1, . . . , vn−i, u is a homogeneous system of parameters. Suppose (after relabeling) that
u1, . . . , un−1, u are linear independent over C. Then u1, . . . , un−1, u is a regular sequence in R and
hence u1, . . . , un−1 a regular sequence in S := R/(u). By the choice of u the v1, . . . , vn−1 form a
homogeneous system of parameters of S. By induction (S is of dimension n− 1) v1, . . . , vn−1 is a
regular sequence in S and v1, . . . , vn−1, u a regular sequence in R. Hence u is no zero divisor in the
one-dimensional ring R/(v1, . . . , vn−1). Again by induction vn is also not a zero divisor and hence
v1, . . . , vn a regular sequence in R. F

The following theorem, first appeared in an article by M. Hochster and J. A. Eagon, [HE71].

Theorem 6. If G ⊂ GL(Cn) is a finite subgroup then its invariant ring C[x1, . . . , xn]G is Cohen-
Macaulay.

For the proof we need the following lemma.

Lemma 7. Let R be a graded C-algebra with homogeneous system of parameters u1, . . . , un that
is Cohen-Macaulay and s1, . . . , st ∈ R. Then R =

⊕t
j=1 sjC[u1, . . . , un] if and only if s1, . . . , st

form a C-vector space basis of R/(u1, . . . , un).

Proof. Suppose s1, . . . , st ∈ R are as in Theorem 5, then R =
⊕t

j=1 sjC[u1, . . . , un]. Rewrite that
as

R =

(
t⊕
i=1

siC

)
⊕

 ⊕
(i1,...,in)∈Nn\{0}

t⊕
i=1

siu
i1
1 . . . uinn C

 .
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The second sumand is just the ideal (u1, . . . , un) so R/(u1, . . . , un) =
⊕t

i=1 siC which means that
the si are a vector space basis. On the other hand if they are a vector space basis we can write
R/(u1, . . . , un) =

⊕t
i=1 siC which implies analogously that R =

⊕t
j=1 sjC[u1, . . . , un]. F

Proof of Theorem 6. In the proof of Theorem 4 we have already shown that C[x1, . . . , xn] is inte-
gral over its subring C[x1, . . . , xn]G, i.e., it is finitely generated as a C[x1, . . . , xn]G-module.
The set of all polynomials that are mapped to zero by the Reynolds operator, U := {f ∈
C[x1, . . . , xn], r(f) = 0}, also form a C[x1, . . . , xn]G-module. One can write the polynomial ring
as the direct sum of modules: C[x1, . . . , xn] = C[x1, . . . , xn]G ⊕ U .
We allready showed that there exists a homogeneous system of parameters u1, . . . , un for the in-
variant ring. The polynomial ring C[x1, . . . , xn] is finitely generated as a C[x1, . . . , xn]G-module
and C[x1, . . . , xn]G is finitely generated as a C[u1, . . . , un]-module. Therefore C[x1, . . . , xn] is also
finitely generated as a C[u1, . . . , un]-module and hence u1, . . . , un is a homogeneous system of pa-
rameters for C[x1, . . . , xn] as well. Viewing x1, . . . , xn as a homogeneous system of parameters it
becomes apparent that the polynomial ring is Cohen-Macaulay. Therefore, by Theorem 5, it is
also a finitely generated, free C[u1, . . . , un]-module.
From C[x1, . . . , xn] = C[x1, . . . , xn]G ⊕ U one gets another decomposition of vector spaces,

C[x1, . . . , xn]/(u1, . . . , un) = C[x1, . . . , xn]G/(u1, . . . , un)⊕ U/(u1U + . . .+ unU).

Choose a homogeneous C-basis s̄1, . . . , s̄t, ¯st+1, . . . , s̄r ∈ C[x1, . . . , xn]/(u1, . . . , un) such that the
first t elements are a basis of the first sumand above and the last r− t elements a basis of the sec-
ond one. Now one can choose homogeneous elements s1, . . . , st ∈ C[x1, . . . , xn]G and st+1, . . . sr ∈
U such that s̄1, . . . , s̄t and ¯st+1, . . . , s̄r are their image under the projection C[x1, . . . , xn] →
C[x1, . . . , xn]/(u1, . . . , un).
By Lemma 7 we have C[x1, . . . , xn] =

⊕r
i=1 siC[u1, . . . , un] and therefore C[x1, . . . , xn]G =⊕t

i=1 siC[u1, . . . , un] which means that the invariant ring is Cohen-Macaulay. F

In the situation from above theorem, i.e., when we consider an invariant ring, the direct sum from
Theorem 5 is called Hironaka decomposition. The elements of the homogeneous system of param-
eters {u1, . . . , un} are named primary invariants and the elements s1, . . . , st secondary invariants.
The number of secondary invariants depends on the degrees of the primary invariants and on the
order of the group G, see [Stu08, p. 41]. There exist algorithms to calculate these invariants, see
[Stu08]. One is implemented in the free Computer Algebra System SINGULAR33.

Being Cohen-Macaulay means that each invariant polynomial f has a unique decomposition

f =
l∑

j=1

sjPj(u1, . . . , un),

for some polynomials Pj ∈ C[x1, . . . , xn]. But even better, for some groups each invariant can
actually be written as just as a polynomial in the primary invariants. This is the following Theorem
by Shepard, Todd and Chevalley.

33See www.singular.uni-kl.de/index.html for informations about SINGULAR and www.singular.uni-kl.de/

Manual/latest/sing_1189.htm#SEC1266 for the respective instruction.
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Theorem 7 (Shepard-Todd-Chevalley). Let G ⊂ GL(Cn) be a finite subgroup. Its invariant ring
C[x1, . . . , xn]G is generated (as an algebra) by n algebraically independent homogeneous invariants
if and only if G is a reflection group34.

Proof. For a proof of this theorem we refer to [Stu08, p. 44ff]. F

This means, if G is a reflection group we only need the primary invariants to generate the in-
variant ring, the only secondary invariant is 1. Hence we can write any invariant polynomial
f ∈ C[x1, . . . , xn]G as a (uniquely determined) polynomial in the primary invariants: f(x) =
P (u1, . . . , un).

In the very beginning of this chapter we mentioned that for the construction described in Chapter
2 we need the real situation instead of the complex one presented here. Next we will show how we
can deal with this problem.

1.5.2 The invariant ring R[x1, . . . , xn]G:

The invariant ring R[x1, . . . , xn]G: Let G ⊂ GL(Rn) be a finite subgroup. Then there exist n
homogeneous, algebraically independent polynomials u1, . . . , un ∈ C[x1, . . . , xn] (called the primary
invariants of G) and l (depending on the cardinality of G and the degrees of the ui) polynomials
s1, . . . , sl ∈ C[x1, . . . , xn] (the secondary invariants of G) such that the invariant ring decomposes
into C[x1, . . . , xn]G =

⊕l
j=1 sjC[u1, . . . , un]. There are algorithms to calculate these primary and

secondary invariants, see [Stu08, p.25]. Also in [Stu08, p.1] it is claimed that if the scalars of the
input for these algorithms are contained in a subfield K of C, then all the scalars in the output will
also be contained in K. So in our case with G ⊂ GL(Rn), the primary and secondary invariants
will be real polynomials: u1, . . . , un, s1, . . . , sl ∈ R[x1, . . . , xn].
Now the claim is the notation above: R[x1, . . . , xn]G =

⊕l
j=1 sjR[u1, . . . , un].

Proof. The first inclusion R[x1, . . . , xn]G ⊃
⊕l

j=1 sjR[u1, . . . , un] is trivial. We prove the opposite
inclusion: Let f ∈ R[x1, . . . , xn]G ⊂ C[x1, . . . , xn]G be an invariant polynomial. As C[x1, . . . , xn]G

equals
⊕l

j=1 sjC[u1, . . . , un], we can write f in the following, unique way:

f(x1, . . . , xn) =
l∑

j=1

sj
∑
α∈A

cjαu
α,

where cjα = djα + iejα are complex constants, and A is some finite subset of Nn. Then

f(x1, . . . , xn) =
l∑

j=1

sj

(∑
α∈A

djαu
α + i

∑
α∈A

ejαu
α

)

=
l∑

j=1

sj
∑
α∈A

djαu
α + i

l∑
j=1

sj
∑
α∈A

ejαu
α

= f1(x1, . . . , xn) + if2(x1, . . . , xn).

(1.4)

Here f1 and f2 are real polynomials. Since f is also contained in the real polynomial ring, f2 must
be equal to zero. But from f2(x1, . . . , xn) =

∑l
j=1 sj

∑
α∈A ejαu

α =
∑
α∈A (

∑l
j=1 sjejα)uα = 0 it

34See Definition 1 in Section 1.2.
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would follow that for all α ∈ A the sum
∑l
j=1 sjejα must be equal to zero, since the ui are alge-

braically independent. Hence f = f1(x1, . . . , xn) =
∑l
j=1 sj

∑
α∈A djαu

α ∈
⊕l

j=1 sjR[u1, . . . , un].
F
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Chapter 2

Construction of hypersurfaces

with prescribed symmetries and

singularities

In this chapter we shall finally present a method to construct hypersurfaces with prescribed sym-
metries and isolated singularties of a special type1. We choose a group G, which is a finite subgroup
of the real orthogonal group On(R) that is also a reflection group. Next we consider a finite set
of points P ⊂ AnR on which G acts transitively. Our aim is to construct a real hypersurface whose
symmetry group is equal to G and that has singularities of type A2 exactly in the points of P .
In the examples presented in Chapter 3 we will only consider the two and three dimensional case.
If n = 2 the group G will be a dihedral group Dm and P will be the set of vertices of a regular
polygon (with m vertices). For n = 3, the group G will be the tetrahedral, octahedral or icosahe-
dral group and P will denote either the set of vertices of a Platonic or of an Archimedean solid.
In Section 2.3 we shall mention two small generalizations of the construction. First the case that
G is not a reflection group. Examples of this situation can be found in Section 3.4. Secondly we
will choose a set of points P on which G does not act transitively. For example one can choose P
to be the set of vertices of a Catalan solids, see the examples in Section 3.3.
For both n = 2 and n = 3 we demand even more than that. As we described in the introduction
we want to construct “stars”. For the “definition” we need one new notation. An A2-singularity
has normal form x3

1 + x2
2 + . . . + x2

n = 0, see Section 1.4. For n = 2 the corresponding zero set
is symmetric with respect to the x1 axis, for n = 3 it is a rotational surface, see Figure 1.4b.
Its axis of rotation is the x1-axis. In both cases we call the x1-axis the tangent-line of the cusp
Y = V (x3

1 + x2
2 + . . . + x2

n), n = 2, 3, at the origin. Apparently it is not the tangent-line in the
differential geometrical sense2. One can also view this line as the limit of secants of Y with one
point of intersection being the singular point 0 and the other point of intersection moving towards
0. Now let X be any variety with a singularity of type A2 at a point p. Then we define the
tangent-line at this point analogously. Note that it need no longer be an axis of rotation.

1We will only consider isolated singularities of type A2, theoretically one could also use any other type presented

in Section 1.4 about normal forms of isolated singularities.
2The origin is a singularity of the cusp, i.e., the surface is not a manifold there. Hence differential geometric

methods fail there.

