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Why the characteristic zero proof of resolution of singularities
fails in positive characteristic

HERWIG HAUSER

This is — for the time being — the last of a series of papers of the author on resolution of
singularities. This series started with a collection of obstacles which make resolution in
arbitrary dimension and characteristic difficult [Ha 1]. It was followed by a comprehensive
study of Hironaka’s proposal for surface resolution in positive characteristic [Ha 2], in order
to see whether this approach could be extended to higher dimensions. It turned out that its
methods are too limited for the purpose, since they rely heavily on dimension two, with little
chances of extension beyond.

The next step was to understand Hironaka'’s original proof of resolution in characteristic
zero for varieties of any dimension [Hi 4]. The algorithmic versions of this proof by Villamayor
and Encinas-Villamayor [Vi 1, Vi 2, EV 1, EV 2], respectively by Bierstone-Milman [BM 1,

BM 2, BM 3], were crucial for getting a clearer view on the reasoning. To axiomatize these
proofs as much as possible seemed to be a prerequisite to locate the problems which pop up
in characteristip. Also, it was necessary in order to formulate a plausible and characteristic-
free resolution procedure by specifying at each step a correct choice of the center of blowup
(without, of course, proving that the process actually terminates).

This conceptualization and compactification of Hironaka’s proof was done together with
Santiago Encinas in [EH], and is explained with much more motivations and background
information in the monograph [Ha 3]. Special efforts are made in [EH] to construct the
resolution invariant and the centers of blowup in a characteristic independent manner (as
far as possible). Essentially, only the induction itself uses characteristic zero. This hypo-
thesis ensures the existencewtulating hypersurfaces — these are hypersurfaces which
are especially adapted to the singularity to be resolved and which need not exist in positive
characteristic; they are defined by Tschirnhaus transformations in the sense of Abhyankar.
Such hypersurfaces, if they exist, allow to descend in the embedding dimension, to apply
induction on this dimension, and to show then that the resolution invariant drops under
blowup.

Inthe paper [Ha 4], we developed techniques which allow to find a substitute for osculating
hypersurfaces and which works in any characteristic and any dimension. The techniques are
inspired by the work of Abhyankar. He proposes in [Ab 1] to consider as a significative
resolution invariant of a plane curve singularity the maximum over all coordinate choices of
the slope of a certain segment of the Newton polygon (related to the classical concept of the
first characteristic pair of a curve). And indeed, the vector formed by the multiplicity and
this slope forms a local invariant which drops lexicographically when blowing up the singular
points of the curve. Together with Georg Regensburger we explain in [HR] the necessary
ingredients from commutative algebra needed for this approach. It is shown explicitly when
and why the invariant drops. Especially, the involved formal coordinate changes required to
realize the maximum of the slope are studied with all details.

The paper [Ha 4] extends these methods to arbitrary dimension. They allow to construct a
whole range of local invariants of singularities and to observe their behaviour under blowup.
However, the definite decrease under blowup of any of these invariants can no longer be
ensured ab initio.



With the above articles, we dispose nowadays of a very conceptual inductive proof for
resolution in characteristic zero and arbitrary dimension (using osculating hypersurfaces),
and all the necessary devices to replace osculating hypersurface by the more general concept
of hypersurfaces of weak maximal contact (which, essentially, are hypersurfaces which
maximize the order of the ideal generated by the coefficients of the defining polynomials of
the singularity). To complete the picture, it remains to insert the second concept in the first
proof and to search the circumstances where the induction fails in positive characteristic. This
task shall be accomplished in the present paper.

So the intention is to look what happens when trying to carry out Hironaka’s proof in a
characteristic free manner and using weak maximal contact. The first observations in this
direction go back to Narasimhan (a student of Abhyankar) in the papers [Na 1, Na 2] (see
also Mulay’s article [Mu]), and Moh (a student of Hironaka) in [Mo 1, Mo 2]. Narasimhan
constructed an example of a variety in characteristic two, where the locus of points of highest
multiplicity is not contained (even locally) in any regular hypersurface. This prohibits the
existence of hypersurfaces of maximal contact (in the sense of Hironaka, which is stronger
than weak maximal contact) and shows that the descending induction on the embedding
dimension (which is instrumental in zero characteristic) cannot be applied directly in positive
characteristic.

Moh shows that even when replacing osculating hypersurfaces by hypersurfaces of weak
maximal contact there occur problems. Namely, he constructs an example of a variety in
positive characteristic where Hironaka’s resolution invariant (when adapted properly to the
concrete situation) increases under blowup. In addition, Moh is able to bound the maximal
increase of the invariant.

The present paper looks closely at this type of phenomena. We describe and study
completely the cases in characterigtiwhere the arguments and conclusions of characteristic
0 fail. Very strange and subtle things seem to happen. The main observations we will make
can be grouped in six items.

We shall always assume that the characteristic of the ground figld i8. For simplicity
of the exposition, we restrict to hypersurface singularities (for which, in particular, the order
of the defining equation at a point coincides with the local multiplicity).

e Fuailure of mazimal contact: In a sequence of permissible blowups of a given ideal,
the sequence of points where the order of the transforms of the ideal remains constant
(equiconstant points) may leave eventually any regular hypersurface accompanying the
process. This prohibits to apply induction on descending embedding dimension (as is
done successfully in zero characteristic).

e Uniqueness of blowups for failure of maximal contact. The sequences of blowups
where equiconstant points leave any given regular hypersurface are essentially unique.
A particularity is that the equiconstant points must loose earlier on their way through
the sequence of blowups at least two exceptional components passing originally through
them.

e Fuailure of induction on order: The most popular resolution invariant is given by the
lexicographic pair of numbers consisting of the order of the ideal and the order of its
divided coefficient ideal (i.e., the order which is obtained by subtracting from the order
of the coefficient ideal the exceptional multiplicity). In positive characteristic, it may
increase.

e Uniqueness of tangent cone for failure of induction: For hypersurfaces, in order to
have an increase of the above resolution invariant, the weighted tangent cone of the defining

2



equation must coincide with a unique universal polynomial. Such special polynomials will
be calledhybrid. They have prescribed coefficients (hamely, certain binomial coefficients).
In contrast, a sufficiently generic choice of the coefficients produces a non-increasing
invariant. Thus only very special and explicitly known hypersurface singularities pose
problems. But we do not know how to resolve these.

e Fuailure of the Bernstein-Kushnirenko theorem modulo p-th powers: \We show that
the Bernstein-Kushnirenko theorem equating the number of isolated zeros of a system
of polynomial equations and the Minkowski mixed volume of the associated convex
polytopes fails if the polynomials are replaced by their equivalence classes mstiulo
powers of the variables. It turns out that the counterexamples for this failure coincide
with the weighted homogeneous hybrid polynomials where the induction on the resolution
invariant falls short.

e Estimates on the increase of the resolution invariant. Following Moh, the increase
of the invariant can be bounded. For surfaces, this suffices to show that it drops in the
long run in a sequence of permissible blowups, though it may increase occasionally. This
gives a new proof for the resolution of surfaces in charactenistitsing — in contrast to
the existing proofs — the characteristic zero resolution invariant and the same sequence of
blowups.

Some of the preceding circumstances have already been known for a long time, and appear
— at least implicitly — in the work of Abhyankar, Giraud, Moh, Cossart and others. But it
seems that they were never studied systematically. In particular, it is surprising that nobody
observed that the obstruction can only occur in concrete series of polynomials.

The most striking fact in the above list is the coincidence that all three failures are related
to the same type of equations, the hybrid ones. Let us therefore deviate briefly to have a look
at these polynomials. A typical candidate of a hybrid polynomial in three variables looks like
this (t being a constant in the ground field)

. _ »
f=aP+ Ply,z) =a? +y"2" - 30 (5)) - itz — y)

Here,r ands are positive integers not divisible pyr + s+ & is a multiple of the characteristic
p, and the residue® ands? of » ands modulop satisfy

™ 4+ 3 < p.

Such polynomials look quite harmless. Let us see three examples and their behaviour under
the substitutiory — y + tz. Forp =3,r =s =1,k = 4 andt = 1 we get

f=2"4yz (Y + v’z +y?2% —y2® — 2%,
which, by the coordinate change— y + z, transforms into

fr=a+Pt(y,2) =2+ 2 (v°+2°).
Forp=3,r=s=1,k=T7andt =1 we get

f=2%—yz (y" + 82 + 522 +y*2d + 432t + 4225 + 926 + 27),
which, undery — y + z, transforms into

fr=ad—z -2,
Forp=3,r=2,s=1,k=3andt =1 we get

f=2+y?z (—y° +y2® +27),
which, undery — y + z, transforms into

fr=a3+2 (—y® +ytz+2%).
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What is the common feature of these examples? It has to do with the above coordinate
change (which corresponds in the application to resolution problems to a translation in the
exceptional divisor). In all cases we see that a pupswer ¢° in the first and last case,

and z? in the second case) can be eliminated from the polynofifalia the substitution

x — x — 22 (respectivelyr — x — 23 for the second example). This elimination is the same

as considering®t modulop-th powers.

Now, after this substitution, the resulting polynomial (denoted agaiby has order
at 0 with respect to the-variable equal td: + 1, whereas the order atof P minusr + s
(this subtraction corresponds to delete exceptional components from the total transform of
the polynomial) equal. Thus, modulg-th powers, the order aP minus the exceptional
multiplicity is smaller than thg-order of P*. This purely algebraic fact will be the clue in all
observed phenomena. And there are very few polynomials where this “increase” can happen
(we shall classify them completely in the case of two variables).

It is astonishing that the reason why Hironaka’s proof fails in positive characteristic has
such a simple and dull appearance. It is simply the strange behaviour of homogeneous
polynomials (in our cas®) under linear coordinates changes when considered meefilo
powers. The first example of a hybrid polynomial was given by Moh [Mo 1, Mo 2].

For each selection of, r, s and k subject to the above conditions there is precisely
one hybrid polynomial in three variables with the respective exponents and degrees (up to
coordinate changes). For other values of the parameters there are no hybrid polynomials. In
the course of the paper we shall also indicate how hybrid polynomials appear in the context
of the Bernstein-Kushnirenko theorem.

It has to be added here that the hybrid polynomials represent only the weighted tangent
cone (with respect to suitably chosen weights) of the singularity which has to be resolved,
so that higher order terms may and will occur in general in the defining equation. If there
are no such terms, the singularity can indeed be resolved by direct inspection. Otherwise,
the higher order terms seem to prohibit the precise control of the singularities under blowup.
One possible line of attack could consist in showing that the weighted tangent cone is always
sufficiently dominant in the expansion of the polynomials so as to guarantee the existence of
a resolution. This has not been achieved up to now.
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0. The ingredients of Hironaka’s proof

We now give a more detailed account on the situation and phenomena we will describe. For
this it will be convenient to review briefly the main constructions developed and explained
in [EH] and [Ha 3]. The reader is assumed to have some familiarity with blowups and the
induced transforms of ideals. The necessary definitions can be found in the appendix to [Ha
3].

The basic invariant for the resolution of singular schemes is the order of ideals at a point.
If the schemeX is defined in some regular ambient schéiidy the idealk of the structure
sheafOyy, then, for any point. of 17, the order ofK ata is defined as

ord, K = max {k € N, K C mk},

wherem, denotes the maximal ideal of the local ridyy,, of W ata. The same number
is obtained when working in the completed local r@v\a of Ow,, (this often allows to
simplify computations). If the embedding &f in W has minimal dimension, the order
provides a rough measure how singulars ata. It defines an upper semicontinuous function
ord : X — NonX, ie, for anyc € N, the subschem&p(K, ¢) formed by the points of
order> cis closed inX. We thus get a stratification of by locally closed subschemes
along which the order of{ is constant. The smallest stratuop(K) consists of points of
maximal order and is a closed reduced subschené.oft may be singular. We call it the
top locus of K, respectively ofX, in W.

A classical and easy to prove fact asserts that blowing upa regular cente contained
in a stratum along which the order &f is constant, the order of does not increase, i.e., at
any pointa’ of the exceptional divisaY” of the blowup the order ok’ is less or equal to the
order of X ata € Z. In particular, this holds i is contained in the top locusp(K). Such
centers are calleglermissible. Here, the order of the blowuli’ of X is understood as the
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order of the strict transfornX ** of X in the blowupWW’ of W. In contrast, the order of the
total transformX * of X usually increases and thus does not serve for induction purposes.

Actually, the order of the strict transform &f decreases at most points of the exceptional
divisor. Atthese points, the situation has improved, and induction on the order can be applied.
At some special points, however, the order may remain constant. We call these points the
equiconstant points of K or X in W’. They are also known in the literature as very infinitely
near points. It is at these equiconstant points where we need some extra information on the
singularity of X’ in order to know that the situation has also improved there, though the
improvement will occur in a less evident way than at the other points.

This information is usually exhibited by adding to the order of the ideal a second local
invariant. The resulting pair of numbers will then be considered with respect to the lexico-
graphic ordering: If the first component, the order/f has decreased, we are done. If
it has remained constant (recall that the order cannot increase if the center is permissible),
the second component should have dropped. In particular, this second component becomes
only relevant at the equiconstant poimtsof X in W’. Now it is an exercise on blowups
in local coordinates to see that the equiconstant point&” af the exceptional divisot™”
can be determined from the tangent cond<oét a, and that they lie necessarily in a regular
hypersurfacd’’ of W’. So they are relatively rare iri’.

Let us assume for the moment that this hypersuriachas a regular imag¥g in W, so
thatV’ is the strict transforn¥V ** of V, and thatl” contains the centef. Itis a general fact
that in this casé’’ coincides with the blowup of in Z, yielding the commutative diagram

v c W
! !

Z c V. < W

where the vertical arrows denote the blowup¥aindiW with centerZ. Let nowa be a point
inZ c V,andleta’ € YNV’ be a point above. To determine a suitable candidate for the
second component of the induction invariantfofat ¢ and its strict transforn’ = K¢ at

a’, itis then natural to us& andV” for its definition.

The idea is to associate to the ide&lsn W and K’ in W' idealsK_ in V and(K’)_ in
V" which measure the improvement. At points where the ordéf bias remained constant,
we should be able to compafé_ and(K’)_ in order to measure the improvement of the
singularities when passing frofd to X'. Best would be if K’)_ would again be the strict
transform of K_ in V' under the blowup o in V, analogously ta and K’. This would
allow to control the change betweéni and(K’)_. In particular, if Z were contained in
the top locusop(K_) of K_, the order of K')_ ata’ would automatically be less or equal
to the order of_ ata. Here, of course, it has to be shown that the ordeKofat a does
not depend on the local choice Bt In the affirmative case the order &f_ in V' would be
appropriate to form the second component of the resolution invariant we are looking for.

