
ARTIN APPROXIMATION

HERWIG HAUSER, GUILLAUME ROND

Abstract. In 1968, M. Artin proved that any formal power series solution
of a system of analytic equations may be approximated by convergent power
series solutions. Motivated by this result and a similar result of Płoski, he con-
jectured that this remains true when we replace the ring of convergent power
series by a more general ring.
This paper presents the state of the art on this problem, aimed at non-experts.
In particular we put a slant on the Artin Approximation Problem with con-
straints.
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1. Introduction

The aim of this paper is to present the Artin Approximation Theorem and some
related results. The problem we are interested in is to find analytic solutions of some
system of equations when this system admits formal power series solutions and the
Artin Approximation Theorem yields a positive answer to this problem. We begin
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this paper by giving several examples explaining what this sentence means exactly.
Then we will present the state of the art on this problem. There is essentially three
parts: the first part is dedicated to present the Artin Approximation Theorem and
its generalizations; the second part presents a stronger version of Artin Approxima-
tion Theorem; the last part is mainly devoted to explore the Artin Approximation
Problem in the case of constraints. An appendix presents the algebraic material
used in this paper (Weierstrass Preparation Theorem, excellent rings, étales mor-
phisms and Henselian rings).
We do not give the proofs of all the results presented in this paper but, at least, we
always try to outline the proofs and give the main arguments.

Example 1. Let us consider the following curve C := {(t3, t4, t5), t ∈ C} in C3.
This curve is an algebraic set which means that it is the zero locus of polynomials
in three variables. Indeed, we can check that C is the zero locus of the polynomials
f := y2 − xz, g := yz − x3 and h := z2 − x2y. If we consider the zero locus of any
two of these polynomials we always get a set larger than C. The complex dimension
of the zero locus of one non-constant polynomial in three variables is 2 (such a set
is called a hypersurface of C3). Here C is the intersection of the zero locus of three
hypersurfaces and not of two of them, but its complex dimension is 1.
In fact we can see this phenomenon as follows: we call an algebraic relation between
f , g and h any element of the kernel of the linear map ϕ : C[x, y, z]3 −→ C[x, y, z]
defined by ϕ(a, b, c) := af + bg + ch. Obviously r1 := (g,−f, 0), r2 := (h, 0,−f)
and r3 := (0, h,−g) ∈ Ker(ϕ). These are called the trivial relations between f , g
and h. But in our case there is one more relation which is r0 := (z, y,−x) and r0
cannot be written as a1r1 +a2r2 +a3r3 with a1, a2 and a3 ∈ C[x, y, z], which means
that r0 is not in the sub-C[x, y, z]-module of C[x, y, z]3 generated by r1, r2 and r3.
On the other hand we can prove that Ker(ϕ) is generated by r0, r1, r2 and r3.
Let X be the common zero locus of f and g. If (x, y, z) ∈ X and x 6= 0, then
h = zf+yg

x = 0 thus (x, y, z) ∈ C. If (x, y, z) ∈ X and x = 0, then y = 0. Geometri-
cally this means thatX is the union of C and the z-axis, i.e. the union of two curves.

Now let us denote by CJx, y, zK the ring of formal power series with coefficients
in C. We can also consider formal relations between f , g and h, that is elements
of the kernel of the map CJx, y, zK3 −→ CJx, y, zK induced by ϕ. Any element
of the form a0r0 + a1r1 + a2r2 + a3r3 is a formal relation as soon as a0, a1, a2,
a3 ∈ CJx, y, zK.
In fact any formal relation is of this form, i.e. the algebraic relation generate the
formal and analytic relations. We can show this as follows: we can assign the
weights 3 to x, 4 to y and 5 to z. In this case f , g, h are homogeneous polynomials
of weights 8, 9 and 10 and r0, r1, r2 and r3 are homogeneous relations of weights
(5, 4, 3), (9, 8, 0), (10, 0, 8) and (0, 10, 9). If (a, b, c) ∈ CJx, y, zK3 is a formal relation
then we can write a =

∑∞
i=0 ai, b =

∑∞
i=0 bi and c =

∑∞
i=0 ci where ai, bi and ci are

homogeneous polynomials of degree i with respect to the previous weights. Then
saying that af + bg + ch = 0 is equivalent to

aif + bi−1g + ci−2h = 0 ∀i ∈ N

with the assumption bi = ci = 0 for i < 0. Thus (a0, 0, 0), (a1, b0, 0) and any
(ai, bi−1, ci−2), for 2 ≤ i, are in Ker(ϕ), thus are homogeneous combinations of r0,
r1, r2 and r3. Hence (a, b, c) is a combination of r0, r1, r2 and r3 with coefficients
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in CJx, y, zK.

Now we can investigate the same problem by replacing the ring of formal power
series by C{x, y, z}, the ring of convergent power series with coefficients in C, i.e.

C{x, y, z} :=

 ∑
i,j,k∈N

ai,j,kx
iyjzk / ∃ρ > 0,

∑
i,j,k

|ai,j,k|ρi+j+k <∞


We can also consider analytic relations between f , g and h, that is elements of the
kernel of the map C{x, y, z}3 −→ C{x, y, z} induced by ϕ. From the formal case
we see that any analytic relation r is of the form a0r0 + a1r1 + a2r2 + a3r3 with
ai ∈ CJx, y, zK for 0 ≤ i ≤ 4. In fact we can prove that ai ∈ C{x, y, z} for 0 ≤ i ≤ 4.
Let us remark that, saying that r = a0r0 + a1r1 + a2r2 + a3r3 is equivalent to say
that a0,..., a3 satisfy a system of three affine equations with analytic coefficients.
This is the first example of the problem we are interested in: if we some equations
with analytic coefficients have formal solutions do they have analytic solutions?
Artin Approximation Theorem yields an answer to this problem. Here is the first
theorem proven by M. Artin in 1968:

Theorem 1.1 (Artin Approximation Theorem). [Ar68] Let f(x, y) be a vector of
convergent power series over C in two sets of variables x and y. Assume given a
formal power series solution ŷ(x),

f(x, ŷ(x)) = 0.

Then there exists, for any c ∈ N, a convergent power series solution y(x),

f(x, y(x)) = 0

which coincides with ŷ(x) up to degree c,

y(x) ≡ ŷ(x) modulo (x)c.

We can define a topology on CJxK by saying that two power series are close if
their difference is in a high power of the maximal ideal (x). Thus we can reformulate
Theorem 1.1 as: formal power series solutions of a system of analytic equations may
be approximated by convergent power series solutions.

Example 2. A special case of Theorem 1.1 and a generalization of Example 1
occurs when f is linear in y, say f(x, y) =

∑
fi(x)yi, where fi(x) is a vector of

convergent power series with r coordinates for any i. A solution y(x) of f(x, y) = 0
is a relation between the fi(x). In this case the formal relations are linear combi-
nations of analytic combinations with coefficients in CJxK. In term of commutative
algebra, this is expressed as the flatness of the ring of formal power series over the
ring of convergent powers series, a result which can be proven via the Artin-Rees
Lemma.
It means that if ŷ(x) is a formal solution of f(x, y) = 0, then there exist analytic so-
lutions of f(x, y) = 0 denoted by ỹi(x), 1 ≤ i ≤ s, and formal power series b̂1(x),...,
b̂s(x), such that ŷ(x) =

∑
i b̂i(x)ỹi(x). Thus, by replacing in the previous sum the

b̂i(x) by their truncation at order c, we obtain an analytic solution of f(x, y) = 0
coinciding with ŷ(c) up to degree c.
If the fi(x)’s are vectors of polynomials then the formal relations are also linear
combinations of algebraic relations since the ring of formal power series is flat over
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the ring of polynomials, and Theorem 1.1 remains true if f(x, y) is linear in y and
C{x} is replaced by C[x].

Example 3. A slight generalization of the previous example is when f(x, y) is a
vector of polynomials in y of degree one with coefficients in C{x} (resp. C[x]), say

f(x, y) =

m∑
i=1

fi(x)yi + b(x)

where the fi(x)’s and b(x) are vectors of convergent power series (resp. polynomi-
als). Here x and y are multi-variables If ŷ(x) is a formal power series solution of
f(x, y) = 0, then (ŷ(x), 1) is a formal power series solution of g(x, y, z) = 0 where

g(x, y, z) :=

m∑
i=1

fi(x)yi + b(x)z

and z is a single variable. Thus using the flatness of CJxK over C{x} (resp. C[x])
(Example 2), we can approximate (ŷ(x), 1) by a convergent power series (resp. poly-
nomial) solution (ỹ(x), z̃(x)) which coincides with (ŷ(x), 1) up to degree c. In order
to obtain a solution of f(x, y) = 0 we would like to be able to divide ỹ(x) by z̃(x)
since ỹ(x)z̃(x)−1 would be a solution of f(x, y) = 0 approximating ŷ(x). We can
remark that, if c ≥ 1, then z̃(0) = 1 thus z̃(x) is not the ideal (x). But C{x} is a
local ring. We call a local ring any ring A that has only one maximal ideal. This is
equivalent to say that A is the disjoint union of one ideal (its only maximal ideal)
and of the set of units in A. In particular z̃(x)−1 is invertible in C{x}, hence we
can approximate formal power series solutions of f(x, y) = 0 by convergent power
series solutions.
In the case (ỹ(x), z̃(x)) is a polynomial solution of g(x, y, z) = 0, z̃(x) is not invert-
ible in general in C[x] since it is not a local ring. For instance set

f(x, y) := (1− x)y − 1

where x and y are single variables. Then y(x) :=

∞∑
n=0

xn =
1

1− x
is the only formal

power series solution of f(x, y) = 0, but y(x) is not a polynomial. Thus we cannot
approximate the roots of f in CJxK by roots of f in C[x].
But instead of working in C[x] we can work in C[x](x) which is the ring of rational
functions whose denominator does not vanish at 0. This ring is a local ring. Since
z̃(0) 6= 0, then ỹ(x)z̃(x)−1 is a vector of rational function of C[x](x). In particular
any system of polynomial equations of degree one with coefficients in C[x] which
has solutions in CJxK has solutions in C[x](x).

Example 4. The next example we are looking at is the following: set f ∈ A where
A = C[x] or C[x](x) or C{x}. When do there exist g, h ∈ A such that f = gh?
First of all, we can take g = 1 and h = f or, more generally, g a unit in A and
h = g−1f . These are trivial cases and thus we are looking for non units g and h.
Of course, if there exist non units g and h in A such that f = gh, then f =
(ûg)(û−1h) for any unit û ∈ CJxK. But is the following true: let us assume that
there exist ĝ, ĥ ∈ CJxK such that f = ĝĥ. Then do there exist non units g, h ∈ A
such that f = gh ?
Let us remark that this question is equivalent to the following: if A

(f) is an integral

domain, is CJxK
(f)CJxK still an integral domain?
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The answer to this question is no in general: set A := C[x, y] and set f :=
x2 − y2(1 + y). Then f is irreducible as a polynomial since y2(1 + y) is not a
square in C[x, y]. But f = (x + y

√
1 + y)(x − y

√
1 + y) where

√
1 + y is a formal

power series such that
√

1 + y
2

= 1 + y. Thus f is not irreducible in CJx, yK nor in
C{x, y} but it is irreducible in C[x, y] or C[x, y](x,y).

In fact it is easy to see that x+y
√

1 + y and x−y
√

1 + y are power series which are
algebraic over C[x, y], i.e. they are roots of polynomials with coefficients in C[x, y].
The set of such algebraic power series is a subring of CJx, yK and it is denoted by
C〈x, y〉. In general if x is a multivariable the ring of algebraic power series C〈x〉 is
the following:

C〈x〉 := {f ∈ CJxK / ∃P (z) ∈ C[x][z], P (f) = 0} .

It is not difficult to prove that the ring of algebraic power series is a subring of
the ring of convergent power series and is a local ring. In 1969, M. Artin proved
an analogue of Theorem 2.1 for the rings of algebraic power series [Ar69]. Thus
if f ∈ C〈x〉 (or C{x}) is irreducible then it remains irreducible in CJxK, this is
a consequence of Artin Approximation Theorem. From this theorem we can also
deduce that if f ∈ C〈x〉

I (or C{x}
I ), for some ideal I, is irreducible, then it remains

irreducible in CJxK
ICJxK .

Example 5. Let us strengthen the previous question. Let us assume that there
exist ĝ, ĥ ∈ CJxK such that f = ĝĥ with f ∈ A with A = C〈x〉 or C{x}. Then does
there exist a unit û ∈ CJxK such that ûĝ ∈ A and û−1ĥ ∈ A ?
The answer to this question is positive if A = C〈x〉 or C{x}, this is a non trivial
corollary of Artin Approximation Theorem (see Corollary 4.4). But it is negative
in general for C〈x〉

I or C{x}
I if I is an ideal. The following example is due to S. Izumi

[Iz92]:
Set A := C{x,y,z}

(y2−x3) . Set ϕ̂(z) :=
∑∞
n=0 n!zn (this is a divergent power series) and set

f̂ := x+ yϕ̂(z), ĝ := (x− yϕ̂(z))(1− xϕ̂(z)2)−1 ∈ CJx, y, zK.

Then we can check that x2 = f̂ ĝ modulo (y2 − x3). Now let us assume that
there exists a unit û ∈ CJx, y, zK such that ûf̂ ∈ C{x, y, z} modulo (y2 − x3).
Thus P := ûf̂ − (y2 − x3)ĥ ∈ C{x, y, z} for some h ∈ CJx, y, zK. We can check
easily that P (0, 0, 0) = 0 and ∂P

∂x (0, 0, 0) = û(0, 0, 0) 6= 0. Thus by the Implicit
Function Theorem for analytic functions there exists ψ(y, z) ∈ C{y, z}, such that
P (ψ(y, z), y, z) = 0 and ψ(0, 0) = 0. This yields

ψ(y, z) + yϕ̂(z)− (y2 − ψ(y, z)3)ĥ(ψ(y, z), y, z)û−1(ψ(y, z), y, z) = 0.

By substituting 0 for y we obtain ψ(0, z) + ψ(0, z)3k̂(z) = 0 for some power series
k̂(z) ∈ CJzK. Since ψ(0, 0) = 0, this gives that ψ(0, z) = 0, thus ψ(y, z) = yθ(y, z)
with θ(y, z) ∈ C{y, z}. Thus we obtain

θ(y, z) + ϕ̂(z)− (y − y2θ(y, z)3)ĥ(ψ(y, z), y, z)û−1(ψ(y, z), y, z) = 0

and by substituting 0 for y, we see that ϕ̂(z) = θ(0, z) ∈ C{z} which is a contra-
diction.



6 HERWIG HAUSER, GUILLAUME ROND

Thus x2 = f̂ ĝ modulo (y2 − x3) but there is no unit û ∈ CJx, y, zK such that
ûf̂ ∈ C{x, y, z} modulo (y2 − x3).

Example 6. A similar question is the following: if f ∈ A with A = C[x], C[x](x),
C〈x〉 or C{x} and if there exist a non unit ĝ ∈ CJxK and an integer m ∈ N such
that ĝm = f , does there exist a non unit g ∈ A such that gm = f?
A weaker question is the following: if A

(f) is reduced, is
CJxK

(f)CJxK still reduced? Indeed,

if ĝm = f for some non unit ĝ then CJxK
(f)CJxK is not reduced. Thus, if the answer to

the second question is positive, then there exists a non unit g ∈ A and a unit u ∈ A
such that ugk = f for some integer k.

As before, the answer to the first question is positive for A = C〈x〉 and A = C{x}
by Artin Approximation Theorem.
If A = C[x] or C[x](x), the answer to this question is negative. Indeed let us con-
sider f = xm +xm+1. Then f = ĝm with ĝ := x m

√
1 + x but there is no g ∈ A such

that gm = f .

Nevertheless, the answer to the second question is positive in the cases A = C[x]
or C[x](x). This deep result is due to D. Rees (see [H-S06] for instance).

Example 7. Using the same notation as in Example 4 we can ask a stronger
question: set A = C〈x〉 or C{x} and let f be in A. If there exist g and h ∈ C[x],
vanishing at 0, such that f = gh modulo a large power of the ideal (x), do there
exist g and h in A such that f = gh? By example 4 there is no hope, if g and h
exist, to expect that g and h ∈ C[x].
We have the following theorem:

Theorem 1.2 (Strong Artin Approximation Theorem). [Ar69] Let f(x, y) be a
vector of polynomials over C in two sets of variables x and y. Then there exists
a function β : N −→ N, such that for any integer c and any given approximate
solution y(x) at order β(c),

f(x, y(x)) ≡ 0 modulo (x)β(c),

there exists an algebraic power series solution y(x),

f(x, y(x)) = 0

which coincides with y(x) up to degree c,

y(x) ≡ y(x) modulo (x)c.

In particular, if gh−f ≡ 0 modulo (x)β(1), where β is the function of the previous
theorem for the polynomial y1y2 − f , and if g(0) = h(0) = 0, then there exist non
units g and h ∈ C〈x〉 such that gh− f = 0.
A natural question is: given f ∈ C[x] how to compute β or, at least, β(1)? That
is, up to what order do we have to check that the equation y1y2 − f = 0 has
an approximate solution in order to be sure that this equation as solutions? For
instance, if f := x1x2 − xd3 then f is irreducible but x1x2 − f ≡ 0 modulo (x)d for
any d ∈ N, so obviously β(1) really depends on f .
In fact, in Theorem 1.2 M. Artin proved that β can be chosen independently of the
degree of the components of the the vector f(x, y). But it is still an open problem
to find effective bounds on β (see Section 3.4).
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Example 8 (Ideal Membership Problem). Set f1,...., fr ∈ CJxK where x = (x1, ..., xn).
Let us denote by I the ideal of CJxK generated by f1,..., fr. If g is a power series,
how can we detect that g ∈ I or g /∈ I? Since a power series is determined by
its coefficients, saying that g ∈ I will depend in general on a infinite number of
conditions and it will not be possible to check that all these conditions are satisfied
in finite time. Another problem is to find canonical representatives of power series
modulo the ideal I that will help us to make computations in the quotient ring CJxK

I .

One way to solve these problems is the following. Let us consider the following order
on Nn: for all α, β ∈ Nn, we say that α ≤ β if (|α|, α1, ..., αn) ≤lex (|β|, β1, ..., βn)
where |α| := α1 + · · ·+ αn and ≤lex is the lexicographic order. For instance

(1, 1, 1) ≤ (1, 2, 3) ≤ (2, 2, 2) ≤ (3, 2, 1) ≤ (2, 2, 3).

This order induces an order on the sets of monomials xα1
1 ...xαn

n : we say that xα ≤ xβ
if α ≤ β. Thus

x1x2x3 ≤ x1x22x33 ≤ x21x22x23 ≤ x31x22x3 ≤ x21x22x33.

If f :=
∑
α∈Nn fαx

α ∈ CJxK, the initial exponent of f with respect to the previous
order is

exp(f) := min{α ∈ Nn / fα 6= 0} = inf Supp(f)

where the support of f is Supp(f) := {α ∈ Nn / fα 6= 0}. The initial term of f is
fexp(f)x

exp(f). This is the smallest non zero monomial in the Taylor expansion of
f with respect to the previous order.
If I is an ideal of CJxK, we define Γ(I) to be the subset of Nn of all the initial
exponents of elements of I. Since I is an ideal, for any β ∈ Nn and any f ∈ I,
xβf ∈ I. This means that Γ(I) + Nn = Γ(I). Then we can prove that there exists
a finite number of elements g1,..., gs ∈ I such that

{exp(g1), ..., exp(gs)}+ Nn = Γ(I).

Set

∆1 := exp(g1) + Nn and ∆i = (exp(gi) + Nn)\
⋃

1≤j<i

∆j , for 2 ≤ i ≤ s.

Finally, set

∆0 := Nn\
s⋃
i=1

∆i.

For instance, if I is the ideal of CJx1, x2K generated by g1 := x1x
3
2 and g2 := x21x

2
2,

we can check that

Γ(I) = {(1, 3), (2, 2)}+ N2.
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∆1

∆2

∆0

•
(1, 3)

•
(2, 2)

Set g ∈ CJxK. Then, by Hironaka Division Theorem, there exist unique power
series q1,..., qs, r ∈ CJxK such that

g = g1q1 + · · ·+ gsqs + r

exp(gi) + Supp(qi) ⊂ ∆i and Supp(r) ⊂ ∆0.

The uniqueness of the division comes from the fact the ∆i’s are disjoint subsets of
Nn. The existence of such decomposition is proven through the division algorithm:

Set α := exp(g). Then there exists an integer i1 such that α ∈ ∆i1 .
• If i1 = 0, then set r(1) := in(g) and q(1)i := 0 for any i.
• If i1 ≥ 1, then set r(1) := 0, q(i)i := 0 for i 6= i1 and q(1)i1 := in(g)

exp(gi1 )
.

Finally set g(1) := g−
s∑
i=1

giq
(1)
i − r

(1). Thus we have exp(g(1)) > exp(g). Then we

replace g by g(1) and the repeat the preceding process.
In this way we construct a sequence (g(k))k of power series such that, for any k ∈ N,

exp(g(k+1)) > exp(g(k)) and g(k) = g −
s∑
i=1

giq
(k)
i − r

(k) with

exp(gi) + Supp(q
(k)
i ) ⊂ ∆i and Supp(r(k)) ⊂ ∆0.

At the limit k −→∞ we obtain the desired decomposition.

In particular since {exp(g1), ..., exp(gs)} + Nn = Γ(I) we deduce from this that
I is generated by g1,..., gs.

This algorithm means that for any g ∈ CJxK there exists a unique power series
r whose support is included in ∆ and such that g − r ∈ I and the division algo-
rithm yields a way to obtain this representative r.
Moreover, saying that g /∈ I is equivalent to r 6= 0 and this is equivalent to say that,
for some integer k, r(k) 6= 0. But g ∈ I is equivalent to r = 0 which is equivalent to
r(k) = 0 for all k ∈ N. Thus applying the division algorithm, if for some integer k,
r(k) 6= 0, then we can conclude that g /∈ I. But this algorithm will not help us to
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determine if g ∈ I since we would have to make a infinite number of computations.

Now a natural question is, what happens if we replace CJxK by A := C〈x〉 or
C{x}? Of course we can proceed with the division algorithm but we do not know if
q1,..., qs, r ∈ A. In fact by controlling the size of the coefficients of q(k)1 ,..., q(k)s , r(k)
at each step of the division algorithm, we can prove that if g ∈ C{x} then q1,...,
qs and r remain in C{x} ([Hir64], [Gra72] and [dJ-Pf00]). But if g ∈ C〈x〉 then it
may happen that q1,..., qs and r are not in C〈x〉 (see Example 5.4 of Section 5).

Example 9 (Arcs Space and Jets Spaces). Let X be an affine algebraic sub-
set of Cm, i.e. X is the zero locus of some polynomials in m variables: f1,...,
fr ∈ C[y1, ..., ym]. Let t be a single variable. For any integer n, let us define Xn to
be the set of of vectors y(t) whose coordinates are polynomials of degree ≤ n and
such that f(y(t)) ≡ 0 modulo (t)n+1. The elements of Xn are called n-jets on X.
If yi(t) = yi,0 + yi,1t + · · · + yi,nt

n and if we consider each yi,j has one indetermi-
nate, saying that f(y(t)) ∈ (t)n+1 is equivalent to the vanishing of rn polynomials
equations involving the yi,j ’s. This shows that the jets spaces of X are algebraic
sets.
For instance, if X is a cusp, i.e. the plane curve defined by X := {y21 − y32 = 0},
then

X0 := {(a0, b0) ∈ C2 / a20 − b30 = 0} = X.

We have

X1 = {(a0, a1, b0, b1) ∈ C4 / (a0 + a1t)
2 − (b0 + b1t)

3 ≡ 0 modulo t2}
= {(a0, a1, b0, b1) ∈ C4 / a20 − b30 = 0 and 2a0a1 − 3b20b1 = 0}.

The morphisms C[t]
(t)k+1 −→ C[t]

(t)n+1 , for k ≥ n, induce truncation maps πkn : Xk −→
Xn by reducing (k)-jets modulo (t)n+1. In the example we are considering, the
fibre of π1

0 over the point (a0, a1) 6= (0, 0) is the line in the (a1, b1)-plane whose
equation is 2a0a1 − 3b20b1 = 0. This line is exactly the tangent space at X at the
point (a0, b0). The tangent space at X in (0, 0) is the whole plane since this point
is a singular point of the plane curve X. This corresponds to the fact that the fibre
of π1

0 over (0, 0) is the whole plane.
On this example we show that X1 is isomorphic to the tangent bundle of X, which
is a general fact.
We can easily see that X2 is given by the following equations:

a20 − b30 = 0

2a0a1 − 3b20b1 = 0

a21 + 2a0a2 − 3b0b
2
1 − 3b20b2 = 0

In particular, the fibre of π2
0 over (0, 0) is the set of points of the form (0, 0, a2, 0, b1, b2)

and the image of this fibre by π2
1 is the line b1 = 0. This shows that π2

1 is not sur-
jective.
But, we can show that above the smooth part of X, the maps πn+1

n are surjective
and the fibres are isomorphic to C.