21
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We want to emphasize that the following are not rigorous mathematical definitions.

Definition 2 (Plane stars). Let P be a regular polygon with m vertices. Its symmetry group in
O2(R) is the dihedral group denoted by Dm. A plane m-star is a plane algebraic curve that is
invariant under the action of the dihedral group Dm and has exactly m singularities of type A2 in
the vertices3 of P “pointing away form the origin” (see Figure 2.1). Otherwise, i.e., if the cusps
“point towards to the origin” we speak of a plane m-anti-star. The tangent-lines of X at p, for p
being a singular point, should be the lines through the origin and p.

(a) Plane cusp “facing

outside”, (x− 1)3 + y2 = 0.

(b) Plane cusp “facing

inside”, (x− 1)3 − y2 = 0.

Figure 2.1: Plane cusps.

Definition 3 (Platonic, Archimedean, Catalan stars). Let S be a Platonic (Archimedean, Catalan)
solid and m the number of its vertices. Denote its symmetry group in O3(R) by G. An algebraic
surface X that is invariant under the action of G and has exactly m isolated singularities of type
A2 in the vertices of the solid, is called a Platonic (Archimedean, Catalan) star . We require that
the cusps point outwards, otherwise we speak of an anti-star. In both cases for all singular points
p the tangent-lines of X at p should be the lines through the origin and p.

It would be interesting to demand two more properties: boundedness4 and connectedness. This
properties would be necessary to reach the goal of actually constructing a figure that, heuristically
speaking, “looks like a star”. Including them during the construction would probably lead to
results with less free parameters than we obtained. Nonetheless we do not consider this additional
problems.

2.1 Recipe

For the rest of this section G denotes a finite subgroup of the real orthogonal group On(R)
which additionally is a reflection group, and P ⊂ AnR a finite set of points on which G acts
transitively. In Section 1.5 it has been shown that for such a group G there exists a set of pri-
mary invariants {u1, . . . , un} ⊂ R[x1, . . . , xn]G that generate its invariant ring as an R-algebra:
R[x1, . . . , xn]G = R[u1, . . . , un]. In the following we always assume that we have already con-
structed a set of homogeneous primary invariants. See A.6 for an example of the respective
SINGULAR input and output.

3In the examples presented in Section 3.1 we will choose the vertices to lie in the mth roots of unity.
4There are approaches for constructing bounded curves or surfaces, see for example [KG99] or [TCS+94].
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Our aim is to construct stars with symmetry group G and singularities in all points of P . We can
reformulate this goal by saying we want to construct a polynomial f ∈ R[x1, . . . , xn]G. Note that
we have to choose the degree r of the polynomial. We will discuss this choice later on.
Let di denote the degree of the i-th primary invariant, di := deg(ui). To make the notation more
compact we use multi-indices. We can write this polynomial in the following unique way,

f(u) = f(u1, . . . , un) =
∑
αd≤r

aαuα, where aα ∈ R. (2.1)

The zero set of such a polynomial has the desired symmetries, so we move on and prescribe
singularities in the points of P . As the group acts transitively on P the algebraic set corresponding
to the polynomial (2.1) has to have the same local geometry at each point of P . Therefore it is
sufficient to choose one point and impose conditions on f(u) there, in order to guarantee an A2-
singularity.
We can always suppose that P contains the point p := (1, 0, . . . , 0), otherwise we perform a
coordinate change. We will use results from Section 1.4. There we assumed that the critical point
is the origin. So first we have to translate, or consider the Taylor expansion of f at p, i.e., substitute
x1 + 1 for x1 in f(u(x1, . . . .xn)) and denote it by F . We have the following necessary condition
for an A2-singularity, with c1, . . . , cn being real constants not equal to zero,

F (x1, . . . , xn) := f(u(x1 + 1, x2, . . . , xn)) = c1x
3
1 + c2x

2
2 + . . .+ cnx

2
n + higher order terms. (2.2)

To see that this is really a necessary condition we apply Theorem 2. We have to fix weights such
that f0 = c2x

2
2 + . . .+ cnx

2
n + c1x

3
1 is quasihomogeneous of degree one: ω = (1/3, 1/2, . . . , 1/2). In

(2.2) “higher order terms” refers to terms of weighted order bigger than 1. Then the polynomial
F from (2.2) is a semiquasihomogeneous function with quasihomogeneous part f0.
The theorem states that a semiquasihomogeneous function with quasihomogeneous part f0 is equiv-
alent to a function of the form f0 +

∑s
k=1 bkek, with bk being constants and ek all elements of a

monomial basis of C[[x1, . . . , xn]]/(∂f0/∂x1, . . . , ∂f0/∂xn) = C[[x1, . . . , xn]]/(x2
1, x2, . . . , xn) that

lie above the diagonal, i.e., xα with 1/3α1 +1/2α2 + . . .+1/2αn > 1. But no such basis monomials
exist. Therefore such a function is equivalent to f0, i.e. has the desired singularity. F

If we are in the plane case, i.e., n = 2, we will demand that c1 and c2 have the same sign, to
guarantee that the cusps will “face outside”, otherwise they will “face inside”. If n = 3 we want
c2 and c3 to have the same sing, or even to be equal, to prescribe an A++

2 and not an A+−
2 . If

additionally c1 has the same sign as c2 and c3 the cusps will “face outside”, otherwise they will
“face inside”.
If we expand F (x1, . . . , xn) and compare the coefficients of x1, x2, . . . , xn with the right hand side
of Equation (2.2), we obtain a system of linear equations in the unknown coefficients of f from
(2.1), i.e., in our notation the aα. In general this system of equations will be under-determined. We
will be left with free parameters, as we will see in the examples. By choosing the free parameters
well we can achieve the additional properties mentioned in the beginning of this section, i.e.,
boundedness and connectedness. Note that for the visualizations of the examples the parameters
are often chosen that way, but in no systematic manner but merely by “good guessing”.
Evidently, in this construction we have to choose the degree r of the indetermined polynomial f .
If we choose it too small the system of equation will be over-determined and we may not have
a solution. We will chose r “as small as possible” in the sense that the system is still solvable.
Obviously the degree r has to be greater or equal to three and depends on the degrees of the
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primary invariants ui.
Now we demonstrate the construction in one detailed example.

2.2 Explanatory example: Octahedral and hexahedral stars.

Example 1 (Octahedral and hexahedral stars). The octahedron and the cube - or hexahedron -
have the same symmetry group Oh, of order 48, see Section 1.3. We choose coordinates x, y and
z of R3 such that in these coordinates the vertices of the octahedron are (±1, 0, 0), (0,±1, 0) and
(0, 0,±1). Then Oh is generated by two rotations σ1, σ2 around the x and the y-axes by π/2 and
the reflection against the x, y-plane τ , see A.2.

These matrices are the input for the algorithm implemented in SINGULAR that computes the primary
and secondary invariants5. In this example the primary invariants that generate the invariant ring
are the following,

u(x, y, z) = x2 + y2 + z2,

v(x, y, z) = x2y2 + y2z2 + x2z2,

w(x, y, z) = x2y2z2.

(2.3)

Octahedral stars: Clearly we need to start with an indeterminate polynomial of even degree
greater than two. A degree four polynomial yields no solvable system of equations therefore we
try a polynomial of degree six,

f(u, v, w) = 1 + a1u+ a2u
2 + a3u

3 + a4uv + a5v + a6w.

We substitute x+ 1 for x and expand the resulting polynomial F (x, y, z) = f(u(x+ 1, y, z), v(x+
1, y, z), w(x+ 1, y, z)). As described in Section 2.1 all monomials which have weighted norm (with
weights ω = (1/3, 1/2, 1/2)) smaller or equal to 1, except x3, y2 and z2, must not appear. All
such monomials are the constants, the linear and the quadratic terms. Therefore the coefficients
of these terms in the left hand side of (2.2) have to be zero. This yields the following system of
linear equations6:

Constant term of F : 1 + a1 + a2 + a3 = 0,
Coefficient of x : 2a1 + 4a2 + 6a3 = 0,
Coefficient of x2 : a1 + 6a2 + 15a3 = 0,
Coefficient of y2 and z2 : a5 + a1 + a4 + 2a2 + 3a3 = c1,

Coefficient of x3 : 4a2 + 20a3 = c2.

(2.4)

Solving the first three equations from the system (2.4) yields the polynomial (2.5) with three free
parameters. In addition we get an inequality from the condition that the coefficient of x3 must have
the same sign as the coefficient of y2 and z2 if we want to obtain a star. Substituting the solution
of the first three equations yields c1 = a4 + a5 and c2 = −8. Therefore we impose a4 + a5 6= 0 to
obtain a star or an anti-star,

f(u, v, w) = (1− u)3 + a4uv + a5v + a6w, with a4 + a5 6= 0. (2.5)

5See A.6 for the SINGULAR input in the (more involved) example of the icosahedral group Ih.
6The monomials y, z, xy, xz, yz do not appear, we do not obtain further equations from them.
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From the construction it is clear that for a4 + a5 = 0 the zero set of (2.5) cannot have singularities
of type A2, so it has to be either smooth or have singularities of a different type. If all three
parameters are equal to zero we obtain the sphere of radius one, i.e., a smooth7 surface. Another
choice for which a4 + a5 = 0 holds, −a5 = a4 = 1 and a6 = −10, is displayed in Figure 2.2. The
vertices of the corresponding octahedron are still isolated singularities but not of type A2, actually
they are not even simple. In the other examples similar behavior may appear. If we choose a4 = c,

Figure 2.2: V (f) with a4 = 1, a5 = −1 and a6 = −10.

a5 = 0 and a6 = −9c, c 6= 0, the corresponding zero set is neither an octahedral star since it has
too many singularities (we will describe this case more detailed in Section 3.3, Example 12). For
the other choices of parameters the corresponding zero sets are octahedral stars for a4 + a5 < 0
(Figures 2.3a, 2.3b and 2.3c), or anti-stars for a4 + a5 > 0 (Figures 2.3d and 2.3e). Sometimes
additional components appear and the stars or anti-stars become unbounded.

(a) Octahedral star,

a4 = 0, a5 = −100,

a6 = 0.

(b) Octahedral star,

a4 = −10, a5 = 0,

a6 = 100.

(c) Octahedral star,

a4 = 20, a5 = −100,

a6 = 0.

(d) Octahedral

anti-star, a4 = 8,

a5 = −6, a6 = 0.

(e) Octahedral

anti-star, a4 = 2,

a5 = 1, a6 = 0.

Figure 2.3: Octahedral stars and anti-stars.