Itis mandatory here th@#’) _ is the transform o< _, i.e., that the descent in dimension
fromW to V andW’ to V' commutes with blowups

K o~ (K)_ = (K.
! !
K ~ K_

We can then write simply”_ for (K’)_ = (K_)'. As explained before, such a commutative
diagram can only be expected at the equiconstant poinfs of 1//. Moreover, we have
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to ensure that the centéf is contained in bothop(K) andtop(K_). Therefore, when
searching for a suitable ideal_, we have to be cautious so as to meet commutativity of the
diagram and this inclusion simultaneously.

Even in case the construction of a suitable id&al in V' could be realized, there is no
reason why, at an equiconstant paintof K in W/, the order ofK’ should have dropped
compared to the order df_. It may equally have remained constant, and the quandary of
equiconstant points seems to repeat.

But now we are much better off, for we may apply induction on the dimension: the ideal
K_ in V is defined in a lower dimensional ambient scheme, therefore, by induction, we
may assume that we know how to associatésto a local invariant — it will consist of a
lexicographically ordered vector of numbers given as the orders of a string of ideals — which
decreases under blowup. We call this type of descent in the dimebsidwntal induction,
in contrast to thevertical induction implied by the decrease of the resolution invariant.
Using horizontal induction we either arrive in some dimension at an ideal of Ordier
which case no further descent is possible, or at dimenkidn the first case, the situation is
sufficiently specific to allow a direct and combinatorial resolution argument, sometimes called
themonomial case. Inthe second case one uses that the order of an ideal in a one dimensional
regular scheme always drops under blowup when passing to its strict transform. This
completes the induction argument.

Leaving aside (intricate) technical complications, the preceding reasoning represents the
main outline of Hironaka’s proof for resolution of singularities in characteristic zero, in the
version developed by Villamayor, Bierstone-Milman, Encinas-Villamayor, Bo@thicho,
Encinas-Hauser and Bravo-Villamayor [Hi 4, AHV 1, AHV 2, V1, V2, BM 1, BM 2, BM 3,

EV 1, EV 2, EV 3, BS, EH, BV]. You may consult [Ha 3] for an easily accessible introduction
to the subject.

The most delicate part in this program is the adequate construction of theddeal V',
starting from an ideaK in W. This works only locally ori//, and depends on the choice
of the local hypersurfac®, which is by no means unigue, nor patches on overlaps to give
a global hypersurface. Frow it is only required that, locally at each pointof W, V
accompanies the resolution processiofas long as the order df remains constant, i.e.,
that the successive transformsidfcontain all pointsz’, a”, etc. above: where the strict
transforms ofK have the same order d€ at a. Such hypersurfaces will be said to have
permanent contact with K. In characteristid), it is known that such hypersurfaces exist.
They can even be chosen so as to contain lo¢cafly K') and are then known dgjpersurfaces
of mazimal contact. There is a simple procedure through iterated derivatives how to find
them at any point, see section 2.

Once somé/ is chosen at, expand each element &f as a power series with respect to
a local coordinate defining in W. The resulting coefficients can be equilibrated by raising
them to a suitable power and then generate an idedl, ithe coefficient ideal coeffy (K)
of K in V. Do the same witiK’ andV’. Unfortunately, the coefficient ideal of the strict
transformK”’ of K at equiconstant points is not the strict transform of the coefficient ideal
of K ata. Thus the commutativity of the above diagram fails.

The inconvenience can be remedied by a suitable factorization of the coefficient ideals
coeffy (K) into a product of a principal monomial ideal (supported on the exceptional divisor)
and another ideal (the relevant part). With this factorization, commutativity with blowups
can be established for the second factor. This second factor, which wi& cdtir obvious
reasons, will be the correct candidate for our descent in dimension (for details on the precise
construction and transformation formulas, see again [EH] and [Ha 3]). Theideah V'
fulfills all the required properties so as to build on it the horizontal and vertical induction. But
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it is essential here that the local hypersurf&ci W has transforn¥’’ in W/ which contains
all equiconstant points ok in W',

The present paper shows why and where the preceding procedure fails in positive character-
istic. First, we exhibit an example where after a number of blowups any regular hypersurface
containing the points where the order of the transform&’d¢fas remained constant since the
beginning has singular image in the initial ambient schéte Therefore there is no local
regular hypersurface i ata whose transforms contain permanently the points of constant
order aboves, and this until the moment where the order &fhas dropped everywhere.

This makes it necessary to replace occasionally the accompanying regular hypersurface so
as to contain also in the subsequent blowup the points of constant order. The appropriate
adjustment of the hypersurface can be explicitly determined. We can therefore try to apply
again horizontal induction on the dimension by using these variable hypersurfaces.

In positive characteristic, the descent in dimension by constructing an ideah a
suitable hypersurfac® still works, provided one incorporates the necessary modifications.
We thus dispose again of a string of local ideals in descending dimension, and, associated
to it, a resolution invariant formed by the orders of these ideals. We wish to show that the
invariant drops under blowup in the lexicographic order. If the accompanying hypersurface
persists after blowup, i.e., if it has not to be replaced by a new one, the same argument as in
characteristi€) applies and shows that the invariant decreases. The occasional change of the
hypersurface in a sequence of blowups would do no harm as long as the invariant of the ideal
K_ decreases at these instances. This is, unfortunately, not the case, as was first observed
by Moh [Mo 2]. We will see an example which shows that whenever the hypersurfaees
to be adjusted, the invariant need not decrease under blowup, and, in certain circumstances,
may even increase. This destroys the desiredical induction.

The interesting fact here is that — as alluded to in the introduction — the increase only
occurs in very specific situations, and for very special ideals. Among other things, we show
that the tangent cone of the involved ideal must coincide, up to rescaling, with a uniquely
given homogeneous polynomial. In particular, the algebraic relations between the coefficients
of the tangent cone come into play. The “dangerous” homogeneous polynomials forming the
tangent cone of the defining polynomial can be described explicitly. Moreover, the points
in the blowup where the increase occurs lie in a codimengisubscheme. This, of course,
suggests to investigate these bad cases further, and to profit of their well known internal
structure in order to develop a separate induction argument for their resolution. As experience
shows, the matter seems to be more delicate than to be solvable in a straightforward manner.

I. EXAMPLES

1. Regular hypersurfaces containing the top locus

For an idealK” in W we denote bytop(K) the closed reduced subschemé&fof points
where the order of in W is maximal. In characteristig, there always exists, locally at
each point oV, a regular hypersurfadeé containingtop(K). This can be seen as follows.
Leta € W be a given point, and set= ord, K. In characteristi®), an elemeny of Oy,
belongs tan” for somek > 1, ifand only ifd,,g € m*~! for all first order partial derivatives

0.,. Thereforetop(K) is given locally ata by the vanishing of all partial derivatives) f

of elements ofK up to order|a| < c. At least one derivativé®? f with |a| = ¢ — 1 will

have orden ata, and hence defines in a neighborhood:@f regular hypersurfacé in W
containingtop(V). It can be shown that any such hypersurface has permananent contact with
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K ata: its transforms under blowup &7 in a regular centeZ C top(K) C V contain the
equiconstant points df [Ab 2, p. 211, Hi 3, p. 106, Ha 3, p. 362].

The argument does not work in positive characteristic, takdsfdhe ideal generated by
f = xP 4+ P in characteristiqp. Here, all partial derivatives vanish up to arbitrary order,
but K has orderp at 0. Nevertheless, there still exists a regular hypersurface containing
top(K') = top(f) (hamely,z + y = 0). Narasimhan showed that, in general, this is not the
case.

Example 1. [Na 1, Na2, Mu, Hi 1, ex. 4] Consider the polynomjak= 22 +y2% + 2w + 47w

in four variables over an algebraically closed field of characteristic 2. It has Dater= 0.

In a neighborhood di, its top locustop(f) coincides with the singular locus and is given by
the vanishing off and its first order partial derivativés 23 + y%w, y22 + w?, zw? +y7. It

is verified that the monomial cun@ in A* parametrized by*2, 7, t1°, % equalstop(f).
Therefore, this locus cannot be embedded locallyiato a regular hypersurface i’

Take now a regular hypersurfatepassing through = 0. We claim that for any sequence
of point blowups whose first center is the origin, the sequence of equiconstant pojfits of
abovea will leave eventually the strict transforms bf. Indeed, as the point blowups keep
top(f) unchanged outside, the order of the transforms ¢f will remain constant equal
to 2 at points above points abp(f) outside0. The strict transform of the curviep(f)
will therefore consist of points of ordex for f, by the upper semicontinuity of the order.
In particular, the points abowgwhich lie in these strict transforms will all be equiconstant
points above).

But, by a sequence of point blowups, the cutwp(f) will always be separated from the
hypersurfacd/ and its strict transforms (since it is not containediih Combining both
observations we conclude that the equiconstant points abaieeventually leave the strict
transforms of//.

Therefore, to have permanent contact it is necessary to have the entire top Idcus of
W contained locally in a regular hypersurfae It remains unclear in which situations this
inclusion does not occur. Moreover, even if the top locus is contained locally in a regular
hypersurface, this hypersurface may not have permanent contackwifrhe examples of
the next section will shed some light on this type of questions.

2. Failure of permanent contact

We give an example of a polynomial in three variables over a field of characteristic two which
does not possess at the origindofa local hypersurface of permanent contact, even though its
top locus is contained in a regular hypersurface. For this, we indicate a sequence of blowups
along which the equiconstant point of the polynomials leave eventually the transforms of any
regular hypersurface chosen below.

The example is inspired by the observation of T.T. Moh on the possible increase of the
order of coefficient ideals under blowup [Mo 1, Mo 2, ex. 3.2, Hi 1, ex. 5, Ha 1, ex. 16].
Recall that a local regular hypersurfaéeof W ata has maximal contact with the ideAl at
a if it contains locally ata the locustop(K') of points of maximal order ofC in W, and if
the consecutive strict transforms under permissible blowups contain the equiconstant points
of K abovea.

Our example is a polynomigl in characteristi@ for which after six blowups the strict
transform of any regular hypersurfacecadoes no longer contain the equiconstant points of
f. Hence a new hypersurface must be chosen in the resolution process. This replacement
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of V destroys the descent in dimension and the required commutativity for the passage to
coefficient ideals.

Ezample 2. Consider a sequence of local blowdp® — ... — W' — W at pointsa’ in

Wi with W = WY a regular scheme of dimension three (e.g., affine spageAll blowups

are point or curve blowups. We choose the centers as follows. For given local coordinates
x,y, zin W ata = 0, the first map is the monomial point blowup in thehart, the second the
monomial point blowup in the-chart. Henceg! anda? will be the origins of the respective
affine charts ofi’! andW?2. Note thata? lies in the intersection of the two exceptional
components having occurred so far. The coordinatgs z in W induce in a natural way
coordinates in eaci’? (which will be denoted again hy, y, z).

The third blowup is no longer monomial. Its center is the origirof the present chart
of W2, but the blowup is considered in thechart of W3 at the pointa® with coordinates
(0,1,0). Said differently, this blowup is the composition of the monomial point blowup in
the z-chart followed by the translation — y + 1. Hencea® belongs to the new exceptional
component’3 in W3, but lies outside the strict transforms of the two exceptional components
througha?. The fourth, fifth and sixth blowup are the monomial curve blowup with center
the curve defined by = z = 0, considered at the origin of thechart. In figure 1 we see the
evolution of the exceptional curves when restricting the first three blowups to the hypersurface
Vie=0inW.

\ new
3
a2 a

new
old old

Xl
new old

Figure 1. Configuration of exceptional components.

Take for K the ideal inW generated byf = f° = 22 + 47 + yz*. The hypersurfac&
defined inl¥ by 2 = 0 is regular and contains the top locusfofThe coefficient ideal of in

V is generated by the polynomigl + yz*. Under the above sequence of blowups, the strict
transformsf? of f and the coordinate changes are of the form

fr=22+1-(y" +yz), .Y, 2,
fl=a2+y> (Y2 + 2%, T, Y,z — TY, Y, 2Y,
F2=a? B3 (2 22, Ty, 2 — T2,Y%, 2,
=2+ (y+1)3(y+1)2+1), T,Y, 2 — T2, Yz + 2, 2,
=2+ (y+ 1Dy +1)* + 1), Ty, 2 = X2, Y, 2
=242 g+ Dy + 17+ 1), Y2 = T2, 2,
fo=a+1-(y+1)>((y+1)>+1), T, Y,z = T2,y 2.

The strict transformd/? of V' are always given by = 0. The monomial factors in front
of the parentheses iff denote exceptional components of the restrictiorfiafo V* (more
precisely, of the coefficient ideal ¢f in V?). The order off’ ata’ has remained constant
equal to2 for i < 5, and has dropped thata®. Soa® is not an equiconstant point fgr But,
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if the characteristic i€, there is another equiconstant point in the exceptional divi¥oof

W6, namely the poind® = (1,0,0). At this point, f¢ has again orde2, butb® does not lie
in V8. The expansion of % atb® is obtained by applying the translatian— = + 1 to f6. It

yields the polynomial

fP=a+1- 0+’ +v7)

of order2 at the origin. This shows that the orderffats® is 2. ThusV is not a hypersurface
of permanent contact fof ata. It has onlytemporary contact.

Of course, it is possible to chooseatinstead ofl’> a new local hypersurfadé® whose
strict transform/% in W does contain®. It suffices to take fot/® the hypersurface defined
by z + z = 0. Observe here that replacingby x + z in f° will eliminate the monomial
22 from the expansion of®, transforming the tangent cone into a monomial. But the image
U of U% in W is singular ata. ThereforeU? is not the strict transform of some regular
hypersurface iV (see figure 2).

Figure 2. Failure of permanent contact.

The reason for the loss of contactliii® is that one step earlier, #°, the hypersurface
V5 does not maximize the order of the coefficient idealfdfin V°. Indeed,coeffys(f°)
has order2, whereas the maximal order 3s(take the coefficient ideal with respect to the
hypersurface defined by + z(y + 1)2 + z = 0). It is easy to see that if a hypersurfade
maximizes the order of the coefficient ideal of an id&3lits strict transformi/! contains
all equiconstant points ak in W’. Conversely, a hypersurface of permanent contact must
maximize the order of the coefficient ideal at the beginning.