The space of arcs on X, denoted by X∞, is the set of vectors y(t) whose coor-
dinates are formal power series and such that f(y(t)) = 0. For such a general
vector of formal power series y(t), saying that f(y(t)) = 0 is equivalent to say that
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the coefficients of the all the powers of t in the Taylor expansion of f(y(t)) are equal
to zero. This shows that X∞ may be defined by a countable number of equations
in a countable number of variables. For instance, in the previous example, X∞ is
the subset of CN with coordinates (a0, a1, a2, ...., b0, b1, b2, ...) defined by the infinite
following equations: 

a20 − b30 = 0

2a0a1 − 3b20b1 = 0

a21 + 2a0a2 − 3b0b
2
1 − 3b20b2 = 0

· · · · · · · · ·

The morphisms CJtK −→ C[t]
(t)n+1 induce truncations maps πn : X∞ −→ Xn by

reducing arcs modulo (t)n+1.
In general it is a difficult problem to compare πn(X∞) and Xn. It is not even
clear if πn(X∞) is finitely defined. But we have the following theorem due to
Greenberg which is a particular case of Theorem 1.2 in which β is bounded by an
affine function:

Theorem 1.3 (Greenberg’s Theorem). [Gre66] Let f(y) be a vector of polynomials
in m variables and let t be a single variable. Then there exist positive integers two
a and b, such that for any polynomial solution y(t) modulo (t)an+b,

f(y(t)) ≡ 0 modulo (t)an+b+1,

there exists a formal power series solution ỹ(t),

f(ỹ(t)) = 0

which coincides with y(t) up to degree n+ 1,

y(t) ≡ ỹ(t) modulo (t)n+1.

We can reinterpret this result as follows: let X be the zero locus of f and let y(t)
be a (an+b)-jet on X. Then the truncation of y(t) modulo (t)n+1 is the truncation
of a formal power series solution of f = 0. Thus we have

πn(X∞) = πan+bn (Xan+b), ∀n ∈ N.

A constructible subset of Cn is a set defined by the vanishing of some polynomials
and the non-vanishing of other polynomials, i.e. a set of the form

{x ∈ Cn / f1(x) = · · · = fr(x) = 0, g1(x) 6= 0, ..., gs(x) 6= 0}
for some polynomials fi, gj . In particular algebraic sets are constructible sets.
Since a theorem of Chevalley asserts that the projection of an algebraic subset of
Cn+k onto Ck is a constructible subset of Cn, Theorem 1.3 asserts that πn(X∞) is
a constructible subset of Cn since Xan+b is an algebraic set. In particular πn(X∞)
is finitely defined, i.e. it is defined by a finite number of data.

A difficult problem in singularity theory is to understand the behaviors of Xn

and πn(X∞) and to relate them to the geometry of X. One way to do this is to
define the (motivic) measure of a constructible subset of Cn, that is a additive map
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χ from the set of constructible sets to a commutative ring R, such that:
• χ(X) = χ(Y ) as soon as X and Y are isomorphic algebraic sets,
• χ(X\U) + χ(U) = χ(X) as soon as U is an open set of an algebraic set X,
• χ(X × Y ) = χ(X).χ(Y ) for any algebraic sets X and Y .
Then we are interested in understand the following formal power series:∑

n∈N
ϕ(Xn)Tn and

∑
n∈N

χ(πn(X∞))Tn ∈ RJT K.

The reader may consult [De-Lo99], [Lo00], [Ve06] for instance.

Example 10. Let f1,..., fr ∈ k[x, y] where k is an algebraically closed field and
x := (x1, ..., xn) and y := (y1, ..., ym) are multivariables. Moreover we will assume
here that k is uncountable. As in the previous example let us define the following
sets:

Xl := {y(x) ∈ k[x]m / fi(x, y(x)) ∈ (x)l+1 ∀i}.
As we have done in the previous example, for any l there exists an integer N(l) ∈ N
such that Xl ⊂ kN(l). Moreover Xl is an algebraic subset of KN(l) and the mor-
phisms k[x]

(x)k+1 −→ k[x]
(x)l+1 for k ≤ l induce truncations maps πkl : Xk −→ Xl for any

k ≥ l.

By a theorem of Chevalley, for any l ∈ N, the sequence (πkl (Xk))k is a decreasing
sequence of constructible subsets ofXl. Thus the sequence (πkl (Xk))k is a decreasing
sequence of algebraic subsets of Xl, where Y denotes the Zariski closure of a subset
Y , i.e. the smallest algebraic set containing Y . By Noetherianity this sequence
stabilizes: πkl (Xk) = πk

′
l (Xk) for all k and k′ large enough (say for any k, k′ ≥ kl).

Let us denote by Fl this algebraic set.
Let us assume that Xk 6= ∅ for any k ∈ N. This implies that Fl 6= ∅. Set

Ck,l := πkl (Xk). It is a constructible set whose Zariski closure is Fl for any k ≥ kl.
Thus Ck,l has the form Fl\Vk where Vk is an algebraic proper subset of Fl, for any
k ≥ kl. Since k is uncountable the set Ul :=

⋂
k Ck,l =

⋂
k Fl\Vk is not empty. By

construction Ul is exactly the set of points of Xl that can be lifted to points of Xk

for any k ≥ l. In particlar πkl (Uk) = Ul. If x0 ∈ U0 then x0 may be lifted to U1,
i.e. there exists x1 ∈ U1 such that π1

0(x1) = x0. By induction we may construct a
sequence of points xl ∈ Ul such that πl+1

l (xl+1) = xl for any l ∈ N. At the limit we
obtain a point x∞ in X∞, i.e. a power series y(x) ∈ kJxKm solution of f(x, y) = 0.

We have proved here the following result similar to Theorem 1.2: if k is a un-
countable algebraically closed field and if f(x, y) = 0 has solutions modulo (x)k for
any k ∈ N, then there exists a power series solution y(x):

f(x, y(x)) = 0.

This kind of argument using asymptotic contructions (here the Noetherianity is the
key point of the proof) may be nicely formalized using ultraproducts. Ultraproducts
methods can be used to prove easily stronger results as Theorem 1.2 (See Part 3.3
and Proposition 3.25).

Example 11 (Linearization of germ of diffeomorphism). Given f ∈ C{x}, x being
a single variable, let us assume that f ′(0) = λ 6= 0. Then f defines an analytic
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diffeomorphism from a neighborhood of 0 in C onto a neighborhood of 0 in C pre-
serving the origin. The linearization problem, firstly investigated by C. L. Siegel,
is the following: is f conjugated to its linear part? That is: does there exist
g(x) ∈ C{x}, with g′(0) 6= 0, such that f(g(x)) = g(λx) or g−1 ◦ f ◦ g(x) = λx (in
this case we say that f is analytically linearizable)?
This problem is difficult and the following cases may occur: f is not lineariz-
able, f is formally linearizable but not analytically linearizable (i.e. g exists but
g(x) ∈ CJxK\C{x}), f is analytically linearizable (see [Ce91]).

Let us assume that f is formally linearizable, i.e. there exists ĝ(x) ∈ CJxK such
that f(ĝ(x))− ĝ(λx) = 0. By considering the Taylor expansion of ĝ(λx):

ĝ(λx) = ĝ(y) +

∞∑
n=1

(y − λx)n

n!
f (n)(y)

we see that there exists ĥ(x, y) ∈ CJx, yK such that ĝ(λx) = ĝ(y) + (y − λx)ĥ(x, y).
Thus f is formally linearizable if and only if that there exists ĥ(x, y) ∈ CJx, yK such
that

f(ĝ(x))− ĝ(y) + (y − λx)ĥ(x, y) = 0.

This former equation is equivalent to the existence of k̂(y) ∈ CJyK such that{
f(ĝ(x))− k̂(y) + (y − λx)ĥ(x, y) = 0

k̂(y)− ĝ(y) = 0

Using the same trick as before (Taylor expansion), this is equivalent to the existence
of l̂(x, y, z) ∈ CJx, y, zK such that

(1)

{
f(ĝ(x))− k̂(y) + (y − λx)ĥ(x, y) = 0

k̂(y)− ĝ(x) + (x− y)l̂(x, y) = 0

Hence, we see that, if f is formally linearizable, there exists a formal solution
(ĝ(x), k̂(z), ĥ(x, y), l̂(x, y, z)) of the system (1). Such a solution is called a solution
with constraints. On the other hand, if the system (1) has a convergent solution
(g(x), k(z), h(x, y), l(x, y, z)), then f is analytically linearizable.

We see that the problem of linearizing analytically f when f is formally linearizable
is equivalent to find convergent power series solutions of the system (1) with con-
straints. Since it happens that f may be analytically linearizable but not formally
linearizable, such a system (1) may have formal solutions with constraints but no
analytic solutions with constraints.
In Section 5 we will give some results about the Artin Approximation Problem with
constraints.

Example 12. Another related problem is the following: if a differential equation
with convergent power series coefficients has a formal power series solution, does it
have convergent power series solutions? We can ask the same question by replacing
"convergent" by "algebraic".
For instance let us consider the (divergent) formal power series ŷ(x) :=

∑
n≥0

n!xn+1.
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It is straightforward to check that it is a solution of the equation

x2y′ − y + x = 0 (Euler Equation).

On the other hand if
∑
n anx

n is a solution of the Euler Equation then the sequence
(an)n satisfies the following recursion:

a0 = 0, a1 = 1

an+1 = nan ∀n ≥ 1.

Thus an+1 = (n + 1)! for any n > 0 and ŷ(x) is the only solution of the Euler
Equation. Hence we have an example of a differential equation with polynomials
coefficients with a formal power series solution but without convergent power series
solution. We will discuss in Section 5 how to relate this phenomenon to an Artin
Approximation problem for polynomial equations with constraints (see Example
5.2).
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Conventions We will assume that all the rings we consider are Noetherian
commutative rings with unit. Ring morphisms A −→ B are assumed to take the
unit element of A into the unit element of B.
If A is a local ring, then mA will denote its maximal ideal. For any f ∈ A, f 6= 0,

ord(f) := max{n ∈ N \ f ∈ mnA}.

If A is an integral domain, Frac(A) denotes its field of fractions.
If no other indication is given the letters x and y will always denote multivariables,
x := (x1, ..., xn) and y := (y1, ..., ym), and t will denote a single variable.
If f(y) is a vector of polynomials with coefficients in a ring A,

f(y) := (f1(y), ..., fr(y)) ∈ A[y]r,

if I is an ideal of A and y ∈ Am, then f(y) ∈ I (resp. f(y) = 0) means fi(y) ∈ I
(resp. fi(y) = 0) for 1 ≤ i ≤ r.

2. Artin Approximation

In this first part we review the main results concerning the Artin Approximation
Property. We give four results that are the most characteristic in the story: the
classical Artin Approximation Theorem in the analytic case, its generalization by A.
Płoski, a result of J. Denef and L. Lipschitz concerning rings with the Weierstrass
Division Property and, finally, Popescu’s Approximation Theorem.

2.1. The analytic case. In the analytic case, the first result is due to Michael
Artin in 1968 [Ar68]. His result asserts that the set of convergent solutions is dense
in the set of formal solutions of a system of implicit analytic equations. This result
is particularly useful, since if you have some analytic problem that you can express
in a system of analytic equations, in order to find solutions of this problem you
only need to find formal solutions and this may be done in general by an inductive
process. Another way to use this result is the following: let us assume that you have
some algebraic problem and that you are working over a ring of the form A := kJxK,
where x := (x1, ..., xn) and k is a characteristic zero field. If the problem involves
only a countable number of data (which is often the case in this context), since
C is algebraically closed and the transcendence degree of Q −→ C is uncountable,
you may assume that you work over CJxK. Using Theorem 2.1, you may, in some
cases, reduce the problem to A = C{x}. Then you can use powerful methods of
complex analytic geometry to solve the problem. This kind of method is used, for
instance, in the proof of the Nash Conjecture for algebraic surfaces (see Theorem
A of [FB12] and the crucial use of this theorem in [FB-PP1]) or in the proof of the
Abhyankar-Jung Theorem given in [P-R12].
Let us mention that C. Chevalley had apparently proven this theorem some years
before M. Artin but he did not publish it because he did not find applications of it
[Ra].

2.1.1. Artin’s result.

Theorem 2.1. [Ar68] Let k be a valued field of characteristic zero and let f(x, y)
be a vector of convergent power series in two sets of variables x and y. Assume
given a formal power series solution ŷ(x) vanishing at 0,

f(x, ŷ(x)) = 0.
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Then there exists, for any c ∈ N, a convergent power series solution y(x),

f(x, ỹ(x)) = 0

which coincides with ŷ(x) up to degree c,

ỹ(x) ≡ ŷ(x) modulo (x)c.

Remark 2.2. The ideal (x) defines a topology on kJxK called the Krull topology
induced by the following norm: |a(x)| := e−ord(a(x)). In this case small elements of
kJxK are elements of high order. Thus Theorem 2.1 asserts that the set of solutions
in k{x}m of f(x, y) = 0 is dense in the set of solutions in kJxKm of f(x, y) = 0 for
the Krull topology.

Proof of Theorem 2.1. Let us first give the main ideas of the proof. The proof is
done by induction on n, the case n = 0 being obvious.
The first step is to reduce the problem to the case the ideal I generated by f1,...,
fr is a prime ideal by adding to I all the elements g(x, y) such that g(x, ŷ(x)) = 0.
Let us denote by X the analytic set defined by I.
The next step is to reduce to the case X is complete intersection, this means that
I is generated by r elements where r is equal to the codimension of X in kn+m.
After these reductions, the proper proof starts. The key ingredient is a suitable
minor δ of the Jacobian matrix

(
∂f
∂y

)
of f , namely one which is not identically zero

on X. The existence of such a minor is ensured by the Jacobian Criterion: at a
smooth point of X, the rank of the Jacobian matrix is the codimension of X at this
point. Since the set of smooth points is dense, the assertion follows.
We denote by δ̂(x) := δ(x, ŷ(x)) the evaluation of δ at our given formal solution.
Then, the idea is the following: instead of trying to solve f(x, y) = 0 with a con-
vergent solution, we aim at finding a convergent power series vector y(x) such that
δ2(x, y(x)) divides f(x, y(x)). Since f(x, ŷ(x)) = 0, then δ2(x, ŷ(x)) already divides
f(x, ŷ(x)), we will reformulate the statement "δ2(x, y(x))2 divides f(x, y(x))" as
the vanishing of analytic equations defined over k{x1, ..., xn−1}.
By a linear change of coordinates in x we may transform δ̂(x)2 into a xn-regular
series of order d. Thus δ̂(x)2 is, up to multiplication by a unit, a monic polynomial
in xn of degree d with coefficients in kJx′K where x′ denotes the first n − 1 vari-
ables x1,..., xn−1 (by the Weierstrass Preparation Theorem, see Section A). We
first divide ŷ(x) by δ̂(x)2 and work with the remainder of this division. So write
ŷ(x) ≡ ẑ(x) modulo δ̂(x)2 with ẑ(x) a vector of polynomials in xn of degree < d
with coefficients in kJx′K. A short but technical computation shows that the divisi-
bility of f(x, y(x)) by δ(x, y(x))2 is equivalent to solving a finite system of analytic
equations for the coefficients of a vector z(x) of polynomials in xn of degree < d
with coefficients in k{x′}. As ẑ(x) solves this system, we know from the induction
hypothesis that an analytic solution z(x) exists. This, in turn, yields the required
solution analytic solution y(x). Therefore we may assume to have found an analytic
vector y(x) such that δ2(x, y)) divides f(x, y(x)). Then we conclude with a gener-
alization of the Implicit Function Theorem due to J.-Cl. Tougeron (cf. Theorem
2.4).

Let us now explain the proof in more details. Let us assume that the theorem
is proven for n and let us prove it for n+ 1.
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Let I be the ideal of k{x, y} generated by f1(x, y),..., fr(x, y). Let ϕ be the k{x}-
morphism k{x, y} −→ kJxK sending yi onto ŷi(x). Then Ker(ϕ) is a prime ideal
containing I and if the theorem is true for generators of Ker(ϕ) then it is true for
f1,..., fr. Thus we can assume that I = Ker(ϕ).
The local ring k{x, y}I is regular by a theorem of Serre (see Theorem 19.3 [Mat80]).
Set h :=height(I). Thus, from the Jacobian Criterion, there exists a h × h minor
of the Jacobian matrix ∂(f1,...,fr)

∂(x,y) , denoted by δ(x, y), such that δ /∈ I = Ker(ϕ). In
particular we have δ(x, ŷ(x)) 6= 0.
By considering the partial derivative of fi(x, ŷ(x)) = 0 with respect to xj we get

∂fi
∂xj

(x, ŷ(x)) = −
r∑

k=1

∂ŷk(x)

∂xj

∂fi
∂yk

(x, ŷ(x)).

Thus there exists a h× h minor of the Jacobian matrix ∂(f1,...,fr)
∂(y) , still denoted by

δ(x, y), such that δ(x, ŷ(x)) 6= 0. In particular δ /∈ I. From now on we will assume
that δ is the determinant of ∂(f1,...,fh)∂(y1,...,yh)

.
If we denote J := (f1, ..., fh), then ht(Jk{x, y}I) ≤ h. On the other hand we
have ht(Jk{x, y}I) ≥ rk( ∂(f1,...,fh)∂(y1,...,yh)

) mod. I, and h ≤rk( ∂(f1,...,fh)∂(y1,...,yh)
) mod. I since

δ(x, ŷ(x)) 6= 0. Thus ht(Jk{x, y}I) = h and
√
Jk{x, y}I = Ik{x, y}I . This means

that there exists q ∈ k{x, y}, q /∈ I, and e ∈ N such that qfei ∈ J for h+ 1 ≤ i ≤ m.
In particular q(x, ŷ(x)) 6= 0. We will use this fact later.

Then we will use the following lemma with g := δ2.

Lemma 2.3. Let us assume that Theorem 2.1 is true for an integer n − 1. Let
g(x, y) be a convergent power series and let f(x, y) be a vector of convergent power
series.
Let ŷ(x) be in (x)kJxKm such that g(x, ŷ(x)) 6= 0 and f(x, ŷ(x)) = 0 mod. g(x, ŷ(x)).
Let c be an integer. Then there exists y(x) ∈ (x)k{x}m such that f(x, y(x)) = 0
mod. g(x, y(x)) and y(x)− ŷ(x) ∈ (x)c.

Proof of Lemma 2.3. If g(x, ŷ(x)) is invertible, the result is obvious (just take for
ỹi(x) any truncation of ŷi(x)). Thus let us assume that g(x, ŷ(x)) is not invertible.
By making a linear change of variables we may assume that g(x, ŷ(x)) is regular
with respect to xn and by Weierstrass Preparation Theorem g(x, ŷ(x)) = â(x)×unit
where

â(x) := xdn + â1(x′)xd−1n + · · ·+ âd(x
′)

where x′ := (x1, ..., xn−1) and ai(x′) ∈ (x′)kJx′K, 1 ≤ i ≤ d.
Let us perform the Weierstrass division of ŷi(x) by â(x):

ŷi(x) = â(x)ŵi(x) +

d−1∑
j=0

ŷi,j(x
′)xjn

for 1 ≤ i ≤ m. Let us denote

ŷ∗i (x) :=

d−1∑
j=0

ŷi,j(x
′)xjn, 1 ≤ i ≤ m.

Then g(x, ŷ(x)) = g(x, ŷ∗(x)) mod. â(x) and fk(x, ŷ(x)) = fk(x, ŷ∗(x)) mod. â(x)
for 1 ≤ k ≤ r.
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Let yi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ d − 1, be new variables. Let us denote y∗i :=∑d−1
j=1 yi,jx

j
n, 1 ≤ i ≤ m. Let us denote the polynomial

A(ai, xn) := xdn + a1x
d−1
n + · · ·+ ad ∈ k[xn, a1, ..., ad]

where a1,..., ad are new variables. Let us perform the Weierstrass division of g(x, y∗)
and fi(x, y∗) by A:

g(x, y∗) = A.Q+

d−1∑
l=1

Glx
l
n

fk(x, y∗) = A.Qk +

d−1∑
l=1

Fk,lx
l
n, 1 ≤ k ≤ r

where Q, Qk ∈ k{x, yi,j , ap} and Gl, Fk,l ∈ k{x′, yi,j , ap}.
Then we have

g(x, ŷ∗(x)) =

d−1∑
l=1

Gl(x
′, ŷi,j(x

′), âp(x
′))xln mod. (â(x))

fk(x, ŷ∗(x)) =

d−1∑
l=1

Fk,l(x
′, ŷi,j(x

′), âp(x
′))xln mod. (â(x)), 1 ≤ k ≤ r.

This proves that Gl(x′, ŷi,j(x), âp(x
′)) = 0 and Fk,l(x′, ŷi,j(x′), âp(x′)) = 0 for all k

and l. By the inductive hypothesis, there exists yi,j(x′) ∈ k{x′} and ap(x′) ∈ k{x′}
for all i, j and s, such thatGl(x′, yi,j(x), ap(x

′)) = 0 and Fk,l(x′, yi,j(x′), ap(x′)) = 0
for all k and l and yi,j(x′)− ŷi,j(x′), ap(x′)− âp(x′) ∈ (x′)c for all i, j and p.

Let us denote
a(x) := xdn + a1(x′)xd−1n + · · ·+ ad(x

′)

yi(x) := a(x)wi(x) +

d−1∑
j=0

yi,j(x
′)xjn

for some wi(x) ∈ k{x} such that wi(x)− ŵi(x) ∈ (x)c for all i. It is straightforward
to check that fi(x, y(x)) = 0 mod. g(x, y(x)) for 1 ≤ i ≤ r and yj(x)− ŷj(x) ∈ (x)c

for 1 ≤ j ≤ m.
�

We can apply this lemma to g(x, y) := δ2(x, y) with c′ := c + d + 1 and d :=
ord(δ2(x, ŷ(x))). Thus we may assume that there is yi(x) ∈ k{x}, 1 ≤ i ≤ m, such
that f(x, y) ∈ δ2(x, y) and yi(x)−ŷi(x) ∈ (x)c+d+1, 1 ≤ i ≤ m. Since ord(g(x, x)) =
d, then we have f(x, y) ∈ δ2(x, y)(x)c. Then we use the following generalization
of the Implicit Function Theorem to show that there exists ỹ(x) ∈ k{x}m with
ỹ(0) = 0 such that ỹj(x) − ŷj(x) ∈ (x)c, 1 ≤ j ≤ m, and and fi(x, ỹ(x)) = 0 for
1 ≤ i ≤ h.

Theorem 2.4 (Tougeron’s Implicit Function Theorem). [To72] Let f(x, y) be a
vector of k{x, y}h with m ≥ h, and let δ(x, y) be a h × h minor of the Jacobian
matrix ∂(f1,...,fh)

∂(y1,...,ym) . Let us assume that there exists y(x) ∈ k{x}m such that

f(x, y(x)) ∈ (δ(x, y(x)))2(x)c for all 1 ≤ i ≤ h
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and for some c ∈ N. Then there exists ỹ(x) ∈ k{x}m such that

fi(x, ỹ(x)) = 0 for all 1 ≤ i ≤ h

ỹ(x)− y(x) ∈ (δ(x, y(x)))(x)c.

Moreover ỹ(x) is unique if we impose ỹj(x) = yj(x) for h < j ≤ m.

If c > ord(q(x, ŷ(x))), then q(x, ỹ(x)) 6= 0. Since qfei ∈ J for h+ 1 ≤ i ≤ r, this
proves that fi(x, ỹ(x)) = 0 for all i. �

Proof of Theorem 2.4. We may assume that δ is the first r×r minor of the Jacobian
matrix. If we add the equations fh+1 := yh+1− ỹh+1(x) = 0,... fm := ym− ỹm(x) =
0, we may assume that m = h and δ is the determinant of the Jacobian matrix
J(x, y) := ∂(f1,...,fh)

∂(y) . We have

f (x, y(x) + δ(x, y(x))z) = f(x, y(x)) + δ(x, y)zJ(x, y(x)) + δ(x, y(x))2H(x, y(x), z)

where z := (z1, ..., zm) and H(x, y(x), z) ∈ k{x, y(x), z}m is of order at least 2 in z.
Let us denote by J ′(x, y(x)) the comatrix of J(x, y(x)). Let ε(x) be in (x)ck{x}r
such that f(x, y(x)) = δ2(x, y(x))ε(x). Then we have

f(x, y(x) + δ(x, y(x))z) =

= δ(x, y(x)) (ε(x)J ′(x, y(x)) + z +H(x, y(x), z)J ′(x, y(x))) J(x, y(x)).