Hexahedral stars: Now we present the case of the Platonic solid dual to the octahedron,
namely the cube, or hexahedron. If we use the same coordinates as before, it has vertices in
(± 1√

3
,± 1√

3
,± 1√

3
). For the construction we want one vertex to lie in (1, 0, 0). We need to perform

a coordinate change after which the hexahedron has one vertex in (1, 0, 0). This is the same as
rotating the hexahedron. After this coordinate change we remain with new invariants in the new
coordinates. With these invariants we can proceed as in the example of the octahedron. In the

7Actually if we choose all three parameters to be zero the resulting polynomial is (1−u)3. Its zero set is a sphere,

but it is taken three times. Therefore, if we stick to our definition of a singular point from Section 1.1, actually all

of its points are singular.
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Appendix A.4 we discuss the coordinated change explicitly. Again we need a polynomial of degree
six, since degree four yields no solution. After solving the system of equations we perform the con-
verse coordinate change and obtain the following polynomials (2.6) as candidates for hexahedral
stars or anti-stars,

f(u, v, w) = 1− 3u+ a2u
2 + a3u

3 + a4uv + (9− 3a2)v − 9(3 + a4 + 3a3)w, (2.6)

with 3a2 + 9a3 + 2a4 6= 0. For a2 = 3, a3 = −1 and a4 = 0 we obtain the sphere. If we choose
the parameters of the polynomial in (2.6) such that 3a2 + 9a3 + 2a4 = 0 we can not have A2-
singularities. Again there exists one choice of parameters, namely a2 = 3, a3 = −1 and a4 = c 6= 0,
for which the surface has too many singularities. We obtain the same object as in the example of
the octahedral star, see Example 12 for details. In the other cases we obtain a hexahedral star for
3a2 + 9a3 + 2a4 < 0 (Figures 2.4a, 2.4b and 2.4c), or anti-star for 3a2 + 9a3 + 2a4 > 0 (Figure
2.4d), even though, as in the example of the octahedral stars, additional components may appear.

(a) Hexahedral star,

a2 = −100, a3 = 0,

a4 = 0.

(b) Hexahedral star,

a2 = 1, a3 = 0,

a4 = −2.

(c) Hexahedral star,

a2 = 6, a3 = −1,

a4 = −6.

(d) Hexahedral

anti-star, a2 = 6,

a3 = −1, a4 = 0.

Figure 2.4: Hexahedral stars and anti-stars.

2.3 Three generalizations

2.3.1 G is not a reflection group

Let G be a finite subgroup of On(R) but not a reflection group. Then by Theorem 6 and the
remark on the real situation from Section 1.5 the invariant ring admits the Hironaka decomposition
R[x1, . . . , xn]G =

⊕t
j=1 sjR[u1, . . . , un]. We assume that we have already constructed a set of

primary and secondary invariants, u1, . . . , un and s1, . . . , st. Then a polynomial f ∈ R[x1, . . . , xn]G

of degree r can uniquely be written in the form, (with fj ∈ R[u1, . . . , un]),

f(x1, . . . , xn) =
t∑

j=1

sjfj =
t∑

j=1

sj
∑

αjd≤r−ej

aαj u
αj , where aαj ∈ R, (2.7)

where ej = deg sj , j = 1, . . . , t, d = (d1, . . . , dn) and di = deg ui. Then we can proceed as in the
case of G being a reflection group, i.e. consider the Equation (2.2). See Section 3.4 for examples
of this construction.
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2.3.2 G does not act transitively

Let G be a finite subgroup of On(R) that is a reflection group (or not) as before. But now let
P ⊂ Rn be a finite set of points on which G does not act transitively. This situation occurs for
example if we want to construct a Catalan star, since Catalan solids are not vertex-transitive. See
Section 3.3 for examples.
Assume that P consists of k orbits under the action of G. Then we have to choose k points
p1, . . . , pk ∈ P and prescribe singularities there. We probably will have to perform a coordinate
change for every point pj after which it is of the form (bj , 0, . . . , 0), bj 6= 0 ∈ R. Note that, as the
points probably have different Euclidean norm we can not just assume that after the coordinate
change they are equal to (1, 0, . . . , 0). Using the general invariant polynomial (2.1) (or (2.7) if G
is not a reflection group) we obtain k equations of the form,

Fj(x1, . . . , xn) := f(u(x1 + bj , x2, . . . , xn)) = cj1x
3
1 + cj2x

2
2 + . . .+ cjnx

2
n+ higher order terms. (2.8)

Here “higher order terms” also refers to terms of weighted8 order greater than one. Again we want
cj2, . . . , c

j
n all to have the same sign to obtain A++

2 singularities. If bj > 0 then cj1 and cj2, . . . , c
j
n

have to have the same sign to obtain stars, if bj < 0 they have to have different signs.

Singularities of different types than A2: Applying Theorem 2 one could theoretically pre-
scribe any simple singularity in any point. Still there might emerge some problems. We will discuss
this with the help of some examples, see Section 3.5.

8With weights ω = (1/3, 1/2, . . . , 1/2).
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Chapter 3

Examples

3.1 Plane dihedral stars

In this section we present examples of plane stars, that we defined in the previous chapter, Def-
inition 2. We shall compare the results from our construction with another one, namely the
hypocycloids, that also produces plane stars in our sense. So before we go on to presenting the ex-
amples we shortly introduce hypocycloids. For a list of all primary invariants used in the examples
see Appendix A.3.

3.1.1 Hypocycloids and the implicitization of trigonometric curves

A hypocycloid is the trace of a point P on a circle of radius r, rolling within a bigger circle of radius
R. This situation is illustrated with Figure 3.1, for R = 1 and r = 1/4. To find the parameterization

Figure 3.1: An Astroid with generating circles.

of a hypocycloid we have to give the coordinates of the point P depending on the angle ϕ. The
center M of the smaller circle has coordinates ((R− r) cosϕ, (R− r) sinϕ). The coordinates of P
with respect to the center M are (r cos (2π − ϑ), r sin (2π − ϑ)) = (r cosϑ,−r sinϑ). Therefore the
coordinates of P with respect to the origin are ((R− r) cosϕ+ r cosϑ, (R− r) sinϕ− r sinϑ). For

29
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ϕ = 0 the point P coincides with the point Q. Because the smaller circle rolls on the bigger one,
the length of the arc Q′P on the small circle has to be the same as the length of the arc QQ′ on
the big one. Hence Rϕ = r(ϑ+ ϕ). Subsituting ϑ according to this equation yields

P (ϕ) =

(
(R− r) cosϕ+ r cos R−rr ϕ

(R− r) sinϕ− r sin R−r
r ϕ

)
, ϕ ∈ [0, 2π]. (3.1)

If the ratio of the radii is an integer, R : r = k, the curve is closed and has exactly k “cusps” but
no self-intersections. The parameterization of such a hypocycloid is given in (3.2).(

x(ϕ)
y(ϕ)

)
=

(
(k − 1)r cosϕ+ r cos (k − 1)ϕ
(k − 1)r sinϕ− r sin (k − 1)ϕ

)
, ϕ ∈ [0, 2π]. (3.2)

Hypocycloids are only one example of curves generated by tracing a point related to a circle. Oth-
ers are cycloids - the trace of a point of a circle rolling on a line - or epicycloids, where the small
circle rolls on the outside of the bigger circle. The resulting curves of the latter ones could be
compared with the plane anti-stars like we will compare the hypocycloids with the plane stars.
There are a lot of sources on cycloids and related curves, see for example [Law72].

Hypocycloids with parameterization (3.2) evidently “look like stars” but we have to show that they
really are plane stars in the sense of Definition 2. First of all we have to see if they are algebraic
after all, i.e., if there exists a polynomial whose zero set coincides with the parameterized curve.
Such a polynomial is also called implicitization of the curve. In [HS98] it is shown when there
exists an implicitization for trigonometric curves such as the hypocycloids. We do not want to go
into detail, but we sketch how one can find the implicitization if it exists. A trigonometric curve
is a curve that can be parameterized in the following way,

[0, 2π]→ R2 : ϕ 7→

( ∑m
k=0 ak cos kϕ+ bk sin kϕ∑n
k=0 ck cos kϕ+ dk sin kϕ

)
, ak, bk, ck, dk ∈ R.

Parameterizations are called simple if the curve (possibly except finitely many points) is traced
only once. A simplification of a parameterized curve is a simple parameterization of the same curve.
A trigonometric curve admits an implicitization if and only if it has a trigonometric simplification.
Therefore lets assume that a simple trigonometric parameterization1 [0, 2π]→ C. By substituting
cos (kϕ) by zk+z−k

2 and sin (kϕ) by zk−z−k

2i , with z lying on the unit circle S1 ⊂ C, one obtains a
parameterization S1 → C. It can be written in the following way, called the complex form of the
trigonometric parameterization, z → (P (z)/zm, Q(z)/zn). Here P and Q are complex polynomials
in one variable of degree 2m and 2n respectively. Given a simple trigonometric parameterization,
its implicitization is given by

f(x, y) = resultantz(P (z)− zmx,Q(z)− zny).

This is Theorem 3.2 in [HS98]. For a proof and more details on simplifications and implicitization
we refere to the same paper.

Recalling the way hypocycloids are constructed it becomes apparent that, for k > 2, the param-
eterization we give is simple and hence admits an implicitization2. It is also evident that the

1Note that now, for the sake of convenience, we consider the curve to be in the complex plane.
2The hypocycloid for k = 2 is parameterized by (2r cosϕ, 0) where ϕ is in [0, 2π]. So it is not an algebraic curve

but an interval on the x-axis.
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symmetry group of a hypocycloid with parameterization (3.2) is the dihedral group Dk. It remains
to be shown that the “cusps” indeed are singularities of type A2 to show that they are plane stars.
We checked this, using Theorem 2 on simple singularities, for each example presented separately.

In the construction of stars via primary invariants we always try to find a polynomial of minimal
degree that satisfies these properties. We will see that sometimes the hypocycloids coincide with
the stars we obtain that way. In one of the examples presented here, namely the 5-star, the
degree of the implicitization of the hypocycloid is higher than the degree of the polynomial our
construction yields.

3.1.2 Examples

Example 2 (2-stars). The group D2 has primary invariants

u(x, y) = x2,

v(x, y) = y2.
(3.3)

Our constructions yields the degree six polynomial (3.4) with six free parameters,

f(u, v) = (1− u)3 + a1v + a2uv + a3v
2 + a4uv

2 + a5u
2v + a6v

3, (3.4)

with a1 + a2 + a5 6= 0. The corresponding curves are stars for a1 + a2 + a5 < 0 an‘d anti-stars
otherwise. Note that it can look a lot different then we might expect or desire, see Figure 3.2. The

(a) a1 = 0, a2 = 0, a3 = 0,

a4 = 0, a5 = 1, a6 = 0.

(b) a1 = 0, a2 = −1, a3 = 1,

a4 = −1, a5 = 1.5, a6 = −1.

(c) a1 = −1, a2 = 0, a3 = 0,

a4 = 1, a5 = 0.5, a6 = −1.

Figure 3.2: Some plane 2-stars and anti-stars.

choice a1 6= 0 and the remaining parameters equal to zero yields the simple equation,

f(u, v) = (1− u)3 + a1v, with a1 6= 0. (3.5)

For a1 < 0 we obtain a 2-star, for a1 > 0 anti-stars. The corresponding curve runs through the
points (0,± 1√

−a1
) and is bounded. See Figure 3.3a. For a1 > 0 it is an unbounded anti-star. In

both cases it has two singularities in (±1, 0).
Note that we managed to construct 2-stars, while the other possible construction, via hypocycloids
does not work here.

Example 3 (3-stars). The primary invariants of D3 are

u(x, y) = x2 + y2,

v(x, y) = x3 − 3xy2.
(3.6)
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In this case a degree four polynomial suffices to generate a star, see Figure 3.3b. The polynomial
(3.7) is completely determined, we have no free parameters. It coincides with the hypocycloid for
k = 3, which is also called deltoid,

f(u, v) = 1− 6u− 3u2 + 8v. (3.7)

(a) A 2-star (3.5), c1 = −4. (b) The deltoid. (c) The astroid.