Maybe we can modify/® from before slightly to a hypersurfaé&® which maximizes the
order of the coefficient ideal of® in U° and which does stem from a regular hypersurface
U% in W. A computation shows that the linear term of the equatiofifmust bex (up to a
constant factor). So letus writf = = + > g;xy? 2" for the equation of/% in W. We get

9" =+ gy’ 2¥,

gt =+ Y gy TR,

P = a+ Y gy th k2

G =2+ S gily + 1)F R 1243k
94 -4+ Zgjk(y + 1)j+k—122j+3k—5’
9 =1+ gy + 1)IHk—1,25+3k=6,

11



Substituting this polynomial irf®> shall maximize the order of the coefficient idealfdf
i.e., it must eliminate the tern? (y + 1)3y from f5. Therefore the coefficient;;, of g> must
be non-zero foj + £ — 1 = 1 and2j 4+ 3k — 6 = 1. But there is no paifj, k) of non-negative
integers withj + & = 2 and2j + 3k = 7. This shows that there is no regular hypersurface
U° in W whose transfornd/® in > maximizes the order of the coefficient ideal ©f.

Let us examine the recipe for constructing such type of examples. The first two monomial
blowups in opposite charts are needed to produce two exceptional components and a point
a? in their intersection. The third blowup is characterized by the “disappearance of the two
exceptional components” when passing frafrito a®. The last three blowups are only used
to exhibit the pointh® outsideV® by making the exceptional multiplicities drop until they
equalo.

It is betweena? anda?, i.e., in the third blowup, where the key phenomenon occurs.
It consists in the increase of the order of the coefficient idéat yz + 22 of f2 in V2
(after having factored from it the exceptional monomia). Applying the coordinate change
r — z + z° to f3 eliminates the monomial® and thus produces the (divided) coefficient
idealy? of f2in V3. It has ordeB ata?, whereas the (divided) coefficient idegl+ yz + 22
of 2 has order2 ata?. This increase of the order will be discussed separately in the next
section.

It turns out that the above construction produces examples where permanent contact
fails and where the order of the coefficient ideal increases if only if the exponents and
the coefficients off are chosen in a very specific manner. The conditions carry on the
second transforni? of f, because the passage frgito f3 represents the substance of the
phenomenon. The necessary (and sufficient) condition/g @re as follows:

e The residues modulp of the exceptional multiplicities, i.e., of the exponents of the
monomial factors in front of the parenthesesféf must satisfy a prescribed arithmetic
inequality. For surfaces, both must be positive and their sum must not exce€de
general inequality is given in section 5. In our case, the coefficient ided? dh
V2is 323 - (y?* + yz + 22). The exceptional multiplicities are both and satisfy
P43 =1+1=2

e The order of the coefficient ideal g must be a multiple of the characteristic. In the
example, the order i+ 3 + 2 = 8.

¢ The coefficients of the weighted tangent cong dimust be certain binomial coefficients
(up to a rescaling of the coordinates). In the example, where all coefficients Hris
condition is hidden by the fact that we are working in characteristic

The given example is among the simplest ones with these properties. The actual values of
the coefficients of the defining equations of the singularity seem to play a decisive role in
positive characteristic. This is strikingly different from the case of zero characteristic, where
the resolution never refers to the actual values of the coefficients.

Of course, due to the necessity of the three conditions for the failure of permanent contact,
one might hope to find a strategy for the resolution of singularities in positive characteristic
by distinguishing at each blowup two cases, a good and a bad one. The conditions show
that the situations where the characteristic zero arguments fail are very special. One could
then try to treat this critical case separately by a different ad hoc argument. This is done in
a similar manner in characteristic zero in the case where the coefficient ideal is a monomial
ideal supported by the exceptional divisor. There, a simple combinatorial argument saves the
situation, cf. e.g. [Ha 3, section on shortcuts]. In positive characteristic, surprisingly enough,
the special cases seem to be much more malicious then their outfit would suggest. Up to now,
they resisted obstinately the various attempts of attack.
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3. Increase of invariant under blowup

We shall now show that the resolution invariant proposed in [Hi 4,V 1,V 2, BM 1, BM 2,
BM 3, EV 1, EV 2, BS, EH, BV] for characteristi¢ does not work in characteristjcin

the special cases of the preceding section. First, we briefly recall its definition, restricting to
surfaces in three-space and omitting some technical complications. For its precise definition,
we refer to the literature.

We shall consider surfaceslifi = A® ata = 0 defined by a polynomiaf. Letc = ord, f
and assume given a local hypersurfa¢ef equationz = 0 with respect to some local or
affine coordinates, y, z. Expandf with respect tav into f(z,y,2) = >, a;(y, z)z*. After
a generic linear coordinate change (assuming to have an infinite ground field) we may assume
thata.(0,0) # 0, and thus, locally a& and after multiplication off by an invertible power
series, that,. = 1 (this reduction is not obligatory but simplifies the notation). Thus

f=a+Y, . ai(y, z) 2 moduloz“t1.
The coefficient ideal of with respect td/ ata is defined as

coeffy (f) = (a.“%*, i <c) C Oyg,.

(2

The rational exponents can be avoided by taking insgé!g\dbut as all subsequent construc-
tions commute with taking powers of ideals, we prefer to allow quotigftsn order to keep
the notation simple. The coefficient ideal lives in the local rihg,, and allows to perform
the descent in dimension. It depends on the choidé.of

Consider now all regular hypersurfac&sat a for which the order of the associated
coefficient ideal is maximal. It can be shown that eitlfie= z°¢ moduloz°+! and hence
coeffy (f) = 0, or the maximal order is finite. The first case being simple, let us restrict to the
second. Let be this maximal ordeg, = ord, (coeffy (f)). Itis clear that does not depend
on any choices (of course it depends on the characteristic of the ground field). It will form
(preliminarly) the second component of our local resolution invarigit) of f ata. Thus

io(f) = (c,e,...).

Observe here that < e. Let us now investigate the behaviour of coefficient ideals and of
the invariant under blowup. Taking simply the coefficient ideaf afoes not commute with
blowup at points where the order gfremains constant: The coefficient ideal of the strict
transform of f with respect to the transforii’ of V' at a pointa’ abovea is not the strict
transform of the coefficient ideal gf with respect td/ ata. But we have the formula

coefty(f*1) = I(Y")~¢ - (coeffy (f))*

wherel(Y”) denotes the principal ideal defining the exceptional compoFiént W’ and
(coeffy (f))* denotes the total transform (= inverse image}@dtfy (/) under the blowup

of Vin Z. This is easily checked by working in local coordinates for which the blowup is
monomial (cf. section 7). The formula only holds4fc V and at points)’ abovea where

¢ = ordy(f') equalsc. For an ideal/ and an integer with ordzJ > ¢ we define the
controlled transforny* of .J with respect ta- asJ' = I(Y’)~¢ - J*. Thus we can phrase the
commutativity of coefficient ideals with blowups as follows.

Blowing up a center Z C 'V, the coefficient ideal of the strict transform of f with
respect to V' at a' equals the controlled transform with respect to ¢ = ordzf of the
coefficient ideal of [ with respect to V, at points a’ of V' above a where ¢’ = c.

Let us now see how this affects our invaridate). First we assume, as always, that the
centerZ of the blowup is chosen so that C top(f) andZ C V locally ata, in particular
¢ = ord, f = ordz f. Thisimplies that’ < c. We wish to show that’ < e whenever’ = c.
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There are three obstructions to this. First, the order of the controlled transform of an ideal
may increase under blowup. This can be overcome by factdtiogfy (f))' further into
(coeffy ()" = I(Y")¢- (coeffy (f))", whereK ¥ = I(Y')~°rdzK . K* denotes the weak
transform of an ideak’. We have already mentioned that the order does not increase when
passing to the weak transform (provided that the ordek’aé constant along the center).
Thus we should take instead ©f= ord, (coeffy (f)) the ordero of the ideal obtained from
coeffy (f) after factoring a suitable (and prescribed) power of the exceptional component. We
call o the secondary order of f. The resultinglivided coefficient ideal is defined in a way so
that it passes to its weak transform under blowup, while the undivided coefficient ideal passes
to its controlled transform (always considered at equiconstant pointsrothe exceptional
divisor), cf. [EH, Ha 3] for more details. Doing so we get for the daiw) the inequality

(d,0") < (c,o0)

lexicographically, where’ denotes the order gf = f*¢ ata’ ando’ the order of the divided
coefficient ideal off” ata’ with respect td/’.

The second obstruction is that the transfdrfrof 1V with respect to which the coefficient
ideal ata’ is taken may not maximize the ordera@feffy (f’). Thuso’ need not be intrinsic.
It may be necessary to choose a new local hypersuffdcat ' maximizing the order of
coeffy (). It can be shown (in any characteristic) that a suitable choic¥ @hot just
maximizing the order ofoeffy, ( f), but subject to further conditions) yields a maximizing
cf. section 9. This question is studied extensively in [Ha 4]. But sughmaay not admit the
required factorization ofoeffy (f), and, more essentially, its transforms need not maximize
the order of the coefficient ideals through a given sequence of blowups. It may only work for
one blowup. Therefore, the substitutioniéf by a maximizingl’’ cannot be avoided.

The third obstruction is related to this, and relies on what we have seen in examples 1 and
2. After a finite number of blowups the strict transfok of V- may no longer contain all
equiconstant points of. Again it is necessary to adjust from time to time. The reason
for this is the same as before. To have the strict transfomig ofiaximize the order of
the coefficient ideal throughout the sequence of points along which the orderesfiains
constant we must choose a new local hypersurface occasionally.

We will show in the example below that this adjustment may destroy the required inequality
(c,0") < (c,0),i.e.,¢ =cando’ > o may indeed occur, where nawdenotes the maximal
order ata’ of the divided coefficient ideal of’, maximized over all choices of regular
hypersurface¥” ata’. We have seen a glance of this already in example 2.

The definition of the coefficient ideal shows that to understand the phenomena it is
sufficient to consider polynomials of the forfitz, y, z) = ¢+ h(y, 2), i.e., no other powers
of x appear in the expansion ¢f Hereh generates the coefficient ideal pfwith respect
toV = {x = 0} andc is the order off ata = 0, with e = ord,h > ¢. We assume further
thate is maximal and thak comes with a factorizatioh(y, z) = m(y, z) - g(y, z) wherem
is a prescribed monomial in the exceptional components having been produced by the earlier
blowups. Thugy is just the divided coefficient ideal gfin V. Take now

0= ord,g
as the second component of the invarianf @it 0.

Let nowr : W’ — W be the blowup of¥ = A3 with centerZ = {0} and exceptional
divisorY’ = 7=1(Z) c W'. Leta’ be a point ofY”” where the ordet’ of the strict transform
f' of f has remained constant= ¢’. The transformation rules fof andg are as follows.
Both f and g pass to their strict transformg and ¢’, and the exceptional monomiat
transforms accordingly so as to yield again a decomposition
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f/(.’E, Y, Z) =+ ml(ya Z) : g/(y7 Z)
The monomiak® survives andrd, (m/(y, z) - ¢'(y, 2)) > ¢ because’ = c¢. We have
m'(y,z) =m*(y,z) - I(Y")"™*

with m* = 7—!(m) the total transform ofn. But in W’ we may have to apply a coordinate
change at’ in order to maximize again the order gf, yielding the samen’ but a newy’'.

The next example shows that in this setting the paip) may increase under blowup with
respect to the lexicographic order. The phenomenon was first observed by Moh [Mo 2]. He
gave in [Mo 1] a bound on the maximal increase, see section 14 for more details.

Ezample 3. Similarly as in example 2, consider the polynomfak 0 = 22 4+ 7 + t2y2*
wheret € K is a non-zero constant, and étbe the hypersurface é¥” defined byx = 0.
Take the sequence of blowupg® — W as in example 2. The point® will now have
coordinates(0, ¢,0). Hence the third blowup is the composition of the monomial point
blowup in thez-chart followed by the translation — y + t. The resulting sequence of strict
transformsf? of f is

fOo=a2+1.(y +t2yz*),
Fl=a? g3 (g2 + 1229),
F2 =22 1328 (2 + 1222),
=2+ 25 (3 +13).

From fY to f4 the strict transformd¢ of V maximized the order of the coefficient ideal of
f* with respect td’?. This is no longer the case fg¢. If ¢3 is a square? in the ground field
we may apply the local coordinate change- = + sz3 ata® to f3 and get

fs =22 4 2 .y3
with secondary orde#® = 3. Hence the hypersurfadé® = {x = 0} ata?® with 0* = 0 did

not maximize the order of the divided coefficient idealféf But V3 = {z + s23 = 0} does
maximize this order, and we get

(c3,0%) = (2,3) >0 (ct,0%) = (2,2).

Actually, to be precise, the ordeshould always come with an index indicating the respective
hypersurface.

We conclude that our invariant has increased when passingdtama®. Observe that
the coordinates of? are related to the coefficients ¢f and thaia? is the only point where
the increase ofc, o) can happen. Moreover, changing the coefficienty ofthe increase
disappears. We will describe this fact with precision in later sections.

4. Estimating the decrease of the invariant in earlier blowups

We have seen before that the increase of the resolution invariant requires a special configuration
of the exceptional divisor at the point in question. These exceptional components must have
been produced by specific earlier blowups. It would be natural to expect that these preliminary
blowups cause a drop in the invariant which is larger than the subsequent increase, so that
in total a decrease would result. This works for surfaces — producing a new proof of surface
resolution — but gets stuck in dimensidrand higher. In the example of the last section, the
order ofg decreases from to 2, then remains constant in the second blowup, and finally
increases fron2 to 3. So in total, over all three blowups, the secondary order has dropped.
For surfaces, this is a general fact, which will be proven in section 6.
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In the next section, we will give an example of a hypersurface in four-space where after
the whole sequence of blowups the secondary order has not decreased.

Let us call kangaroo point a pointa’ in a sequence of blowups where the jump of
the resolution invariant may have occurred in the last local blo@idp, a’) — (W, a).
Necessarily, there pass less exceptional components thrdulgan throughz, cf. Theorem
1 in section 5. The predecessor pointof o’ is called theantelope point of a’. Let
(W,a) — (W°,a®) be the shortest sequence of local blowups producing all the exceptional
components ifl which pass through. We calla® the oasis point of a, for obvious reasons,
cf. figure 3. Oasis points are the starting point of a sequence of blowups which gives rise to
the described complications when passing from the antelope @torthe kangaroo point’.

It is then appropriate to compare the resolution invarianf atvith the one at’.

kangaroo
\ new
a2

asis
0. new old

el antelope

Figure 3. Oasis, antelope and kangaroo points.