Let us denote

g(x, z) := ε(x)J ′(x, y(x)) + z +H(x, y(x), z)J ′(x, y(x)).

Then g(0, 0) = 0 and the matrix ∂g(x,z)
∂z (0, 0) is the Identity matrix. Thus, by

the Implicit Function Theorem, there exists a unique z(x) ∈ k{x}m such that
f(x, y(x) + δ(x, y(x))z(x)) = 0. This proves the theorem.

�

Remark 2.5. We can do the following remarks about the proof of Theorem 2.1:
i) In the case n = 1 i.e. x is a single variable, set e := ord(δ(x, ŷ(x))). If
y(x) ∈ k{x}m satisfies ŷ(x)− y(x) ∈ (x)2e+c, then we have

ord(f(x, y(x))) ≥ 2e+ c

and
δ(x, y(x)) = δ(x, ŷ(x)) mod. (x)2e+c,

thus ord(δ(x, y(x))) = ord(δ(x, ŷ(x))) = e. Hence we have automatically
f(x, y(x)) ∈ (δ(x, y(x)))2(x)c since k{x} is a discrete valuation ring (i.e. if
ord(a(x)) ≤ ord(b(x)) then a(x) divides b(x) in k{x}).
Thus Lemma 2.3 is not necessary in this case and the proof is quite simple.
This fact will be general: approximation results will be easier to obtain,
and sometimes stronger, in discrete valuation rings than in more general
rings.

ii) In fact, we did not use that k is a field of characteristic zero, we just need k
to be a perfect field in order to use the Jacobian Criterion. But the use of
the Jacobian Criterion is more delicate for non perfect fields. This also will
be general: approximation results will be more difficult to prove in positive
characteristic. For instance M. André proved Theorem 2.1 in the case k is a
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complete field of positive characteristic and replace the use of the Jacobian
Criterion by the homology of commutative algebras [An75].

iii) For n ≥ 2, the proof of Theorem [Ar68] uses an induction on n. In order
to do it we use the Weierstrass Preparation Theorem. But to apply the
Weierstrass Preparation Theorem we need to do a linear change of coor-
dinates in k{x}, in order to transform g(x, ŷ(x)) into a power series h(x)
such that h(0, ..., 0, xn) 6= 0. Then the proof does not adapt to prove similar
results in the case of constraints: for instance if ŷ1(x) depends only on x1
and ŷ2(x) depends only on x2, can we find a convergent solution such that
ỹ1(x) depends only on x1, and ỹ2(x) depends only on x2?
Moreover, even if we can use a linear change of coordinates without modi-
fying the constrains, the use of the Tougeron’s Implicit Function Theorem
may remove the constrains. We will discuss these problems in Section 5.

Corollary 2.6. Let k be a valued field of characteristic zero and let I be an ideal
of k{x}. If f(y) ∈

(
k{x,y}
Ik{x,y}

)r
, let ŷ ∈

(
kJxK
IkJxK

)m
be a solution of f = 0 such that

ŷ ≡ 0 modulo I + (x). Then there exists a solution of f = 0 in ∈ k{x}
I

m
denoted by

ỹ such that ỹ ≡ 0 modulo I + (x) and ỹ − ŷ ∈ (x)c kJxK
IkJxK .

Proof. Set Fi(x, y) ∈ k{x, y} such that Fi(x, y) = fi(y) mod. I for 1 ≤ i ≤ r. Let
a1,..., as ∈ k{x} be generators of I. Set ŵ(x) ∈ kJxKm such that ŵj(x) = ŷj mod.
I for 1 ≤ j ≤ m. Since fi(ŷ) = 0 then there exists ẑi,k(x) ∈ kJxK, 1 ≤ i ≤ r and
1 ≤ k ≤ s, such that

Fi(x, ŵ(x)) + a1ẑi,1(x) + · · ·+ asẑi,s(x) = 0 ∀i.
After Theorem 2.1, there exist w̃j(x), z̃i,k(x) ∈ k{x} such that

Fi(x, w̃(x)) + a1z̃i,1(x) + · · ·+ asz̃i,s(x) = 0 ∀i

and ŵj(x) − w̃j(x) ∈ (x)c for 1 ≤ j ≤ m. Then the images of the w̃j(x)’s in k{x}
I

satisfy the conclusion of the corollary. �

2.1.2. Płoski’s result. A few years after M. Artin’s result, A. Płoski strengthened
Theorem 2.1 by a careful analysis of the proof. His result yields an analytic
parametrization of a piece of the set of solutions of f = 0 such that the formal
solution ŷ(x) is a formal point of this parametrization.

Theorem 2.7. [Pł74] Let k be a valued field of characteristic zero and let f(x, y)
be a vector of power series in two in k{x, y}r. Let ŷ(x) be a formal power series
solution such that ŷ(0) = 0,

f(x, ŷ(x)) = 0.

Then there exists a convergent power series solution y(x, z) ∈ k{x, z}m, where
z = (z1, ..., zs) are new variables,

f(x, y(x, z)) = 0,

and a vector of formal power series ẑ(x) ∈ kJxKs with ẑ(0) = 0 such that

ŷ(x) = y(x, ẑ(x)).

This result obviously implies Theorem 2.1 since we can choose convergent power
series z̃1(x),..., z̃s(x) ∈ k{x} such that z̃j(x)− ẑj(x) ∈ (x)c for 1 ≤ j ≤ s. Then, by
denoting ỹ(x) := y(x, z̃(x)), we get the conclusion of Theorem 2.1.
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Sketch of proof of Theorem 2.7. The proof is very similar to the proof of Theorem
2.1. It is also an induction on n. The beginning of the proof is the same, so we can
assume that r = h and we need to prove an analogue of Lemma 2.3 with parameters
for g = δ2. But in order to prove it we need to make a slight modification in the
proof. Here we will make a linear change of variables and assume that δ(x, ŷ(x)) is
regular with respect to xn, i.e.

δ(x, ŷ(x)) = (xdn + â1(x′)xd−1n + · · ·+ âd(x
′))× unit.

We will denote
â(x) := xdn + â1(x′)xd−1n + · · ·+ âd(x

′).

(in the proof of Theorem 2.1, â(x) denotes the squre of (xdn + â1(x′)xd−1n + · · · +
âd(x

′))!)
Then we divide ŷi(x) by â(x) for 1 ≤ i ≤ h and by â(x)2 for h < i ≤ m:

ŷi(x) = â(x)ŵi(x) +

d−1∑
j=0

ŷi,j(x
′)xjn, 1 ≤ i ≤ h,

ŷi(x) = â(x)2ẑi(x) +

2d−1∑
j=0

ŷi,j(x
′)xjn, h < i ≤ m.

Let us denote

ŷ∗i (x) :=

d−1∑
j=0

ŷi,j(x
′)xjn, 1 ≤ i ≤ h,

ŷ∗i (x) :=

2d−1∑
j=0

ŷi,j(x
′)xjn, h < i ≤ m.

Let M(x, y) be the comatrix of ∂(f1,...,fh)∂(y1,...,yh)
:

M(x, y)
∂(f1, ..., fh)

∂(y1, ..., yh)
=
∂(f1, ..., fh)

∂(y1, ..., yh)
M(x, y) = δ(x, y)Ih

where Ih is the Identity matrix of size h× h. Then we denote

g(x, y) := M(x, y)f(x, y) = (g1(x, y), ..., gh(x, y))

where g and f are considered as column vectors. We have

0 = f(x, ŷ(x)) = f
(
x, ŷ∗1(x) + â(x)ŵ1(x), ..., ŷ∗h(x)+â(x)ŵh(x),

ŷ∗h+1(x) + â(x)2ẑh+1(x), ..., ŷ∗m(x) + â(x)2ẑm(x)
)

=

= f(x, ŷ∗(x)) + â(x)
∂(f1, ..., fh)

∂(y1, ..., yh)
(x, ŷ∗(x))

 ŵ1(x)
...

ŵh(x)

+

+â(x)2
∂(f1, ..., fh)

∂(yh+1, ..., ym)
(x, ŷ∗(x))

 ẑh+1(x)
...

ẑm(x)

+ â(x)2Q(x)
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for some Q(x) ∈ kJxKh. Hence gk(x, ŷ∗(x)) ∈ (â(x)2). As in the proof of Theorem
2.1 we have δ(x, ŷ∗(x)) ∈ (â(x)).
Assuming Płoski’s Theorem for n − 1, with the notation of the proof of Lemma
2.3, the solutions yi,j(x′) and ap(x′) are replaced by yi,j(x′, t), ap(x′, t) ∈ k{x, t},
t = (t1, ..., ts), such that ŷi,j(x′) = yi,j(x

′, t̂(x′)) and âp(x′) = ap(x
′, t̂(x′)) for some

t̂(x′) ∈ kJx′Ks and
g (x, y∗(x, t)) ∈ (a(x, t)2)

f(x, y∗(x, t)) ∈ (g (x, y∗(x, t)))

with
a(x, t) := xdn + a1(x′, t)xd−1n + · · ·+ ad(x

′, t),

y∗i (x, t) :=

d−1∑
j=0

yi,j(x
′, t)xjn for 1 ≤ i ≤ h,

y∗i (x, t) :=

2d−1∑
j=0

yi,j(x
′, t)xjn for h < i ≤ m.

Set w′ := (w′1, ..., w
′
h). Let us denote

yi(x, t, w
′) := a(x, t)w′i +

d−1∑
j=0

yi,j(x
′, t)xjn for 1 ≤ i ≤ h.

Then we use the following theorem similar to Theorem 2.4 whose proof is given
below:

Theorem 2.8. [Pł99] With the previous notation, set z′ := (z′h+1, ...., z
′
m) and

z′′ := (t, z′). We define

yi(x, z
′′) := y∗i (x, t) + δ(x, y∗(x, t))2z′i, h < i ≤ m.

Then there exist yi(x, z′′) ∈ k{x, z′′}, for 1 ≤ i ≤ h, such that fi(x, y(x, z′′)) = 0
for 1 ≤ i ≤ h and yi(x, z′′)− y∗i (x, t) ∈ (δ(x, y∗(x, t))) for 1 ≤ i ≤ h.

This means that there exists w′i(x, z′′) ∈ k{x, z′′}, 1 ≤ i ≤ h, such that
yi(x, t, w

′(x, z′′)) = yi(x, z
′′) for 1 ≤ i ≤ h. The only remaining problem is to

find ẑ′(x) ∈ kJxKm−h such that yj(x, t̂(x), ẑ′(x)) = ŷj(x) for all j, which is a bit
technical; we do not give details here. �

Proof of Theorem 2.8. We have

F (x, z′′, u) := f
(
x, y∗1(x, t) + δ(x, y∗(x, t))u1,..., y

∗
h(x, t) + δ(x, y∗(x, t))uh,

y∗h+1(x, t) + δ(x, y∗(x, t))2z′h+1, ..., y
∗
m(x, t) + δ(x, y∗(x, t))2z′m

)
=

= f(x, y∗(x, t)) + δ(x,y∗(x, t))2
∂(f1, ..., fh)

∂(yh+1, ..., ym)
(x, y∗(x, t))

 z′h+1
...
z′m

+

+δ(x, y∗(x, t))
∂(f1, ..., fh)

∂(y1, ..., yh)
(x, y∗(x, t))

 u1
...
uh

+ δ(x, y∗(x, t))2Q(x, z′′, u)
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where the entries of the vector Q(x, z′′, u) are in (x, z′′)2.
By multiplying on the left this equality by M(x, y∗(x)) we obtain

M(x, y∗(x))F (x, z′′, u) = δ2(x, y∗(x))G(x, z′′, u)

where the entries of the vectorG(x, z′′, u) are convergent power series andG(0, 0, 0) =
0. By differentiation this equality yields

M(x, y∗(x, t))
∂(F1, ..., Fh)

∂(u1, ..., uh)
(x, z′′, u) = δ2(x, y∗(x, t))

∂(G1, ..., Gh)

∂(u1, ..., uh)
(x, z′′, u).

It is easy to check that

det
(
∂(F1, ..., Fh)

∂(u1, ..., uh)

)
(x, 0, 0) =

= det
(
∂(f1, ..., fh)

∂(y1, ..., yh)

)
(x, 0, 0)δ(x, y∗(x, 0))h = δ(x, y∗(x, 0))h+1.

Since det(M(x, y∗(x, t)) = δ(x, y∗(x, t))h−1 we have

det
(
∂(G1, ..., Gh)

∂(u1, ..., uh)

)
(x, 0, 0) = 1.

Thus det
(
∂(G1,...,Gh)
∂(u1,...,uh)

)
(0, 0, 0) 6= 0. Thus the Implicit Function Theorem yields

functions ui(x, z′′) ∈ k{x, z′′}, h < i ≤ m, such that G(x, z′′, u(x, z′′)) = 0. This
shows F (x, z′′, u(x, z′′)) = 0. Hence we get the result by defining yi(x, z

′′) :=
y∗i (x, t) + δ(x, y∗(x, t))ui(x, z

′′) for h < i ≤ m. �

Remark 2.9. Let us remark that this result remains true if we replace k{x} by a
quotient k{x}

I as in Corollary 2.6.

Remark 2.10. Let I be the ideal generated by f1,..., fr. The formal solu-
tion ŷ(x) of f = 0 induces a k{x}-morphism k{x, y} −→ kJxK defined by the
substitution of y(x) for y. Then I is included in the kernel of this morphism
thus, by the universal property of the quotient ring, this morphism induces a
k{x}-morphism ψ : k{x,y}

I −→ kJxK. On the other hand, any k{x}-morphism
ψ : k{x,y}

I −→ kJxK is clearly defined by substituting for y a formal power series
ŷ(x) such that f(x, ŷ(x)) = 0.

Thus we can reformulate Theorem 2.7 as follows: Let ψ : k{x,y}
I −→ kJxK be

the k{x}-morphism defined by the formal power series solution ŷ(x). Then there
exist an analytic k{x}-algebra D := k{x, z} and k{x}-morphisms C −→ D (defined
via the convergent power series solution y(x, z) of f = 0) and D −→ kJxK (defined
by substituting ẑ(x) for z) such that the following diagram commutes:

k{x}
ϕ //

��

kJxK

k{x,y}
I

ψ

88

// D := k{x, z}

OO

We will use and generalize this formulation later (see Theorem 2.16)
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2.2. Artin Approximation and Weierstrass Division Theorem. The proof
of Theorem 2.1 uses essentially only two results: the Weierstrass Division Theorem
and the Implicit Function Theorem. In particular it is straightforward to check that
the proof of Theorem 2.1 remains true if we replace k{x, y} by k〈x, y〉, the ring of
algebraic power series in x and y, since this ring satisfies the Weierstrass Division
Theorem (cf. [Laf67], see Section A) and the Implicit Function Theorem. In [Ar69],
M. Artin gives a version of Theorem 2.1 in the case of polynomials equations over
a field or a excellent discrete valuation ring k, and proves that formal solutions
of such equations can be approximated by solutions in the Henselization of the
ring of polynomials over k, i.e. in a localization of a finite extension of the ring
of polynomials over k. The proof, when k is an excellent discrete valuation ring,
uses Néron p-desingularization [Né64] (see Section 2.3 for a statement of Néron
p-desingularization). This result is very important since it allows to reduce some
algebraic problems over complete local ring to local rings which are localization of
finitely generated rings over a field or a discrete valuation ring.
For instance, this idea, along with an idea of C. Peskine and L. Szpiro, was used
by M. Hochster to reduce problems over complete local rings in characteristic zero
to the same problems in positive characteristic. The idea is the following: let us
assume that some statement (T ) is true in positive characteristic (where you can
use the Frobenius map to prove it for instance) and let us assume that there exists
an example showing that (T ) is not true in characteristic zero. In some cases we can
use Artin Approximation Theorem to show the existence of a counterexample to
(T ) in the Henselization at a prime ideal of a finitely generated algebra over a field
of characteristic zero. Since the Henselization is the direct limit of étale extensions,
we can show the existence of a counterexample to (T ) in a local ring A which is
the localization of a finitely generated algebra over a field of characteristic zero k.
If the example involves only a finite number of data in A, then we may lift this
counterexample in a ring which is the localization of a finitely generated ring over Q,
and even over Z[ 1

p1
, ..., 1

ps
] where the pi’s are prime integers. Finally we may show

that this counterexample remains a counterexample to (T ) over Z/pZ for all but
finitely many primes p by reducing the problem modulo p (in fact for p 6= pi for 1 ≤
i ≤ s). This idea was used to prove important results about Intersection Conjectures
[P-S73], big Cohen-Macaulay modules [H-R74], Homological Conjectures [H75].

J Denef and L. Lipschitz axiomatized the properties a ring needs to satisfy in
order to adapt the proof the main theorem of [Ar69] due M. Artin. They called
such families of rings Weierstrass Systems. There are two reasons for introducing
such rings : the first one is the proof of Theorem 5.16 and the second one is their
use in proofs of Strong Artin Approximation results. Independently H. Kurke, G.
Pfister, D. Popescu, M. Roczen and T. Mostowski (cf. [KPPRM78]) introduced the
notion of Weierstrass category which is very similar (see [KP82] for a connection
between these two notions).

Definition 2.11. [De-Li80] Let k be a field or a discrete valuation ring of maximal
ideal p. By a Weierstrass System of local k-algebras, or a W-system over k, we mean
a family of k-algebras kVx1, ..., xnW, n ∈ N such that:

i) For n = 0, the k-algebra is k,
For any n ≥ 1, k[x1, ..., xn](p,x1,...,xn) ⊂ kVx1, ..., xnW ⊂ kJx1, ..., xnK
and kVx1, ..., xn+mW

⋂
kJx1, ..., xnK = kVx1, ..., xnW for m ∈ N. For any
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permutation σ of {1, ..., n} if f ∈ kVx1, ..., xnW, then f(xσ(1), ..., xσ(n)) ∈
kVx1, ..., xnW.

ii) Any element of kVxW, x = (x1, ..., xn), which is a unit in kJxK, is a unit in
kVxW.

iii) If f ∈ kVxW and p divides f in kJxK then p divides f in kVxW.
iv) Let f ∈ (p, x)kVxW such that f 6= 0. Suppose that f ∈ (p, x1, ..., xn−1, x

s
n)

but f /∈ (p, x1, ..., xn−1, x
s−1
n ). Then for any g ∈ kVxW there exist a unique

q ∈ kVxW and a unique r ∈ kVx1, ..., xn−1W[xn] with deg xn
r < d such that

g = qf + r.
v) (if char(k) > 0) If y ∈ (p, x1, ..., xx)kJx1, ..., xnKm and f ∈ kVy1, ..., ymW

such that f 6= 0 and f(y) = 0, then there exists g ∈ kVyW irreducible
in kVyW such that g(y) = 0 and such that there does not exist any unit
u(y) ∈ kVyW with u(y)g(y) =

∑
α∈Nn aαy

pα (aα ∈ k).
vi) (if char(k/p) 6= 0) Let (k/p)VxW be the image of kVxW under the projection

kJxK −→ (k/p)JxK. Then (k/p)VxW satisfies v).

Proposition 2.12. [De-Li80] Let us consider a W -system kVxW.

i) For any n, kVx1, ..., xnW is a Noetherian Henselian regular local ring.
ii) If f ∈ kVx1, ..., xn, y1, ..., ymW and g := (g1,..., gm) ∈ (p, x)kVx1, ..., xnWm,

then f(x, g(x)) ∈ kVxW.
iii) If f ∈ kVxW, then ∂f

∂xi
∈ kVxW.

iv) If kVx1, ..., xnW is a family of rings satisfying i)-iv) of Definition 2.11 and if
all these rings are excellent, then they satisfy v) and vi) of Definition 2.11.

Proof. All these assertions are proven in Remark 1.3 [De-Li80], except iv). Thus
we prove here iv): let us assume that char(k) = p > 0 and let y ∈ (p, x)k̂JxKm.
Let us denote by I the kernel of the kVxW-morphism kVx, yW −→ k̂JxK defined by
the substitution of y for y and let us assume that I

⋂
kVyW 6= (0). Since kVxW is

excellent, the morphism kVxW −→ k̂JxK is regular. Thus Frac(k̂JxK) is a separa-
ble extension of Frac(kVxW), but Frac

(
kVx,yW
I

)
is a subfield of Frac(k̂JxK), hence

Frac(kVxW) −→ Frac
(

kVx,yW
I

)
is a separable field extension. This implies that

Frac(k) −→ Frac
(

kVyW
I
⋂

kVyW

)
is a separable field extension. But if for every ir-

reducible g ∈ I
⋂
kVyW, there would exist a unit u(y) ∈ kVyW with u(y)g(y) =∑

α∈Nn aαy
pα, then the extension Frac(k) −→ Frac

(
kVyW

I
⋂

kVyW

)
would be purely in-

separable. This proves that Property v) of Definition 2.11 is satisfies.
The proof that Property vi) of Definition 2.11 is satisfied is identical. �

Example 2.13. We give here few examples of Weierstrass systems:

i) If k is a field or a complete discrete valuation ring, the family kJx1, ..., xnK
is a W-system over k (using Proposition 2.12 iv) since complete local rings
are excellent rings).

ii) Let k〈x1, ..., xn〉 be the Henselization of the localization of k[x1, ..., xn] at
the maximal ideal (x1, ..., xn) where k is a field or an excellent discrete
valuation ring. Then, for n ≥ 0, the family k〈x1, ..., xn〉 is a W-system over
k (using Proposition 2.12 iv) since the Henselization of an excellent local
ring is still excellent- see Proposition C.17).
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iii) The family k{x1, ..., xn} (the ring of convergent power series in n variables
over a valued field k) is a W-system over k.

iv) The family of Gevrey power series in n variables over a valued field k is a
W-system [Br86].

Then we have the following Approximation result (the case of k〈x〉 where k is a
field or a discrete valuation ring is proven in [Ar69], the general case is proven in
[De-Li80]):

Theorem 2.14. [Ar69][De-Li80] Let kVxW be a W-system over k, where k is a field
or a discrete valuation ring with prime p. Let f ∈ kVx, yWr and ŷ ∈ (p, x)k̂JxKm
satisfy

f(x, ŷ) = 0.

Then, for any c ∈ N, there exists a convergent power series solution ỹ ∈ (p, x)kVxWm,

f(x, ỹ) = 0 such that ỹ − ŷ ∈ (p, x)c.

Let us mention that Theorem 2.7 extends also for Weierstrass systems (see
[Ron10b]).

2.3. Néron’s desingularization and Popescu’s Theorem. During the 70’s and
the 80’s one of the main goals about Artin Approximation Problem was to find nec-
essary and sufficient conditions on a local ring A for it having the Artin Approxi-
mation Property, i.e. such that the set of solutions in Am of any system of algebraic
equations (S) in m variables with coefficients in A is dense for the Krull topology
in the set of solutions of (S) in Âm. Let us recall that the Krull topology on A
is the topology induced by the following norm: |a| := e−ord(a) for all a ∈ A\{0}.
The problem was to find a way of proving approximation results without using
Weierstrass Division Theorem.

Remark 2.15. Let P (y) ∈ A[y] satisfy P (0) ∈ mA and ∂P
∂y (0) /∈ mA. Then, by the

Implicit Function Theorem for complete local rings, P (y) has a unique root in Â
equal to 0 modulo mA. Thus if we want being able to approximate roots of P (y) in
Â by roots of P (y) in A, a necessary condition is that the root of P (y) constructed
by the Implicit Function Theorem is in A. Thus it is clear that if a local ring A
has the Artin Approximation Property then A is necessarily Henselian.

In fact M. Artin conjectured that a sufficient condition would be that A is an
excellent Henselian local ring (Conjecture (1.3) [Ar70]). The idea to prove this
conjecture is to generalize Płoski’s Theorem 2.7 and a theorem of desingularization
of A. Néron [Né64]. This generalization is the following (for the definitions see
Appendix B):

Theorem 2.16. [Po85] [Po86] Let ϕ : A −→ B be a regular morphism of local
Noetherian rings, C a finitely generated A-algebra and ψ : C −→ B a morphism
of A-algebras. Then ψ factors through a finitely generated A-algebra D which is
smooth over A:

A
ϕ //

��

B

C

ψ
>>

// D

OO
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Historically this theorem has been proven by A. Néron [Né64] when A and B are
discrete valuation rings. Then several authors gave proofs of particular cases (see
for instance [Po80], [Br83b] [Ar-De83], [Ar-Ro88], or [Rot87] - in this last paper
the result is proven in the equicharacteristic zero case) until D. Popescu [Po85]
[Po86] proved the general case. Then, several authors gave simplified proofs or
strengthened the result [Og94], [Sp99], [Sw98]. This result is certainly the most
difficult to prove among all the results presented in this paper. We will just give a
slight hint of the proof of this result here since there exist very nice presentations of
the proof elsewhere (see [Sw98] in general, [Qu97] or [Po00] in the equicharacteristic
zero case).
Since A −→ Â is regular if A is excellent, I is an ideal of A and Â := lim

←−
A
In , we get

the following result (exactly as Theorem 2.7 implies Theorem 2.1):

Theorem 2.17. Let (A, I) be an excellent Henselian pair. Let f(y) ∈ A[y]r and
ŷ ∈ Âm satisfy f(ŷ) = 0. Then, for any c ∈ N, there exists ỹ ∈ Am such that
ỹ − ŷ ∈ IcÂ, and f(ỹ) = 0.