Figure 3.3: Some plane dihedral stars.

Example 4 (4-stars). The dihedral group of order eight, D4, has primary invariants,

u(x, y) = x2 + y2,

v(x, y) = x2y2.
(3.8)

The construction described in Chapter 2 yields the following polynomial of degree six with two
free parameters,

f(u, v) = (1− u)3 + a1v + a2uv, with a1 + a2 6= 0. (3.9)

For a1 + a2 < 0 we obtain stars, for a1 + a2 > 0 anti-stars. In both cases additional components
may appear. The curves become unbounded for a2 > 4.
The hypocycloid with four cusps is also called astroid. Its implicit equation is (1− u)3 − 27v = 0.
So if we choose a1 = −27 and a2 = 0 in (3.9) we obtain the same curve. It is displayed in Figure
3.3c.

Example 5 (5-stars). The primary invariants of D5 are

u(x, y) = x2 + y2,

v(x, y) = x5 − 10x3y2 + 5xy4.
(3.10)

A polynomial of degree four yields no solution. If we try a degree five polynomial, we obtain
polynomial (3.11) with no free parameters. It only permits anti-stars.

f(u, v) = 1− 10
3
u+ 5u2 − 8

3
v. (3.11)

Note that it is just a special case, choosing the free parameter a = 0, of the following polynomial
for plane 5-stars and anti-stars of degree six,

f(u, v) = 1− a+ 10
3

u+ (2a+ 5)u2 − 8
3

(1 + a)v + au3, with a 6= −1, 5. (3.12)
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If we look closer at this equation and let the parameter value a vary we observe a quite interesting
behavior. For a < −1 one obtains a star, the smaller a gets, the smaller gets its “inner radius”,
see Figure 3.4a. The choice a = −1 yields a circle with radius one. Note that the five singularities
of the curves (3.12) always lie on this circle. For −1 < a < 5 the cusps of (3.12) point inwards,
i.e., we have anti-stars. For −1 < a < 0 the curve has one bounded component, for a = 0, it is
unbounded with five components, Figure 3.4b. For 0 < a < 5 the curve is again bounded, but
has five components, like drops falling away from the center, Figure 3.4c. For a = 5 we only have
finitely many real solutions, the five points that are singular in the other cases. If we choose a > 5
we obtain stars again, i.e., the cusps point outwards, even though for 5 < a < 80 the curve also has
five components, like drops falling towards the origin, Figure 3.4d. The curve we obtain for a = 80
is special since it has self intersections, i.e., five additional singularities. They lie on a circle with
radius one quarter, on a regular pentagon. These “extra singularities” are of type3 A1. One could
call this curve an algebraic pentagram. For a > 80 the curve has two components, see Figure 3.4e.

(a) ac ≤ −1. (b) −1 ≤ a ≤ 0. (c) 0 ≤ a ≤ 5.

(d) 5 ≤ a ≤ 80. (e) a ≥ 80.

Figure 3.4: 5-stars and anti-stars with varing parameter value a.

The implicit equation of the hypocycloid (3.13) with five cusps is already of degree eight, while
the polynomial we found with our construction has degree six. The two cannot coincide for any
choice of the free parameter a.

3Plane curve A1-singularities, see Table 1.1 in Section 1.4.
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Figure 3.5: Zero set of the implicit equation of the hypocycloid with five cusps (3.13).

f(x, y) = −243
125

+
108
25

(x2 + y2) +
6
25

(x2 + y2)2 +
12
25

(x2 + y2)3 + (x2 + y2)4−

− 512
125

(x5 + 5y4x− 10x3y2). (3.13)

3.2 Platonic and Archimedean stars

We already gave the examples of two Platonic stars4, namely the octahedral and hexahedral stars,
in the previous chapter. In this section we will present the remaining ones, i.e., tetrahedral,
icosahedral and dodecahedral stars. Then we give examples of stars corresponding to selected
Archimedean solids.
For details on Platonic and Archimedean solids see Section 1.3, for a table of the generators and
primary invariants of the symmetry groups used, Td, Oh and Ih, see Appendix A.2 and A.3.

3.2.1 The remaining Platonic stars

Example 6 (Tetrahedral stars). If we choose coordinates x, y, z such that the tetrahedron has
vertices p1 = (1, 1, 1), p2 = (−1,−1, 1), p3 = (1,−1,−1) and p4 = (−1, 1,−1) the invariant ring
of the tetrahedral group Td is generated by the primary invariants displayed in (3.14). One could
also choose (1, 0, 0) as a vertex to avoid a coordinate change during the construction, but then the
invariants would be more complicated. Note the difference to the invariants (2.3) of the octahedron
and the hexahedron,

u(x, y, z) = x2 + y2 + z2,

v(x, y, z) = xyz,

w(x, y, z) = x2y2 + y2z2 + z2x2.

(3.14)

4See Definition 3 in Section 2.1.
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A degree three polynomial yields no solution but a degree four polynomial already suffices,

f(u, v, w) = 1− 2u+ au2 + 8v − (3a+ 1)w, with a 6= 1. (3.15)

For a < 1 we obtain a star, for a > 1 an anti-star (with singular points exactly in the vertices given
above). If we choose a = 1 in (3.15) the polynomial has four linear factors, see Figure 3.6j:

(x− 1 + z − y)(x− 1− z + y)(x+ 1− z − y)(x+ 1 + z + y).

The planes corresponding to this linear factors intersect each other in the six lines {x = 1, y − z},
{x = −1, y + z}, {y = 1, x− z}, {y = −1, x+ z}, {z = 1, x− y} and {z = −1, x+ y}, that contain
the edges of our tetrahedron. This lines are evidently the singular locus of the surfaces.
For very small a values there seem to appear four additional cusps in the vertices of a tetrahedron
that would be dual to the first one. But these points stay smooth for all a ∈ R.

Remark 3. We proof this statement: The vertices of a tetrahedron dual to the first one - with
vertices p1, . . . .p4 - are just −pi, i = 1, . . . 4. Because of the symmetry of the surface it is sufficient
to consider just one vertex of the dual tetrahedron, say q = −p1 = (−1,−1,−1). We subsitute
dp1 = (d, d, d) in (f, ∂xf, ∂yf, ∂zf) from (3.15) and get the system of equations (1 − 6d2 + 8d3 −
3d4,−4d + 8d2 − 4d3,−4d + 8d2 − 4d3,−4d + 8d2 − 4d3). Its only zero is d = 1 which is just
the singularities in the vertices of the tetrahedron we prescribed. This system of equations is
independent from the parameter a, so there is no other singularity in this direction for all values
of a. F

Substituting (d, d, d) just into f yields another zero, d = −1/3. This means for all a ∈ R the
surface V (f) passes through the (smooth) points −1/3 pi.

For 0 < a < 1 the zero set of our polynomial has additional components, besides the desired “star
shape”. For a > 1 we get anti-stars, see Figure 3.6.

(a) a = −100000. (b) a = −1000. (c) a = −100. (d) a = −3. (e) a = −1. (f) a = 0.

(g) a = 0.3. (h) a = 0.6. (i) a = 0.98. (j) a = 1. (k) a = 1.02. (l) a = 3.

Figure 3.6: Tetrahedral star (and anti-star) with varying parameter value a, for a > 0

the images are clipped by a sphere with radius 5.

Example 7 (Icosahedral and dodecahedral stars). As was mentionend in the first chapter the icosa-
hedron and the dodecahedron share the same symmetry group Ih. Its invariant ring is generated
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by the following polynomials5,

u(x, y, z) = x2 + y2 + z2,

v(x, y, z) = −z(2x+ z)(x4 − x2z2 + z4 + 2(x3z − xz3) + 5(y4 − y2z2) + 10(xy2z − x2y2)),

w(x, y, z) =
(
4x2 + z2 − 6xz

)(
z4 − 2z3x− x2z2 + 2zx3 + x4 − 25y2z2 − 30xy2z − 10x2y2 + 5y4

)(
z4 + 8z3x+ 14x2z2 − 8zx3 + x4 − 10y2z2 − 10x2y2 + 5y4

)
.

(3.16)

Note that both v and w factor into linear polynomials. In Appendix A.5 we give this factorization
explicitly.
In both of the following examples, the icosahedral and dodecahedral stars, the “smallest possible
degree” is six. The third invariant w has degree ten so we do not use it in both cases.

Icosahedral stars. The equation for the icosahedral star is the following,

f(u, v, w) = (1− u)3 + au3 + av, with a 6= 0. (3.17)

Figure 3.7 shows icosahedral stars (a < 0) and anti-stars (a > 0) for various a values. For a = 0
we get a sphere of radius one. For all a 6= 0 the 12 singularities of the surface lie on this sphere.
For a = 27/32 the surface has points at infinity in the direction of normals to the facets of the
corresponding icosahedron. Note that this is just the negative value of a for which the dodecahedral
stars are unbounded. The illustrations suggest that for a > 27/32 the surfaces become unbounded
while they are bounded for a < 27/32.

(a) a = −1000. (b) a = −100. (c) a = −10. (d) a = −0.1. (e) a = 0.

(f) a = 0.1. (g) a = 0.5. (h) a = 0.8. (i) a = 27/32. (j) a = 0.9.

Figure 3.7: Icosahedral star and anti-star, with varying parameter a, for a > 27/32

the surfaces are clipped by a sphere with radius 11.

5See Appendix A.6 for the SINGULAR input and output for calculating them.
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Dodecahedral stars Our construction yields the following polynomial of degree six in the in-
variants (3.16),

f(u, v, w) = (1− u)3 − 5
27
au3 + av, with a 6= 0, (3.18)

For a > 0 each of the surfaces of this family is a Platonic star. If we choose a < 0 we get anti-stars.
The choice a = 0 yields an ordinary sphere of radius one. See Figure 3.8 for the effect of varying
the parameter a. Note that the singularities stay fixed at a sphere of radius one for all parameter
values, so for a < 0 we have to zoom out to be able to show the whole picture. For a = −27/32
the anti-star has a point at infinity in the direction of the z-axis, which is one of the normals of
the facets of the dodecahedron. By symmetry it will also have points at infinity in the direction
of the normals of the remaining facets. As in the example of icosahedral anti-stars the pictures
suggest that for a > −27/32 the dodecahedral anti-stars and stars are bounded while they remain
unbounded for a < −27/32.

Remark 4. On the (un)boundedness of dodecahedral (anti-) stars: f depends on a free parameter
c, our aim is to find out for which values of c the zero set of f is bounded, i.e., has no zeros “at
infinity”. Regard the homogenization of (3.18) F (x, y, z, t) = tdf(xt ,

y
t ,
z
t ) ∈ R[x, y, z, t], where d

is the degree of f . The zero set of f is unbounded (has zeros at infinity) if F (x, y, z, 0) has (real)
solutions.
F (0, 0, 1, 0) is a linear equation in c with solution c = −27/32, so we know that V (f) is unbounded
at the point (0, 0, 1), which is a normal to a facet of the dodecahedron corresponding to V (f).
Because of the symmetry it will also be unbounded along the normals of the other facets.