For surfaces in three-space (and restricting to point blowups), the sequence of blowups
between oasia® and antelope point can be characterized in suitable coordinated/ihas
one monomial point blowup in thechart followed by an arbitrary number of monomial point
blowups in thez-chart. Restricting to a hypersurfab® having permanent contact between
a® anda we get a sequence of monomial point blowups in the plane with one change of charts
after the first blowup. It is an amusing exercice to show that any polynomial of orther
two variables transforms under such a sequence into a polynomial of@rdes/2 (taking
always the strict transform of the polynomial).

If o > 2, this drop will make up with the increase by at m$h the blowup fromu to o’.
If o = 2, the polynomial has become regulawatThis gives a rough outline how to treat the
case of surfaces in positive characteristic, using orders of ideals as invariants.

We next give an example where the order of the divided coefficient ideal of a polynomial
f increases along a sequence of point blowups between oasis and kangaroo point. In the
example, occasionally curves could be taken as permissible centers. However, transversality
problems with still older exceptional components may prohibit to choose one-dimensional
centers, thus forcing point blowups.

Example 4. Let W be a4-dimensional regular ambient scheme, and:let 0 be a point of
W. Choose local coordinatesy, z, w in W ata, and letV” be the hypersurface iV defined
by x = 0. We consider the sequence of local point blowups

(W?,a%) — (W?,a%) — (Wha') = (W,a) » (W Ha ) = (W 2a7?)

given as follows: The first two blowups are monomial and of auxiliary naturé, is the
origin of thez-chart,a is the origin of they-chart. We will be interested in the situationat

the two prior blowups ensure to have already two exceptional components passing through
The next two blowups are again monomial,is the origin of they-chart,a? is the origin of

the z-chart. The next blowup involves a translatiart: is the point with coordinate&), 1,0)

of the z-chart. Thus:? is a kangaroo point with antelop&, anda is the oasis point of?.
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Take the hypersurfacg=2 = x° + 1 - (yw® + y228) in W2 = A* ata=? = 0, with
coefficientideah(y, z,w) = 1-(yw®+y?2%)in V=2 : z = 0. We get the following sequence
of transforms and coordinate substitutions under the above sequence of point blowups.

f2=2" 41 (yw® +y22%),

fl=a% +y- (v +y*e®), T, Y, 2, W — T2, Y2, 2, W2,
f=f0=a%+yz- (0 +y*"), T, Yy 2, W — TY, Y, 2Y, WY,
fr=a°+y2% (wd +y*29), T,Y, 2, W — TY, Y, 2Y, WY,
fP=a® + 322 (w® +952%), T, Y, 2, W — T2, YZ, 2, W2,
=+ 5y +1)3 (w+ 28y +1)°), T,Y, 2, W — T2, Yz + 2, 2, wz.

The order off and of its transforms has remained constant at the successive points of the
blowups, and” has permanent contact along the sequence. The order of the divided coefficient
ideal of f3 in these coordinates with respecttd : = 0 is 5. This order is not maximal,

as is seen by applying the coordinate change x + zw. After this substitution, the order

has becom& and is then maximal. The divided coefficient ideal fot the oasis point

wasg = w® + y*z7 of order5. Thus the order of the divided coefficient ideal has increased
between the oasis point and the kangaroo point (and not just between the antelope point and
the kangaroo point). This seems to make also induction relying “on the long run” of the
invariants obsolete.

Il. RESULTS

5. The main result

Let W be a regular ambient scheme (excellent of finite type over an algebraically closed
field), and letz be a point oV, dim, W = n. As all considerations are local,we may as well
assume thatt’ is n-dimensional affine spack™. Let D be a given normal crossings divisor

in W ata (correspondig to the exceptional divisor of earlier blowups) andlléte an ideal

in W. For simplicity of exposition and notation, we shall always restrigitmcipal ideals

K = (f). LetV be ahypersurface W which has weak maximal contact witti ata relative

to D. By this we mean that” maximizes the order of the coefficient idekl= coeffy (K)

of K in V ata, thatV is transversal td and that/ allows a factorization/ = M - I with

M = Iy(D NV) a principal monomial ideal anflan ideal inV" ata. It can be shown that
hypersurfaces of weak maximal contact always exist (at least as formal subschémes of

a), see [Ha 4]. Although we shall use some of the constructions of [EH], this paper is not a
prerequisite for understanding the results of the present paper. The references mainly serve
to embed the used objects into a larger context so as to justify their consideration.

For Z a regular subscheme &F let W’ — W denote the blowup of¥ in Z with
exceptional componenit’. We assume tha is contained inop(K) andV and transversal
to D andV. This is the case in the actual resolution process, see the sdetiapversality
of [EH]. Note thatiW’ — W induces by restriction a morphisk®®* — V which coincides
with the blowup ofl” with centerZ. Leta’ € Y’ be a given point above a poiatin Z. As
all arguments and computations are locak @&nda’, we will work with ideals in the local
rings of W andW'’ ata anda’ (or their completions).

Let K/ = K" = K* - I(Y'")~°r4zK denote the weak transform &f in W’'. As K is
assumed principalK ¥ coincides with the strict transforfi ** of K. FromZ C top(K)
follows that the ordet’ of K’ ata’ is less or equal the orderf K ata. Since in case where
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the inequality is strict induction on the order applies, we shall assume throughowtithan
equiconstant point fok, say

c=ord, K =ordyK' =¢.

DefineD’ = D* + (0 — ¢) - Y’ with D* the total transform oD ando = ord, I the order

of the second factof of J = M - I ata. As Z is transversal td ande = ord,J > ¢, D’

is an effective normal crossings divisorlii’ (all multiplicities of D’ are non-negative). The
strict transforml/® = Vst of V containsa’ becausé/ is assumed to have weak maximal
contact withK (cf. [EH]). Moreover,V? is transversal td’. A computation shows that
the coefficient ideal7® = coeffy+(K’) of K’ with respect tol’® admits a factorization
Jo = M?¢-I°with M°® = Iy (D' NV°) andI® an ideal ofl’® ata’. It can be shown that®

is the weak transform af in V°, cf. the sectiorCommutativity of [EH]. Seto® = ord, I°.

In characteristi®), the hypersurfac& can be chosen so th&t” has again weak maximal

contact withK” atd’, i.e.,0® is maximal over all choices of local hypersurfacea’atThis is

not the case in arbitrary characteristic, as we saw in the earlier examples. There may exist a
regular hypersurfac®” in W’ ata’ transversal td)’ so thatJ’ = coeffy (K’) factors into

J' = M- I'with M’ = Iy,(D’ N V') and the ordep’ = ord, I’ of I’ ata’ exceeds°.

Any such hypersurface is the image6f under a local automorphism &’ ata’. In the
computations of the respective coefficient ideals, this will correspond to a coordinate change
as already occurred in the examples when eliminating certain monomials from the expansion
of fandf’. We sete’ = ord,.J'.

The resolution invariant of{ and D at a pointa of W is a vectori,(K) of numbers.
Its first two components, which shall only interest us here, are the respective oraieds
o as defined above. Our purpose is to observe the behaviolt @f under blowup, i.e.,
to compare(c, o) with (¢/,0'). As we may ( and will ) assume that= ¢/, we are left to
compareo = ord, I with o’ = ord,/ I’. For this, the general procedure will be to compute
first o = ord, I° and then apply coordinate changes to maximize the erderord, I’ of
the resulting ideal’.

The examples of section 3 have shown thlat- 0 may occur. We shall classify in the
sequel all cases where such an increase can happen.

For this, the multiplicities of the exceptional monomial factdr = Iy, (D N V') of the
coefficient idealJ have to be taken into account. In realifl, is the exceptional divisor
produced by earlier blowups, adN V is the exceptional divisor of the restriction of these
blowups to hypersurfaces of weak maximal contact. We therefore call the components of

DNV the exceptional componentsidfata. We may choose local coordinat@s vy, - - -, y1)
of W ata (with m = n — 1) so thatV is given byx = 0 andM is generated by a monomial
in the coordinateg,,, ..., y1. Letq € N™ be the vector of exponents of this monomial, i.e.,

the vector of exceptional multiplicities i ata.

Let V° = Vst Fix nowa’ in V° abovea with ¢ = ¢, and consider the exceptional
monomialM° = M* - Iy« (Y' NnV®)°~¢ of J® = coeffy.(K’) atd/, i.e., J> = M® - I°.
Here, M* denotes the total transform af under the induced blowup® — V. Observe
thatM° = Iy. (D’ NV*), by definition of D’.

We wish to describe the exponents of AM°. Their detailed description using local
coordinates is given in section 7. Exceptional components of the bld#up- V' at o
which are the strict transforms of componentdithrougha will have the same exponent as
their image below. So for these, we will haye= ¢;. The new exceptional componentdt
isY'NVe°. It has exponent — c¢. The remaining exceptional componentddfwill not pass
throughd’, so their exponent id/° is 0. Combining these observations, we can decompose
ginto g = r + ¢ wherer and/ are obtained frong € N™ by setting certain componenjsof

18



¢ equal to zero and leaving the others unchanged. The non-zero components@spond

to components at which disappear ata’, whereas the non-zero componentg obrrespond

to those whiclpersist ata’. We callr € N™ the red exceptional multiplicities (or exponents)

of K in V, and/ € N™ the yellow exceptional multiplicities ofK” in V. The value of the

red exponents will be of special interest for the phenomena to be studied. Of course, the
decomposition of; depends on the choice of the poirit

For an integral vector € N, let ¢.(r) denote the number of components-afhich are
not divisible byc,

¢c(r) = #{i, r; Z0modp}.

Forr € N™ andc € N definer® = (7§, ...,7,) as the vector of the remainde&r< 7 < ¢
of the components of moduloc. We set|7®| = 7§ + ... + 75,.

We say that an equiconstant poirite W’ abovea of the ideal K in W is tame with
respect to a given regular hypersurfdceof W at a, if either the order of K ata is not
divisible by the characteristic of the ground field,co&= ord,J = ord,(coeffy (K)) is not
divisible by ¢ (in both cases all points’ abovea are tame), oe is a multiple ofc and the
residues; moduloc of the red exeptional multiplicities; of K in V' satisfy the arithmetic
inequality

7l =7¢ 4+ ... 475, > (de(r) — 1) - c.

A similar inequality appears in the work of Abhyankar on good points [Ab 2], but is used
there with a completely different perspective. It is easy to see that the inequality is equivalent
to

Ty O Tt
[Tl =2

c c

where[«] denotes the smallest integeru. If none of the three conditions hold, is called
wild abovea. Hencea' is wild abovea with respect tak andV if and only if

e The characteristip of the ground field divides = ord, K.
e The ordere = ord,J of the coefficient ideall of K in V' ata is a multiple ofc.
e The red exceptional multiplicities of K satisfy

TS+ 4T < (Pe(r)—1) - c.

Note that if only one exceptional component is lost when passing fréom’ (or « lies
in no exceptional component), then ajl but one ared and p.(r) equalsl or 0, so that
[7¢] > (¢c(r) — 1) - ¢ is satisfied. Therefore, at a wild point, at least two exceptional
components have disappeared.

The main result of this paper is as follows.

Theorem 1. Given are a principal ideal K in W at a with coefficient ideal J = M - I
in a hypersurface V of weak mazimal contact with K at a. Set ¢ = ord,K and
o=ord,I. Let (W' a') — (W,a) be a local blowup with center Z C top(K) N top(I)
and exceptional component Y'. Set ¢ = ordy K’ with K' = K the weak transform
of K. Assume that ¢ = c. Let V' be a local hypersurface in W' at o' with weak
mazimal contact with K’, and let J' be the coefficient ideal of K' with respect to V'.
Assume given the decomposition J' = M' - 1" with M’ = Iv/(D' N V') and D' the
normal crossings divisor D' = D* + (o —¢) - Y'. Set o' = ord,/ I'.

(@) If a’' is tame above a, then

o <o.
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(b) If a' is tame above a, the strict transform V=t of V need not have weak mazimal
contact with K'.

(c) If a’ is wild above a, then

o' > o,

may occur.

(d) If @’ is wild above a and o’ > o, the weighted tangent cone of (a generator of ) K
18 uniquely determined, up to coordinate choices and multiplication with p-th powers,
by o and the red exceptional multiplicities r; of K in V.

In assertion (d), we understand by the weighted tangent cong dfie ideal inWW
generated by the initial weighted homogeneous forms of elemermfSwith respect to the
weight(w, 1,...,1) wherew = e¢/c ande = ord,(coeffy (K)), cf. [AHV].

Toillustrate assertion (d), we indicate the form of the tangent cone for surfadés+n?
defined by a polynomial of the special form

f=2+ 'y - 9(y1,92)-

Here,a = 0 is the origin,V is defined byz = 0, and the coefficient ideal of in V is
generated by*y52 - g(y1, y2) with exceptional monomial;* y52. The centel is the origin
of A2 and(W’,a’) — (W, a) is the local point blowup with’ a point ofY” outside the strict
transforms of the two exceptional componefits = 0} and{y2 = 0} ata. Hence both
exceptional multiplicities; andr, of f in V are red (so, in the notation from above= r
and/ = 0). We havec = ord, f < e = r; + ry + ord,g ando = ord,g. Assume that is
wild abovea. We may assume that lies in they,-chart of /W’ and has coordinaté$, ¢, 0)
there, for some £ 0 in the ground field. For simplicity, we suppose that p equals the
characteristic. The arithmetic conditions fdrto be wild are

e e
w=-e€N and 7 +75 <ec
c

Assume now that the order gf has increased at’, sayo’ > o. Theng must have the
following form

91, y2) = D1y (?i:ll)yi (y2 —ty1)° "

Similar but much more complicated formulas could be given for the tangent cone of arbitrary
surfaces im\?, cf. the computations of the next section.

If o’ is wild aboveu it is possible to bound the increaseddiwith respect ta, namely
o<o+p

with g = 37,77 — max {75, j = 1,...,m}. A sharper bound is given by Moh [Mo 1].
Namely, ifc = p* with p the characteristic and if the elements of the coefficient ideafl /
with respect td/ are not pure’-th powersh?’ for any1 < i < k, then

0/ S 0+pk—1.