Proof. The proof goes as follows: let us denote C := A[y]
J where J is the ideal

generated by f1,..., fr. The formal solution ŷ ∈ Â defines a A-morphism ϕ̂ :

C −→ Â (see Remark 2.10). By Theorem 2.16, since A −→ Â is regular (Example
B.4), there exists a smooth A-algebra D factorizing this morphism. After some
technical reductions we may assume that the morphism A −→ D decomposes as
A −→ A[z] −→ D where z = (z1, ..., zs) and A[z] −→ D is standard étale. Let
us choose z̃ ∈ As such that z̃ − ẑ ∈ mcAÂ

s (ẑ is the image of z in Âs). This
defines a morphism A[z] −→ A. Then A −→ D

(z1−z̃1,...,zs−z̃s) is standard étale and
admits a section in A

mc
A
. Since A is Henselian, this section lifts to a section in A

by Proposition C.9. This section composed with A[z] −→ A defines a A-morphism
D −→ A, and this latter morphism composed with C −→ D yields a morphism
ϕ̃ : C −→ A such that ϕ̃(zi)− ϕ̂(zi) ∈ mcAÂ for 1 ≤ i ≤ m. �

Remark 2.18. Let (A, I) be a Henselian pair and let J be an ideal of A. By
applying this result to the Henselian pair

(
B
J ,

IB
J

)
we can prove the following (using

the notation of Theorem 2.17): if f(ŷ) ∈ JÂ then there exists ỹ ∈ Am such that
f(ỹ) ∈ J and ỹ − ŷ ∈ IcÂ.

Remark 2.19. In [Rot90], C. Rotthaus proves the converse of Theorem 2.17 in
the local case: if A is a Noetherian local ring that satisfies Theorem 2.17, then A
is excellent. In particular Weierstrass systems are excellent local rings. Previously
this problem had been studied in [C-P81] and [Br83a].

Remark 2.20. Let A be a Noetherian ring and I be an ideal of A. If we assume
that f1(y),..., fr(y) ∈ A[y] are linear, then Theorem 2.17 may be proven easily in
this case since A −→ Â is flat (see Example 2). The proof of this flatness result
uses the Artin-Rees Lemma.

Example 2.21. If A is an excellent integral local domain let us denote by Ah its
Henselization. Then Ah is the ring of algebraic elements of Â over A. In particular,
if k is a field then k〈x〉 is the ring of formal power series which are algebraic over
k[x].
Indeed A −→ Ah is a filtered limit of algebraic extension, thus Ah is a subring of
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the ring of algebraic elements of Â over A.
On the other hand if f ∈ Â is algebraic over A, then f satisfies an equation

a0f
d + a1f

d−1 + · · ·+ ad = 0

where ai ∈ A for all i. Thus for c large enough there exists f̃ ∈ Ah such that
f̃ satisfies the same polynomial equation and f̃ − f ∈ mcA (by Theorem 2.17 and
Theorem C.17). Since

⋂
cm

c
A = (0) and a polynomial equation has a finite number

of roots, this proves that f̃ = f for c large enough and f ∈ Ah.
Example 2.22. The strength of this result comes from the fact that it works
for rings that does not satisfy the Weierstrass Preparation Theorem. For example
Theorem 2.17 applies to the local ring B = A〈x1, ..., xn〉 where A is an excellent
Henselian local ring (the main example being A = kJtK〈x〉 where t and x are multi-
variables). Indeed, this ring is the Henselization of A[x1, ..., xn]mA+(x1,...,xn). Thus
B is an excellent local ring by Example B.4 and Proposition C.17.
This case was the main motivation of D. Popescu for proving Theorem 2.16 (see also
[Ar70]), since this case implies a nested Artin Approximation result (see Theorem
5.8).
Previous particular cases of this application had been studied before: see [Pf-Po81]
for a direct proof that V Jx1K〈x2〉 satisfies Theorem 2.17, when V is a complete
discrete valuation ring, and [BDL83] for the ring kJx1, x2K〈x3, x4, x5〉.
Hint of the proof of Theorem 2.16. Let A be a Noetherian ring and C be a A-
algebra of finite type, C = A[y1,...ym]

I with I = (f1, ...., fr). We denote by ∆g the

ideal ofA[y] generated by the h×hminors of the Jacobian matrix
(
∂gi
∂yj

)
1≤i≤h,1≤j≤m

for g := (g1, ..., gh) ⊂ I. We define the ideal

HC/A :=

√∑
g

∆g((g) : I)C

where the sum runs over all g := (g1, ..., gh) ⊂ I and h ∈ N. This ideal is indepen-
dent of the presentation of C and it defines the singular locus of C over A:

Lemma 2.23. For any p ∈ Spec(C), Cp is smooth over A if and only if HC/A 6⊂ p.

We have the following property:

Lemma 2.24. Let C and C ′ be two A-algebras of finite type and let A −→ C −→ C ′

be two morphisms of A-algebras. Then HC′/C

⋂√
HC/AC ′ = HC′/C

⋂
HC′/A.

The idea of the proof of Theorem 2.16 is the following: if HC/AB 6= B, then
we replace C by a A-algebra of finite type C ′ such that HC/AB is a proper sub-
ideal of HC′/AB. Using the Noetherian assumption, after a finite number we have
HC/AB = B. Then we use the following proposition:

Proposition 2.25. Using the notation of Theorem 2.16, let us assume that HC/AB =
B. Then ψ factors as in Theorem 2.16.

Proof of Proposition 2.25. Let (c1, ..., cs) be a system of generators of HC/A. Then

1 =

s∑
i=1

biψ(ci) for some bi’s in B. Let us define

D :=
C[z1, ..., zs]

(1−
∑s
i=1 cizi)

.



28 HERWIG HAUSER, GUILLAUME ROND

We construct a morphism of C-algebra D −→ B by sending zi onto bi, 1 ≤ i ≤ s.
It is easy to check Dci is a smooth C-algebras, thus ci ∈ HD/C by Lemma 2.23,
and HC/AD ⊂ HD/C . By Lemma 2.24, since 1 ∈ HC/AD, we see that 1 ∈ HD/A.
By Lemma 2.23, this proves that D is a smooth A-algebra.

�

Now to increase the size of HC/AB we use the following proposition:

Proposition 2.26. Using the notation of Theorem 2.16, let p be a minimal prime
ideal of HC/AB. Then there exist a factorization of ψ : C −→ D −→ B such that
D is finitely generated over A and

√
HC/AB (

√
HD/AB 6⊂ p.

The proof of Proposition 2.26 is done by induction on height(p). Thus there is
two cases to prove: first the case ht(p) = 0 which is equivalent to prove Theorem
2.16 for Artinian rings, then the reduction ht(p) = k + 1 to the case ht(p) = k.
This last case is quite technical, even in the equicharacteristic zero case (i.e. when
A contains Q, see [Qu97] for a good presentation of this case). In the case A
does not contain Q there appear more problems due to the existence of inseparable
extensions of residue fields. In this case the André homology is the good tool to
handle these problems (see [Sw98]).

�

3. Strong Artin Approximation

We review here results about the Strong Approximation Property. There is
clearly two different cases: the first case is when the base ring is a discrete valuation
ring (where life is easy!) and the second case is the general case (where life is less
easy).

3.1. Greenberg’s Theorem: the case of a discrete valuation ring. Let V
be a Henselian discrete valuation ring, mV its maximal ideal and K be its field
of fractions. Let us denote by V̂ the mV -adic completion of V and by K̂ its field
of fractions. If char(K) > 0, let us assume that K −→ K̂ is a separable field
extension (in this case this is equivalent to V being excellent, see Example B.2 iii)
and Example B.4 iv)).

Theorem 3.1 (Greenberg’s Theorem). [Gre66] If f(y) ∈ V [y]r, then there exist
a, b ≥ 0 such that

∀c ∈ N ∀y ∈ V m such that f(y) ∈ mac+bV

∃ỹ ∈ V m such that f(ỹ) = 0 and ỹ − y ∈ mcV .

Sketch of proof. We will give the proof in the case char(K) = 0. The result is proven
by induction on the height of the ideal generated by f1(y),..., fr(y). Let us denote
by I this ideal. We will denote by ν, the mV -adic order on V which is a valuation
by assumption.
There exists an integer e ≥ 1 such that

√
I
e ⊂ I. Then f(y) ∈ mecV for all f ∈ I

implies that f(y) ∈ mcV for all f ∈
√
I since V is a valuation ring. Moreover if√

I = P1

⋂
· · ·
⋂
Ps is prime decomposition of

√
I, then f(y) ∈ mscV for all f ∈

√
I

implies that f(y) ∈ mcV for all f ∈ Pi for some i. This allows us to assume that I
is a prime ideal of V [y].
Let h be the height of I. If h = m+ 1, then I is a maximal ideal of V [y] and thus
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it contains some non zero element of V denoted by v. Then there does not exist
y ∈ V m such that f(y) ∈ m

ν(v)+1
V for all f ∈ I. Thus the theorem is true for a = 0

and b = ν(v) + 1.
Let us assume that the theorem is proven for ideals of height h+ 1 and let I be a
prime ideal of height h. As in the proof of Theorem 2.1, we may assume that r = h
and that the determinant of the Jacobian matrix of f , denoted by δ, is not in I.
Let us denote J := I + (δ). Since ht(J) = h+ 1, by the inductive hypothesis, there
exist a, b ≥ 0 such that

∀c ∈ N ∀y ∈ V m such that f(y) ∈ mac+bV ∀f ∈ J
∃ỹ ∈ V m such that f(ỹ) = 0 ∀f ∈ J and ỹj − yj ∈ mcV , 1 ≤ j ≤ m.

Then let c ∈ N and y ∈ V m satisfy f(y) ∈ m
(2a+1)c+2b
V for all f ∈ I. If δ(y) ∈ mac+bV ,

then f(y) ∈ mac+bV for all f ∈ J and the result is proven by the inductive hypothesis.
If δ(y) /∈ mac+bV , then fi(y) ∈ (δ(y))2mcV for 1 ≤ i ≤ r. Then the result comes from
the following result.

�

Theorem 3.2 (Tougeron’s Implicit Function Theorem). Let A be a Henselian
local ring and f(y) ∈ A[y]r, y = (y1, ..., ym), m ≥ r. Let δ(x, y) be a r× r minor of
the Jacobian matrix ∂(f1,...,fr)

∂(y1,...,ym) . Let us assume that there exists y ∈ Am such that

fi(y) ∈ (δ(y))2mcA for all 1 ≤ i ≤ r
and for some c ∈ N. Then there exists ỹ ∈ Am such that

fi(ỹ) = 0 for all 1 ≤ i ≤ r, and ỹ − y ∈ (δ(y))mc
A.

Proof. The proof is completely similar to the proof of Theorem 2.4. �

In fact we can prove the following result whose proof is identical to the proof of
Theorem 3.1:

Theorem 3.3. [Sc83] Let V be a complete discrete valuation ring and f(y, z) ∈
V JyK[z]r, where z := (z1, ..., zs). Then there exist a, b ≥ 0 such that

∀c ∈ N ∀y ∈ (mV V )m, ∀z ∈ V s such that f(y, z) ∈ mac+bV

∃ỹ ∈ (mV V )m, ∃z̃ ∈ V s such that f(ỹ, z̃) = 0 and ỹ − y, z̃ − z ∈ mcV .

Remark 3.4. M. Greenberg proved this result in order to study Ci fields. Previous
results about Ci fields had been already been studied, in particular by S. Lang in
[Lan52] where appeared for the first time a particular case of Artin Approximation
Theorem (see Theorem 11 and its corollary in [Lan52]).

Remark 3.5. In the case f(y) has no solution in V , we can choose a = 0 and
Theorem 3.1 asserts there exists a constant b such that f(y) has no solution in V

mb
V

.

Remark 3.6. The valuation ν of V defines a ultrametric norm on K: we define it
as ∣∣∣y

z

∣∣∣ := eν(z)−ν(y), ∀y, z ∈ V \{0}.

This norm defines a distance on V m, for any m ∈ N∗, denoted by d(., .) and defined
by

d(y, z) :=
m

max
k=1
|yk − zk| .
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Then Theorem 3.1 can be reformulated as a Łojasiewicz Inequality:

∃a ≥ 1, C > 0 s.t. |f(y)| ≥ Cd(f−1(0), y)a ∀y ∈ V m.

This Łojasiewicz Inequality is well known for algebraic or analytic functions and
Theorem 3.1 can be seen as a generalization of this Łojasiewicz Inequality for al-
gebraic or analytic functions defined over V . If V = kJtK where k is a field, there
is very few results known about the geometry of algebraic varieties defined over
V . It is a general problem to extend classical results of differential or analytic ge-
ometry over R or C to this setting. See for instance [H-M94], [B-H10] (extension
of Rank Theorem), [FB-PP2] (Extension of Curve Selection Lemma), [Hic05] for
some results in this direction.

For any c ∈ N let us denote by β(c) the smallest integer such that:
for all y ∈ V m such that f(y) ∈ (x)β(c), there exists ỹ ∈ V m such that f(ỹ) = 0 and
ỹ− y ∈ (x)c. Greenberg’s Theorem asserts that such a function β : N −→ N exists
and that it is bounded by an affine function. We call this function β the Greenberg
function of f . We can remark that the Greenberg function is an invariant of the
integral closure of the ideal generated by f1,..., fr:

Lemma 3.7. Let us consider f(y) ∈ V [y]r and g(y) ∈ V [y]q. Let us denote by βf
and βg their Greenberg functions. Let I (resp. J) be the ideal of V [y] generated by
f1(y),..., fr(y) (resp. g1(y),..., gq(y)). If I = J then βf = βg. The same is true
for Theorem 3.3.

Proof. Let I be an ideal of V and y ∈ V m. We remark that

f1(y), ..., fr(y) ∈ I ⇐⇒ g(y) ∈ I ∀g ∈ I.

Then by replacing I by (0) and mcV , for all c ∈ N, we see that βf depends only on
I.
Now, for any c ∈ N, we have:

g(y) ∈ mcV ∀g ∈ I ⇐⇒ ν(g(y)) ≥ c ∀g ∈ I

⇐⇒ ν(g(y)) ≥ c ∀g ∈ I
⇐⇒ g(y) ∈ mcV ∀g ∈ I.

Thus βf depends only on I. �

In general, it is a difficult problem to compute the Greenberg function of an
ideal I. It is even a difficult problem to bound this function in general. If we
analyze carefully the proof of Greenberg’s Theorem, using classical effective results
in commutative algebra, we can prove the following result:

Theorem 3.8. [Ron10a] Let k be a characteristic zero field and V := kJtK where
t is a single variable. Then there exists a function

N2 −→ N

(m, d) 7−→ a(m, d)

which is a polynomial function in d whose degree is exponential in m, such that for
any vector f(y) ∈ k[t, y]r of polynomials of total degree ≤ d, the Greenberg function
of f is bounded by c 7−→ a(m, d)(c+ 1). Here m denotes the size of y.
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Moreover let us remark that, in the proof of Theorem 3.1, we proved a particular
case of the following inequality:

βI(c) ≤ 2βJ(c) + c, ∀c ∈ N
where J is the Jacobian Ideal of I (for a precise definition of the Jacobian Ideal
in general and a general proof of this inequality let see [El73]). The coefficient 2
comes from the use of Tougeron’s Implicit Function Theorem. We can sharpen this
bound in the following particular case:

Theorem 3.9. [Hic93] Let k be an algebraically closed field of characteristic zero
and V := kJtK where t is a single variable. Let f(y) ∈ V JyK be one power series. Let
us denote by J the ideal of V JyK generated by f(y), ∂f∂t (y), ∂f

∂y1
(y),..., ∂f

∂ym
(y), and

let us denote by βf the Greenberg function of (f) and by βJ the Greenberg function
of J . Then

βf (c) ≤ βJ(c) + c ∀c ∈ N.
This bound may be used to find sharp bounds of some Greenberg functions (see

Remark 3.11).
On the other hand we can describe the behaviour of β in the following case:

Theorem 3.10. [De84][De-Lo99] Let V be Zp or a Henselian discrete valuation
ring whose residue field is an algebraically closed field of characteristic zero. Let
us denote by mV the maximal ideal of V . Let us denote by β the Artin function
of f(y) ∈ V [y]r. Then there exists a finite partition of N in congruence classes
such that on each such congruence class the function c 7−→ β(c) is linear for c large
enough.

Hints on the proof in the case the residue field has characteristic zero. Let us con-
sider the following first order language of three sorts:

1) the field (K := Frac(V ),+,×, 0, 1)
2) the group (Z,+, <,≡d (∀d ∈ N∗), 0) (≡d is the relation a ≡d b if and only

if a− b is divisible by d for a, b ∈ Z)
3) the residue field (k := Frac

(
V
mV

)
,+,×, 0, 1)

with both following functions:
a) ν : K −→ Z∗
b) ac : K −→ k ("angular component")

The function ν is the valuation of the valuation ring V . The function ac may be
characterized by axioms, but here let us just give an example: let us assume that
V = kJtK. Then ac is defined by ac(0) = 0 and ac

(∑∞
n=n0

ant
n
)

= an0
if an0

6= 0.
The second sort (Z,+, <,≡d, 0) admits elimination of quantifiers ([Pr29]) and the
elimination of quantifiers of (k,+,×, 0, 1) is a classical result of Chevalley. J. Pas
proved that the first sort language and the three sorted language admits elimination
of quantifiers [Pa89]. This means that any subset of Kn1 × Zn2 × kn3 defined by a
first order formula in this three sorts language (i.e. a logical formula involving 0,
1,+ ,× (but not a× b where a and b are integers), (, ), =, <, ∧, ∨, ¬, ∀, ∃, ν, ac,
and variables for elements of K, Z and k may be defined by a formula involving the
same symbols except ∀, ∃.
Then we see that β is defined by the following logical sentence:

[∀c ∈ N ∀y ∈ Km (ν(f(y)) ≥ β(c)) ∧ (ν(y) ≥ 0) ∃ỹ ∈ Km (f(ỹ) = 0 ∧ ν(ỹ − y) ≥ c)]
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∧ [∀c ∈ N ∃y ∈ Km (ν(f(y)) ≥ β(c) + 1) ∧ (ν(y) ≥ 0)

¬∃ỹ ∈ Km (f(ỹ) = 0 ∧ ν(ỹ − y) ≥ c)]
Applying the latter elimination of quantifiers result we see that β(c) may be defined
without ∀ and ∃. Thus β(c) is defined by a formula using +, <, ≡d (for a finite set
of integers d). This proves the result.
The case where V = Zp needs more work since the residue field of Zp is not
algebraically closed, but the idea is the same. �

Remark 3.11. When V = C{t}, t being a single variable, it is tempting to link
together the Greenberg function of a system of equations with coefficients in V
and some geometric invariants of the germ of complex set defined by this system of
equations. This has been done in several cases:

i) In [El89], a bound (involving the multiplicity and the Milnor number) of the
Greenberg function is given when the system of equations defines a curve
in Cm.

ii) Using Theorem 3.9 [Hic93] gives the following bound of the Greenberg
function β of a germ of complex hypersurface with an isolated singularity:
β(c) ≤ bλcc+c for all c ∈ N, and this bound is sharp for plane curves. Here
λ denotes the Łojasiewicz exponent of the germ, i.e.

λ := inf {θ ∈ R / ∃C > 0 ∃U neighborhood of 0 in Cm,

|f(z)|+
∣∣∣∣ ∂f∂z1 (z)

∣∣∣∣+ · · ·+
∣∣∣∣ ∂f∂zm (z)

∣∣∣∣ ≥ C|z|θ ∀z ∈ U} .
iii) [Hic04] makes the complete computation of the Greenberg function of a

branch of plane curve and proves that it is a topological invariant. This
computation has been done for several branches in [Sa10]. Some particular
cases depending on the Newton polygon of the plane curve singularity are
computed in [Wa78].

Finally we mention the following recent result that extends Theorem 3.1 to non-
Noetherian valuation rings and whose proof is based on ultraproducts methods used
in [BDLvdD79] to prove Theorem 3.1 (see 3.3):

Theorem 3.12. [M-B11] Let V be a Henselian valuation ring and ν : V −→ Γ

its associated valuation. Let us denote by V̂ its mV -adic completion, K := Frac(V )

and K̂ := Frac(V̂ ). Let us assume that K −→ K̂ is a separable extension. Then for
any f(y) ∈ V [y]r there exist a ∈ N, b ∈ Γ+ such that

∀c ∈ Γ ∀y ∈ V m (ν(f(y)) ≥ ac+ b) =⇒ ∃ỹ ∈ V m (f(ỹ) = 0 ∧ ν(ỹ − y) ≥ c) .

3.2. Strong Artin Approximation Theorem: the general case. In the gen-
eral case (when V is not a valuation ring), there still exists an approximation
function β. We have the following results:

Theorem 3.13. [Ar68][BDLvdD79] Let k be a field. For all n,m, d ∈ N, there
exists a function βn,m,d : N −→ N such that the following holds:
Set x := (x1, ..., xn) and y := (y1, ..., ym). Then for all f(x, y) ∈ k[x, y]r of total
degree ≤ d, for all c ∈ N, for all y(x) ∈ kJxKm such that

f(x, y(x)) ∈ (x)βn,m,d(c),
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there exists ỹ(x) ∈ kJxKm such that f(ỹ(x)) = 0 and ỹ(x)− y(x) ∈ (x)c.

Remark 3.14. By following the proof of M. Artin, D. Lascar proved that there
exists a recursive function β that satisfies the conclusion of Theorem 3.13 [Las78].
But the proof of Theorem 3.13 uses a double induction on the height of the ideal
(like in Theorem 3.1) and on n (like in Theorem 2.1). In particular, in order to
apply the Jacobian Criterion, we need to work with prime ideals, and replace the
original ideal I generated by f1,..., fr by one of its associated prime and then make
a reduction to n − 1 variables. But the bounds of the degree of the generators of
such associated prime may be very large compared to the degree of the generators
of I. This is essentially the reason why the proof of this theorem does not give
much more information about the growth of β than Lascar’s result.

Theorem 3.15. [Pf-Po75] [Po86] Let A be a complete local ring whose maximal
ideal is denoted by mA. Let f(y, z) ∈ AJyK[z]r, with z := (z1, ..., zs). Then there
exists a function β : N −→ N such that the following holds:
For any c ∈ N and any y ∈ (mA.A)m and z ∈ As such that f(y, z) ∈ m

β(c)
A , there

exists ỹ ∈ (mA.A)m and z̃ ∈ As such that f(ỹ, z̃) = 0 and ỹ − y, z̃ − z ∈ mcA.

Example 3.16. [Sp94] Set f(x1, x2, y1, y2) := x1y
2
1 − (x1 + x2)y22 . Set

√
1 + t = 1 +

∑
n≥1

ant
n ∈ CJtK

be the power series such that
√

1 + t
2

= 1 + t. For any c ∈ N set y(c)2 (x) := xc1 and
y
(c)
1 (x) := xc1 +

∑c
n=1 anx

c−n
1 xn2 . Then

f(x1, x2, y
(c)
1 (x), y

(c)
2 (x)) ∈ (x2)c.

On the other side the equation f(x1, x2, y1(x), y2(x)) = 0 has no other solution
(y1(x), y2(x)) ∈ kJxK2 but (0, 0). This proves that Theorem 3.17 is not valid for
general Henselian pairs since (kJx1, x2K, (x2)) is a Henselian pair.
Let us notice that L. Moret-Bailley proved that if a pair (A, I) satisfies Theorem
3.17, then A has to be an excellent Henselian local ring [M-B07]. It is still open to
know under which conditions on I the pair (A, I) satisfies Theorem 3.17 when A is
an excellent Henselian local ring.

Corollary 3.17. [Pf-Po75] [Po86] Let A be an excellent Henselian local ring whose
maximal ideal is denoted by mA and let f(y) ∈ A[y]r. Then there exists a function
β : N −→ N such that:

∀c ∈ N, ∀y ∈ Am such that f(y) ∈ m
β(c)
A

∃ỹ ∈ Am such that f(ỹ) = 0 and ỹ − y ∈ mcA.