(a) a = −300. (b) a = −30. (c) a = −15. (d) a = −3. (e) a = −1.5. (f) a = −27/32.

(g) a = −0.6. (h) a = −0.3. (i) a = −0.03. (j) a = 0. (k) a = 0.003. (l) a = 0.03.

(m) a = 0.3. (n) a = 3. (o) a = 30. (p) a = 81. (q) a = 300. (r) a = 3000.

Figure 3.8: Dodecahedral star with varying parameter value a, for a ≤ −27/32 the

surfaces are clipped by a sphere of radius 4.5.
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3.2.2 Some Archimedean stars

Example 8 (Truncated tetrahedral stars). One obtains the truncated tetrahedron by cutting of
the vertices of a tetrahedron, such that one remains with a solid with 12 vertices6, 18 edges and
8 facets - 4 regular triangles and 4 regular hexagons. See Figure 1.3a. Its dual is the Triakis
tetrahedron that will be presented in Example 11. Evidently it shares its symmetry group with
the tetrahedron, hence we use the same invariants (3.14). We obtain the following polynomial of
degree six,

f(u, v, w) = (1− u)3 +
3

88
√

11
(a2 − 3a1)u+ a1v + (

5
22
√

11
a1 −

2
33
√

11
a2)u2−

−
√

11
4

(a1 +
1
3
a2)w + a2uv −

1
264
√

11
(53a1 + 13a2)u3 − 11

√
11

10
(a1 + a2)v2+

+
√

11
60

(11a1 + a2)uw, (3.19)

with a1+a2 6= 0 and 3(a1−a2)−176
√

11 6= 0. If this two terms have different signs we obtain stars,
see Figure 3.9a, if they are both either positive or negative anti-stars, Figure 3.9b. For a1 = a2 = 0
the zero set of equation (3.19) is a sphere.

(a) Truncated tetrahedral star,

a1 = 0, a2 = 100.

(b) Truncated tetrahedral

anti-star, a1 = 0, a2 = −1.

Figure 3.9: Truncated tetrahedral stars and anti-stars.

Example 9 (Cub-octahedral stars). The cub-octahedron is the Archimedean solid with 14 facets (6
squares and 8 equilateral triangles), 24 edges and 12 vertices. See Figure 1.3b. Its symmetry group
is the one of the octahedron and cube. Therefore we use the invariants (2.3). Our construction
yields the following polynomial of degree six, with three free parameters,

f(u, v, w) = 1− 3u+ a1u
2 + (12− 4a1)v + a2u

3 − (4 + 4a2)uv + a3w, (3.20)

with a1 + a2 6= 2 and 8(a1 + a2) − a3 6= 16. For a1 = 3, a2 = −1 and a3 = 0 we obtain a sphere.
In this example we have a new kind of behavior. So far the coefficients of y2 and z2 in the Taylor

6We choose them to lie on a sphere of radius one, therefore the vertices of “our” truncated tetrahedron

and hence the singularities of the corresponding stars are (3/
√

11, 1/
√

11, 1/
√

11), (3/
√

11,−1/
√

11,−1/
√

11),

(1/
√

11, 1/
√

11, 3/
√

11), (−1/
√

11,−1/
√

11, 3/
√

11), (−1/
√

11,−3/
√

11, 1/
√

11), (1/
√

11,−3/
√

11,−1/
√

11),

(1/
√

11, 3/
√

11, 1/
√

11), (−1/
√

11, 3/
√

11,−1/
√

11), (−3/
√

11,−1/
√

11, 1/
√

11), (−3/
√

11, 1/
√

11,−1/
√

11),

(1/
√

11,−1/
√

11,−3/
√

11), (−1/
√

11, 1/
√

11,−3/
√

11).
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expansion of f in (1, 0, 0) were the same and we got inequalities from the conditions that it should
have the same sign as the one of x3. In this case the coefficient of x3 is −8, but y2 and z2 have
different coefficients, namely a1 + a2 − 2 and 16 − 8(a1 + a2) + a3 respectively. So if both are
negative we obtain stars, see Figure 3.10a, if both are positive anti-stars, but if they have different
signs, we will no longer have a A++

2 - or A−−2 -singularity, as we want, but a A+−
2 -singularity7. The

singularities always lie on a sphere of radius one.

(a) Cuboctahedral star, a1 = 0,

a2 = 0, a3 = −100.

(b) Soccer star, a1 = −100,

a2 = −100, a3 = −100,

a4 = −100.

Figure 3.10: Two Archimedean stars.

Example 10 (Soccer star). The truncated icosahedron is the Archimedean solid which is obtained
by “cutting off the vertices” of a icosahedron, dividing the edges into three segments of the same
length. It is known as the shape of a soccer ball. It has 32 facets (12 regular pentagons and
20 regular hexagons), 60 vertices and 90 edges. See Figure 1.3h. Its symmetry group is the
icosahedral group Ih. For this example we finally need the third of the invariants (3.16), since the
first polynomial that yields a solvable system of equations is of degree 10. We obtain the following
equation with four free parameters,

f(u, v, w) = 1 +

 
128565 + 115200

√
5

1295029
a3 +

49231296000
√

5− 93078919125

15386239549
a4 − a1 − 3a2 − 3

!
u+

+

 
−230400

√
5− 257130

1295029
a3 +

238926989250− 126373248000
√

5

15386239549
a4 + 3a1 + 8a2 + 3

!
u

2
+

+

 
115200

√
5 + 128565

1295029
a3 +

91097280000
√

5− 172232645625

15386239549
a4 − 3a1 − 6a2 − 1

!
u

3
+

+

 
a3 +

121075− 51200
√

5

11881
a4

!
v +

 
102400

√
5− 242150

11881
− 2a3

!
uv + a1u

4
+ a2u

5
+ a3u

2
v + a4w,

(3.21)

with

a4 6= 0,

b(a1, a2, a3, a4) := (991604250− 419328000
√

5)a4 + 20316510a3 + (135776068− 121661440
√

5)a2

+ (33944017− 30415360
√

5)a1 + 30415360
√

5− 33944017 6= 0.

(3.22)

We obtain stars if we choose a1, a2, a3 and a4 such that a4 and b(a1, a2, a3, a4) have the same sign.
Otherwise we obtain anti-stars. See Figure 3.10b.

7With normalform x3 + y2 − z2 = 0. See Figure 1.4c in Section 1.4.
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3.3 Catalan stars and “relatives”

So far we only constructed surfaces with a set of isolated singularities on which its symmetry
group acts transitively, now we want to see what happens if it does not act transitively. How this
works theoretically has been explained in Section 2.3.2. An example for this are Catalan stars as
“defined” in the beginning of Chapter 2. The vertices of a Catalan solid do not all have the same
Euclidean norm. Sometimes we also give examples of stars with singularities in the direction of the
vertices of a Catalan solid that all have the same norm. This is want we mean with “relatives”.
Such a surface appeared by chance as a special case in Example 1 of hexahedral and octahedral
stars, we describe the resulting surface in Example 12.

Example 11 (Triakis tetrahedral stars). The triakis tetrahedron is the Catalan solid dual to the
truncated tetrahedron. Its symmetry group is the tetrahedral group Td, so we use its invariants
(3.14). It has 8 vertices8, 18 edges and 12 facets, which are isosceles triangles. We obtain the
following polynomial of degree seven with four free parameters,

f(u, v, w) = 1− 23
9
u+ a1u

2 +
26
27
v + (

509
81
− 3a1)w − 20

9
uv + a2u

3−

− (
425
27

+ 9a4 + 27a2)v2 + a4uw + a3u
2v + (

250
81
− 3a3)vw, (3.23)

with

b1(a1, a2, a3, a4) :=6a1 + 54a2 + 6a3 + 12a4 +
248
27
6= 0,

b2(a1, a2, a3, a4) :=
54
25
a1 +

4374
625

a2 −
1458
3125

a3 +
972
625

a4 −
8
75
6= 0.

(3.24)

In this examples we have to fix two vertices, one in each orbit of the group action on the vertices.
The term b1 is the coefficient of y2 and z2 in the expansion (2.8) at the first point, b2 the one at
the second point. At both points the coefficient of x3 does not depend on the free parameters, at
the first point it is 512/243

√
3, at the second one 5632/1215

√
3. Therefore the appearance of the

surface depends on b1 and b2 in the following way9: If b1 > 0 and b2 < 0 we have stars (Figure
3.11a), if b1 < 0 and b2 > 0 anti-stars (Figure 3.11b). If both are either positive (Figure 3.11c) or
negative (Figure 3.11d) at the same time we have cusps pointing outwards at four vertices forming
one orbit and cusps pointing inwards at the remaining four. We did not find “a good choice” of
parameters that would produce “nice” pictures as in the other examples, but we did not search
systematically for it so this does not necessarily mean that there exists none.

Remark 5. Note that the “relative” of a triakis tetrahedral star would be one with cusps in the
vertices of a tetrahedron and the tetrahedron dual to it with the same length. This is the same
as a hexahedral star. If we try to construct it with the invariants (3.14) of the tetrahedron, fixing
two vertices, we yield the same polynomial (2.6) as with the invariants (2.3) of the octahedral
group. Note that the primary invariants of the tetrahedral group Td and of the octahedral group
Oh correspond to each other in the following way:

uOh
= uTd

,

vOh
= wTd

,

wOh
= v2

Td
.

8The vertices of a tetrahedron and its dual, which have differnet lengths, namely in an aspect ratio of 5/3. We used

p1 = (1, 1, 1), p2 = (−1,−1, 1), p3 = (−1, 1,−1), p4 = (1,−1,−1), q1 = (−3/5,−3/5,−3/5), q2 = (3/5, 3/5,−3/5),

q3 = (3/5,−3/5, 3/5) and q4 = (−3/5, 3/5, 3/5).
9See Section 2.3 for details.
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(a) A star,

a1 = a2 = a3 = a4 = 0.

(b) An antistar, a1 = 23/9,

a2 = 1, a3 = −10, a4 = −5.

(c) a1 = 1,

a2 = a3 = a4 = 0.

(d) a1 = −100,

a2 = a3 = a4 = 0.

Figure 3.11: Triakis tetrahedral stars.

Example 12 (Rhombic dodecahedral and 14-stars).

14-stars. In Section 2.2 we mentioned that in both the example of the octahedral and the hex-
ahedral star, there exits a choice of the free parameters10, for which a special behavior appears:
The surfaces have “too many” singularities, namely 14 instead of the 8 respective 6 we prescribed.
The singularities are of type A2 and lie exactly in the vertices11 of the octahedron and the hexa-
hedron dual to it. This object has the following defining polynomial, with u, v and w the primary
invariants of the octahedral group (2.3),

f(u, v, w) = (1− u)3 + auv − 9aw, with a 6= 0. (3.25)

We will call this object a 14-star or 14-anti-star for a < 0 or a > 0 respectively. The parameter
value a = 0 yields obviously a sphere of radius one. See Figure 3.12 for an illustration of the effect
of varying the parameter.
This star does not correspond to a Platonic or Archimedean solid, but to the solid S that is the
convex hull both of the vertices of a hexahedron and an octahedron that lie on one sphere. It has
14 vertices, 36 edges and 24 facets, which are isosceles triangles. See Figure 3.13a. It is remarkable
that it appears as a special case of hexahedral and octahedral stars since the symmetry group Oh
does not act transitively on its vertices. Evidently its vertices lie in two orbits of the action of Oh
on R3. Note that, because of this, if we would construct such a star, we would have to choose
two points and prescribe singularities there, like it was described in Section 2.3. Performing this
construction yields the same polynomial (3.25) as we obtained by chance.
Note that if the vertices of the octahedron and the cube do not to lie on one sphere but have have
different Euclidean norms of a certain ration, namely 2/

√
3, this solid is a Catalan solid, called

rhombic dodecahedron (14 vertices, 12 facets, every two triangles form a rhombus, 24 edges) which
is the dual of the Archimedean solid called cub-octahedron. See Section 3.2 for cub-octahedral
stars. In the next paragraph we will present the rhombic dodecahedral stars.