We are going to reprove this inequality in section 14. The theorem is proven in sections 11
and 12. The form of the uniquely determined weighted tangent cone of (b) is described for
three variables in sections 16 and 17 on hybrid polynomials. The non-persistence of weak
maximal contact under tame blowups is discussed in section 13.
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6. The theorem in the case of surfaces

The description of the observed phenomena in later sections and the proof of the main theorem
will be somewhat technical. Therefore, to illustrate the underlying ideas, we first treat in detalil
a specific example. As before, we shall restrict to surfaces of the form

flz,y,2) =2 +y"2° - g(y, 2),

with ¢ = ord, f, 0 = ord,g, e = r + s + 0 = ord,(y"2° - g) anda = 0. We assume that
equals the characteristicof the ground field, that is divisible byc and that no monomial
of y"2° - ¢g(y, z) can be eliminated fronf by a coordinate change ir i.e., no monomial is
ac-th power. Both exponentsands will assumed to be red. In this section, we shall only
consider the case whegds homogeneous of degree We set

P(y,2) =y 2" g(y, 2) = X aizy'#,

PH(y,z) = P(y+z,2) = 3" bnay™2",
where the sums range ovérj with ¢ + 5 = r+s+o0, ¢ > r, j > s, respectively
m+mn=r-+s+o,m>0andn > s. Of course, the indicegandn are determined by

andm and could be omitted. Theipport supp(P) of a polynomialP is the set of exponents
of the monomials of” with non-zero coefficients.

r+o Tt r+o

supp(P)
o = vol(P)

®9) (t9)

height, (P D

}
s 0+r+s S 0+1+s

Figure 4. Height and volume of a polynomial.

Let us callvolume vol(P) of P the integer volume of the convex hull of the supportrof
in R?, say the euclidean volume of this convex hull in the one-dimensional affine sublattice
{(i,7) € N?, i+ j = r + s + o} of N2, setting the length of a generator of this lattice equal
to1. Thus

vol(P) = max {i, a;; # 0} — min {4, a;; # 0} < o.

We may assume thgt z* is the maximal monomial which can be factored fréhfusing that
P is homogenous). In this case we haye ., # 0 anda,, s # 0, hencevol(P) = o. The
height height, (PT) of P* is the order ofP* with respect tay, say

height, (P*) = min {m, by, # 0}.
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These two numbers can be easily read off from the Newton polygéremid P+, see figure 4.
In higher dimensions, the height will still be the orderft with respect to some variables,
but the volume of? will be defined differently as the order of

For later applications when observing the increase of the resolution invariant, we wish to
boundheight, (P*) in terms ofvol(P). Let A denote the transformation matrix between the
coefficients ofP and P,

bmn = Zij Aij,mn * Qe
We will be particularly interested in th@ -+ 1)-square submatrix” = A9 (o, r, s) of A of

columns indexed byn, n with m < o, relating the coefficients aP with the coefficients of
monomials ofP* of y-degree< o. Computation gives by binomial expansion

) (")
AP =
G - (20)
If P+ would be obtained fron® by the changeg — y + tz the entries of this matrix would
have to be multiplied with powers @f Subtracting then-th column from the(m + 1)-st
column for everym > 1, and using the binomial identit{}) + (“;') = (1), we geta

matrix with first row(1, 0, . .. ,0) and whose submatrix obtained by deleting the first row and
column is the matrixA™ (o — 1,7, s) of sizeo — 1

+o-1
o - (75
Ao —1,r,5) =
+o-1
(oil) (Toil )
Induction on the size of the matrices shows that has determinant. This implies that the
correspondence between the coefficienisvith » < ¢ < r 4 o and the coefficients,,,, with

0 < m < ois alinear bijection. In particular, Heighty(P+) > o and hencé,,,,, = 0 for all
0 <m < o, thenP = 0. ConverselyP # 0 implies that

height, (P*) < vol(P).

The equalityheight, (P*) = vol(P) = o can only occur ib,,,, = 0forall0 <m <o -1,
b := b, s # 0 and the coefficients;; of P are theb-th multiple of the last column of
(A9)~1, They are thus unique.

The inequalityheight, (P*) < vol(P) is related to the Bernstein-Koushnirenko theorem
[Be] on the comparison between the number of isolated zeroes of a systepobfnomial
equations i C*)™ and the mixed volume of the convex polytopes given as the convex hulls
of the supports of the polynomials (see section 15).

Let us now consider the surface
f=a+y"z" gy, 2) =a°+ P(y,z)
with g homogeneous of degree We set
fr=a+y+2)2 gy +2z2) =2+ P (y,2)

For general positions of the wild poiatin W’, we would have to consider coordinate changes
of formy — y + tz with ¢ in the ground field. The first two components of the resolution
invariant of f ata = 0 are(c, 0). As we have seen in examples 3 and 4 of sectiomBay
increase t@ + 1 under a point blowup when taking It the strict transform of at a point
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outside the two intersection points of the three exceptional components and the hyperplane
x = 0. Our purpose here is to describe the circumstances where such an increase can happen.

It turns out that the order of the strict transforny’ of ¢ is bounded from above by the
heightheightyPJr of P*. This is proved by a computation in local coordinates as given by
the lemma of section 7. On the other hanthounds from aboveol(P). Thus

o' < height, (PT) and  vol(P) < o.

Both inequalities are sharp, i.e., equality may hold. To compangth o', it is therefore

plausible to investigate more closely the inequalityght, (P*) < vol(P) in the context

of polynomialsf. Observe here that the presencectin f with ¢ the characteristic of the
ground field allows to eliminate monomials frof and P which arec-th powers. Thus
P and P* are only given modula-th powers. Asvol(P) andheight, (P*) are given by

support conditions this will effect the validity of the inequalityight, (P*) < vol(P).

We shall assume throughout that the order g is maximal over all coordinate choices,
i.e., thatP is not ac-th power. However, some of its monomials couldcki powers. Let us
therefore defineol” ( f) as the minimal volumeol( P) over all polynomialsP(y, z) occurring
after coordinate changes— = + a(y, z) in f, and similarlyheightij(f*) as the maximal
heightheighty(Pﬂ over all polynomials obtained fromR (y + z, z) after elimination of-th
powers. We then still have

o' < height) (f*) and  vol’(f) <o,

and thus wish to compateight} (f*) with vol”(f). Moh has shown in [Mo 1] that far = p
one always has

height} (f*) < vol”(f) +1,

so that, by the abovey’ < o + 1. To have equalityheight? (f*) = vol”(f) + 1, some
monomials of P(y + z,z) = P*(y,z) must bec-th powers, because dieight, (P*) <
vol(P). A first necessary condition far = o + 1 is therefore that the degreet s + o of

P and P is divisible byc. Else no monomial of> or P* would be ac-th power. We shall
prove thato’ = o + 1 can only occur ify” andz* are red exceptional components and in
addition

7435 <g,

wherer¢ ands®¢ denote the residues efands moduloc. Note thatp.(7¢,5¢) — 1 = 1 if both
7¢ ares® are positive. By prior auxiliary curve blowups with centérsy) or (x, z) one can
always achieve that < ¢ ands < ¢, in which case the inequalit§ff + 5¢ < ¢ simply reads
r + s < c. This reduction step is not a prerequisite.

Let us interpret the inequaliy’ + 5¢ < ¢ geometrically. It is equivalent to

HESHEA Rt

Note that[Z] + [2] > [Z£2] always holds. To see the equivalence, we may assume that
bothr ands are< ¢ and non-zero, so that the left hand sidg &f + [2] > [~=] equals2.
The right hand side i 2 ifand only if r + s < c.

The inequality] 2] + [£] < [“£2] signifies that the straight segme$itn N? connecting
the points(e — s, s) and(r, e — r) contains as mang-multiples, i.e., points in: - N2, as the
segment/ connectingo, e — o) with (0, e) (see figure 5).
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ol e (rt0.8) = (e-8.9)

_(1,5+0) = (r.e-1)

o+
| \(O,r+s+o) =(00)

S S+0 I+S z

Figure 5. c-multiples on segments.

Note here that the first segment is just the maximal possible suppBrtvafiereas the second
corresponds to monomials whose coefficients in the expansidéh-ahust be zero in order

to haveheightyP+ > o. And c-multiples in these segments correspond to monomials which
can be eliminated fron® or P* by coordinate changes in applied tof and f+. Itis
clear thatS \ ¢ - N? has at most one element more thHan c - N2. Heuristically speaking,
applying coordinate changes— z= + a(y, z) andy — y + z to f may produce at most
zero coefficients ifP ™, thus giving

height,, (f) < vol(f) + 1.

In addition to the preceding condition on the exceptional exponents, the occurrence of the
equalityheight} (f) = vol”(f) 41 implies for each value of, r ands, thatP is a uniquely
determined polynomial (up to a rescaling of the coordinates). The uniquenéswitifbe
proven in Proposition 1 of section 11. We have assumed heretimhomogeneous, for
arbitrary polynomials® only the tangent cone d? would be prescribed. The shapeftan
be explicitly be determined. It is given as follows (cf. section 16). Consider the polynomial
H? given as

H(y, w) = 30— ((17)y'wo™
We then have
P(y,z) =y 2 - H(y,z — y).

To prove the equality of the two polynomials it is sufficient, by the uniquenes#s tf show
thaty”z* - H(y, z—y) has the same propertiesiAsvith respect to the substitution— y+z.
This is easy to check, simply replagdy y + z in y"2° - Ho(y, z — y) and get by computation

(y+2)z° - Hoy + z,—y) = 2077+ — (=y)°tL - H 1 (—y,y + 2).

Working moduloc-th powers, we may delete™"+¢ from the sum on the right hand side so
that the height with respect tpof this polynomial is> o + 1 (actually, it is equal t@ + 1
sinceHQ;}(—y, y + z) hasy-order0). Observe that

YT H2y, 2 —y) = X0 (S — )7 = T (g (e — )t
equals the terms af-degree> r of the binomial expansion of’*" = (y + (z — y))°*".

Let us return tof = x4 P(y,z). Assume thateight! (f*) = vol”(f) + 1 and
that f = 2¢ + P(y, z) with homogeneous polynomiaP(y,z) = y"z° - Ho(y,z — y).
We see from the above that if + 1 > ¢ then f has constant ordet along the curve
(z — z(rtstol/e 4 ...y — 2), where the dots denote further monomials which eliminate
c-th powers fromP. Hence this curve is a permissible center of blowup fidthis is only

24



the case ifP is homogeneous). Changing coordinates accordingly amdy, f becomes
f=a°— (—y)°*' -HI 1(~y,y + 2). The permissible curve is defined now by, y).

Blowing it up decreases the exponent 1 of y by c and leaves the rest gfunchanged. This
can be repeated until the exponenya$ < c. AsH”jr}(y, z —y) hasy-order0, a subsequent

o

point blowup will make the order of drop belowe.

We may therefore assumet+ 1 < ¢ from the beginning. In this case, applying a point
blowup tof = z¢ + y"2° - Ho(y, 2 — y) yields a strict transfornf’ = z¢ + 2°t75 . ¢/(y, 2)
with ¢’ of order< o+ 1 < ¢. Asr + s+ o is a power ofc, we can now blow up the
curve(z, z) several times to make the factdgi™**° equal tol. This yields a strict transform
f" = x°+ ¢"” with ¢’ = ¢’ of order< c. Hence the order of is < ¢, showing that it has
dropped. Then induction on the order papplies to resolve.

This argument does not work if the polynomialis not homogeneous, because then the
curve(z — z(rtsto)/e ...y — ) need no longer be permissible fpr

[ll. TECHNIQUES

7. Description of blowups in local coordinates

Let W be a regular scheme of dimensien and letZ be a closed regular subscheme of
dimensiond. Letnw : W' — W be the induced blowup with centéf and exceptional
component”’, and let(W’,a’) — (W, a) denote the corresponding local blowup for some
pair of pointsa € Z andd’ € Y’ abovea. We shall assume that the ground field is
algebraically closed. As the order of ideals is an upper semicontinuous function of the point
in question, we may and will restrict to closed poiatanda’. Let V' be a local regular
hypersurface ofi/ ata containingZ locally.

Assume given an idedl’ in W ata, with coefficient ideall = coeffy (K) in V. Let D
be a normal crossings divisor I ata transversal td/, setM = Iy(D N V) and assume
that.J factorizes intaJ = M - I. Letc = ord, K andc¢’ = ord, K’ with K’ = K" the weak
transform of K in W’'. Assume thal” has weak maximal contact witi (i.e., maximizes
the order ofJ), and thatZ is transversal taD. Moreover, we shall assume thdtis an
equiconstant point foK, i.e., the order/ = ¢ has remained constant. In this situation, local
coordinates can be chosenliri at a which make the description of the blowup and of the
transforms of ideals particularly explicit.

Lemma. There exist local coordinates x = (zy,...,x1) of W at a, i.e., a regular
system of parameters of Ow 4, such that

(1) a has components a = (0,...,0) with respect to .

(2) V is defined in W by x,, = 0.

(3) Z is defined in W by x, = ... = 2441 = 0.

(4) M is generated by the monomial z" 7" - - - 21" for some g € N*71,

(5) Let m: (Tn,y ...y x1) = (TnTp—1,Tn—1,Tn—2Tn—1,- -, Ldt1Tn—1,Ld,---,L1) be the

expression of the blowup W' — W in the x,_1-chart. In the coordinates in W' induced
by m, the point a’ has components

a'=(0,0,a;_o,...,0a5,4,0,...,0)
for some d < j < n —2 and with a;,_,,...,a},, # 0. Here, j —d is the number of
components of D whose transforms pass through a’.
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(6) Local coordinates in W' at o’ are given by the monomial blowup 7 followed by the
translation x — x+t witht = (0,0,t,_2,...,t;11,0,...,0) and t; = aj. Alternatively,
they are given as the composition of the linear map A¢ : @ — (¢ + taxn,—1) in W at a,
followed by the monomial blowup m of W. The map A; preserves Z and V and the
factorization J = M - I, but destroys the monomiality of M as in (4) with respect to
the given coordinates.

(7) The decomposition q = r+{ of the exponent q of M in red and yellow components
is given by r = (¢n-1,---,49j+1,0,...,0) and £ = (0,...,0,q;,...,q1).

(8) The weak transform V' of V in W' is given in the induced coordinates at o’ by
z, = 0.

(9) If condition (4) is not imposed, the coordinates x,,,...,x1 can be chosen so that a’
is the origin of the x,_1-chart and so that (W' a') — (W, a) is the monomial blowup
m from (5) .