Corollary 3.18. [Wa75][De-Li80] Let kVxW be a W-system over k, where k is a
field or a discrete valuation ring with prime p. Let f(x, y) ∈ kVx, yWr. Then there
exists a function β : N −→ N such that for any c ∈ N and any y ∈ (p, x)k̂JxKm

such that f(x, y) ∈ (p, x)β(c), there exists ỹ ∈ (p, x)kVxWm such that f(x, ỹ) = 0
and ỹ − y ∈ (p, x)c.

Proof. We first apply Theorem 3.15 then we apply Theorem 2.14. �
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Remark 3.19. As for Theorem 3.1, Corollary 3.17 implies that, if f(y) has no
solution in A, there exists a constant c such that f(y) has no solution in A

mc
A
.

Definition 3.20. Let f be as in Theorem 3.15 or Corollary 3.17. The least
function β that satisfies these theorems is called the Artin function of f .

Remark 3.21. As before, the Artin function of f depends only on the integral
closure of the ideal I generated by f1,..., fr (see Lemma 3.7).

Remark 3.22. Let f(y) ∈ AJyKr and y ∈ (mA)m satisfy f(y) ∈ mcA and let us
assume that A −→ B := AJyK

(f(y)) is a smooth morphism. This morphism is local thus
it splits as A −→ C := A[z]mA+(z) −→ B such that C −→ B is étale (see Definition
C.5) and z := (z1, ..., zs). We remark that y defines a morphism of A-algebras
ϕ : B −→ A

mc
A
. Let us choose any z̃ ∈ As such that zi − z̃i ∈ mcA for all 1 ≤ i ≤ s

(zi denotes the image of zi in A
mc

A
). Then A −→ B

(z1−z̃1,...,zs−z̃) is étale and admits
a section in A

mc
A
. By Proposition C.9, this section lifts to a section in A. Thus we

have a section B −→ A equal to ϕ modulo mcA.
This proves that β(c) = c when A −→ AJyK

(f(y)) is smooth.

3.3. Ultraproducts and proofs of Strong Approximation type results. His-
torically, M. Artin proved Theorem 3.13 in [Ar69] by slightly modifying the proof
of Theorem 2.1, i.e. by an induction on n using the Weierstrass Division Theorem.
Then some people tried to prove this kind of result in the same way, but this was
not always easy, in particular when the base field was not a characteristic zero field
(for example there is a gap in the inseparable case of [Pf-Po75]). Then four peo-
ple introduced the use of ultraproducts to give easy proofs of this kind of Strong
Approximation type results ([BDLvdD79] and [De-Li80]; see also [Po79] for the
general case). The general principle is the following: ultraproducts reduce Strong
Artin Approximation Problems to Artin Approximation Problems. We will present
here the main ideas.

Let us start with some terminology. A filter D (over N) is a non empty subset
of P(N), the set of subsets of N, that satisfies the following properties:

a) ∅ /∈ D, b) E , F ∈ D =⇒ E
⋂
F ∈ D, c) E ∈ D, E ⊂ F =⇒ F ∈ D.

A filter D is principal if D = {F / E ⊂ F} for some subset E of N. A ultrafilter
is a filter which is maximal for the inclusion. It is easy to check that a filter D is
a ultrafilter if and only if for any subset E of N, D contains E or its complement
N − E . In the same way a ultrafilter is non-principal if and only if it contains the
filter E := {E ⊂ N / N − E is finite}. Zorn’s Lemma yields the existence of non-
principal ultrafilters.

Let A be a Noetherian ring. Let D be a non-principal ultrafilter. We define the
ultrapower (or ultraproduct) of A as follows:

A∗ :=
{(ai)i∈N ∈

∏
iA}

((ai) ∼ (bi) iff {i / ai = bi} ∈ D)
.

We have a morphism A −→ A∗ that sends a onto the class of (a)i∈N. We have the
following fundamental result:
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Theorem 3.23. [C-K73] Let L be a first order language, let A be a structure for L
and let D be an ultrafilter over N. Then for any (ai)i∈N ∈ A∗ and for any first order
formula ϕ(x), ϕ((ai)) is true in A∗ if and only if {i ∈ N / ϕ(ai) is true in A} ∈ D.

In particular we can deduce the following properties:
The ultraprower A∗ is equipped with a structure of commutative ring. If A is a field
then A∗ is a field. If A is an algebraically closed field then A∗ is an algebraically
closed field. If A∗ is a local ring with maximal ideal mA then A∗ is a local ring
with maximal ideal m∗A defined by (ai)i ∈ m∗A if and only if {i / ai ∈ mA} ∈ D. If
A is a local Henselian ring, then A∗ is a local Henselian ring. In fact all these facts
are elementary and can be checked directly by hand. Elementary proofs of these
results can be found in [BDLvdD79].
Nevertheless if A is Noetherian, then A∗ is not Noetherian in general, since Noethe-
rianity is a condition on ideals of A and not on elements of A. For example, if A is
a Noetherian local ring, then m∗∞ :=

⋂
n≥0 m

∗
A
n 6= (0) in general. But we have the

following lemma:

Lemma 3.24. [Po00] Let (A,mA) be a Noetherian complete local ring. Let us
denote A1 := A∗

m∗∞
. Then A1 is a Noetherian complete local ring of same dimension

as A and the composition A −→ A∗ −→ A1 is flat.

In fact, since A is excellent and mAA1 is the maximal ideal of A1, it is not diffi-
cult to prove that A −→ A1 is regular. Details can be found in [Po00].

Let us sketch the idea in the case of Theorem 3.17:

Sketch of the proof of Theorem 3.17. Let us assume that some system of algebraic
equations over an excellent Henselian local ring A, denoted by f = 0, does not
satisfy Theorem 3.17. Using Theorem 2.17, we may assume that A is complete.
Thus it means that there exist an integer c0 ∈ N and y(c) ∈ Am, ∀ c ∈ N, such
that f(y(c)) ∈ mcA and there does not exists ỹ(c) ∈ Am such that f(ỹ(c)) = 0 and
ỹ(c) − y(c) ∈ mc0A .
Let us denote by y the image of (y(c))c in (A∗)m. Since f(y) ∈ A[y]r, we may
assume that f(y) ∈ A∗[y]r using the morphism A −→ A∗. Then f(y) ∈ m∗∞.
Thus f(y) = 0 in A1. Let us choose c > c0. Since A −→ A1 is regular and A is
Henselian, following the proof of Theorem 2.17, for any c ∈ N there exists ỹ ∈ Am
such that f(ỹ) = 0 and ỹ − y ∈ mcAA1. Thus ỹ − y ∈ mcAA

∗. Hence the set
{i ∈ N / ỹ − y(i) ∈ mcAA

∗} ∈ D is non-empty. This is a contradiction. �

We can also prove easily the following proposition with the help of ultraproducts:

Proposition 3.25. [BDLvdD79] Let f(x, y) ∈ C[x, y]r. For any 1 ≤ i ≤ m let Ji
be a subset of {1, ..., n}.
Let us assume that, for any c ∈ N, there exist y(c)i (x) ∈ C[xj , j ∈ Ji], 1 ≤ i ≤ m,
such that

f(x, y(c)(x)) ∈ (x)c.

Then there exist ỹi(x) ∈ CJxj , j ∈ JiK, 1 ≤ i ≤ m, such that f(x, ỹ(x)) = 0.

Proof. Let us denote by y ∈ C[x]∗ the image of (y(c))c. Then f(x, y) = 0 modulo
(x)∗∞. It is not very difficult to check that C[x]∗

(x)∗∞
' C∗JxK as C∗[x]-algebras. More-

over C∗ ' C as k-algebras (where k is the subfield of C generated by the coefficients
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of f), since they are algebraically closed field of same transcendence degree over Q
and same characteristic. Then the image of y by the isomorphism yields the desired
solution in CJxK. �

Let us remark that the proof of this result remains valid if we replace C by any
algebraically closed field k whose cardinal is strictly greater that the cardinal of N.
If we replace C by Q, this result is no more true in general (see Example 5.23).

3.4. Effectivity of the behaviour of Artin functions: some examples. In
general the proofs of Strong Artin Approximation results do not give much in-
formation about the Artin functions, since ultraproducts methods use a proof by
contradiction (see also Remark 3.14). The problem of finding estimates of Artin
functions was raised first in [Ar70] and very few general results are known (the only
ones in the case of Greenberg Theorem are Theorems 3.8, 3.9, 3.10 and Remark
3.14 in the general case). We give here a list of examples for which we can give non
trivial effective behaviour about their Artin function.

3.4.1. Artin-Rees Lemma. The following result has been known for long by the
specialists and has been communicated to the author by M. Hickel:

Theorem 3.26. [Ron06a] Let f(y) ∈ A[y]r be a vector of linear polynomials with
coefficients in a Noetherian ring A. Let I be an ideal of A. Then there exists a
constant c0 ≥ 0 such that:

∀c ∈ ∀y ∈ Am such that f(y) ∈ Ic+c0

∃ỹ ∈ Am such that f(ỹ) = 0 and ỹ − y ∈ Ic.

This theorem asserts that the function β of Theorem 3.17 is bounded by the
function c −→ c+ c0. Moreover let us remark that this theorem is valid for general
Noetherian ring and general ideals I if A. This can be compared with the fact
that, for linear equations, Theorem 2.16 is true for any Noetherian ring A without
Henselian condition (see Remark 2.20).

Proof. For convenience, let us assume that there is only one linear polynomial:

f(y) = a1y1 + · · ·+ amym.

Let us denote by I the ideal of A generated by a1,..., am. Artin-Rees Lemma
implies that there exists c0 > 0 such that I

⋂
Ic+c0 ⊂ I.Ic for any c ≥ 0.

If y ∈ Am is such that f(y) ∈ Ic+c0 then, since f(y) ∈ I, there exists ε ∈ (Ic)m
such that f(y) = f(ε). If we define ỹi := yi − εi, for 1 ≤ i ≤ m, we have the
result. �

We have the following result whose proof is similar:

Proposition 3.27. Let (A,mA) be a Henselian excellent local ring, I an ideal of
A generated by a1,..., aq and f(y) ∈ A[y]r. Set

Fi(y, z) := fi(y) + a1zi,1 + · · ·+ aqzi,q ∈ A[y, z], 1 ≤ i ≤ r
where the zi,k’s are new variables and let F (y, z) be the vector whose coordinates
are the Fi(y, z)’s. Let us denote by β the Artin function of f(y) seen as a vector
of polynomials of A

I [y] and γ the Artin function of F (y, z) ∈ A[y, z]r. Then there
exists a constant c0 such that:

β(c) ≤ γ(c) ≤ β(c+ c0), ∀c ∈ N.
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Proof. Let y ∈ A
I

m satisfies f(y) ∈ m
γ(c)
A

A
I . Then there exists z ∈ Aqr such that

F (y, z) ∈ m
γ(c)
A (we still denote by y a lifting of y in Am). Thus there exists ỹ ∈ Am

and z̃ ∈ Aqr such that F (ỹ, z̃) = 0 and ỹ − y, z̃ − z ∈ mcA. Thus f(ỹ) = 0 in A
I .

Let c0 be a constant such that I
⋂
mc+c0A ⊂ I.mcA for all c ∈ N (such constant exists

by the Artin-Rees Lemma). Let y ∈ Am, z ∈ Aqr satisfy F (y, z) ∈ m
β(c+c0)
A . Then

f(y) ∈ m
β(c+c0)
A +I. Thus there exists ỹ ∈ Am such that f(ỹ) ∈ I and ỹ−y ∈ mc+c0A .

Thus F (ỹ, z) ∈ mc+c0A

⋂
I. Then we conclude by following the proof of Theorem

3.26.
�

Remark 3.28. By Theorem 2.17, in order to study the behaviour of the Artin
function of some ideal we may assume that A is a complete local ring. Let us
assume that A is an equicharacteristic local ring. Then A is the quotient of a power
series ring over a field by Cohen Structure Theorem [Mat80]. Thus Proposition
3.27 allows us to reduce the problem to the case A = kJx1, ..., xnK where k is a field.

3.4.2. Izumi’s Theorem and Diophantine Approximation. Let (A,mA) be a Noe-
therian local ring. We denote by ν the mA-adic order on A, i.e.

ν(x) := max{n ∈ N / x ∈ mnA} for any x 6= 0.

We always have ν(x) + ν(y) ≤ ν(xy) for all x, y ∈ A. But we do not have the
equality in general. For instance, if A := CJx,yK

(x2−y3) then ν(x) = ν(y) = 1 but
ν(x2) = ν(y3) = 3. Nevertheless we have the following theorem:

Theorem 3.29 (Izumi’s Theorem). [Iz85][Re89] Let (A,mA) be a local Noetherian
ring. Let us assume that A is analytically irreducible, i.e. Â is irreducible. Then
there exist b ≥ 1, and d ≥ 0 such that

∀x, y ∈ A, ν(xy) ≤ b(ν(x) + ν(y)) + d.

This result implies easily the following corollary using Corollary 3.27:

Corollary 3.30. [Iz95][Ron06a] Let us consider the polynomial

f(y) := y1y2 + a3y3 + · · ·+ amym,

with a3,..., am ∈ A where (A,mA) is a Noetherian local ring such that A
(a3,...,am)

is analytically irreducible. Then there exist b ≥ 1 and d ≥ 0 such that the Artin
function β of Theorem 3.17 satisfies β(c) ≤ bc+ d for all c ∈ N.

Proof. By Proposition 3.27 we have to prove that the Artin function β of y1y2 ∈ A[y]
is bounded by an affine function if A is analytically irreducible. Thus let y1, y2 ∈ A
satisfy y1y2 ∈ m2bc+d

A where b and d satisfies Theorem 3.29. This means that

2bc+ d ≤ ν(y1y2) ≤ b(ν(y1) + ν(y2)) + d.

Thus ν(y1) ≥ c or ν(y2) ≥ c. In the first case we denote ỹ1 = 0 and ỹ2 = y2 and
in the second case we denote ỹ1 = y1 and ỹ2 = 0. Then ỹ1ỹ2 = 0 and ỹ1 − y1,
ỹ2 − y2 ∈ mcA. �

Hints on the proof of Theorem 3.29 in the complex analytic case. According to the
theory of Rees valuations, there exists discrete valuations ν1,..., νk such that ν(x) =
min{ν1(x), ..., νk(x)} (they are called the Rees valuation of ν). The valuation rings
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associated to ν1,..., νk are the valuation rings associated to the irreducible compo-
nents of the exceptional divisor of the normalized blowup of mA.
Since νi(xy) = νi(x) + νi(y) for any i, in order to prove the theorem we have to
see that there exists a ≥ 1 such that νi(x) ≤ aνj(x) for any x ∈ A and any i and
j. If A is a complex analytic local ring, following S. Izumi’s proof, we may reduce
the problem to the case dim(A) = 2 by using a Bertini type theorem, and then
assume that A is normal by using an inequality on the reduced order proved by
D. Rees. Then let us consider a resolution of singularities of Spec(A) (denoted by
π) that factors through the normalized blow-up of mA. In this case, let us denote
by E1,..., Es the irreducible components of the exceptional divisor of π. Let us
denote ei,j := Ei.Ej for all 1 ≤ i, j ≤ s. Let x be an element of A. This element
defines a germ of analytic hypersurface whose total transform Tx may be written
Tx = Sx +

∑s
j=1mjEj where Sx is the strict transform of {x = 0} and mi = νi(x),

1 ≤ i ≤ s. Then we have

0 = Tx.Ei = Sx.Ei +

s∑
j=1

mjei,j .

Since Sx.Ei ≥ 0 for any i, the vector (m1, ...,ms) is contained in the convex cone
C defined by xi ≥ 0, 1 ≤ i ≤ s, and

∑s
j=1 ei,jxj ≤ 0, 1 ≤ i ≤ s. To prove the

theorem, it is enough to prove that C is included in xi > 0, 1 ≤ i ≤ s. Let assume
that it is not the case. Then, after renumbering the Ei’s, we may assume that
(x1, ..., xl, 0, ..., 0) ∈ C where xi > 0, 1 ≤ i ≤ l < s. Since ei,j ≥ 0 for all i 6= j,∑s
j=1 ei,jxj = 0 for l < i ≤ s implies that ei,j = 0 for all l < i ≤ s and 1 ≤ j ≤ l.

This contradicts the fact that the exceptional divisor of π is connected (since A is
an integral domain).

�

Let us mention that Izumi’s Theorem is the key ingredient to prove the following
result:

Corollary 3.31. [Ron06b][Hic08][I-I08] Let (A,mA) be a regular excellent Henselian
domain. Let us denote by K and K̂ the fraction fields of A and Â respectively. Let
z ∈ K̂\K be algebraic over K. Then

∃a ≥ 1, C ≥ 0,∀x ∈ A ∀y ∈ A∗
∣∣∣∣z − x

y

∣∣∣∣ ≥ C|y|a
where |u| := e−ν(u) and ν is the usual mA-adic valuation.

This result is equivalent to the following:

Corollary 3.32. [Ron06b][Hic08][I-I08] Let (A,mA) be an excellent Henselian local
ring and let f1(y1, y2),..., fr(y1, y2) ∈ A[y1, y2] be homogeneous polynomials. Then
the Artin function of f1,..., fr is bounded by an affine function.

3.4.3. Reduction to one quadratic equation and examples. In general Artin functions
are not bounded by affine functions as in Theorem 3.1. Here is such an example:

Example 3.33. [Ron05] Set f(y1, y2, y3) := y21−y22y3 ∈ kJx1, x2K[y1, y2, y3] where
k is a field of characteristic zero. Let us denote by h(T ) :=

∑∞
i=1 aiT

i ∈ QJT K the
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power series such that (1 + h(T ))2 = 1 + T . Let us denote

y
(c)
1 := x2c+2

1

(
1 +

c+1∑
i=1

ai
xci2
x2i1

)
= x2c+2

1 +

c+1∑
i=1

aix
2(c−i+1)
1 xci2 ,

y
(c)
2 := x2c+1

1 ,

y
(c)
3 := x21 + xc2.

Then in the ring k(x2

x1
)Jx1K we have

f(y
(c)
1 , y

(c)
2 , y

(c)
3 ) =

(y(c)1

y
(c)
2

)2

− y(c)3

 y
(c)
2

2
=

(y(c)1

y
(c)
2

)2

− x21
(

1 +
xc2
x21

) y
(c)
2

2

=

(
y
(c)
1

y
(c)
2

− x1
(

1 + h

(
xc2
x21

)))(
y
(c)
1

y
(c)
2

+ x1

(
1 + h

(
xc2
x21

)))
y
(c)
2

2
.

Thus we see that f(y
(c)
1 , y

(c)
2 , y

(c)
3 ) ∈ (x)c

2+4c for all c ≥ 2. But if (ỹ1, ỹ2, ỹ3) ∈
kJx1, x2K3 is a solution of f = 0 then

1) Either ỹ3 is a square in kJx1, x2K. But supz∈kJxK(ord(y
(c)
3 − z2)) = c.

2) Either ỹ3 is not a square, hence ỹ1 = ỹ2 = 0. But ord(y
(c)
1 )−1 = ord(y

(c)
2 ) =

2c+ 1.
In any case we have

sup(min{ord(y
(c)
1 − ỹ1), ord(y

(c)
2 − ỹ2), ord(y

(c)
3 − ỹ3)}) ≤ 2c+ 1.

This proves that the Artin function f is bounded from below by a polynomial
function of degree 2. Thus Theorem 3.1 does not extend to kJx1, ..., xnK if n ≥ 2.

In [Ron06a] another example is given: the Artin function of the polynomial
y1y2 − y3y4 ∈ kJx1, x2, x3K[y1, y2, y3, y4] is bounded from below by a polynomial
function of degree 2. Both examples are the only known examples of Artin functions
which are not bounded by an affine function.
We can remark that both examples are given by binomial equations. In the binomial
case we can find effective bounds of the Artin functions as follows:

Theorem 3.34. [Ron10a][Ron12] Let k be an algebraically closed field of char-
acteristic zero. Let I be an ideal of kJx1, x2K[y]. If I is generated by binomials of
k[y] or if Spec(kKx1, x2K[y]/I) has an isolated singularity then the Artin function of
I is bounded by a function which is doubly exponential, i.e. a function of the form
c −→ aa

c

for some constant a > 1.

Moreover the Artin function of I is bounded by an affine function if the approx-
imated solutions are not too close to the singular locus of I [Ron12]. We do not
know if this doubly exponential bound is sharp since there is no example of Artin
function whose growth is greater than a polynomial of degree 2.

In general, in order to investigate bounds on the growth of Artin functions in
general, we can reduce the problem as follows, using a trick of [Ron10b]. From now
on we assume that A is a complete local ring.
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Lemma 3.35. [Be77b] For any f(y) ∈ A[y]r or AJyKr the Artin function of f is
bounded by the Artin function of

g(y) := f1(y)2 + y1(f2(y)2 + y1(f3(y)2 + · · · )2)2.

Proof. Indeed, if β is the Artin function of g and if f(ŷ) ∈ m
β(c)
A then g(ŷ) ∈ m

β(c)
A .

Thus there exists ỹ ∈ Am such that g(ỹ) = 0 and ỹi− ŷi ∈ mcA. But clearly g(ỹ) = 0
if and only if f(ỹ) = 0. This proves the lemma. �

This allows us to assume that r = 1 and we define f(y) := f1(y). If f(y) is
not irreducible, then we may write f = h1...hs, where hi ∈ AJyK is irreducible for
1 ≤ i ≤ s, and the Artin function of f is bounded by the sum of the Artin functions
of the hi’s. Hence we may assume that f(y) is irreducible.
We have the following lemma:

Lemma 3.36. For any f(y) ∈ AJyK, where A is a complete local ring, the Artin
function of f(y) is bounded by the Artin function of the polynomial

P (u, x, z) := f(y)u+ x1z1 + · · ·+ xmzm ∈ B[x, z, u]

where B := AJyK.

Proof. Let us assume that f(y) ∈ m
β(c)
A where β is the Artin function of P . By

replacing f(y) by f(y0 + y), where y0 ∈ A is such that y0i − yi ∈ mA, 1 ≤ i ≤ m,
we may assume that yi ∈ mA for 1 ≤ i ≤ m.
Then there exists zi(y) ∈ AJyK, 1 ≤ i ≤ m, such that

f(y) +

m∑
i=1

(yi − yi)zi(y) ∈ (mA + (y))β(c).

Thus there exists u(y), fi(y), zi(y) ∈ AJyK, 1 ≤ i ≤ m, such that

u(y)− 1, zi(y)− zi(y), xi(y)− (yi − yi) ∈ (mA + (y))c, 1 ≤ i ≤ n

and f(y)u(y) +

m∑
i=1

xi(y)zi(y) = 0.

In particular u(y) is invertible in AJyK if c > 0. Let us assume that c ≥ 2. In this
case the matrix of the partial derivatives of (xi(y), 1 ≤ i ≤ m) with respect to
y1, ..., ym has determinant equal to 1 modulo mA + (y). By the Henselian property
there exist yj,c ∈ mA such that xi(y1,c, ..., ym,c) = 0 for 1 ≤ i ≤ m. Hence, since
u(yi,c) is invertible, f(y1,c, ..., ym,c) = 0 and yi,c − yi ∈ mcA, 1 ≤ i ≤ m.

�

Thus, by Corollary 3.27, in order to study the general growth of Artin functions,
it is enough to study the Artin function of the polynomial

y1y2 + y3y4 + · · ·+ y2m+1y2m ∈ A[y]

where A is a complete local ring.
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4. Examples of Applications

In this part we give some examples of applications of Theorem 2.17 and Corollary
3.17.

Proposition 4.1. Let A be an excellent Henselian local ring. Then A is reduced
(resp. is an integral domain, resp. an integrally closed domain) if and only if Â is
reduced (resp. is an integral domain, resp. an integrally closed domain).

Proof. If Â is not reduced, then there exists ŷ ∈ Â, ŷ 6= 0, such that ŷk = 0 for
some positive integer k. Thus we apply Theorem 2.17 to the polynomial yk with
c ≥ ord(ŷ) + 1 in order to find ỹ ∈ A such that ỹk = 0 and ỹ 6= 0.
In order to prove that Â is an integral domain if A is an integral domain, we apply
the same procedure to the polynomial y1y2.
If A is an integrally closed domain, then A is an integral domain. Let P (z) :=

zd + â1z
d−1 + · · · + âd ∈ Â[z], f̂ , ĝ ∈ Â, ĝ 6= 0, satisfy P

(
f̂
ĝ

)
= 0, i.e. f̂d +

â1f̂
d−1ĝ + · · · + âdĝ

d = 0. By Theorem 2.17, for any c ∈ N, there exist ãi,c, f̃c,
g̃c ∈ A such that f̃dc + ã1,cf̃

d−1
c g̃c + · · ·+ ãd,cg̃

d
c = 0 and f̃c − f̂ , g̃c − ĝ ∈ mcA. Then

for c > c0, for some integer c0, g̃c 6= 0. Since A is an integrally closed domain, then
f̃c ∈ (g̃c) for c > c0. Thus f̂ ∈ (ĝ) +mc for c large enough. By Nakayama’s Lemma
this implies that f̂ ∈ (ĝ) and Â is integrally closed. �

Proposition 4.2. Let A be an excellent Henselian local ring. Let Q be a primary
ideal of A. Then QÂ is a primary ideal of Â.