Rhombic dodecahedral stars. To construct a rhombic dodecahedral star, that is, an algebraic
surface with symmetry group Oh and singularities in the vertices of the rhombic dodecahedron

10We obtain the polynomial (3.25) by substituting a4 = a, a5 = 0 and a6 = −9a, a 6= 0 in the polynomial of the

octahedral stars (2.5) or a2 = 3, a3 = −1 and a4 = a 6= 0 in the one of the hexahedral stars (2.6).
11This is (±1, 0, 0), (0,±1, 0), (0, 0,±1) and (±1/

√
3,±1/

√
3,±1/

√
3).
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(a) a = −10000. (b) a = −1000. (c) a = −100. (d) a = −10. (e) a = −1. (f) a = −0.1.

(g) a = 0. (h) a = 0.1. (i) a = 1. (j) a = 3.5. (k) a = 4. (l) a = 5.

Figure 3.12: 14-stars and anti-stars, for a ≥ 4 the surfaces are clipped by a sphere

with radius 5.

(a) Solid S corresponding to the

14-star.

(b) The rhombic dodecahedron.

Figure 3.13: 14-solid and the rhombic dodecahedron.

(see Appendix A.1), we need a polynomial of degree eight. With the invariants (2.3) we get,

f(u, v, w) = 1− (
9
4

+
64
27
a1)u+ (

27
16

+
16
3
a1)u2 + (

16
3
a1 −

45
16

)v − (
27
64

+ 4a1)u3+

+ (
321
64
− 28

3
a1 −

1
9
a3)uv + a3w + a1u

4 + a4v
2 + a2u

2v + (37a1 −
81
4
− 3a4 − 9a2)uw,

(3.26)

with

b1 =
837
2
− 768a1 − 16a3 + 192a2) 6= 0,

b2 = 256a1 − 81 6= 0,

b3 =
2619
32
− 150a1 + 36a2 − 4a3 + 6a4 6= 0,

b4 = 256a1 − 189 6= 0.

(3.27)

It is a star if each of the pairs b1, b2 and b3, b4 have the same sign, see Figure 3.14a. If b1 and b2

have different signs and b3 and b4 also have different signs we obtain anti-stars, Figure 3.14b. If b1
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has the same sign as b2 but b3 and b4 have different signs, the cusps point outwards in the vertices
the rhombic dodecahedron shares with an octahedron, and inwards in the vertices that come from
a hexahedron, Figure 3.14c. If b1 and b2 have the same sign but b3 and b4 have different ones it is
the other way around.

(a) Rhombic dodecahedral star,

a1 = 3, a2 = 100, a3 = −100,

a4 = 0.

(b) Rhombic dodecahedral

anit-star, a1 = 3, a2 = 100,

a3 = −100, a4 = 0.

(c) a1 = 100/256, a2 = 0,

a3 = 100, a4 = 0.

Figure 3.14: Rhombic dodecahedral stars and anti-stars.

Figures 3.15 should emphasize the difference between the 14- and the rhombic dodecahedral star,
with the help of a sphere of radius one.

(a) 14-star, c = −50, with

sphere of radius one.

(b) Rhombic dodecahedral

star with sphere of radius

one.

Figure 3.15: 14-star and rhombic dodecahedral star.

Example 13 (32-stars). In this example we try to construct a star with 32 singularities. Twelve
of them should lie in the vertices of an icosahedron and the remaining 20 in the vertices of the
dodecahedron dual to the icosahedron. They should all lie on a sphere or radius one. The convex
hull of this vertices is a solid with 32 vertices, 90 edges and 60 facets (isosceles triangles). It is
displayed in Figure 3.16b. Such a solid obviously has the symmetry group of the icosahedron and
the dodecahedron, so we use their primary invariants (3.16) for the construction of its corresponding
stars. Since it can not be vertex transitive, in this case we have to “fix” two vertices, one vertex
of the icosahedron and one of the dodecahedron. The smallest degree for which our construction
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(a) 32-star, a1 = 3, a2 = −1,

a3 = 10.

(b) Solid with 32 vertices.

Figure 3.16: 32-star and corresponding solid.

yields the a solution is ten,

f(u, v, w) = 6− (3a1 + a2 + 10)u+ 6a1u
2 + 6a2u

3 + (−6a1 − 8a2 + 10)u4+

+ (3a1 + 3a2 − 124a3 − 6)u5 − 124a3u
2v + 6a3w,

(3.28)

with a3 6= 0 and 10− 2a2− 3a1 6= 0. To be more precise, we obtains a star ifa3 and 10− 2a2− 3a1

have the same sign and an anti-star otherwise.

3.4 Dihedral stars

In this section we give examples for the construction of algebraic surfaces with symmetry groups
that are not reflection groups. The general concept is described in Section 2.3.
We consider the dihedral groups Dm as subgroups of O3(R). Represented as 2 × 2-matrices the
dihedral groups are reflection groups, therefore in the examples from Section 3.1 we only had
to consider primary invariants12. In the representation as 3 × 3-matrices they are not reflection
groups. In the examples we give here the number of secondary invariants is always two. The first
one is obviously always one, so we do not mention it in every example but just give the second
one, s2. For a table with all primary and secondary invariants of the groups we considered see the
Appendix A.3.
Our aim is to construct surfaces that are invariant under the action of Dm with singularities in
the m-th roots of unity, in the xy-plane. Additionally we want them to pass through the points
(0, 0,±c) with 0 6= c ∈ R. Like in the previous examples we speak of stars if the cusps “point
inwards” and anti-stars if they “point outwards”. The surfaces we obtain all have a high number
of free parameters. The choice of parameters we made for the illustration are based on purely
aesthetic reasons. Namely to fit the aim that the resulting surface should “look like a pillow”. To
reach this intuition without arbitrary choices more conditions, such as boundedness and connect-
edness, that we do not consider, would be necessary.

12Note that two of the primary invariants in all examples of this section coincide with the primary invariants of

the respective examples in Section 3.1.



3.4. DIHEDRAL STARS 45

Example 14 (D2). The dihedral group D2 ⊂ O3(R) has primary invariants

u(x, y, z) = z2,

v(x, y, z) = x2,

w(x, y, z) = y2.

(3.29)

Its secondary invariant is
s2(x, y, z) = xyz. (3.30)

To obtain a solvable system of equations we need a polynomial of degree six,

f(u, v, w, s2) = 1− 1 + a2c
4 + a7c

6

c2
u− 3v + a1w + a2u

2 + 3v2 + a3w
2 + a4uv + a5uw +

+ a6vw + a7u
3 − v3 + a8w

3 + a9u
2w + a10u

2v + a11v
2w + a12uv

2 + a13uw
2 +

+ a14vw
2 + a15uvw + (a16u+ a17(v − 1) + a18w)s2. (3.31)

with

b1 := a1 + a6 + a11 6= 0,

b2 := −1 + a2c
4 + a7c

6

c2
+ a4 + a12 6= 0.

(3.32)

For b1 and b2 negative we obtain stars, if both are positive anti-stars. If b1 and b2 have different
signs the singularities are of type A+−

2 .
The choice a1 = −1 and all the remaining parameters equal to zero yields a “nice” surface. For
c = 1 it has infinite rotational symmetry, and therefore more symmetry than we demanded. We
call this surface “Zitrus” (Figure 3.17a).

f(u, v, w) = (1− v)3 − 1
c2
u− w. (3.33)

(a) Zitrus, c = 1, a1 = −1,

rest equal to 0.

(b) c = 1/4, a1 = −1, rest

equal to 0.

(c) c = 1, a1 = −1,

a6 = −10, a13 = −10, rest

equal to 0.

Figure 3.17: D2 stars.

Example 15 (D3). The primary invariants of D3 ⊂ O3(R) are

u(x, y, z) = z2,

v(x, y, z) = x2 + y2,

w(x, y, z) = x3 − 3xy2,

(3.34)
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its secondary invariant is

s2(x, y, z) = 3x2yz − y3z. (3.35)

A polynomial of degree three yields no solution. The general equation of a degree four polynomial
in the invariant ring of D3 is f1(u, v, w) + bs2, where f1(u, v, w) is an indeterminate polynomial of
degree four13 in R[u, v, w] and b ∈ R is a constant. A degree four polynomial suffices to obtain a
solvable system of equation. We obtain the following polynomial. It has three free parameters,

f(u, v, w) = 1− 1 + a1c
4

c2
u+ a1u

2 + a2uv − 6v − 3v2 + 8w, (3.36)

with −(1+a1c
4)+ c2a2 6= 0. For −(1+a1c

4)+ c2a2 < 0 we obtain stars, for −(1+a1c
4)+ c2a2 > 0

anti-stars. Note that the secondary invariant s2 does not appear in the above polynomial, its
coefficient b is zero. We obtain a nice result for a1 = a2 = 0, c = 1/3. It is displayed in Figure
3.18a.

Example 16 (D4). The group D4 has the following primary and secondary invariants,

u(x, y, z) = z2,

v(x, y, z) = x2 + y2,

w(x, y, z) = x2y2,

(3.37)

s2(x, y, z) = x3yz − xy3z. (3.38)

Our construction yields a degree six polynomial. As in the previous example the secondary invariant
s2 does not appear,

f(u, v, w) = 1− 1 + a1c
4 + a4c

6

c2
u− 3v + a1u

2 + a2uv + 3v2 + a3w + a4u
3 − v3 + a5uw+

+ a6vw + a7uv
2 + a8u

2v, (3.39)

with a3 + a6 6= 0 and −(1 + a1c
4 + a4c

6) + c2(a2 + a7) 6= 0. If both of this terms are negative we
obtain stars, if both are positive anti-stars. If they have different signs the singularities are of type
A+−

2 . See Figure 3.18b for the resulting surface if we choose c = 1/3, a3 = −27 and all the other
parameters are set equal to zero.

(a) A D3 star. (b) A D4 star.

Figure 3.18: Dihedral stars.

13The usual total degree in the variables x, y, z.
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Example 17 (D5). The primary invariants of D5 are

u(x, y, z) = z2,

v(x, y, z) = x2 + y2,

w(x, y, z) = x5 − 10x3y2 + 5xy4.