The assertions can be proven as follows. It is clear tlat...,z1) can be chosen
satisfying (1) to (3), and (4) can be achieved becallsend Z are transversal. As for (5),
we know by (3) that the exceptional componéfitis covered by the charts corresponding
t0 Ty, ..., xqr1. Asc = c anduz, is supposed to appear in the tangent condsoive
conclude that’ cannot lie in ther,,-chart. Hence' lies in the other charts and satisfies there
a,, = 0. A permutation ofy,_1,...,y4+1 allows to assume that lies in thez,,_;-chart.
This permutation does not alter (2) and (3). ¥5is given in thex,,_;-chart byz,,_; =0
and as’ € Y/ we geta),_; = 0. Fromay = ... = a; = 0 follows thata), = ... = af = 0.
After a permutation of,,_o, ..., 441 We may assume that # 0forn —2 >4i > j+1
anda, = 0forj > ¢ > 1andi =n — 1 with n — 2 — j the number of non-zero components
of a’. This establishes (5).

Assertions (6), (7) and (8) follow from (5) and direct computations in the coordinates.
Finally, (9) is a consequence of the second part of (6).

In the sequel, we shall mostly assume that there are no yellow componénh{thase are
the simple ones), so that= r consists only of red components, i.e., all component® aft
a have transforms i’ which do not pass througif. This is not a substantial restriction,
but simplifies the exposition considerably.

8. Height and volume of polynomials

The description of blowups in local coordinates as in the lemma of the last section allows
to observe the behaviour of polynomiafsin A™ when passing to their strict transform.
Assertion (6) shows that it suffices to apply to the polynomial the linear coordinate change
(mn, R 7.7,‘1) — (l’n, - ,.’171) +tr,_1 in A" atQ with ¢t = (070,tn,2, . 7tj+1, 0,..., 0),

and then the monomial substitution

(I (an, cee 7371) - (xn-rn—hxn—hxn—an—lv e 41T —1,Tdy - - - axl)-

The order of the coefficientideal ¢fin V' : x,, = 0 and of its strict transform can be estimated
by two numbers, the height and the volumefofassociated to its Newton polyhedron. We
first define them for polynomials i, and then for polynomials if” by passage to their
coefficient ideal inl/.

To easen the notation, we shall writefor n — 1 andy,,, ...,y forx,_1,...,z;. Let
y = (Ym,.--,v1) and setz = (ym—1,...,y1). Let P(y) be a polynomial iy, and lety”
with » € N™ be the largest monomial which can be factored frBm
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P(y)=vy"-g(y),

with some polynomial(y). We write r instead ofq because, as mentioned above, we
shall assume that all components of the exponent are relevant, i.e., red. For a given vector
t=(0,t-1,-..,t1) Of constants; in the ground field, we set

Pt (y) = Qy) = Py + tym).
We define thevolume of P as

vol(P) =ordg =ord P — |r

i.e., as the ordesrd g of g at0. We shall often write for ord g. Theheight of P with respect
to z is defined as

height, (P*) = ord, P™,

whereord, PT denotes the order dP™ with respect to the variables= (y;,—1,..-,y1),

i.e. ord, Pt = max {k, P* € <y,,_1,...,51 >*}. The height of an ideal is defined as the
minimum of the heights of its elements. For a polynomial in two variables, the height and
volume are illustrated in figure 6.

Y b

n+o T r+o

Q- P 3
o= vol(P) supp(P) supp(P")

TS [

3 -th
height? (PF 1 . I power
P

} t . Yy
Iy O+ 1y ) O+ H,

Figure 6. Height and volume of polynomials.

Let now = be another variable and Igt be a weighted homogeneous polynomial in
(Z, Ym, - - -, y1) Oof weighted degree with respect to weightéw, 1,...,1) with w > 1. Let
c be the order off at0. Write
f(mvy) = Zakaxkya!
er(iL', y) = f(xv Yy + tym) = Z blﬁ(t)xlyﬁl

wherewk + |a| = e andwl + | 5| = e, with constants,,, and polynomial$,z(t). LetV be
the hypersurface = 0 and let

coeffy (f) = (ai ", i < ¢)

(2

be the coefficient ideal of in V' (which we assume to be non-zero to avoid trivial cases). The
order ofcoeffy (f) at0 will be denoted by. Lety” be the maximal monomial which can be
factored fromcoeffy (f), saycoeffy (f) = y" - I for some ideal. We set (see figure 7)

vol(f) = ord I = ord (coeffy (f)) — |r| = e — |r|.
Similarly, we set
height, (f*) = height, (coeffy (fT)).
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In case wher¢g has the formf = z¢+ P(y) with a homogeneous polynomiBl(y) of degree
e (this case will be significant in the sequel) we simply get

vol(f) = vol(P)
and

height, (f*) = height, (P™).

Figure 7. Height and volume of weighted homogeneous polynomials.

By definition,vol(f) coincides with the order at0 of the divided coefficient ideal of in V.

We will see in the next section thatight, () bounds from above the ordef at0 of the
divided coefficient ideal of the strict transforffiof f in V/ under a blouwp as in the lemma

of the last section. As we wish to comparenith o', we will be lead to compareol( f)

with height, (f) (which can be treated as a question on the behaviour of polynomials under
linear coordinate changes without involving blowups). To maximize the order of the divided
coefficient ideals off and f’ we will have to eliminatep-th powers appearing ieffy (f)
andcoeffy (f’) by coordinate changes in This can be best seen fgr= z“ + P(y) and
characteristipp = ¢, where changes — z + y* may cancel some monomials 6f say, of
coeffy (f). Therefore we will also define volume and height of a polynomial mogttio
powers, say

vol?(f) = ord (coeffy (f)/modulop-th powerg — |r|.
and
height?(f+) = height, (coeffy (f)/modulop-th powers,

where/modulo denotes the ideal obtained after elimination of all monomials whicp-tire
powers iny.

9. Realizing weak maximal contact after blowup

We have seen in the examples that a hypersurfagehich has weak maximal contact with

an idealK may transform under blowup into a hypersurfac& which has no longer weak
maximal contact with the transformed ide&il of K. In this section we study the local
isomorphisms of the blown up ambient scheWiéwhich mapl’** into a hypersurfac®’ of

weak maximal contact above. This will allow to read off the possible increase of the order of
the corresponding coefficient ideal already below, and to relate it to the volume and height of
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the weighted tangent cone of the ideal. For convenience we work in the completions of the
local rings. In the sequel, “local” shall always refer to objects defined in the completions of
the local rings.

Let (W', a’) — (W, a) be a local blowup with exceptional componént, let K be an
ideal inW and K’ = K" its weak transform at’. We assume that the order &f has
remained constant at, i.e., that¢’ = c. Let already be choseW in W at a with weak
maximal contact withK relative to a normal crossings divisérin W, i.e.,J = coeffy K
factorizes intoJ] = M - I with M = Iy (DN V'), whereV is transversal td ando = ord,
is maximal among all such choices W6t Our objective is to find a hypersurfat& of weak
maximal contact withK”’ ata’. In addition we wish to read off directly frolk an upper
bound for the order of the associated (divided) coefficient ideaf K’ with respect td/”’.

We place ourselves in the situation of the lemma of section 7, with local coordinates
Zn,...,x; chosen at so that the various conditions of this lemma are met. In particular,
Yms - - -, y1 Will denotez,,_1, ..., z1. We assume for simplicity that the idefl is principal.

Let V° = Vst be the strict transform df ata’. The superscript will correspond to objects
defined throughV°, whereas a prime denotes objectd¥iti which play the same role as the
corresponding objects without primelifi. Asc¢’ = ¢ andV has weak maximal contact with

K ata we have by the lemma that € V°. Let.J° be the coefficient ideal of’ in V°.

By the commutation of the passage to coefficient ideals with local blowups at equiconstant
points (see the sections on commutativity in [EH] or [Ha 3]) we havefat M - I° with

M?® =1Iy.(D'NnV®°)andl® = I",whereD’ = D*+(0o—c)-Y’. However, as the examples

3 and 4 from section 3 shoW,® need not maximize® = ord, I, i.e., V° need not have
weak maximal contact witlk’ relative toD’.

Choose a local regular hypersurfdcein W’ ata’ which has weak maximal contact with
K’ relative toD’. There then exists a local automorphigrof W’ ata’ which mapsl’® on
V. By the Gauss-Bruhat decomposition of the group of formal automorphisms with respect
to the lexicographic order as described in [Ha 1] we may assume, up to permutations, that
has in the induced coordinatesadthe forme’(x,,y) = (z, + b'(y), y) with some formal
power serie$(y). In particulary’ preserved)’ N V° and hence the idedl/°.

A look at the Newton polyhedron df shows, similarly as in [Hi 2, Ha 2, proof of Thm.
8.1], thaty’ is induced from an automorphist(z, y) = (z, + b(y),y) of W ata for some
formal power series, i.e., the respective diagram is commutative

wha) L wa)
! !
(W', d) U, (W', d)
But ) need not preservié nor allow to factor the exceptional components from the coefficient

ideal of K in ¢(V) (cf. the examples in section 3). We denotedsythe dual map of)
between the local rings.

Let f(z,y) be an element of the weighted tangent cond<ofvith respect to the given
coordinates«,,, Ym, - - -, y1) ata and weight§w, 1,...,1) € Q™ with w = e¢/c > 1 and
e = ord,J. Then f has orderc at 0. It is weighted homogeneous of weighted degree
e =|q| + o, whereJ = y? - I ando = ord I.

Setf(x,y) = f(z + h(y),y + tym) with h the homogeneous tangent coneboéind
t = (tm,...,t1) = (0,tm—1,...,tj41,0,...,0) with components; prescribed by the
coordinates of’. As f(z+h(y), y) belongs to the weighted tangent cone6f K') and as the
blowup(W’,a’) — (W, a) isthe composition ok; : (z,y) — (x, y+ty.,,) and the monomial
blowup of Z in they,,-chartwhich map§z,,, Y, - - -, ¥1) 10 (Zn, Y, Ym—1Yms - - - s Y1Ym),s
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we see that the strict transforfyi) ¥ of f under the monomial blowup is an element of the
weighted tangent cone 0f')*(K') whose coefficientideal il belongs to the homogeneous
tangent cone of’.

As V' is assumed to maximize the ordérof .J’ in 17" ata/, the order of(coeffy ) at
a’ thus bounds the ordef of .J/, say

e’ < ordy ((coeffy f)Y).

Let ¢ € N™ denote the exponent of the monomial facfaf of J' = M’ - I’ and set
z = (Ym-1,---,41). The exponent’ stems from the exponetof M via the formulas
from the last sectiony decomposes intg = r + ¢ with » = (g, ..., ¢j+1,0,...,0) the
red components anfl= (0, ...,0,q;,...,q1) the yellow components, and = (g, + 0 —

C,O,...,O,Qj,...,ql).

As the blowupr is monomial in they,,,-chart we can interpret the preceding inequality
in terms of f before blowing up. A direct inspection of the Newton polyhedra yields the
(slightly weaker) bound

e/ < ord,(coeffy (f)) + ¢, = height_(coeffy (f)) + ¢,

We could also take here the order with respect td coeff (v (f), but computationally it is

easier to handleoeffy (f). We obtain foro’ = ord,/ I’ the inequality

of = ¢ — |q’| < height.(f) — |¢I.

In order to show’ < o it therefore suffices to show, usimg= e — |g| = vol(f), that

height, (f) — |£] < vol(f).

In the particular case where no transforms of exceptional components thiqeghkist at’,
say if¢ = 0 andr = ¢, we get the sufficient inequality

height, (f) < vol(f).

If it holds, theno’ < o will follow. But, by the examples 3 and 4 of section 3, we know

thatheight, (f) = vol(f) + 1 may occur. The next section prepares the material to compare

height,, (f) with vol(f).

10. Zwickels

Zwickels are convex polytopes Ni* which we shall use to prescribe the supports of our poly-
nomials and to express conveniently the volume and the height of a weighted homogeneous
polynomial.

Let be givernc < e in N and writecw = e with andw € Q. Let

Le=A{(k,a) e N k< ¢} - Q™: (ko) —» 55 -«

be the map projecting elemerts «) of the layerL.. in N+ to elements of)™. The center
of the projection is the poir(i;, 0, . .., 0) (see figure 8).
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Figure 8. Projection ofL. c N'*™ to Q™ with center(c,0,...,0).

Letq € N™ with |¢g| = ¢1 + ... + ¢n < e be fixed, and assume given a decomposition
g =r+Llwithr = (¢m,...,¢j+1,0,...,0)and? = (0,...,0,q;,...,q ) for somej between
m — 1 andd > 0. Define theupper zwickel Z(q) in N**™ as the set of pointék, ) with
0 <k < ¢, wk + |a|] = e and projection*; - a >, ¢, denoting by>., the componentwise
order (see figure 9). Thug(q) is given by
Z(q): wk+]a]=e and a > [<E - (g, ..., q1)]

c

Figure 9. The upper zwickeF (q) in N3.

Define thelower zwickel Y (r, £) in N**™ as the set of pointse, 3) in N** ™ with0 < k < ¢,
wk + |3| = e and projection_<; - 3 >, (|r],0,...,0,¢) (see figure 10). Thu¥(r,¢) is
given by

Y(r,0): wk+ |8 =e and 8 >, [(%-\r|,0,...,0,ﬂ~qj7...,ﬂ-ql)].

(& C
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Figure 10. The lower zwickelY (r, £) in N3.
Forj = m — 1 and hence' = (gy,,0,...,0) and? = (0, ¢m—1,-.-,q1) We haveZ(q) =
Y (r,¢). In general, the two zwickels are different.
We will show first that for any- and¢ and0 < k < e/w = c the slice
Y(r, 6)(k) ={(k, 8) € Y(r, )} = Y(r, £) N ({k} x N™)
has at least as many elements as the slice
Z(q)(k) ={(k,a) € Z(q)} = Z(q) N ({k} x N™).

This holds fork = 0, by definition of Z(q) andY (r,¢). For arbitraryk, the inequality
[k . |r|] < |[<% - r]| implies that the condition

wk + ‘6| =€ andﬂ ZC;D (H’c;k 'T-||,0,...,0, (C;k 'Qj]7"~7 [% q{I)
is more restrictive than the condition
wk+ (8l =e and § >, (152 - [r[1,0,...,0,[<2 5], [<E - 1))

definingY (r, ¢)(k). For eachk, the set of pair&, 3 satisfying the first condition has as many
elements a/(¢) (k) becausér| + ¢; + ... + ¢1 = |g|. The claim follows.

We now invoke the arithmetic inequalify®| > (¢.(r) — 1) - ¢ from the definition of tame
and wild points in section 5. We will show that if it holds, the upper zwické) contains
as manyc-rays as the lower zwickél (r, £). Here, ac-ray is the segment i (¢) between
the point(c, 0, ...,0) € N**™ and a lattice point i{0} x ¢ - N™.