Proof. Let f̂ ∈ Â and ĝ ∈ Â\
√
QÂ satisfy f̂ ĝ ∈ QÂ. By Theorem 2.17, for any

c ∈ N, there exist f̃c, g̃c ∈ A such that f̃cg̃c ∈ Q and f̃c− f̂ , g̃c− ĝ ∈ mcA. For some
c large enough, g̃c /∈

√
Q. Since A is a primary ideal, this proves that f̃c ∈ Q for c

large enough, hence f̂ ∈ QÂ.
�

Corollary 4.3. Let A be an excellent Henselian local ring. Let I be an ideal
of A and let I = Q1

⋂
· · ·
⋂
Qs be a primary decomposition of I in A. Then

Q1Â
⋂
· · ·QsÂ is a primary decomposition of IÂ.

Proof. Since I =
⋂s
i=1Qi, then IÂ =

⋂s
i=1(QiÂ) by faithfull flatness (or by Theo-

rem 2.17 for linear equations). We conclude with the help of Proposition 4.2. �

Corollary 4.4. [Iz92] Let A be an excellent Henselian local integrally closed do-
main. If f̂ ∈ Â and if there exists ĝ ∈ Â such that f̂ ĝ ∈ A\{0}, then there exists a
unit û ∈ Â such that ûf̂ ∈ A.

Proof. Let (f̂ ĝ)A = Q1

⋂
· · ·
⋂
Qs be a primary decomposition of the principal

ideal of A generated by f̂ ĝ. Since A is an integrally closed domain, it is a Krull
ring and Qi = p

(ni)
i for some prime ideal pi, 1 ≤ i ≤ s, where p(n) denote the

n-th symbolic power of p (see [Mat80] p.88). In fact ni := νpi
(f̂ ĝ) where νpi

is the
pi-adic valuation of the valuation ring Api

. By Corollary 4.3, p(n1)
1 Â

⋂
· · ·
⋂
p
(ns)
s Â

is a primary decomposition of (f̂ ĝ)Â. Since νpi
are valuations, then

f̂ Â = p
(k1)
1 Â

⋂
· · ·
⋂

p(ks)s Â =
(
p
(k1)
1

⋂
· · ·
⋂

p(ks)s

)
Â
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for some non negative integers k1,..., ks. Let h1,..., hr ∈ A be generators of

p
(k1)
1

⋂
· · ·
⋂
p
(ks)
s . Then f̂ =

r∑
i=1

âihi and hi = b̂if̂ for some âi, b̂i ∈ A, 1 ≤ i ≤ r.

Thus
r∑
i=1

âib̂i = 1, since Â is an integral domain. Thus one of the b̂i’s is invertible

and we choose û to be this invertible b̂i. �

Corollary 4.5. [To72] Let A be an excellent Henselian local ring. For f(y) ∈ A[y]r

let I be the ideal of A[y] generated by f1(y),..., fr(y). Let us assume that ht(I) = m.
Let ŷ ∈ Âm satisfy f(ŷ) = 0. Then ŷ ∈ Am.

Proof. Set p := (y1 − ŷ1, ..., ym − ŷm). It is a prime ideal of Â and ht(p) = m. Of
course IÂ ⊂ p and ht(IÂ) = m by Corollary 4.3. Thus p is of the form p′Â where p′

is minimal prime of I. Then ŷ ∈ Âm is the only common zero of all the elements of
p′. By Theorem 2.17, ŷ can be approximated by a common zero of all the elements
of p′ which is in Am. Thus ŷ ∈ Am. �

Proposition 4.6. [KPPRM78][Po86] Let A be an excellent Henselian local ring.
Then A is a unique factorization domain if and only if Â is a unique factorization
domain.

Proof. If Â is a unique factorization domain, then any irreducible element of Â is
prime. Thus any irreducible element of A is prime. Since A is a Noetherian integral
domain, it is a unique factorization domain.
Let us assume that Â is a Noetherian integral domain but not a unique factorization
domain. Thus there exists an irreducible element x̂1 ∈ Â that is not prime. This
equivalent to

∃x̂2, x̂3, x̂4 ∈ Â such that x̂1x̂2 − x̂3x̂4 = 0

6 ∃ẑ1, ẑ2 ∈ Â such that x̂1ẑ1 − x̂3 = 0 and x̂2ẑ2 − x̂4 = 0

and 6 ∃ŷ1, ŷ2 ∈ mAÂ such that ŷ1ŷ2 − x̂1 = 0.

Let us denote by β the Artin function of

f(y, z) := (x̂1z1 − x̂3, x̂2z2 − x̂4, y1y2 − x̂1) ∈ ÂJyK[z].

Since f(y, z) has no solution in (mAÂ)2 × Â2, by Remark 3.19 β is a constant, and
f(y, z) has no solution in (mAÂ)2 × Â2 modulo mβA.
On the other hand by Theorem 2.17 applied to x1x2 − x3x4, there exists x̃i ∈ A,
1 ≤ i ≤ 4, such that x̃1x̃2 − x̃3x̃4 = 0 and x̃i − x̂i ∈ mβ+1

A , 1 ≤ i ≤ 4. Hence

g(y, z) := (x̃1z1 − x̃3, x̃2z2 − x̃4, y1y2 − x̃1) ∈ ÂJyK[z]

has no solution in (mAÂ)2× Â2 modulo mβA, hence has no solution in (mAA)2×A2.
This means that x̃1 is an irreducible element of A but it is not prime. Hence A is
not a unique factorization domain. �
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5. Approximation with constraints

We will now discuss the problem of the Artin Approximation with constraints
that is the following:

Problem 1 (Artin Approximation with constraints):
Let A be an excellent Henselian local subring of kJx1, ..., xnK and f(y) ∈ A[y]r. Let
us assume that we have a formal solution ŷ ∈ Âm of f = 0 and assume moreover
that

ŷi(x) ∈ Â
⋂

kJxj , j ∈ JiK

for some subset Ji ⊂ {1, ..., n}, 1 ≤ i ≤ m.
Is it possible to approximate ŷ(x) by a solution ỹ(x) ∈ Am of f = 0 such that
ỹi(x) ∈ A

⋂
kJxj , j ∈ JiK, 1 ≤ i ≤ m?

Another problem is the following:

Problem 2 (Strong Artin Approximation with constraints):
Let us consider f(y) ∈ kJxK[y]r and Ji ⊂ {1, ..., n}, 1 ≤ i ≤ m. Does there exist a
function β : N −→ N such that:
for all c ∈ N and all yi(x) ∈ kJxj , j ∈ JiK, 1 ≤ i ≤ m, such that

f(y(x)) ∈ (x)β(c),

there exist ỹi(x) ∈ kJxj , j ∈ JiK such that f(ỹ(x)) = 0 and ỹi(x) − yi(x) ∈ (x)c,
1 ≤ i ≤ m?

If such function β exists, the smallest function satisfying this property is called
the Artin function of the system f = 0.

Let us remark that we have already given a positive answer to a similar weaker
problem (see Proposition 3.25). The answer will be no in general for both problems
and yes for some particular cases. We present here the positive and negative results
concerning these problems. We will see that some systems yield a positive answer
to Problem 2 but a negative answer to Problem 1.

5.1. Examples. First of all we give here a list of examples that show that there
is no hope, in general, to have a positive answer to Problem 1 without any more
specific hypothesis, even if A is the ring of algebraic or convergent power series.
These examples are constructed by looking at the Artin Approximation Problem
for equations involving differentials (Examples 5.3 and 5.6) and operators on germs
of functions (Examples 5.4 and 5.5). To construct these examples, the following
lemma will be used repeatedly:

Lemma 5.1. [Be77a] Let (A,mA) be a Noetherian local ring and let B be a Noether-
ian local subring of AJyK such that B̂ = ÂJyK. For any P (y) ∈ B and ŷ ∈ (mA.A)m,
P (ŷ) = 0 if and only if there exists ĥ(y) ∈ Bm such that

P (y) +

m∑
i=1

(yi − ŷi)ĥ(y) = 0.
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Proof of Lemma 5.1. If P (ŷ) = 0 then, by Taylor expansion, we have:

P (y)− P (ŷ) =
∑

α∈Nm\{0}

1

α1!...αm!
(y1 − ŷ1)α1 ....(ym − ŷm)αm

∂αP (ŷ)

∂yα
.

Thus there exists ĥ(y) ∈ AJyKm such that

P (y) +

m∑
i=1

(yi − ŷi)ĥ(y) = 0.

Since B −→ B̂ = ÂJxK is faithfully flat and we may assume that ĥ(y) ∈ B (See
Example 3).
On the other hand if P (y) +

∑m
i=1(yi − ŷi)ĥ(y) = 0, by substitution of yi by ŷi, we

get P (ŷ) = 0. �

Example 5.2. Let us consider P (x, y, z) ∈ kJx, y, zK where x, y and z are single
variables and ŷ ∈ (x).kJxK. Then P (x, ŷ, ∂ŷ∂x ) = 0 if and only if P (x, ŷ, ẑ) = 0 and
ẑ − ∂ŷ

∂x = 0.

Moreover ẑ − ∂ŷ
∂x = 0 if and only if ẑ −

(
ŷ(x+t)−ŷ(x)

t

)
∈ (t)kJx, tK. By Lemma 5.1

this is equivalent to: there exist ĥ(x, t, u), k̂(x, t, u) ∈ kJx, t, uK such that

tẑ(x)− ŷ(u)− ŷ(x) + t2ĥ(x, t) + (u− x− t)k̂(x, t, u) = 0.

Finally we see that

P

(
x, ŷ(x),

∂ŷ

∂x
(x)

)
= 0⇐⇒

∃ẑ(x) ∈ kJxK, ĥ(x, t, u), k̂(x, t, u), l̂(x, t, u) ∈ kJx, t, uK, ĝ(u) ∈ kJuK s.t.
P (x, ŷ(x), ẑ(x)) = 0

tẑ(x)− ĝ(u)− ŷ(x) + t2ĥ(x, t) + (u− x− t)k̂(x, t, u) = 0

ĝ(u)− ŷ(x) + (u− y)l̂(x, t, u) = 0

Lemma 5.1 and Example 5.2 allow us to transform any system of equations
involving partial differentials and compositions of power series into a system of
algebraic equations whose solutions depend only on some of the xi’s. Of course there
exists plenty of examples of such systems of equations with algebraic or analytic
coefficients that do not have algebraic or analytic solutions. These kinds of examples
will provide counterexamples to Problem 1 as follows:

Example 5.3. Let us consider the following differential equation: y′ = y. The
solutions of this equation are the convergent power series cex ∈ C{x} where c is a
complex number.
On the other hand, by Example 5.2, ŷ(x) is convergent power series solution of
this equation if and only if there exists ŷ1(x1) ∈ C{x1}, ŷ2(x2) ∈ C{x2} and
ĥ(x1, x2, x3), k̂(x1, x2, x3), l̂(x1, x2, x3) ∈ C{x1, x2, x3} such that (with ŷ1 := ŷ):{

ŷ2(x2)− ŷ1(x1) = x3ŷ1(x1) + x23ĥ(x1, x2, x3) + (x2 − x1 − x3)k̂(x1, x2, x3)

ŷ2(x2)− ŷ1(x1) = (x1 − x2)l̂(x1, x2, x3)
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Thus the former system of equations has a convergent solution

(ŷ1, ŷ2, ĥ, k̂, l̂) ∈ C{x1} × C{x2} × C{x1, x2, x3}3,
but no algebraic solution in C〈x1〉 × C〈x2〉 × C〈x1, x2, x3〉3.

Example 5.4 (Kashiwara-Gabber’s Example). ([Hir77] p. 75) Let us perform the
division of xy by

g := (x− y2)(y − x2) = xy − x3 − y3 + x2y2

as formal power series in C{x, y} with respect to the monomial xy (see Example
8 in the introduction). The remainder of this division can be written r(x) + s(y)
where r(x) ∈ (x)C{x} and s(y) ∈ (y)C{y} since this remainder has no monomial
divisible by xy. By symmetry, we get r(x) = s(x), and by substituting y by x2 we
get the following equation:

r(x2) + r(x)− x3 = 0.

This relation yields the expansion

r(x) =

∞∑
i=0

(−1)ix3.2
i

and shows that the remainder of the division is not algebraic. This proves that the
equation

xy − gQ(x, y)−R(x)− S(y) = 0

has a convergent solution (q̂(x, y), r̂(x), ŝ(y)) ∈ C{x, y} × C{x} × C{y} but has no
algebraic solution (q(x, y), r(x), s(y)) ∈ C〈x, y〉 × C〈x〉 × C〈y〉.

Example 5.5 (Becker’s Example). ([Be77b]) By direct computation we show that
there exists a unique power series f(x) ∈ CJxK such that f(x+x2) = 2f(x)−x and
that this power series is not convergent. But, by Lemma 5.1, we have:

f(x+ x2)− 2f(x) + x = 0

⇐⇒ ∃g(y) ∈ CJyK, h(x, y), k(x, y) ∈ CJx, yK s.t.{
F1 := g(y)− 2f(x) + x+ (y − x− x2)h(x, y) = 0

F2 := g(y)− f(x) + (x− y)k(x, y) = 0

Then this system of equations has solutions in CJxK×CJyK×CJx, yK2 but no solution
in C〈x〉 × C〈y〉 × C〈x, y〉2, even no solution in C{x} × C{y} × C{x, y}2.

Example 5.6. Set ŷ(x) :=
∑
i≥0

i!xi+1 ∈ CJxK. This power series is divergent and

we have shown in Example 12 that it is the only solution of the equation

x2y′ − y + x = 0 (Euler Equation).

By Example 5.2, ŷ(x) is a solution of this differential equation if and only if there
exist ŷ2(x2) ∈ CJx2K and k̂(x1, x2, x3), ĥ(x1, x2, x3), l̂(x1, x2, x3) ∈ CJx1, x2, x3K
such that (x := (x1, x2, x3)):{

x21(ŷ2(x2)− ŷ1(x1))− x3ŷ1(x1) + x3x1 + x3k̂(x) + (x1 + x3 − x2)ĥ(x) = 0

ŷ2(x2)− ŷ1(x1)− (x2 − x1)l̂(x) = 0

with ŷ1(x1) := ŷ(x1). Thus this system has no solution in C{x1} × C{x2} ×
C{x1, x2, x3}3 but it has solutions in CJx1K× CJx2K× CJx1, x2, x3K3.
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Remark 5.7. By replacing f1(y),..., fr(y) by g(y) := f1(y)2+y1(f2(y)2+y1(f3(y)2+
· · · )2)2 in these examples as in the proof of Lemma 3.35, we can construct the same
kind of examples involving only one equation. Indeed f1 = f2 = · · · = fr = 0 if and
only if g = 0.

5.2. Nested Approximation in the algebraic case. All the examples of Section
5.1 involve components that depends on separate variables. Indeed, Example 5.2
shows that equations involving partial derivatives yield algebraic equations whose
solutions have components with separate variables.
In the case the variables are nested (i.e. yi = yi(x1, ..., xs(i)) for some integer i,
which is equivalent to say that Ji contains or is contained in Jj for any i and j with
notations of Problems 1 and 2) it is not possible to construct a counterexample
as we did in Section 5.1 from differential equations or equations as in Example
5.5. We will see, in the nested case, that the algebraic case is completely different
from the analytic case. First of all in the algebraic case, we have a nested Artin
approximation result as follows:

Theorem 5.8. [KPPRM78][Po86] Let (A,mA) be an excellent Henselian local ring
and f(x, y) ∈ A〈x, y〉r. Let ŷ(x) be a solution of f = 0 in (mA + (x))ÂJxKm. Let
us assume that ŷi ∈ ÂJx1, ..., xsiK, 1 ≤ i ≤ m, for integers si, 1 ≤ si ≤ n.
Then for any c ∈ N there exists a solution ỹ(x) ∈ A〈x〉m such that ỹi(x) ∈
A〈x1, ..., xsi〉 and ỹ(x)− ŷ(x) ∈ (mA + (x))c.

This result has a lot of applications and his one of the most important about
Artin Approximation. For this reason we give here two proofs of this result. The
first one is classical and uses the formalism of étale morphism. The second one uses
the formalism of codes for algebraic power series. The key point of both of them is
the fact that A〈x〉 satisfies Theorem 2.17 for any excellent Henselian local ring A
(see Remark 2.22).

First Proof of Theorem 5.8. After renumbering we may assume that (si)i is an in-
creasing sequence.

Step 1. First we can replace the ideal I := (f1, ..., fr) by the kernel of the
A〈x〉-morphism A〈x, y〉 −→ ÂJxK sending yi onto ŷi(x). This allows us to assume
that this ideal is prime. Then we may assume that f ∈ A[x, y]r by replacing I by
the ideal J := I

⋂
A[x, y], we do not give the details here.

Step 2. We will prove the theorem by induction on n. Let us assume that it is
true for n − 1. We denote x′ := (x1, ..., xn−1). We will denote by z the unknowns
depending only on x′ and by y the unknowns depending on xn. Let us consider the
following system of equations

(2) f(x′, xn, z(x
′), y(x′, xn)) = 0.

Since ÂJx′K〈xn〉 is an excellent Henselian local ring (cf. Example 2.22), by Theorem
2.17, we may assume that ŷi(x′, x) ∈ ÂJx′K〈xn〉, 1 ≤ i ≤ m. Since ÂJx′K〈xn〉 is
the Henselisation of ÂJx′K[xn]mA+(x′,xn), it is a filtered inductive limit of standard
étale extensions (see Definition C.5), thus we may assume that

ŷi(x
′, xn) ∈

(
AJx′K[xn][t]

(P̂ (t))

)
mA+(x′,xn)

∀i
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where

ÂJx′K[xn]mA+(x′,xn) −→

(
AJx′K[xn][t]

(P̂ (t))

)
mA+(x′,xn)

is standard étale. Since this morphism is standard étale then P̂ (t) has a unique
solution in AJxK〈xn〉 by the Implicit Function Theorem. Let us denote by ĝ(x′, xn)
this solution. Thus we may assume the following:

(3) ĉi(x
′, xn)ŷi(x

′, xn) =

d−1∑
k=0

âi,k(x′, xn)ĝ(x′, xn)k,

P̂ (ĝ(x′, xn)) = 0,
∂P̂

∂t
(0, 0, 0) 6= 0

P̂ (t) := b̂0(x′, xn)td + · · ·+ b̂d(x
′, xn) ∈ ÂJx′K[xn][t]

for some ĉi, âi,k ∈ ÂJx′K[xn], ĉi /∈ mA + (x′, xn) , 1 ≤ i ≤ m, 0 ≤ k ≤ d− 1, where
b̂0(x′, xn) /∈ mA + (x′, xn) and P̂ (t) is irreducible.

We can multiply Equation (2) by a large power of the product of the ĉi’s, this
will not change the problem. Thus me may replace ĉiŷi using equation (3). Then
we obtain a new system of equations

h(x′, xn, ẑ(x
′), ĉi(x

′, xn), âi,k(x′, xn), ĝ(x′, xn)) = 0.

This means that

(4) h(x′, xn, ẑ(x
′), ĉi(x

′, xn), âi,k(x′, xn), t) = P̂ (t)Q̂(t)

for some Q̂(t) ∈ ÂJx′K[xn][t] since P̂ (t) is the minimal polynomial of ĝ(x′, xn).
This system of equations (4) is equivalent to a system of algebraic equations where
the unknowns depend only on x′ (each equation comes from the vanishing of the
coefficient of xlntp in (4) for any l, p ∈ N, and the unknowns are ẑ(x′) and the
coefficients of the powers of xn in ĉi(x′, xn), âi,k(x′, xn), b̂s(x′, xn) and the coeffi-
cients of Q̂(t)). By the induction hypothesis this system of equations admits solu-
tions in A〈x′〉 (with possibly nested conditions). Thus there exist z(x′) ∈ A〈x′〉,
ci(x

′, xn), ai,k(x′, xn) ∈ A〈x′〉[xn], P (t), Q(t) ∈ A〈x′〉[xn][t] satisfying equation
(4) and z(x′) − ẑ(x′), ci(x′, xn) − ĉi(x′, xn), ak,l(x′, xn) − âk,l(x′, xn) ∈ (x′, xn)c

and P (t) − P̂ (t), Q(t) − Q̂(t) ∈ (x̂, xn)c. If c is large enough, we have moreover
P (0, 0, 0) = 0 and ∂P

∂t (0, 0, 0) 6= 0. Thus, by the Implicit Function Theorem, there
exist g(x′, xn) ∈ A〈x′, xn〉 such that P (g) = 0 and g(x′, xn) − ĝ(x′, xn) ∈ (x)c−d.
Since ci(x′, xn) /∈ mA + (x′, xn), we denote

yi(x
′, xn) := c−1i (x′, xn)

d−1∑
k=0

ai,k(x′, xn)g(x′, xn)k, 1 ≤ i ≤ m.

It is straightforward to check that

f(x′, xn, z(x
′), y(x′, xn)) = 0.

�

Second Proof of Theorem 5.8.
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Lemma 5.9. Let A be a complete normal local domain, u := (u1, ..., un), v :=
(v1, ..., vm). Then
AJuK〈v〉 = {f ∈ AJu, vK / ∃s ∈ N, g ∈ A〈v, z1, ..., zs〉,

ẑi ∈ (mA + (u))AJuK, f = g(v, ẑ1, ..., ẑs)}.

Proof of Lemma 5.9. Let us denote
B := {f ∈ AJu, vK / ∃s ∈ N, g ∈ A〈v, z1, ..., zs〉,

ẑi ∈(mA + (u))AJuK, f = g(v, ẑ1, ..., ẑs)}.

Clearly B is a subring of AJuK〈v〉.
If f ∈ AJuK〈v〉 we can write f = f0 + f1 where f0 ∈ A and f1 ∈ (mA + (v))A〈v〉.
There exist F1,..., Fr ∈ AJuK[v][X1, ..., Xr] such that ∂(F1,...,Fr)

∂(X1,...,Xr)
is non-zero modulo

mA + (u, v,X) and such that the unique (f1, ..., fr) ∈ (mA + (u, v))AJuK〈v〉r with
F (f1, ..., fr) = 0 (by the Implicit Function Theorem) is such that f1 = f1 (cf.
Proposition 5.10). Let us write

Fi :=
∑
α,β

Fi,α,βv
αXβ , 1 ≤ i ≤ r

with Fi,α,β ∈ AJuK for all i, α, β. We can write Fi,α,β = F 0
i,α,β + ẑi,α,β where

F 0
i,α,β ∈ A and ẑi,α,β ∈ (mA + (u))AJuK. Let us denote

Gi :=
∑
α,β

(
F 0
i,α,β + zi,α,β

)
vαXβ , 1 ≤ i ≤ r

where zi,α,β are new variables. Let us denote by z the vector whose coordinates
are the variables zi,α,β . Then ∂(G1,...,Gr)

∂(X1,...,Xr)
= ∂(F1,...,Fr)

∂(X1,...,Xr)
modulo mA + (u, v, z,X).

Hence, by the Implicit Function Theorem, there exists h := (h1, ..., hr) ∈ (mA +
(v, z))A〈v, z〉r such that G(h) = 0. Moreover f1 = f1 = h1(v, ẑ), thus we have
f = g(v, ẑ) where g(v, z) := f0 + h1(v, z). This proves the lemma. �

Then we can prove Theorem 5.8 by induction on n. First of all, since A = B
I

where B is a complete regular local ring (by Cohen’s Structure Theorem), by using
the same trick as in the proof of Corollary 2.6 we may replace A by B and assume
that A is a complete regular local ring. Let us assume that Theorem 5.8 is true for
n − 1. We denote x′ := (x1, ..., xn−1). We will denote by y1,..., yk the unknowns
depending only on x′ and by yk+1,..., ym the unknowns depending on xn. Let us
consider the following system of equations

(5) f(x′, xn, y1(x′), ..., yk(x′), yk+1(x′, xn), ym(x′, xn)) = 0.