(3.40)

Its secondary invariant is
s2(x, y, z) = 5x4yz − 10x2y3z + y5z. (3.41)

A degree five polynomial already produces a solvable system of equations. We get,

f(u, v, w) = 1− 1 + a1c
4

c2
u− 10

3
v + a1u

2 + a2uv + 5v2 − 8
3
w, (3.42)

with a2c
2− (1 +a1c

4) 6= 0. This polynomial only permits anti-stars because the coefficient of x3 in
(2.2) is − 20

3 , while the one of y2 is 100
3 and the one of z2 is a2−(1+a1c

4)/c2, i.e., we have anti-stars
for a1 +a2 > 0 and singularities of type A+−

2 otherwise. See Figure 3.42 for an illustration of above
polynomial with c = 1, a1 = −3, a2 = 5. Note that equation (3.42) is just a special case of the
following degree six polynomial (3.43) with a3 = a4 = a5 = a6 = 0. Again s2 does not appear,

f(u, v, w) = 1− 1 + a1c
4 + a3c

6

c2
u− 10 + a4

3
v + a1u

2 + a2uv + (5 + 2a4)v2 − 8
3

(1 + a4)w +

+ a3u
3 + a4v

3 + a5uv
2 + a6u

2v, (3.43)

with

b1 := a4 + 1 6= 0

b2 := −(1 + a1c
4 + a3c

6) + c2(a2 + a5) 6= 0

b3 := a4 − 5 6= 0.

(3.44)

The zero sets of these polynomials are stars if all three terms from above are either negative or
positive. If b1 and b2 have the same sign but b3 has a different one we obtain anti-stars. Otherwise,
i.e., if b1 and b2 also have different signs, we have singularities of type A+−

2 .
A nice choice for the free parameters is c = 1/3, a4 = −3 and all the other parameters equal to
zero. See Figure 3.19b.

(a) A D5 anti-star

(3.42), c = 1, a1 = −3,

a2 = 5.

(b) A D5 star,

c = 1/3, a4 = −3 and

all the others equal to

0.

Figure 3.19: Surfaces with symmetry group D5, clipped by a sphere of radius 6.
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3.5 Some examples of curves and surfaces with simple sin-

gularities of a type different to A2

In Chapter 2 we mentioned that in theory the same construction could be performed with any
other type of simple singularities, not just A2. In this section we actually do the calculation for
one type, namely E6. The zero sets of its normal forms in 2- and 3-dimensional real space are
displayed in Figure 3.20.
Examples 18 and 19 are a curve and a surface both with singularities of type E6 and dihedral
symmetry. Analogosly to the previous examples we will call them “stars” (or “anti-stars” depending
on wether the “peaks” of the singularities point “outside” or “inside”). Trying to construct surfaces

(a) V (x3 + y4). (b) V (x3 + y4 + z2). (c) V (x3 + y4 − z2).

Figure 3.20: Singularities of type E6.

with singularities of type E6 one faces a problem: It is not as symmetric as, for example, A2. This
makes it impossible to construct surfaces with the symmetries of a Platonic solid: Consider for
example a tetrahedron and start with an E6-singularity in one vertex, for example the blue one in
Figure 3.21. If one turns it by π about the z-axis one obtains the red E6-singularity in a second
vertex of the tetrahedron. But if we turn it by 4π/3 about the axis through the vertex (1, 1, 1)
and the center of the opposite face we obtain the green singularity.

Figure 3.21: Tetrahedron with singularities of type E6.

Remark 6. Again we need necessary conditions for a singularity of type E6. To apply Theorem 2 to
f0 = x3+y4+z2 (analogously for n = 2 and f0 = x3+y4) we choose weights ω = (1/3, 1/4, 1/2) that
make f0 into a quasihomogeneous function of degree 1. Again (as in the case of A2-singularities)
no basis monomials of C[x, y, z]/(∂f0/∂x, ∂f0/∂y, ∂f0/∂z) = C< 1, x, y, y2, xy, xy2 > lying above
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the diagonal exist, therefore the theorem applies and we can prescribe singularities by demanding
that the polynomial14 we construct (at p) looks like,

c1x
3 + c2y

4 + c3z
2 + higher order terms . (3.45)

Example 18. We want to construct a curve similar to a plane 3-star, as in Example 3, but with
singularities of type E6 instead of A2. To do so we need the primary invariants of D3 (3.6).
Advancing analogously as in the examples before one finds the following polynomial of degree six,
with one free parameter,

f(u, v) = 1− 3(a+ 2)u+ 4(a+ 1)(v + v2) + 3(2a+ 3)u2 − 12(a+ 1)uv + cu3, (3.46)

with a 6= −1 and a 6= 0. For a < −1 and a > 0 we have “stars”, for −1 < a < 0 “anti-stars” and
for a = −1 V (f) is a circle. See Figure 3.22.

(a) a = −2. (b) a = −1. (c) a = −0.5. (d) a = 0. (e) a = 1. (f) a = 2.

Figure 3.22: V (f) with varying parameter a.

Example 19. Next we construct a surface comparable to the “pillow-stars” from Section 3.4. To
be more precise we want to find a surface with symmetry group D3 ⊂ O3(R) and singularities of
type E6 in the vertices of regular triangle lying in the xy-plane. We use the primary and secondary
invariants of D3, (3.34) and (3.35). One obtains a polynomial of degree six with 11 free parameters.

f = 1 + a1u− 3(a2 + 2)v + 4(1 + a2)w + a3u
2 + 3 (2a2 + 3) v2 + a4uv + a5uw−

− 12(1 + a2)vw + a6u
3 + a2v

3 + a8u
2v + a9uv

2 + 4(1 + a2)w2 + (−b1 + b2u+ b1v) s2. (3.47)

with a1 + a4 + a5 + a9 6= 0 and a2 6= 0 and a2 6= −1. Note that the choice of the free parameters,
a1 = −5, a2 = −2 and all the other coefficients equal to 0, we made for the visualization (Figure
3.23 ) are purely based on aesthetic reasons.

Figure 3.23: V (f) with a1 = −5, a2 = −2 and all the other coefficients equal to 0.

14Compare this situation with the situation described in Section 2.1, especially Equation (2.2).
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Appendix A

Technical details

A.1 The Archimedean and Catalan solids

We give two tables of the Archimedean and Catalan solids, plus the pseudo rhomb-cub-octahedron
and its dual the pseudo deltoidal icositetrahedron. The symbol v stands for the number of vertices,
e of edges and f of facets. The number of facets, that are polygons with n vertices, is denoted
by pn. In the last column, Sym, the symmetry group of the solid is displayed. The Archimedean
and Catalan solids with the same number are dual to each other. The sources we used are [Cro97,
p. 82f ], [Rom68, p. 55] and [Grü09] for the pseudo rhomb-cub-octahedron.

No. Archimedean solids v e f p3 p4 p5 p6 p8 p10 Sym

1 truncated tetrahedron 12 18 8 4 4 Td

2 cub-octahedron 12 24 14 8 6 Oh

3 truncated octahedron 24 36 14 6 8 Oh

4 truncated cube 24 36 14 8 6 Oh

5 rhomb-cub-octahedron 24 48 26 8 18 Oh

6 great-rhomb-cub-octahedron 48 72 26 12 8 6 Oh

7 icosi-dodecahedron 30 60 32 20 12 Ih

8 truncated icosahedron 60 90 32 12 20 Ih

9 truncated dodecahedron 60 90 32 20 12 Ih

10 snub cube 24 60 38 32 6 O

11 rhomb-icosi-dodecahedron 60 120 62 20 30 12 Ih

12 great rhomb-icosi-dodecahedron 120 180 62 30 20 12 Ih

13 snub dodecahedron 60 150 92 80 12 I

Table A.1: The Archimedean solids.

No. v e f

1 Pseudo rhomb-cub-octahedron 24 48 26
2 Pseudo deltoidal icositetrahedron 26 48 24

Table A.2: The pseudo rhomb-cub-octahedron and its dual.

51
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No. Catalan solids v e f Sym

1 triakis tetrahedron 8 18 12 Td

2 rhombic dodecahedron 14 24 14 Oh

3 tetrakis hexahedron 14 36 24 Oh

4 small triakis octahedron 14 36 24 Oh

5 deltoidal icositetrahedron 26 48 24 Oh

6 hexakis octahedron 26 72 48 Oh

7 rhombic triacontahedron 32 60 30 Ih

8 pentakis dodecahedron 32 90 60 Ih

9 triakis icosahedron 32 90 60 Ih

10 pentagonal icositetrahedron 38 60 24 O

11 deltoidal hexecontahedron 62 120 60 Ih

12 hexakis icosahedron 62 180 120 Ih

13 pentagonal hexecontahedron 92 150 60 I

Table A.3: The Catalan solids.

(a) Triakis

tetrahedron.

(b) Rhombic

dodecahedron.

(c) Tetrakis

hexahedron.

(d) Small

triakis

octahedron.

(e) Deltoidal

icositetrahe-

dron.

(f) Hexakis

octahedron.

(g) Rhombic

triacontahe-

dron.

(h) Pentakis

dodecahedron.

(i) Triakis

icosahedron.

(j) Pentagonal

icositetrahe-

dron.

(k) Deltoidal

hexecontahe-

dron.

(l) Hexakis

icosahedron.

(m)

Pentagonal

hexecontahe-

dron.

(n) Pseudo

deltoidal

icositetrahe-

dron.

Figure A.1: The 13 Catalan solids and the Pseudo Deltoidal icositetrahedron.

A.2 Generators of the symmetry groups of the Platonic

solids in O3(R)

The tetrahedral group Td: If we choose our coordinates x, y, z such that the tetrahedron has
vertices (1, 1, 1), (−1,−1, 1), (−1, 1,−1) and (1,−1,−1), then its symmetry group is generated by
the following three matrices, namely a rotation σ1 around the z-axis by π, a rotation σ2 around
the axis trough (1, 1, 1) by 2π/3 and a reflection τ against the {x = y}-plane. [Art98, p. 225]
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σ1 =

 −1 0 0
0 −1 0
0 0 1

 , σ2 =

 0 0 1
1 0 0
0 1 0

 , τ =

 0 1 0
1 0 0
0 0 1

 .

The octahedral group Oh: We choose coordinates x, y and z of R3 such that in these coordi-
nates the vertices of the octahedron are (±1, 0, 0), (0,±1, 0) and (0, 0,±1). Then Oh is generated
by two rotations σ1, σ2 around the x and the y-axes by π/2 and the reflection against the {z = 0}-
plane τ :

σ1 =

1 0 0
0 0 −1
0 1 0

 , σ2 =

0 0 −1
0 1 0
1 0 0

 , τ =

1 0 0
0 1 0
0 0 −1

 .

The icosahedral group Ih: With coordinates x, y, z such that two of its vertices are p1 =
(0, 0, 1) and p2 = ( 2√

5
, 0, 1√

5
), then the symmetry group is generated by a rotation around the z-axis

by 2π/5, a rotation around the axis through p2 by 2π/5 and a reflection against the {y = 0}-plane.

σ1 =


−1+

√
5

4 −
√

5+
√

5

2
√

2
0√

5+
√

5

2
√

2
−1+

√
5

4 0

0 0 1

 , σ2 =


15+
√

5
20 −

√
5+
√

5

2
√

10
5−
√

5
10√

5+
√

5

2
√

10
−1+

√
5

4 −
√

5+
√

5√
10

5−
√

5
10

√
5+
√

5√
10

1√
5

 , τ =

1 0 0
0 −1 0
0 0 1

 .