For the proof, let0, ca) be a point of) x ¢ - N™. It belongs taZ(¢)(0) N c- N™*+! if and
only if |ca| = e and

cx ch [(qma sy QI)-| = (’—qm-|7 ey |—Q1D

As the components af are integers, the second inequality is equivalent to
«Q ZCI) (’ngﬂ)' ] ’qul“)

Conversely(0, ¢3) in 0 x N™ belongs toY (r, £)(0) N ¢ - N™*1if |cf| = e and
B> [(I7],0,...,0,¢5,....q1)] = ([I7[1,0,...,0,[g;1,-- -, [q1])s

say

B> (1107,0,...,0,7%7,...,127).



The hypothesi§°| > (¢.(r) — 1) - cis equivalent to the equality
1511 =154

and hence also to
1211= 4.

This implies that the second condition @h ¢3) can be written as

QZCP (”%—H,O,,O, ’VqT]—Iaa[qu—D

Now the assertion follows from

I[E]) =[] + . 4 [HE.

We have shown that the arithmetic inequality implies that the upper zwitkglcontains as
manyc-rays as the lower zwickél (r, £).

The relation of zwickels with the concepts of height and volume of the last section is the
following (we leave the verification as an exercise).f(f, y) is a weighted homogeneous
polynomials of weighted degreewith respect tqw, 1, ..., 1) and if the hypersurfac¥ is
given byx = 0 theny? is a factor ofcoeffy f, i.e., coeffy f = y? - I, if and only if f has
support inZ(q). If f(z,y) = f(z + h(y),y + tym) is associated tg(x,y) as in the last
section thery (z, y) satisfies the relevant inequality

height, f — || > e — |¢| = vol(f)

if and only if all coefficients off in Y (r,¢) are zero except the coefficientef. Therefore,
to prove the inequality

height, (f) — |¢] < vol(f)

it is sufficient to show that some coefficient pfin Y (r, ¢) different from the coefficient of
x¢ is non zero.

We will show in the next section that if all these coefficientsfoéire zero and if the
arithmetic inequality|7| > (¢.(r) — 1) - ¢ holds thenf must be ac-th power, sayf =
(x + a(y))° for some seriesi(y). This shows in turn that the order ebefty (f) was
not maximal over all coordinate choices, i.e. that the hypersufad®es not have weak
maximal contact withf, contradictory to the assumption. Hence we may conclude that

7] > (¢c(r) — 1) - cimpliesheight (f) — |[¢| < vol(f) and hence, as seen earli€r< o. In
casdr’| < (¢.(r)—1)-cthis need not follow, but we can show that at lgasght, (f) —|¢| <
vol(f) + 1 holds. The polynomialg in three variables for which equality occurs here will

be completely determined.

11. Transformation matrices

This section determines the relation between the coefficients of polynomials obtained from
each other by specific coordinate changes. In the sequéldey) and f(z,y) = f(z +

Zv h,y7, y+ty.) be weighted homogeneous polynomials of weighted degnéth respect

to weights(w, 1,...,1) on (z,y) = (¢, Ym,--.,y1), Where the sun{jV h,y? ranges over

v € N™ with |y| = w, and wheré:., and the components of= (0,¢,,—1, ..., t1) belong to

the ground field. Let = e/w be the order off. Write

f(z,y) = Y araz®y® and f(z,y) = 3 bis(t)a'y”

with wk + |a| = wl + |3| = e. We assume that,, # 0, i.e., thatz® appears with non-zero
coefficient. This can be achieved for infinite ground fields by a generic linear coordinate
change. For simplicity, we shall takg, = 1. LetV be the hypersurface iV = A™ defined
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by z = 0. Let us fix the decompositiop = r + ¢ € N with r = (¢, ...,¢;+1,0,...,0)
and/ = (0,...,0,q;,...,q:) for some indexj betweenn — 1 and0 (the center of blowup
may still have dimensiod > 0). Theny? is a factor ofcoefty f if and only if f — z¢ has
support in the upper zwicke? = Z(q) with ¢ € N™, andcoeffy f has orders e — [r] in
2= (Ym_1,---,41), .e., height_f — |¢| > e — |q/, if and only if all coefficients off — = in
the lower zwickelY (r, ¢) are zero.

Write elements3 € N™ as(3,,, 37) wheref™ = (Bm_1,...,01) € N*~L LetY*(r,{)
be the subset df (r, ¢) of elementgk, 3) € N'*™ given by

67 < e —wk — [ - |r[],

ﬁ- Zcp ’—% : (07-~-a07Qj7~-~,Q1)-|-
By definition, for eaclk, the sliceY *(r, £) (k) has the same cardinality as the sli¢gy) (k) of
the upper zwicke¥ (q). Fora andd in Z™ set(§) =[], (§’) where(§’) is zero ifa; < 4

7

or§; < 0. ForT a subset oN"™, define fork € N and\ = (\,),er € N the alternate
binomial coefficient

k E—|AI7Y 1y

()] =Tyer (30) with AP =S cr e, A
LetI' ¢ N™ be the set ofy € N™ with |y| = w and writth = (h,),er € K'. Set
AT = ZWEF Ay -y € N™ and fixt = (0,tp,—1,. .. ,t~j+1,0, ...,0). The transformation
matrix between the coefficients,, andb;s(t) of f and f looks as follows.
Proposition 1. Let f(x,y) = 3. araz®y® and f(z,y) = f(z + > over Yl Y+ tym) =
Sobig(t)xly? be weighted homogeneous polynomials with respect to weights (w, 1,...,1)
as above. Fiz q =1+ € € N™ with zwickels Z(q) and Y*(r,0) C Y (r,?).

(1) The transformation matric A = (Aga,3) from the coefficients ago of f to the
coefficients by (t) of f is given by

Akaip = > (’f)[(k;l)}(ga;) ChA g tenn
AENT [N |=k—1

where dapx = (Qm, 3" — (A-T)7) € N™ and hY = Hwhi‘”.

(2) The quadratic submatriz A® = (Apaus) of A with (ka,l3) ranging in Z(q) x
Y*(r,£) has determinant tP%Y (0 where p(Z,Y*(r,£)) is a vector in N™~1 inde-

pendent of h = (hy)yer with pm =0 and pj =---=p; =0.

(3) Assume that f has support in Z(q). Iftm—1,...,tj41 are non zero, the coefficients
big of f in the lower zwickel Y (r,0) determine all coefficients of f. In particular, there
is at most one non-zero polynomial f(x,y) with support in Z(q) such that f(a:, y) —ac
has all coefficients in Y (r,£) equal to zero.

Proof. Multinomial expansion off(:c,y) = flz + ZW hyyY,y + tym) gives for each
ko € NI+m™

(z + Z’YEF Py e (y + tym)™ =

= Lienask (’;)ml(zweF hayy )P Y senm 5<opa (?)ygtaféylg_ﬂ =

=3 (o' Saenr k-t Ter (5 g - S5 (5wt oy~ =
=3 s (DL (k_l;www) (@) - hA a8 gl y=are Lyl o=l _

— (e} — . 0476
= Zl Z/\ 26 (];)[(kAl)](5) hr e gt 'yA o yln l-
ASbapr = ((0apr)m,0opx) = (am, 87— (A-T')7) we can rewrite for giver, o andl a sum
S ens -y NTTO . g2 over\ € NI ands € N™ with coefficientseys as
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oAT+s | |le—d]
E:AeNmJAF:k71§:5gcpa Exs Y Ym =

\(AT) 46" — |+ (AT+68)m
= Z|>\\=k—l Zagwa exs - (¥ )(’\ L) +o yl‘r? I+ I
= ZﬁeNm Zm:k_z EXbapr (y)P - ybm =
= Z,BeNm (ZM\:kfl €XGapr) * Yo
Here the coefficients,s, ,, of the last two sums are set equal to zerdjh\ ¢ N™ or
§aﬁA ﬁcp «, say if (5 O;“) = 0. Thus
F@,9) = Yo tha - (2 + 3 cp hyty?)* - (y + tym)™ =
kyr(k—1 a a—
= 2ker 2218 2| A=k apa () [(X)](5.5,) BN -te70ex - al yf =

afBX
=32t -y,
This gives assertion (1). Observe here that we have usedhat 1 andb.o = 1.

For (2), note thatd,, ;5 = 0 if £ < I. Hence the matrixl is block triangular with blocks
A(k) = (Aka.kp)ap ON the diagonak = . By the choice oft™*(r, s), the induced blocks
AP (k) of AP are square matrices. Hengdé’ is a square matrix. We get from assertion (1)
that

Aka,kﬁ = Zl)\‘:@ (604 ) . hk . ta—&aﬁk — ( (67 ) . toz—(sagg — (694- ) . ta'—é;ﬁo,

aBA dap0 B0

with o« = (e, @) anddago = ((6a50)m,6;50) = (am, 57). Recall thatca andlg vary in
Z(q) andY (r, s) respectively so that

wk+lal =e and a ¢, [<E - (gm, - q1)],

wl+|ﬂ| =€ andﬂZCP I'C?—l<|7,|,07’07q],7q1ﬂ

Hence, ag = [, we have

k

|o"| =e—wk —a,, and a” >, [ - (Gm-1,---,q1) ],
|5(;ﬁo| =8 |=e—wk—0n andé;ﬁo >ep fc;k (0,...,0,q5,...,q1)].

The determinant o™ (k) is given by the lemma below, taking thére= (c—k)-w—|[ <= 7]

p=1[k.(0,...,0,¢5,...,q1)] andd = [<=£ . (¢, _1,...,¢j41,0,...,0)]. Substituting
there the variables,,_1,...,t; by constants in the ground field with,_i,...,t;41 # 0
the determinant is non zero. We conclude that4l(k) and henced® are invertible. This

proves (2).

Assertion (3) follows from (2) since the transformation matrix betweerkthén Z(q)
and thelg in Y (r, s) has, by (2) and sincg,,_1, ..., t;4+1 are non zero, maximal rank equal
to the cardinality 0Z(q). This concludes the proof of the proposition.

Lemma. Letb € N, u € Nt and U = {6 € N1 |§] < b, 6 >, p}. Set
g = #U = (mfiﬁfl“l). Let § € N™= 1 and let t = (t—1,...,t1) be a vector of

variables. Then
det((("5°) - 7070), sev) = t*

with p = g -0 € N™1 independent of t.

Proof. Write A? for the (g x g)-square matrix with entried?; = ("+?) - #7+9=%. Observe

that ford = 0 € N™~1 we havedet A° = 1, since the matrix is upper triangular witfs on
the diagonal. Front’*") = (?) + (.7, ) follows for anye € N™~1 with |¢| = 1 that

Albe =t AP+ A8, if 5> e,
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O+e _ 1e 0
AT =t Al else.

Therefore the matrixi?*< is obtained from4? by multiplying ford >, e the columns4?_;
by ¢ and then adding the colum#f’ ;__. The other columnsi’ ; are only multiplied with
t¢. This implies that

det(A%Fe) = 9 . det(A?).

Now induction implies thadlet(A?) = t9¢ - det(A°) = 199,

12. Bounding the increase ob under blowup

Let againf(z, y) be a weighted homogeneous polynomial of weighted degveith respect
to weights(w, 1,...,1) on (z,y) = (,Ym,...,y1), and letc = e/w be the order off
at0. Setf(x,y) = f(z+ 3, hyy",y + tym) With v € N™, |y| = w, whereh., and the
components of = (0, ¢,,—1, ..., t1) belong to the ground field. Write

fla.y) =Y araa®y® and f(z,y) = Y bis(t)a'y”

with indiceska andi 3 subjecttavk+|a| = wi+|3| = e. We may assumethaty = b.o = 1.
Let V be the hypersurface defined by= 0. Recall thatheight,(f) = ord. (coeffy f) for
2= (Ym-1,---,y1) andvol(f) = e — g for coeffy (f) = y? - I with ¢ € N"™,

Fix a decompositioy = r + ¢ = (¢m,..-,¢j+1,0,...,0) + (0,...,0,¢;,...,q1) for
somem — 1 > j > 0 with induced zwickelsZ (q) andY (r,£) in N'*™_ Let ¢.(r) denote
the number of components oot divisible bye.

Theorem 2. Let f(z,y) = Y araz™y™ and f(z,y) = f(z + 3, byt y + tym) =
S bis(t)zly” be as above, t = (0,tm—1,...,tj1+1,0,...,0) for some 0 < j < m — 1.
Assume that ty—1,...,t;41 are non-zero. Let ¢ =7+ ¢ = (¢m,-..,qj+1,0,...,0) +
0,...,0,5,- -, q1)-

(1) Assume that efc € N or |[F°| > (¢e(r) — 1) - ¢ or h = 0. If f has support in Z(q)
and if f — ¢ has support outside Y (r,€) then f is a c-th power.

(2) Assume that e/c ¢ N or [7°| > (¢c(r) —1) - ¢ or h = 0. If f has support in Z(q)
and is not a c-th power then f satisfies the inequality

ord coeff(f) <e—|r|.

Equivalently,

height, () — [¢] < e — |g| = vol(f).
(3)Ife/c € N and |F°| < (¢c(r) — 1) - ¢ we have

ordcoeff (f) < e — |ul,

where w € N™ is mazimal with respect to the componentwise order satisfying u <., r
and [a®| > (¢c(u) — 1) - c. In particular, we get the bound

ordcoeff (f) < e — |r[ + [F] — maxp>i>;j+175,
or, equivalently,

height. (/) — €] < e — lg] + [7°] — maxziz 175
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As an immediate consequence of these estimates we obtain.

Corollary. Let f be an element of the weighted tangent cone of a principal ideal K
in W at a. Assume that J = coefly (K) factors into J = y? - I with ¢ € N™. Let
W' — W be the blowup of W with reqular center Z C V' and exceptional divisor Y.
Let o/ € Y’ be a point above a € Z such that ¢ = ¢ for the orders of K at a and
its weak transform K' at a/. Let o = e — |q| = ord,I, o’ = ordy/I'. Ife/c € N or
[7¢] > (¢c(r) — 1) - ¢, then

o <o.
Proof of the theorem. Let us prove assertion (1). From Proposition 1 of section 11 follows

that f is uniquely determined by. It therefpre suffices to constructcath power f with
support inZ(q) whose associated polynomighas support outsidg (r, ¢).