By Theorem 2.17 and Remark 2.22 we may assume that ŷk+1,..., ŷm ∈ kJx′K〈x〉.
Thus by Lemma 5.9 we can write ŷi =

∑
j∈N hi,j(ẑ)x

j
n with

∑
j∈N hi,j(z)x

j
n ∈

k〈z, xn〉 and ẑ = (ẑ1, ..., ẑs) ∈ (x′)kJx′Ks. We can write

f

x′, xn, y1, ..., yk,∑
j

hk+1,j(z)x
j
n, ..., ,

∑
j

hm,j(z)x
j
n

 =
∑
j

Gj(x
′, y1, ..., yk, z)x

j
n

where Gj(x′, y1, ..., yk, z) ∈ k〈x′, y1, ..., yk, z〉 for all j ∈ N. Thus ŷ1,...,ŷk, ẑ1,...,
ẑs ∈ kJx′K is a solution of the equations Gj = 0 for all j ∈ N. Since k〈t, y1, ..., yk, z〉
is Noetherian, this system of equations is equivalent to a finite system Gj = 0 with
j ∈ E where E is a finite subset of N. Thus by the induction hypothesis applied
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to the system Gj(x
′, y1, ..., yk, z) = 0, j ∈ E, there exist ỹ1,..., ỹk, z̃1,..., z̃s ∈ k〈x′〉,

with nested conditions, such that ỹi− ŷi, z̃l− ẑl ∈ (x′)c, for 1 ≤ i ≤ k and 1 ≤ l ≤ s,
and Gj(x′, ỹ1, ..., ỹk, z̃) = 0 for all j ∈ E, thus Gj(x′, ỹ1, ..., ỹk, z̃) = 0 for all j ∈ N.
Set ỹi =

∑
j∈N hi,j(z̃)x

j
n for k < j ≤ m. Then ỹ1,..., ỹm satisfy the conclusion of

the theorem.
�

Proposition 5.10. [Ar-Ma65][AMR92] Let A be a complete local normal domain
and v := (v1, ..., vn). If f ∈ (mA + (v))A〈v〉 then there exists an integer r ∈ N
and F1,..., Fr ∈ A[v][X1, ..., Xr] such that ∂(F1,...,Fr)

∂(X1,...,Xr)
is non-zero modulo mA +

(v,X) and such that the unique (f1, ..., fr) ∈ (mA+ (v))A〈v〉r with F (f1, ..., fr) = 0
(according to the Implicit Function Theorem) is such that f = f1.

Proof. Let P (v,X1) ∈ A[v][X1] be an irreducible polynomial such that P (v, f) = 0.
Set R := A[v,X1]

(P (v,X1))
and let R be its normalization. Let ϕ : R −→ A〈v〉 be the A[v]-

morphism defined by ϕ(X1) = f . Since A〈v〉 is an integrally closed domain, by the
universal property of the normalization, the morphism ϕ factors through R −→ R.
Let ϕ : R −→ A〈v〉 be the extension of ϕ to R.
Since R is finitely generated over a local complete domain A, then R is module-finite
over R. Hence R = A[v,X1,X2,...,Xr]

(F1,...,Fs)
. Set fi := ϕ(Xi), for 2 ≤ i ≤ r. By replacing

Xi by Xi + ai for some ai ∈ A we may assume that fi ∈ mA + (v). Let us denote
B := RmA+(v,X1,...,Xr). Thus ϕ induces a surjective A[v]-morphism B −→ A〈v〉 and
by the universal property of the Henselization it induces a surjective A[v]-morphism
B −→ A〈v〉. Moreover A[v]mA+(v) −→ B induces a morphism between A〈v〉 and
the Henselization of B, denoted by Bh, which is finite since A[v] −→ R is finite.
Since B is an integrally closed local domain then its completion is a local domain
[Za48], hence Bh is a local domain. If b ∈ Bh is in the kernel of Bh −→ A〈v〉, since
b is finite over A〈v〉, then b would satisfy bk = 0 for some positive integer k. But
Bh being a domain, then b has to be zero. Thus Bh −→ A〈v〉 is injective hence Bh
and A〈v〉 are isomorphic. Moreover we have Bh ' B ⊗A[v]mA+(v)

A〈v〉. Using the
definition of an étale morphism, since A[v]mA+(v) −→ A〈v〉 is faithfully flat, it is
an exercice to check that A[v]mA+(v) −→ B is étale. Thus s = r and ∂(F1,...,Fr)

∂(X1,...,Xr)
is

non-zero modulo mA + (v,X) and the unique solution of F = 0 in (mA + (v))A〈v〉r
is (f, f2, ..., fr). �

Using ultraproducts methods we can deduce the following Strong Approximation
result:

Corollary 5.11. [BDLvdD79] Let k be a field and f(x, y) ∈ k〈x, y〉r. There exists
β : N −→ N satisfying the following:
Let c ∈ N and y(x) ∈ ((x)kJxK)m satisfy f(x, y(x)) ∈ (x)β(c). Let us assume that
yi(x) ∈ kJx1, ..., xsiK, 1 ≤ i ≤ m, for integers si, 1 ≤ si ≤ n.
Then there exists a solution ỹ(x) ∈ ((x)k〈x〉)m such that ỹi(x) ∈ k〈x1, ..., xsi〉 and
ỹ(x)− y(x) ∈ (x)c.

5.3. Nested Approximation in the analytic case. In the analytic case, Theo-
rem 5.8 is no more valid, as shown in the following example:

Example 5.12 (Gabrielov’s Example). [Ga71] Let ϕ : C{x1, x2, x3} −→ C{y1, y2}
be the morphism of analytic C-algebras defined by ϕ(x1) = y1, ϕ(x2) = y1y2,
ϕ(x3) = y1e

y2 .
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Let f ∈ Ker(ϕ̂) be written as f =
∑+∞
d=0 fd where fd is a homogeneous poly-

nomial of degree d for all d ∈ N. Then 0 = ϕ̂(f) =
∑
d y

d
1fd(1, y2, y2e

y2). Thus
fd = 0 for all d ∈ N since 1, y2 et y2ey2 are algebraically independent over C. Hence
Ker(ϕ̂) = (0) and Ker(ϕ) = (0). This remark is due to W. S. Osgood [Os16].

• We may remark that "ϕ
(
x3 − x2e

x2
x1

)
= 0". But x3 − x2e

x2
x1 is not an ele-

ment of C{x1, x2, x3}.
Let us denote

fn :=

(
x3 − x2

n∑
i=0

1

i!

xi2
xi1

)
xn1 ∈ C[x1, x2, x3], ∀n ∈ N.

Then

ϕ(fn) = yn+1
1 y2

+∞∑
i=n+1

yi2
i!
, ∀n ∈ N.

Then we see that (n+ 1)!ϕ(fn) is a convergent power series whose coefficients have
module less than 1. Moreover if the coefficient of yk1yl2 in the Taylor expansion of
ϕ(fn) is non zero then k = n+1. Thus h :=

∑
n(n+1)!ϕ(fn) is a convergent power

series since each of its coefficients has module less than 1. But ϕ̂ being injective,
the unique element whose image is h is necessarily ĝ :=

∑
n(n+ 1)!fn. But

ĝ =
∑
n

(n+ 1)!fn =

(∑
n

(n+ 1)!xn1

)
x3 + f̂(x1, x2)

and
∑
n(n+ 1)!xn1 is a divergent power series and ϕ̂(ĝ(x)) = h(y) ∈ C{y}.

Hence ϕ(C{x}) ( ϕ̂(CJxK)
⋂
C{y}.

• By Lemma 5.1 ϕ̂(ĝ(x)) = h(y) is equivalent to say that there exist k̂1(x, y),
k̂2(x, y), k̂3(x, y) ∈ CJx, yK such that

(6) ĝ(x) + (x1− y1)k̂1(x, y) + (x2− y1y2)k̂2(x, y) + (x3− y1ey2)k̂3(x, y)−h(y) = 0.

Since ĝ(x) is the unique element whose image under ϕ̂ equals h(y), Equation (6)
has no convergent solution g(x) ∈ C{x}, k1(x, y), k2(x, y), k3(x, y) ∈ C{x, y}. Thus
Theorem 5.8 is not true in the analytic setting.
Let us denote ĝ1(x1, x2) :=

∑
n(n+ 1)!xn1 and ĝ2(x1, x2) := f̂(x1, x2). By replacing

y1 by x1, y2 by y and x3 by x1ey in Equation (6) we see that the equation

(7) ĝ1(x1, x2)x1e
y + ĝ2(x1, x2) + (x2 − x1y)k̂(x, y)− h(x1, y) = 0.

has a nested formal solution but no nested convergent solution.

Nevertheless there are, at least, three positive results about the nested approxi-
mation problem in the analytic category. They are the followings.

5.3.1. Grauert’s Theorem. The first one is due to H. Grauert who proved it in order
to construct analytic deformations of a complex analytic germ in the case it has an
isolated singularity. The approximation result of H. Grauert may be reformulated
as: "if a system of complex analytic equations, considered as a formal nested system,
admits an Artin function (as in Problem 2) which is the Identity function, then it
has nested analytic solutions". We present here the result.
Set x := (x1, ..., xn), t := (t1, ..., tl), y = (y1, ..., ym) and z := (z1, ..., zp). Let
f := (f1, ..., fr) be in C{t, x, y, z}r. Let I be an ideal of C{t}.
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Theorem 5.13. [Gra72] Let d0 ∈ N and (y(t), z(t, x)) ∈ C[t]m × C{x}[t]p satisfy

f(t, x, y(t), z(t, x)) ∈ I + (t)d0 .

Let us assume that for any d ≥ d0 and for any (y(d)(t), z(d)(t, x)) ∈ k[t]m×k{x}[t]p
such that, y(t)− y(d)(t) ∈ (t)d0 et z(t, x)− z(d)(t, x) ∈ (t)d0 , and such that

f
(
t, x, y(d)(t), z(d)(t, x)

)
∈ I + (t)d,

there exists (ε(t), η(t, x)) ∈ k[t]m × k{x}[t]p homogeneous in t of degree d such that

f(t, x, y(d)(t) + ε(t), z(d)(t, x) + η(t, x)) ∈ I + (t)d+1.

Then there exists (ỹ(t), z̃(t, x))C{t}m × C{t, x}p such that

f(t, x, ỹ(t), z̃(t, x)) ∈ I and ỹ(t)− y(t), z̃(t, x)− z(t, x) ∈ (t)d0 .

The main ingredient of the proof is a result of Functional Analysis called "voisi-
nages privilégiés" and proven by H. Cartan ([Ca44] Théorème α). We do not give
details here, but the reader may consult [dJ-Pf00].

5.3.2. Gabrielov’s Theorem. The second positive result about the nested approxi-
mation problem in the analytic category is due to A. Gabrielov. Before giving his
result, let us explain the context.
Let ϕ : A −→ B be a morphism of analytic algebras where A := C{x1,...,xn}

I and
B := C{y1,...,ym}

J are analytic algebras. Let us denote ϕi := ϕ(xi) for 1 ≤ i ≤ n. Let
us denote by ϕ̂ : Â −→ B̂ the morphism induced by ϕ. A. Grothendieck [Gro60] and
S. S. Abhyankar [Ar71] raised the following question: Does Ker(ϕ̂) = Ker(ϕ).Â?
Without loss of generality, we may assume that A = C{x1, ..., xn} and B =
C{y1, ..., ym}.
In this case, an element of Ker(ϕ) (resp. of Ker(ϕ̂)) is called an analytic (resp.
formal) relation between ϕ1(y),..., ϕm(y). Hence the previous question is equiv-
alent to the following: is any formal relation Ŝ between ϕ1(y),..., ϕn(y) a linear
combination of analytic relations?
This question is also equivalent to the following: may any formal relation between
ϕ1(y),..., ϕn(y) be approximated by analytic relations for the (x)-adic topology? In
this form the problem is the "dual" problem to the Artin Approximation Problem.
In fact this problem is also a nested approximation problem. Indeed let Ŝ be a
formal relation between ϕ1(y),..., ϕn(y). This means that Ŝ(ϕ1(y), ..., ϕn(y)) = 0.
By Lemma 5.1 this is equivalent to the existence of ĥ1(x, y),..., ĥn(x, y) ∈ CJx, yK
such that

Ŝ(x1, ..., xn)−
n∑
i=1

(xi − ϕi(y))ĥi(x, y) = 0.

If this equation has an analytic nested solution S(x) ∈ C{x}, h1(x, y),..., hn(x, y) ∈
C{x, y}, it gives an analytic relation between ϕ1(y),..., ϕn(y).
Example 5.12 yields a negative answer to this problem as follows:

Example 5.14. [Ga71] Let us consider now the morphism

ψ : C{x1, x2, x3, x4} −→ C{y1, y2}
defined by

ψ(x1) = y1, ψ(x2) = y1y2, ψ(x3) = y1y2e
y2 , ψ(x4) = h(y1, y2).
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Then x4 − ĝ(x1, x2, x3) ∈ Ker(ψ̂). On the other hand the morphism induced by ψ̂
on CJx1, ..., x4K/(x4 − ĝ(x1, x2, x3)) is isomorphic to ϕ̂ (where ϕ is the morphism
of Example 5.12) that is injective. Thus we have Ker(ψ̂) = (x4 − ĝ(x1, x2, x3)).
Since Ker(ψ) is a prime ideal of C{x}, Ker(ψ)CJxK is a prime ideal of CJxK included
in Ker(ψ̂) by Proposition 4.1. Let us assume that Ker(ψ) 6= (0), then Ker(ψ)CJxK =

Ker(ψ̂) since ht(Ker(ψ̂)) = 1. Thus Ker(ψ̂) is generated by one convergent power
series denoted by f ∈ C{x1, ..., x4} (in unique factorization domains, prime ideals
of height one are principal ideals). Since Ker(ψ̂) = (x4− ĝ(x1, x2, x3)), there exists
u(x) ∈ CJxK, u(0) 6= 0, such that f = u(x).(x4 − ĝ(x1, x2, x3)). By applying
Weierstrass Preparation Theorem to f with respect to x4 we see that u(x) and
x4 − ĝ(x1, x2, x3) must be convergent, which is impossible since ĝ is a divergent
power series. Hence Ker(ψ) = (0) but Ker(ψ̂) 6= (0).

Nevertheless A. Gabrielov proved the following theorem:

Theorem 5.15. [Ga73] Let ϕ : A −→ B be a morphism of complex analytic
algebras. Let us assume that the generic rank of the Jacobian matrix is equal to
dim( A

Ker(ϕ̂) ). Then Ker(ϕ̂) = Ker(ϕ).Â.

Sketch of the proof. We give a sketch of the proof given by J.-Cl. Tougeron [To90].
As before we may assume that A = C{x1, ..., xn} and B = C{y1, ..., ym}. Let us
assume that Ker(ϕ).Â 6⊂ Ker(ϕ̂). Using a Bertini type theorem we may assume
that n = 3, ϕ is injective and dim( CJxK

Ker(ϕ̂) ) = 2 (in particular Ker(ϕ̂) is a principal
ideal). Moreover, in this case we may assume that m = 2. After a linear change of
coordinates we may assume that Ker(ϕ̂) is generated by an irreducible Weierstrass
polynomial of degree d in x3. Using change of coordinates and quadratic transforms
on C{y1, y2} and using changes of coordinates of C{x} involving only x1 and x2,
we may assume that ϕ1 = y1 and ϕ2 = y1y2. Let us denote f(y) := ϕ3(y). Then
we have

f(y)d + â1(y1, y1y2)f(y)d−1 + · · ·+ âd(y1, y1y2) = 0

for some âi(x) ∈ CJx1, x2K, 1 ≤ i ≤ d. Then we want to prove that the âi’s may be
chosen convergent in order to get a contradiction. Let us denote

P (Z) := Zd + â1(x1, x2)Zd−1 + · · ·+ âd(x1, x2) ∈ CJxK[Z].

Since Ker(ϕ̂) is prime we may assume that P (Z) is irreducible. J.-Cl. Tougeron
studies the algebraic closure K of the field C((x1, x2)). Let consider the following
valuation ring

V :=

{
f

g
/ f, g ∈ CJx1, x2K, g 6= 0, ord(f) ≥ ord(g)

}
,

let V̂ be its completion and K̂ the fraction field of V̂ . J.-Cl. Tougeron proves that
the algebraic extension K −→ K splits into K −→ K1 −→ K where K1 is a subsfield
of the following field

L :=
{
A ∈ K̂ / ∃δ, ai ∈ k[x] is homogeneous ∀i,

ord
( ai
δm(i)

)
= i, ∃a, b such that m(i) ≤ai+ b ∀i and A =

∞∑
i=0

ai
δm(i)

}
.
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Moreover the algebraic extension K1 −→ K is the extension of K1 generated by
all the roots of polynomials of the form Zq + g1(x)Zq−1 + · · ·+ gq where gi ∈ C(x)
are homogeneous rational fractions of degree ei, 1 ≤ i ≤ q, e ∈ Q. A root of such
polynomial is called a homogeneous element of degree e. For example, square roots
of x1 or of x1 + x2 are homogeneous elements of degree 2. We have K

⋂
L = K1.

In the same way he proves that the algebraic closure Kan of Kan, the fraction field
of C{x1, x2} can be factorized as Kan −→ Kan1 −→ Kan with Kan1 ⊂ Lan where

Lan :=

{
A ∈ K̂ / ∃δ, ai ∈ k[x] is homogeneous ∀i, ord

( ai
δm(i)

)
= i, A =

∞∑
i=0

ai
δm(i)

∃a, b such that m(i) ≤ ai+ b ∀i and ∃r > 0 such that
∑
i

||ai||ri <∞

}
and ||a(x)|| := max

|zi|≤1
|a(z1, z2)| for a homogeneous polynomial a(x).

Clearly, ξ := f(x1,
x2

x1
) is an element of K since it is a root of P (Z). Moreover ξ

may be written ξ =
∑q
i=1 ξiγ

i where γ is a homogenous element and ξi ∈ Lan
⋂

K
for any i, i.e. ξ ∈ Lan[γ]. Thus the problem is to show that ξi ∈ Kan1 for any i, i.e.
Lan

⋂
K = Kan1 .

Then the idea is to resolve, by a sequence of blowing-ups, the singularities of the
discriminant locus of P (Z) which is a germ of plane curve. Let us call π this
resolution map. Then the discriminant of π(P )(Z) is normal crossing and π(P )(Z)
defines a germ of hypersurface along the exceptional divisor of π, denoted by E. Let
p be a point of E. At this point π(P )(Z) may factor as a product of polynomials
and ξ is a root of one of these factors denoted by Q1(Z) and this root is a germ of an
analytic function at p. Then the other roots of Q1(Z) are also in Lan[γ′] according
to the Abhyankar-Jung Theorem, for some homogeneous element γ′. Thus the
coefficients of Q1(Z) are in Lan and are analytic at p.
Then the idea is to use the special form of the elements of Lan to prove that the
coefficients of Q1(Z) may be extended as analytic functions along the exceptional
divisor E (the main ingredient in this part is the Maximum Principle). We can
repeat the latter procedure in another point p′: we take the roots of Q1(Z) at p′
and using Abhyankar-Jung Theorem we construct new roots of π(P )(Z) at p′ and
the coefficients of Q2(Z) :=

∏
i(Z−σi), where σi runs over all these roots, are in Lan

and are analytic at p′. Then we extend the coefficients of Q2(Z) everywhere along
E. Since π(P )(Z) has exactly d roots, this process stops after a finite number of
steps. The polynomial Q(Z) :=

∏
(Z−σk), where the σk’s are the roots of π(P )(Z)

that we have constructed, is a polynomial whose coefficients are analytic everywhere
and it divides π(P )(Z). Thus, by Grauert’s Direct Image Theorem, there exists
R(Z) ∈ C{x}[Z] such that π(R)(Z) = Q(Z). Thus R(Z) divides P (Z), but since
P (Z) is irreducible, then P (Z) = R(Z) ∈ C{x}[Z] and the result is proven. �

5.3.3. One variable Nested Approximation. In the example of A. Gabrielov we can
remark that the nested part of the solutions depends on two variables x1 and x2.
In the case they depend only on one variable the nested approximation property is
true. This is the following theorem:

Theorem 5.16. (cf. Theorem 5.1 [De-Li80]) Let k be a field and let kVxW be a W-
system over k. Let t be one variable, x = (x1, ..., xn), y = (y1, ..., ym, ym+1, ..., ym+k),
f ∈ kVt, x, yWr. Let ŷ1,..., ŷm ∈ (t)kJtK and ŷm+1,..., ŷm+k ∈ (t, x)kJt, xK satisfy
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f(t, x, ŷ) = 0. Then, for any c ∈ N, there exists ỹ1,..., ỹm ∈ (t)kVtW, ỹm+1,....,
ỹm+k ∈ (t, x)kVt, xW such that f(t, x, ỹ) = 0 and ŷ − ỹ ∈ (t, x)c.

Example 5.17. The main example is the case where k is a valued field and kVxW
is the ring of convergent power series over k.

Proof. The proof is very similar to the second proof of Theorem 5.8.
Set u := (u1, ..., uj), j ∈ N and Set

kJtK[〈u〉] := {f(z1(t), ..., zs(t), u) ∈ kJt, uK /

f(z1, ..., zs, u) ∈ kVz, uW and z1(t), ..., zs(t) ∈ (t)kJtK for some s}.
The rings kJtK[〈u〉] form a W -system over kJtK (cf. Lemma 52. [De-Li80] but it
is straightforward to check it since kVxW is a W -system over k - in particular, if
char(k) > 0, vi) of Definition 2.11 is satisfied since v) of Definition 2.11 is satisfied
for kVxW). By Theorem 2.14 applied to

f(t, ŷ1, ..., ŷm, ym+1, ..., ym+k) = 0

there exist ym+1,..., ym+k ∈ kJtK[〈x〉] such that f(t, ŷ1, ..., ŷm, ym+1, ..., ym+k) = 0
and yi − ŷi ∈ (t, x)c for m < i ≤ m+ k.
Let us write yi =

∑
α∈Nn hi,α(ẑ)xα with

∑
α∈Nn hi,α(z)xα ∈ kVz, xW and ẑ =

(ẑ1, ..., ẑs) ∈ kJtK. We can write

f

(
t, x, y1, ..., ym,

∑
α

hm+1,α(z)xα, ..., ,
∑
α

hm+k,α(z)xα

)
=
∑
α

Gα(t, y1, ..., ym, z)x
α

where Gα(t, y1, ..., ym, z) ∈ kVt, y1, ..., ym, zW for all α ∈ Nn. Thus ŷ1,...,ŷm, ẑ1,...,
ẑs ∈ kJtK is a solution of the equationsGα = 0 for all α ∈ Nn. Since kVt, y1, ..., ym, zW
is Noetherian, this system of equations is equivalent to a finite system Gα = 0 with
α ∈ E where E is a finite subset of Nn. Thus by Theorem 2.14 applied to the
system Gα(t, y1, ..., ym, z) = 0, α ∈ E, there exist ỹ1,..., ỹm, z̃1,..., z̃s ∈ kVtW such
that ỹi− ŷi, z̃j − ẑj ∈ (t)c, for 1 ≤ i ≤ m and 1 ≤ j ≤ s, and Gα(t, ỹ1, ..., ỹm, z̃) = 0
for all α ∈ E, thus Gα(t, ỹ1, ..., ỹm, z̃) = 0 for all α ∈ Nn.
Set ỹi =

∑
α∈Nn hi,α(z̃)xα for m < i ≤ m + k. Then ỹ1,..., ỹm+k satisfy the

conclusion of the theorem.
�

Remark 5.18. The proof of this theorem uses in an essential way the Weierstrass
Division Property (in order to show that kJtK[〈u〉] is a Noetherian local ring, which
is the main condition to use Theorem 2.17. The Henselian and excellent conditions
may be proven quite easily). It is an open question to know if this result remains
true if we do no have the Weierstrass Division Property.
For example let Cn be the ring of germs of k-valued Denjoy-Carleman functions
defined at the origin of Rn, where k = R or C (see [Th08] for definitions and
properties of these rings). It is still an open problem to know if Cn is Noetherian
or not for n ≥ 2 (C1 is a discrete valuation ring, thus it is Noetherian). These rings
have similar properties to the Weierstrass systems (stability by partial derivates,
stability by division by coordinates, ...), except that there is no Weierstrass Division
Theorem. For instance, there exists f ∈ C1 and ĝ ∈ kJxK\C1 such that f(x) =
ĝ(x2). This implies that

(8) f(x) = (x2 − y)ĥ(x, y) + ĝ(y)
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where ĥ(x, y) ∈ kJx, yK but Equation (8) has no nested solution in C1 × C2.
On the other hand, if the rings Cn were Noetherian, since their completions are
regular local rings, they would be regular. Then using Example B.4 iii) we see
that they would be excellent (see also [ElKh11]). Thus these rings would satisfy
Theorem 2.17. It would show that the Weierstrass Division Theorem is necessary
to obtain Theorem 5.16.

5.4. Other examples of approximation with constraints. We present here
some examples of positive or negative answers to Problems 1 and 2 in several
contexts.