A.3 Primary and secondary invariants

Group Primary invariants

D2 x2,
y2,

D3 x2 + y2,
x3 − 3xy2,

D4 x2 + y2,
x2y2,

D5 x2 + y2,
x5 − 10x3y2 + 5xy4,

D42 x2 + y2,
269128937221x42 + 5651707680759x40y2 + 56517076928130x38y4 +

357941481256814x36y6 + 1610736807291885x34y8 + 5476503272046807x32y10 +
14604023707422968x30y12 + 31294259959712520x28y14 + 54765213944619402x26y16 +
79104714819953550x24y18 + 94926596012096940x22y20 + 94925568428882100x20y22 +
79105422214195650x18y24 + 54764880925176198x16y26 + 31294365680170680x14y28 +
14604001591189192x12y30 + 5476506214932753x10y32 + 1610736571231515x8y34 +
357941491748386x6y36 + 56517076704270x4y38 + 5651707682481x2y40 +
269128937219y42.

Table A.4: Primary invariants of some reflection groups contained in O2(R)
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Group Primary invariants

Td x2 + y2 + z2,
xyz,
x2y2 + y2z2 + z2x2,

Oh x2 + y2 + z2,
x2y2 + y2z2 + z2x2 ,
x2y2z2,

Ih x2 + y2 + z2,
−z(2x+ z)(x4 + 2zx3 − 10x2y2 − x2z2 + 10xy2z − 2z3x+ 5y4 − 5y2z2 + z4),
(4x2 + z2 − 6xz)(z4 − 2z3x− x2z2 + 2zx3 + x4 − 25y2z2 − 30xy2z − 10x2y2 + 5y4)(z4 +
8z3x+ 14x2z2 − 8zx3 + x4 − 10y2z2 − 10x2y2 + 5y4).

Table A.5: Primary invariants of some reflection groups contained in O3(R)

Group Primary invariants Secondary invariants

D2 z2, 1,
x2, xyz,
y2,

D3 z2, 1,
x2 + y2, 3x2yz − y3z,
x3 − 3xy2,

D4 z2, 1,
x2 + y2, x3yz − xy3z,
x2y2,

D5 z2, 1,
x2 + y2, 5x4yz − 10x2y3z + y5z,
x5 − 10x3y2 + 5xy4.

Table A.6: Primary and secondary invariants of some non reflection groups contained

in O3(R)

A.4 Coordinate change

In Chapter 2 we described the construction and mentioned that if the set P , in which we want to
prescribe singularities, does not contain the point (1, 0, . . . , 0)T we have to perform a coordinate
change. Here we present this in detail in one example, namely in the case of the hexahedron, see 1.
Then we give a list of the matrices needed in the remaining examples. Note that so far we always
used column vectors while here they are rows. Evidently this is no big difference.

We need to perform a coordinate change after which the hexahedron, with vertices (± 1√
3
,± 1√

3
,± 1√

3
)T ,

has one vertex in (1, 0, 0)T . This is the same as rotating the hexahedron. Let M ∈ O3(R) be a
rotation that turns (1, 0, 0)T into ( 1√

3
, 1√

3
, 1√

3
)T :

M = R.Rz.R
−1 =


1√
3

− 1√
3

− 1√
3

1√
3

1
2 ( 1√

3
+ 1) 1

2 ( 1√
3
− 1)

1√
3

1
2 ( 1√

3
− 1) 1

2 ( 1√
3

+ 1)

 , (A.1)
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with

R =

1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2

 , Rz =


1√
3
−
√

2
3 0√

2
3

1√
3

0

0 0 1

 .

If we perform the coordinate change with the help of this matrix, that is, we substitute x, y and
z by the first, second and third row of M(x̄, ȳ, z̄)T in the invariants (2.3) we obtain the primary
invariants corresponding to the rotated hexahedron, ū, v̄, w̄.

ū = x2 + y2 + z2,

v̄ = xyz2 + xy2z +
1
3

(x4 − xy3 − xz3) +
1
4

(y4 + z4) +
1
2
y2z2,

w̄ =
1

3888
(x− y − z)2(2

√
3x+ 3y +

√
3y − 3z +

√
3z)2(2

√
3x− 3y +

√
3y + 3z +

√
3z)2.

(A.2)

Using these invariants we can proceed as before. To obtain the polynomial of the hexahedral star
in the original invariants (2.6) we perform another coordinate change. We substitute x̄, ȳ and z̄

by the first, second and third row of M−1(x, y, z)T .

To calculate the tetrahedral star we need to perform a coordinate change but we do not need a
new matrix: Since one of its vertices, (1, 1, 1)T , is just a scalar of the vertex of the hexahedron, we
can use the same matrix A.1 as in the previous example. It turns (

√
3, 0, 0)T into (1, 1, 1)T .

Dodecahedron See Example 7. The matrix M = Rx.Rz.R
−1
x turns (1, 0, 0)T to one vertex of

the dodecahedron, q = (−
√

5−2
√

5
15 , 1√

(3)
,

√
5−2
√

5√
15(
√

5−1)
)T .

Rx =


1 0 0

0 (
√

5−
√

5)3

2
√

10(
√

5−1)
−1√
5−1

0 1√
5−1

(
√

5−
√

5)3

2
√

10(
√

5−1)

 , Rz =

−
√

5−2
√

5
15 −

√
10+2

√
5

15 0√
10+2

√
5

15 −
√

5−2
√

5
15 0

0 0 1

 .

Cub-octahedron See Example 9. The matrix M turns the vertex ( 1√
2
, 0, 1√

2
)T of the cub-

octahedron, into (0, 0, 1)T .

M =


1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2

 .

Truncated icosahedron See Example 10. M turns the vertex ( 2√
25+4

√
5
, 0, 10+

√
5

√
5
√

25+4
√

5
)T of

the truncated icosahedron into (0, 0, 1)T .

M =


10+
√

5
√

5
√

25+4
√

5
0 − 2√

25+4
√

5

0 1 0
2√

25+4
√

5
0 10+

√
5

√
5
√

25+4
√

5

 .

For the examples from Section 3.3 on Catalan stars and their “relatives” we do not need any “new”
coordinate changes since in our examples we only have vertices that coincide with vertices of some
Platonic solid.
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A.5 Factorization of the primary invariants of Ih

In Example 7 of the icosahedral and dodecahedral stars we claimed that two of the primary
invariants of Ih (3.16) factor into linear polynomials. The zero sets of these linear polynomials
correspond to the dodecahedron and icosahedron. The six linear factors of the second invariant
v are the zero sets of the six centerplanes of the dodecahedron. Analogously the icosahedron has
ten centerplanes, which give the linear factors of w. In the following we give this factorization
explicitly:

v(x, y, z) = − 1

16
z(2x + z)

„
(
√

5 + 1)x−
q

10− 2
√

5y − 2z

«„
(
√

5 + 1)x +

q
10− 2

√
5y − 2z

«
„

(
√

5− 1)x−
q

10 + 2
√

5y + 2z

«„
(
√

5− 1)x +

q
10 + 2

√
5y + 2z

«
,

w(x, y, z) = − 1

20250000

“
−3x + x

√
5 + z

”“
3x + x

√
5− z

”
„
−2x

q
75 + 30

√
5 + x

q
75 + 30

√
5
√

5 + 5
√

3y −
q

75 + 30
√

5z

«
„
−2x

q
75 + 30

√
5 + x

q
75 + 30

√
5
√

5− 5
√

3y −
q

75 + 30
√

5z

«
„

2x

q
75− 30

√
5 + x

q
75− 30

√
5
√

5− 5
√

3y +

q
75− 30

√
5z

«
„

2x

q
75− 30

√
5 + x

q
75− 30

√
5
√

5 + 5
√

3y +

q
75− 30

√
5z

«
„
−x

q
75 + 30

√
5 + x

q
75 + 30

√
5
√

5− 5y
√

5
√

3 + 5
√

3y + 2

q
75 + 30

√
5z

«
„
−x

q
75 + 30

√
5 + x

q
75 + 30

√
5
√

5 + 5y
√

5
√

3− 5
√

3y + 2

q
75 + 30

√
5z

«
„

x

q
75− 30

√
5 + x

q
75− 30

√
5
√

5 + 5y
√

5
√

3 + 5
√

3y − 2

q
75− 30

√
5z

«
„

x

q
75− 30

√
5 + x

q
75− 30

√
5
√

5− 5y
√

5
√

3− 5
√

3y − 2

q
75− 30

√
5z

«
.

(A.3)

A.6 SINGULAR input and output

As a selected example we give the SINGULAR input (and output) to calculate the primary and
secondary invariants of the symmetry group of the icosahedron and the dodecahedron Ih. We need
the generators of Ih (A.2). Note that in (A.2) a lot of square roots appear. To work with roots
in SINGULAR we need to adjoin them to the base ring with the splitring command. For this
we need the minimal polynomial of the roots we want to add. In this example it is sufficient to
calculate the minimal polynomial of a =

√
10 + 2

√
5, the other roots can be calculated from a.

We get the minimal polynomial with the help of Wolfram Mathematica 6.0, by using the command
MinimalPolynomial[a,x]. The minimal polynomial of a is 80− 20x2 + x4.

LIB "finvar.lib";

LIB "primitiv.lib";

ring r=0,(x,y,z),dp;

def r1=splitring(x4-20x2+80);

def b=(a2-10)/2;

matrix sigma1[3][3]= (-1+b)/4,-a/4,0, a/4,(-1+b)/4,0, 0,0,1;
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matrix sigma2[3][3]= 3/4+b/20,-(a*b)/20,1/2-b/10,

(a*b)/20,(-1+b)/4, -(a*b)/10, 1/2-b/10, (a*b)/10,b/5;

matrix tau[3][3]= 1,0,0, 0,-1,0, 0,0,1;

matrix P,2,IS=invariant_ring(sigma1,sigma2,tau);

P[1,1]=x2+y2+z2

P[1,2]=35*x6+105*x4y2+105*x2y4+35*y6-6*x5z+60*x3y2z-30*xy4z+90*x4z2+180*x2y2z2+

90*y4z2+120*x2z4+120*y2z4+32*z6

P[1,3]=5906*x10+28755*x8y2+62160*x6y4+55650*x4y6+30150*x2y8+5875*y10-3870*x9z+

30960*x7y2z+54180*x5y4z-19350*xy8z+20475*x8z2+81900*x6y2z2+122850*x4y4z2+

81900*x2y6z2+20475*y8z2-5880*x7z3+52920*x5y2z3+29400*x3y4z3-29400*xy6z3+

48300*x6z4+144900*x4y2z4+144900*x2y4z4+48300*y6z4-5544*x5z5+55440*x3y2z5-

27720*xy4z5+68040*x4z6+136080*x2y2z6+68040*y4z6+34560*x2z8+34560*y2z8+4064*z10

S;

S[1,1]=1

IS;

IS2[1,1]=0

We obtain the primary invariants P [1, 1], P [1, 2] and P [1, 3]. Since Ih is a reflection group the
secondary invariants are not interesting. Please note that the invariants u, v, w (3.16) we used in
the calculations differ from the ones above because we simplified them in the following manner:
u = P [1, 1], v = (P [1, 2]− 35u3)/3, w = (4P [1, 3]− 23500u5 − 7275u2v)/31.
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