Example 5.19. [Mi78] P. Milman proved the following theorem:

Theorem 5.20. Let f ∈ C{x, y, u, v}r where x := (x1, ..., xn), y = (y1, ..., yn),
u := (u1, ..., um), v := (v1, ..., vm). Then the set of convergent solutions of the
following system:

(9)



f(x, y, u(x, y), v(x, y)) = 0

∂uk
∂xj

(x, y)− ∂vk
∂yj

(x, y) = 0

∂vk
∂xj

(x, y) +
∂uk
∂yj

(x, y) = 0, 1 ≤ j ≤ n

is dense (for the (x, y)-adic topology) in the set of formal solutions of this system.

Hints on the proof. Let (û(x, y), v̂(x, y)) ∈ CJx, yK2m be a solution of (9). Let us
denote z := x + iy and w := u + iv. In this case the Cauchy-Riemann equations
of (9) are equivalent to ŵ(z, z) := û(x, y) + iv̂(x, y) ∈ CJzK (or in C{x}). Let
ϕ : C{z, z, w,w} −→ CJz, zK and ψ : C{z, w} −→ CJzK be the morphisms defined
by

ϕ(h(z, z, w,w)) := h(z, z, ŵ(z), ŵ(z)) and ψ(h(z, w)) := h(z, ŵ(z)).

Milman proved that

Ker(ϕ) = Ker(ψ).C{z, z, w,w}+ Ker(ψ).C{z, z, w,w}.

Since Ker(ψ) (as an ideal of C{z, w}) satisfies Theorem 2.1, the result follows. �

This proof does not give the existence of an Artin function for this kind of
system, since the proof consists in reducing Theorem 5.20 to Theorem 2.1, but this
reduction depends on the formal solution of (9). Nevertheless in [Hic-Ro11], it is
proven that such a system admits an Artin function using ultraproducts methods.

Example 5.21. [BM79]
Let G be a reductive algebraic group. Suppose that G acts linearly on Cn and

Cm. We say that y(x) ∈ CJxKm is equivariant if y(σx) = σy(x) for all γ ∈ G.
E. Bierstone and P. Milman proved that, in Theorem 2.1, the constraint for the
solutions of being equivariant may be preserved for convergent solutions:

Theorem 5.22. [BM79] Let f(x, y) ∈ C{x, y}r. Then the set of equivariant
convergent solutions of f = 0 is dense in the set of equivariant formal solutions of
f = 0 for the (x)-adic topology.
This result remains true is we replace C (resp. C{x} and C{x, y}) by any field of
characteristic zero k (resp. k〈x〉 and k〈x, y〉).
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Using ultraproducts methods we may probably prove that Problem 2 has a pos-
itive answer in this case.

Example 5.23. [BDLvdD79] Let k be a field. Let us consider the following
differential equation:

(10) a2x1
∂f

∂x1
(x1, x2)− x2

∂f

∂x2
(x1, x2) =

∑
i,j≥1

xi1x
j
2

(
=

(
x1

1− x1

)(
x2

1− x2

))
.

For a ∈ k, a 6= 0, this equation has only the following solutions

f(x1, x2) := b+
∑
i,j≥1

xi1x
j
2

a2i− j
, b ∈ k.

Let us consider the following system of equations:

(11)



y29x1y5(x1, x2)− x2y7(x1, x2) =
∑
i,j≥1

xi1x
j
2

y1(x1, x2) = y2(x3, x4, x5) + (x1 − x3)z1(x) + (x2 − x4)z2(x)

y2(x3, x4, x5) = y1(x1, x2) + x5y5(x1, x2)+

x25y6+(x3 − x1 − x5)z3(x) + (x4 − x2)z4(x)

y3(x3, x4, x5) = y1(x1, x2) + x5y7(x1, x2)+

x25y8+(x3 − x1)z5(x) + (x4 − x2 − x5)z5(x)

y9(x1, x2) = y10(x3,4 , x5) i .e. y9 ∈ k and y9y11 = 1.

It is straightforward, by Lemma 5.1 and Example 5.2, to check that (a, f(x1, x2))
is a solution of (10) if and only if (11) has a solution when y1 = f and y9 = a.
Moreover, if y1,..., y11, z1,..., z5 is a solution of Equation (11), then (y9, y1) is a
solution of (10).
Thus (11) has no solution in QJxK. But clearly, (10) has solutions in Q[x]

(x)c for any
c ∈ N and the same is true for (11). This shows that Proposition 3.25 is not valid
if the base field is not C.

Example 5.24. [BDLvdD79] Let us assume that k = C and consider the latter
example. The system of equations (11) does not admit an Artin function. Indeed,
for any c ∈ N, there is ac ∈ Q, such that (11) has a solution modulo (x)c with
y9 = ac. But there is no solution in CJxK with y9 = ac modulo (x), otherwise
y9 = ac which is not possible.
Thus systems of equations with constraints does not satisfy Problem 2 in general.

Example 5.25. [Ron08] Let ϕ : C{x} −→ C{y} be a morphism of complex
analytic algebras and let us denote ϕi(y) := ϕ(xi). Let us denote by ϕ̂ : CJxK −→
CJyK the morphism induced on the completions. According to a lemma of Chevalley
(Lemma 7 of [Ch43]), there exists a function β : N −→ N such that ϕ−1((y)β(c)) ⊂
Ker(ϕ̂) + (x)c for any c ∈ N. It is called the Chevalley function of ϕ. Using Lemma
5.1 we check easily that this function β satisfies the following statement (in fact
both statements are equivalent [Ron08]): Let f(x) ∈ CJxK and hi(x, y) ∈ CJx, yK,
1 ≤ i ≤ n, satisfy

f(x) +

n∑
i=1

(xi − ϕi(y))hi(x, y) ∈ (x, y)β(c).
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Then there exists f̃(y) ∈ CJxK, h̃i(x, y) ∈ CJx, yK, 1 ≤ i ≤, such that

(12) g̃(x) +

n∑
i=1

(xi − ϕi(y))h̃i(x, y) = 0

and f̃(x)− f(x) ∈ (x)c, h̃i(x, y)− hi(x, y) ∈ (x, y)c, 1 ≤ i ≤ n.
In particular Problem 2 has a positive answer for Equation (12), but not Problem
1 (see Example 5.12). In fact, the conditions of Theorem 5.15 are equivalent to the
fact that β is bounded by an affine function [Iz86].

The following example comes from [Ron08] and is inspired by Example 5.12. Let
α : N −→ N be an increasing function. Let (ni)i be a sequence of integers
such that ni+1 > α(ni + 1) for all i and such that the convergent power series
ξ(Y ) :=

∑
i≥1 Y

ni is not algebraic over C(Y ). Then we define the morphism
ϕ : C{x1, x2, x3} −→ C{y1, y2} in the following way:

(ϕ(x1), ϕ(x2), ϕ(x3)) = (y1, y1y2, y1ξ(y2)).

It is easy to prove that ϕ̂ is injective following Example 5.12. For any integer i we
define:

f i := xni−1
1 x3 −

(
xn1
2 xni−n1

1 + · · ·+ x
ni−1

2 x
ni−ni−1

1 + xni
2

)
.

Then

ϕ(f i) = yni
1 ξ(y2)− yni

1

i∑
k=1

ynk
2 ∈ (y)ni+ni+1 ⊂ (y)α(ni+1)

but f i /∈ (x)ni+1 for any i. Thus the Chevalley function of ϕ satisfies β(ni + 1) >

α(ni + 1) for all i ∈ N. Hence lim sup β(c)
α(c) ≥ 1. In particular if the growth of α is

too big, then β is not recursive.
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Appendix A. Weierstrass Preparation Theorem

In this part set x := (x1, ..., xn) and x′ := (x1, ..., xn−1). Moreover k will denote
a local ring of maximal ideal m (if k is a field, m = (0)). A local subring of kJxK
will be a subring of kJxK which is a local ring and whose maximal ideal is generated
by (m + (x))

⋂
A.

Definition A.1. If f ∈ kJxK we say that f is regular of order d with respect to
xn if f = uxdn modulo m + (x′) where u is invertible in kJxK

m+(x′) '
k
mJxnK.

Definition A.2. Let A be a local subring of kJxK. We say that A has the Weier-
strass Division Property if for any f , g ∈ A such that f is regular of order d with
respect to xn, there exist q ∈ A and r ∈ (A

⋂
kJx′K)[xn] such that deg xn(r) < d

and g = qf + r.

Definition A.3. Let A be a local subring of kJxK. We say that A satisfies the
Weierstrass Preparation Theorem if for any f ∈ A which is regular with respect to
xn, there exist an integer d, a unit u ∈ A and a1(x′),..., ad(x′) ∈ A

⋂
(x′)kJxK such

that
f = u

(
xdn + a1(x′)xd−1n + · · ·+ ad(x

′)
)
.

In this case f is necessarily regular of order d with respect to xn.

Remark A.4. Clearly, if they exist, q and r are unique in Definition A.2. The
same is true for u and the ai(x′)’s in Definition A.3.

Lemma A.5. If a local subring A of kJxK has the Weierstrass Division Property
then it satisfies the Weierstrass Preparation Theorem.

Proof. If A has the Weierstrass Division Property and if f ∈ A is regular of order d
with respect to xn, then we can write xdn = qf + r where r ∈ (A

⋂
kJx′K)[xn] such

that deg xn
(r) < d. Thus qf = xdn − r. Since f is regular of order d with respect

to xn, then q is invertible in kJxK and r ∈ (m + (x′)). Thus q /∈ (m + (x)) and q is
invertible in A. Hence f = q−1(xdn − r).

�

Theorem A.6. The following rings have the Weierstrass Division Property:
i) The ring A = kJxK where k is complete local ring ([Bo65]).
ii) The ring A = k〈x〉 of algebraic power series where k is a field or a Noether-

ian Henselian local ring of characteristic zero which is analytically normal
([Laf65] and [Laf67]).

iii) The ring A = k{x} of convergent power series over a valued field k ([Na62]).

Appendix B. Regular morphisms and excellent rings

Definition B.1. Let ϕ : A −→ B be a morphism of Noetherian rings. We say
that ϕ is regular if it is flat and if for any prime ideal P of A, the κ(P)-algebra
B⊗A κ(P) is geometrically regular (where κ(P) := AP

PAP is the residue field of AP).
This means that B ⊗A K is a regular Noetherian ring for any finite field extension
of κ(P).

Example B.2.
i) If A and B are fields, then A −→ B is regular if and only if B is a separable field
extension of A.
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ii) If A is excellent, for any ideal I of A, the morphism A −→ Â is regular where
Â := lim

←−
A
In is the I-adic completion of A (cf. [Gr-Di65-1] 7.8.3).

iii) If V is a discrete valuation ring, then the completion morphism V −→ V̂ is
regular if and only if Frac(V ) −→ Frac(V̂ ) is separable. Indeed, V −→ V̂ is always
flat and this morphism induces an isomorphism on the residue fields.

iv) Let X be compact Nash manifold, let N (X) be the ring of Nash functions on
X and let O(X) be the ring of real analytic functions on X. Then the natural
inclusion N (X) −→ O(X) is regular (cf. [C-R-S95]).

In the case of Artin Approximation, we will be mostly interested in the morphism
A −→ Â. Thus we need to know what is an excellent ring.

Definition B.3. A Noetherian ring A is excellent if the following conditions hold:
i) A is universally catenary.
ii) For any p ∈ Spec(A), the formal fibre of Ap are geometrically regular.
iii) For any p ∈ Spec(A) and for any finite separable extension Frac

(
A
p

)
−→ K,

there exists a finitely generated sub-Ap -algebra B of K, containing A
p , and

such that Frac(B) = K and the set of regular points of Spec(B) contains a
non-empty open set.

This definition may be a bit obscure at first sight. Thus we give here the main
examples of excellent rings:

Example B.4.
i) Local complete rings (thus any field) are excellent. Dedekind rings of characteristic
zero are excellent. Any ring which is essentially of finite type over an excellent ring
is excellent. ([Gr-Di65-1] 7-8-3).

ii) If k is a complete valued field, then k{x1, ..., xn} is excellent [Ki69].
iii) We have the following result: Let A be a regular ring containing a field of
characteristic zero denoted by k. Suppose that for any maximal ideal m, the field
extension k −→ A

m is algebraic and ht(m) = n. Suppose moreover that there exist
D1,..., Dn ∈ Derk(A) and x1,..., xn ∈ A such thatDi(xj) = δi,j . Then A is excellent
(cf. Theorem 102 [Mat80]).

iv) A Noetherian local ring A is excellent if and only if it is universally catenary and
A −→ Â is regular ([Gr-Di65-1] 7-8-3 i)). In particular, if A is a quotient of a local
regular ring, then A is excellent if and only if A −→ Â is regular (cf. [Gr-Di65-1]
5-6-4).

Example B.5. [Na62][Mat80] Let k be a field of characteristic p > 0 such that
[k : kp] = ∞ (for instance let us take k = Fp(t1, ...., tn, ...)). Let V := kpJxK[k]
where x is a single variable, i.e. V is the ring of power series

∑∞
i=0 aix

i such that
[kp(a0, a1, ....) : kp] < ∞. Then V is a discrete valuation ring whose completion is
kJxK and it is a Henselian ring.
We have V̂ p ⊂ V , thus [Frac(V̂ ) : Frac(V )] is purely inseparable. Hence V −→ V̂
is not regular by Example B.2 and V is not excellent by Example B.4 iv).
On the other hand, let f be the power series

∑∞
i=0 aix

i, ai ∈ k such that [kp(a0, a1, ...) :

kp] =∞. Then f ∈ V̂ but f /∈ V , and fp ∈ V . Thus f is the only root of the poly-
nomial yp − fp. This shows that the polynomial yp − fp ∈ V [y] does not satisfies
Theorem 2.16.
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Appendix C. Étale morphisms and Henselian rings

The material presented here is very classical and has first been studied by G.
Azumaya and M. Nagata. We will give a quick review of the definitions and prop-
erties that we need for the understanding of the rest of the paper. Nevertheless,
the reader may consult [Na62], [Gr-Di65-1], [Ra70] or [Iv73].

Example C.1. In classical algebraic geometry, the Zariski topology has too few
open sets. For instance, there is no Implicit Function Theorem.
Let X be the zero set of the polynomial y2 − x2(x + 1) in C2. On an affine open
neighborhood of 0, denoted by U , X

⋂
U is equal to X minus a finite number of

points, thus X
⋂
U is irreducible since X is irreducible. In the analytic topology,

we can find an open neighborhood of 0, denoted by U , such that X
⋂
U is reducible,

for instance take U = {(x, y) ∈ C2 / |x|2 + |y|2 < 1/2}. This comes from the fact
that x2(1 + x) is the square of an analytic function defined on U

⋂
(C× {0}). Let

z(x) be such an analytic function, z(x)2 = x2(1 + x).
In fact we can obtain z(x) from the Implicit Function Theorem. We see that z(x) is
a root of the polynomial Q(x, z) := z2−x2(1+x). We have Q(0, 0) = ∂Q

∂z (0, 0) = 0,
thus we can not use directly the Implicit Function Theorem to obtain z(x) from its
minimal polynomial.
Nevertheless let us take P (x, t) := (t+ 1)2− (1 +x) = t2 + 2t−x. Then P (0, 0) = 0
and ∂P

∂t (0, 0) = 2 6= 0. Thus, from the Implicit function Theorem, there exists t(x)
analytic on a neighborhood of 0 such that t(0) = 0 and P (x, t(x)) = 0. If we denote
z(x) := x(1 + t(x)), we have z2(x) = x2(1 + x). In fact z(x) ∈ B :=

C[x,t](x,t)

(P (x,t)) . The
morphism C[x] −→ B is an example of étale morphism.

Definition C.2. Let ϕ : A −→ B be a ring morphism. We say that ϕ is smooth
(resp. étale) if for any A-algebra C along with an ideal I such that I2 = (0) and
any morphism of A-algebras ψ : B −→ C

I there exists a morphism σ : B −→ C
(resp. a unique morphism) such that the following diagram commutes:

A
ϕ //

��

B

ψ

��σ
��

C // C
I

Example C.3. Let k := R or C and let us assume that A = k[x1,...,xn]
J and

B = A[y1,...,ym]
K for some ideals J and K. Let X be the zero locus of J in kn and

Y be the zero locus of K in kn+m. The morphism ϕ : A −→ B defines a regular
map Φ : Y −→ X. Let C := k[t]

(t2) and I := (t). Let f1(x),..., fr(x) be generators of J .

A morphism A −→ C is given by elements ai, bi ∈ k such that fj(a1 + b1t, ..., an +
bnt) ∈ (t)2 for 1 ≤ j ≤ r. We have

fj(a1 + b1t, ..., an + bnt) = fj(a1, ..., an) +

(
n∑
i=1

∂fj
∂xi

(a1, ..., an)bi

)
t mod. (t)2.

Thus a morphism A −→ C is given by a point x := (a1, ..., an) ∈ X (i.e. such
that fj(a1, ..., an) = 0 for all j) and a tangent vector u := (b1, ..., bn) to X at x
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(i.e. such that
n∑
i=1

∂fj
∂xi

(a1, ..., an)bi = 0 for all j). In the same way a A-morphism

B −→ C
I = k is given by a point y ∈ Y . Moreover the first diagram commutes if

and only if Φ(y) = x.

Then ϕ is smooth if for any x ∈ X, any y ∈ Y and any tangent vector u to
X at x such that Φ(y) = x, there exists a tangent vector v to Y at y such
that Dy(Φ)(v) = u. And ϕ is étale if and only if v is unique. This shows that
smooth morphisms correspond to submersions and étale morphisms to local diffeo-
morphisms.

Example C.4. Let ϕ : A −→ Bp be the canonical morphism where B := A[x]
(P (x))

and p is a prime ideal of B such that ∂P
∂x (x) /∈ p. If we have such a commutative

diagram

A
ϕ //

��

Bp

ψ

��
C // C

I

then the morphism Bp −→ C
I is given by an element c ∈ C such that P (c) ∈ I.

Looking for a lifting of ψ is equivalent to finding ε ∈ I such that P (c+ ε) = 0. We
have

P (c+ ε) = P (c) +
∂P

∂x
(c)ε

since I2 = (0). Since ∂P
∂x is invertible in Bp, ∂P

∂x (c) is invertible in C
I , i.e. there

exists a ∈ C such that a∂P∂x (c) = 1 mod. I. Moreover a is unique modulo I. For
any η ∈ I let us set ε := −P (c)(a+ η). Since P (c) ∈ I, ε does not depend on η and
the lifting of ψ is unique. This proves that ϕ is étale. Compare this example with
Example C.1.

Definition C.5. Étale morphisms of Example C.4 are called standard étale mor-
phisms. We can prove that if A and B are local rings then any étale morphism is
standard ([Iv73] III. 2).

Example C.6 (Jacobian Criterion). We can generalize the former example as
follows. If k is a field and ϕ : k −→ B := k[x1,...,xn]m

(g1,...,gr)
where m := (x1−c1, ..., xn−cn)

then ϕ is smooth if and only if the jacobian matrix
(
∂gi
∂xj

(c)
)
has rank equal to the

height of (g1, ..., gr). This is equivalent to say that V (I) has a non-singular point
at the origin. Let us recall that the fibers of submersions are always smooth.

Definition C.7. Let A be a local ring. An étale neighbourhood of A is an étale
local morphism A −→ B inducing an isomorphism on the residue fields.
If A is a local ring, the étale neighbourhoods of A form a filtered inductive limit
and the limit of this system is called the Henselization of A ([Iv73] III. 6. or [Ra69]
VIII) and denoted by Ah.
We say that A is Henselian if A = Ah. The morphism A −→ Ah is universal among
all the morphisms A −→ B inducing an isomorphisms on the residue fields and
where B is Henselian.
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Proposition C.8. If A is a Noetherian local ring, then its Henselization Ah is a
Noetherian local ring and A −→ Ah is faithfully flat. If ϕ : Ah −→ B is an étale
neighbourhood of Ah, then there is a section σ : B −→ A, i.e. σ ◦ ϕ = idAh .

Proposition C.9. Let A be a Henselian local ring and let ϕ : A −→ B be an étale
neighbourhood that admits a section in A

mc
A

for c ≥ 1, i.e. a morphism of A-algebra
σ : B −→ A

mc
A
. Then there exists a section s̃ : B −→ A such that s̃ = s modulo mc.

Proof. Since A is Henselian and ϕ is étale then A is isomorphic to the Henselization
of B. Moreover A

mc
A

is Henselian. The result comes from the universal property of
the Henselization. �

Definition C.10. Let A be a Henselian local ring and x := (x1, ..., xn). Then the
Henselization of A[x]mA+(x) is denoted by A〈x〉.

Remark C.11. Let P (y) ∈ A[y] and a ∈ A satisfy P (a) ∈ mA and ∂P
∂y (a) /∈ mA.

If A is Henselian, then A −→ A[y]
(P (y)) mA+(y−a) is an étale neighborhood of A, thus

it admits a section. This means that there exists ỹ ∈ mA such that P (a+ ỹ) = 0.
If A is a local ring, then any étale neighborhood of A is of the previous form. Thus,
by Proposition C.8, we have the following proposition:

Proposition C.12. Let A be a local ring. Then A is Henselian if and only if for
any P (y) ∈ A[y] and a ∈ A such that P (a) ∈ mA and ∂P

∂y (a) /∈ mA there exists
ỹ ∈ mA such that P (a+ ỹ) = 0.

We can the previous remark this remark as follows:

Theorem C.13 (Implicit Function Theorem). Let f(y) ∈ A[y]r, y = (y1, ..., ym),
r ≤ m. Let J be the ideal of A[y] generated by the r × r minors of the Jacobian
matrix of f(y). If A is Henselian and if f(0) = 0 and J /∈ mA.

A[y]
(y) , then there

exists ỹ ∈ mmA such that f(ỹ) = 0.

Example C.14. The ring of germs of C∞ function at the origin of Rn is a Henselian
local ring but it is not Noetherian. The ring of germ of analytic functions at the
origin of Cn is a Noetherian Henselian local ring; it is the ring of convergent power
series.

Example C.15. If A = kVx1, ..., xnW for some Weierstrass system over k, then
A is a Henselian local ring by Proposition C.12. Indeed, let P (y) ∈ A[y] satisfies
P (0) = 0 and ∂P

∂y (0) /∈ (p, x). Thus P (y) contains a nonzero term of the form cy,
c ∈ k∗. Then we have y = P (y)Q(y) + R where R ∈ mA. Clearly Q(y) is a unit,
thus P (R) = 0.

Proposition C.16 (Hensel Lemma). Let (A,mA) be a local ring. Then A is
Henselian if and only if for any monic polynomial P (y) ∈ A[y] such that P (y) =
f(y)g(y) mod mA for some f(y), g(y) ∈ A[y] which are coprime modulo mA, there
exists f̃(y), g̃(y) ∈ A[y] such that P (y) = f̃(y)g̃(y) and f̃(y)− f(y), g̃(y)− g(y) ∈
mA[y].

Proof. Let us prove the sufficiency of the condition. Let P (y) ∈ A[y] and a ∈ A
satisfy P (a) ∈ mA and ∂P

∂y (a) /∈ mA. This means that P (X) = (X − a)Q(x) where
X − a and Q(X) are coprime modulo m. Then this factorization lifts to A[X], this
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means ỹ ∈ mA such that P (a+ ỹ) = 0. This proves that A is Henselian.
To prove that the condition is necessary, let P (y) ∈ A[y] be a monic polynomial,
P (y) = yd + a1y

d−1 + · · · + ad. Let k := A
mA

be the residue field of A, an for any
a ∈ A, let us write a for the image of a in k. Let us assume that P (y) = f(y)g(y)
mod mA for some f(y), g(y) ∈ k[y] which are coprime in k[y]. Let us write

f(y) = yd1 + b1y
d1−1 + · · ·+ bd1 , g(y) = yd2 + c1y

d2−1 + · · ·+ cd2

where b = (b1, · · · , bd1) ∈ kd1 , c = (c1, · · · , cd2) ∈ kd2 . The product of polynomials
P = fg defines a map Φ : kd1×kd2 → kd, that is polynomial in b and c with integer
coefficients, and Φ(b, c) = a := (a1, ..., ad). The determinant of the Jacobian matrix
∂a

∂(b,c) is the resultant of f(y) and g(y), and hence is nonzero at (b, c). Using the

Implicit Function Theorem C.13, there exist b̃ ∈ Ad1 , c̃ ∈ Ad2 such that P (y) =

P1(y)P2(y) where P1(y) = yd1 + b̃1y
d1−1 + · · · + b̃d1 and P2(y) = yd2 + c̃1y

d2−1 +
· · ·+ c̃d2 .

�

Proposition C.17. ([Gr-Di65-2] 18-7-6) If A is an excellent local ring, then its
Henselization Ah is also an excellent local ring.
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