If w ¢ N, there are na,’s, sayh = 0 and the coordinate changet h(y) is the identity.
The proof is then similar to the proof in cagec N by setting allh, = 0, but without using
the arithmetic conditiofF®| > (¢.(r) — 1) - c. We will omit it.

So assume that € N. The sefl" of 4’s in N™ satisfying

|’7‘ =w andych (H%Hvow"v& I—qf-‘vv[%-l)

forms an equilatera{m — 1)-dimensional simplex iT" = {y € N |y| = w} C N™.
Consider its projectiofi” in N™~! obtained by omitting the first componemn,. It consists
of elementsy” in N™~! subject to

T |y <w—T]%]] and v~ >, (0,...,0,[£],..., [L]).

ThusT~ forms an equilateralm — 1)-dimensional simplex ilN™~1 with side lengthw —

[Z11—[T£7] and(m—1)- dimensional volume._t; - (w—[]% N—=[T£7)™—t. Asy™ € N1
determlneSy € I we may writeh,- for k.. Consider the system of equations
= X (g v e
5-2613’7_

with unknownsgs- = gs and indicesS™ ranging in the equilateral simpleX in N™~1! given
by
ST )07 <w—[*T2] and &~ >, ([T, .., [2]).

ThusS™ has side lengthw — |[£]| and hencém — 1)-dimensional volume‘(—
[[4]])™~!. The assumptiof¥®| > (¢.(r) — 1) - cis equivalent to
ITE 1< TIEM,

which in turn is equivalent to

P < TIEN+ T2

HenceT™ = U~ with U™ as in the lemma of the last section, takihg= w — [|Z|] and
p=10,...,0,[%],...,[£]). The lemma implies together withy,_1,...,t;41 # 0 that
the system

hy=— 3 () 7V gr, v EeT

6" Zcp'Y-

admits solutiongjs- with 6~ € S™. Setf(z,y) = (z + Y 505 95¥°)° With § = (6,5,,67)
satisfyingé™ € S°. This polynomial is a weighted homogeneauth power of weighted
degreee and with support irZ(q), by definition ofS™. Moreover, as,, = 0,

F,y+tym) = (€ + Y ses95 - (y+ tym)°)e =
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= (@4 D 5es95 Yo - (¥ +tym)’ )¢ =

= (@4 s 95 v " T rene () -7yl T e =
= @+ Y er Spes-ssa- 5 v () ) () ) =

= (@ + X yer ¥ Tsresm 550,07 05 (i) (@) ) =

= (@ =S¥ hy+ Y erg v ()¢

with some unspecified sufn. .). Observe thatif., = 0 for all v € T', then allgs = 0. The
equalities imply that

f(xa y) = f(I + Zryer‘ h’yy’yvy + tym) =
= f@+ 2 cr Y,y +tym) + R(z,y) =
= wc + R(‘rﬂ y),

whereR is a polynomial with support outsidg(r, ¢), by definition of 7. Thusf — z¢ has
zero coefficients ifY’(r, £). This proves assertion (1). Assertion (2) follows from assertion
(1) and the description of the order afeffy f in terms of Y'(r, £) given in section 10 on
zwickels. Assertion (3) holds by replacingrirall components; but the maximal component

r; by u; = r; —75. This newu satisfies the arithmetic condition and hence the described
inequalities.

13. Persistence of hypersurfaces of weak maximal contact

We have already seen that in specific circumstances, the strict transform of a hypergurface
of weak maximal contact with an ide&l at a need no longer have weak maximal contact
with the weak transforni ¥ of K at a pointa’ abovea. We show that if the order of the
divided coefficient ideal does not increase, weak maximal contact may neither persist under
blowup.

Example 5. Let f = 23 +y22-((y—2)?+23) be given in characteristic= 3 with coefficient
idealyz? - ((y — 2)2 + 23) in the hypersurface of weak maximal contdct= {z = 0}. The
divided coefficient ideal i(y — z)? + 23) of order?2 (this is the secondary order gf.
Then f*(z,y,2) = f(z,y + z,2) equalsfT(x,y,2) = 23 + (y + 2)22 - (y* + 23) =
23+ 22 (y*(y+2) + 23(y + 2)) (recall that in the examples, the roleypéndz is exchanged
with respect to the notation used @}, ..., y1)). Its strict transform under the monomial
point blowup in thez-chart is

flf=a+22- (PP(y+ 1)+ 2(y +1)).

The secondary order with respect®” = {z = 0} is 1. It is not maximal since the
coordinate change — = — z yields

fr=a+22 (P (y+1) + 29)
of secondary orde?2. Thus the weak maximal contact &f with K does not persist at’
when passing to the transford$ = Vst andK’ = K.

In figure 11, we see that in order to maximizethe dotted points in the polygon on the
right hand side have to be eliminated by a coordinate changeTinis may be also achieved
before blowup by eliminating the dotted points in the polygon on the left hand side by a
coordinate change in, but this has no effect on the orderThus, though” = {z = 0} has
weak maximal contact, the maximality af after blowup is not necessarily realized By?.
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Figure 11. Newton polygon before and after blowup.

Observe that in the case where the secondary order drops, the persisténds bt
needed, since induction on the first two components of the invariant suffices. Butib,
further components of the invariant defined through subsequent coefficient ideals have to be
compared, and this is only possible if the respective coefficient ideals are transforms of each
other inside hypersurfaces BfandV **.

IV. OUTLOOK

14. Moh’s upper bound for the increase of the secondary order

We reproduce the proof of Moh’s theorem from [Mo 1] showing that under blowup of a
polynomial f = 2¢ + y? - g of orderc = p® the ordero of g at any point of the exceptional
divisor wherec remains constant can increase at mosphy.

Theorem 3. Let x and y = (Ym,--.,y1) be variables, and consider a polynomial
f= z?’ +y9-g(y) modulo p°-th powers in y, where p is the characteristic of the ground

field, b > 1 and g € N™. Let ordzbg = volpbf be the order of g after elimination of all

pb-th powers. Assume that |q| + ordzbg > p®, and that y? - g(y) is not a p°-th power.
Fiz some vector t = (0,tm,—1,...,t1) with non-zero components in the ground field,
and set fT = 2P+ (Y + tym)? - g(y + tym), where (y + tym)? - g(y + tym) is again
considered modulo p®-th powers. Set z = (Ym—_1,---,vy1). Then

height?” f+ < vol?” f + p?,

where d < b — 1 is mazximal such that the tangent cone of y? - g(y) is a p®-th power.

Thus the ordeb of ¢ modulop®-th powers iny can increase under blowup at mostgy !
at points in the exceptional divisor where the ordef sémains constant, say

O/ S O+pb_1-
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In particular, forb = 1, we haveo’ < o + 1. Here, the center of blowup is assumed to be
regular and contained in the top locus fofand coordinates are chosen as in the lemma on
blowups in local coordinates of section 7.

Observe here that if the equalihygightgbJ“r = vol”bf + p*~! occurs, the tangent cone
of y? - g(y) is unique up te’-th powers, by Theorem 1 of section 5 (apply it first to the case
b = 1 and take thep®~!-st powers).

Proof. Letus treat first the cage= 1, sayd = 0, in which case the tangent coReof 47 g(y)
is not ap-th power. SetP™ = P(y + tym), t = (t;,...,t1) andqg” = (q, ..., q1) with
l=m—1. Leto = vol’ f = ord, P — |q| = deg P — |¢| andu = height? f* = ord, P,
both orders taken up teth powers.

From P divisible byy? follows thatP* belongs to the ideall - < z +t y,, >la"1 which
implies that

9, Pt eylm. <z+ t'ym>“ﬂ*1

for all 4 between/ and1. Fromu = height? PT follows that we can writeP™ up to p-th
powers as

P+(ym,Z) = Z‘od:u aa(ym7z> ' Za'

where for at least one € N! with |a| = u we havea,(0) # 0 and« is not a multiple of
p. Choose such an. There is an between/ and1 such thaty; is not a multiple ofp. Fix
such ani, for examplei = I. Thend,, P # 0 andd,, Pt €< z >/*/=1, Combining both
inclusions we get

O, Pt eyl <zt yy, >IN <a>umlo . <oqty, SR <5 ul

m

The last equality holds becausge# 0 for all i. The order ofP+ with respect tqy is |¢| + o,
and as),, P # 0 we can conclude that

m +l|—1+u—-1<]g/+0—-1,

say
u<o+1 or height?fT <vol’f+1.

This settles the cage= 1. For arbitran, letd < b— 1 be maximal so thaP and P arep?-
b

th powers. The preceding argument applied tathéh rootQ* of P+ yieldsheight? Q+ <

vol”’ Q + 1, henceheight? P+ < vol?' P + p¢, sayheight?’ f+ < vol?' f + pc.

Remark 1. Letus assumé = 1 andm = 2, sayf = aP + y"2° - g(y, z) with ord g = o.
Let ¢ be homogeneous. Then, up to permutationyaind z, y"~! and (y — z)° divide
Oyly™2° - g(y, 2)], hence, by comparison of degrees and up to units

r—1

Oyly"2" gy, 2)] = y" 12" (y — 2)°.

This identity is in particular fulfilled by the examples in the table of section 17. Similar
formulas should hold in several variables.

Remark 2. If the reasoning of the proof would go through considerifg g(y) instead of
its tangent coné”(y) we would get that

Oz (y +tym)? - gy + tym) € y&r- <z + >0 <> ul=t

In particular, the ideal oK[z, y] generated by + h(y) (with suitablep-th powersh(y)) and
<z —1t"y,, > would give a permissible center f¢ras longas. = o+1ando > ord f —1 =
¢ — 1. Compare this with observations 1 and 2 from section 17.
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15. Comparison with the Bernstein-Kushnirenko theorem

We show how the inequalities betwebaight?(f*) andvol”(f) are related to Bernstein-
Kushnirenko theorem on the number of isolated zeros of systems of polynomial equations
and the Minkowski mixed volume of the associated convex polytopes.

Let K4,..., K, be convex integer polytopes (= convex hull of finitely many points in
N™) in R™. Assume givem complex polynomials’y, ..., P, in n variables with support in
K, ..., K,. For sufficiently generic coefficients the common zero-set of the polynomials is

finite (we allow that some zeros appear with multiplicities). The following result was proven
by Bernstein and Kushnirenko [Be, Kh1, Kh2, Kh3, Kul, Ku2, HS, Ro and RW].

Theorem 4. The number of isolated zeros of n complex polynomials Py, ..., P, in
the torus (C*)™ is bounded from above by the mized volume MV (K1,...,K,) of
Ky, ..., K,. Equality holds if all zeros are isolated, counted with multiplicity, and
if the K; are the convex hulls of the supports of the P;.

The mixed volume of(y, ..., K,, isdefined adIV(K3,...,K,) = vol, (K1 +...+ K,) —
S voly (K4 oo+ K4 Ky) + o4 (1) 20 vol, (K;), wherevol,, denotes
the euclidean volume iR"” (see figure 12).

Figure 12. Mixed volume of two polytopes ifR?.

Example 6. In one variable, the number of non-zero roots of a polynomial is given by the
difference of the degree of the polynomial and the order of its Taylor expansion at zero. This
difference is just the volume of the convex hull of its support.

Ezample 7. The circleP; : 22 + y? = 25 and the straight liné>, : 3z + 4y = 25 meet
tangentially in the poin{3,4), which is a double point of the intersection. The associated
polytopes arek; = conv{(0,0), (2,0),(0,2)} and K2 = conv{(0,0), (1,0),(0,1)}. We
haveK; + K5 = conv{(0,0), (3,0), (0,3)}. ThereforeMV = vol(K; + K3) — vol(K;) —
vol(K3) =9/2 —4/2 —1/2 = 2 as asserted.

Ezample 8. Let be givenn — 1 quadratic homogeneneous equatidhse) = 0 and one
inhomogeneous linear equatiéh (z) = 0. If the common zeros are isolated, their number
is 2~1. Indeed, the quadratic equations have identical polytdpes 2 - S whereS is
the (n — 1)-simplex spanned by the standard basis. . ., e,, of N*, and the polytopd.

of the linear polynomialP, is spanned by the origit of N* andey,...,e,. The mixed
volume MV(K, ..., K, L) equals by multilinearity the produ@*~! - MV(S,...,S,L).
Using the Bernstein-Kushnirenko theorekiV (S, ..., S, L) equals the number of isolated
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zeros of one inhomogeneous linear and 1 homogeneous linear equations. This,ikence
MV(K,...,K,L)=2""1,

Ezample 9. Consider now a hypersurfac® in C" given by the polynomial equation
P(z) = 0. We wish to determine or bound from above the ordeKaddt a pointa € (C*)™.
The first possibility is to compute the Taylor expansionfoht a by expandingP(z + a)
binomially and taking the order of the resulting serieg:inThis order is the order ok at

a. Another way to determine the order &f at a is to take a sufficiently generic section of
X with a straight line througla and to compute the multiplicity of the intersection point.
For this we can use the Bernstein-Kushnirenko theorem. The straight line is giver- iy
linearly independent equatios, . . ., P,—;. They can be chosen non-homogeneous because
a € (C*)", and so that their polytopds., . . ., K,,_; are spanned by € N™ ande;, . .., e,.

It then suffices to compute the mixed volumeféf, ..., K,,_; and K,,, whereK,, is the
polytope associated tB.

Let’s do this in two variablesX : P(y, z) = 0. Let K; be the2-simplex spanned b,
e; andey, and letK, C N? be an arbitrary convex polytope. L& C N? be the smallest
quadranty + N? containingK,, and seb = maxsck,|3| — |a|. That the mixed volume of
K, and K, equalso can be seen from figure 12.

Homogenizing the polynomidP(y, z) we get a homogeneous polynomi{y, z, w) of
degree|a| + o. The monomialy®tz*2 can be factored fronP, yielding a homogeneous
polynomial of degre@. This is just the volumeol(P) of P as defined in earlier sections.
Settingﬁ+(y,z7w) = P(y,z + ty,w + t'y) with non-zerot, ¢’ in the ground field, we
conclude by the above that the, w)-order of P' is bounded from above by. Hence
heigh‘cw}?Jr < o. This coincides with our results on transformation matrices (see Theorem
2 in section 12 in cask = 0).

It can be expected that similar assertions hold in higher dimensions. Already in three vari-
ables it is more complicated though feasible to compare the mixed valiliviEs, , K, K»)
—with K spanned by ande, ..., ez in N® andK, C N? arbitrary — with the degree of the
polynomial P minus the degree of the largest monomial which can be factored ftom

16. Description of tangent cone for increase of secondary order

We place ourselves again in dimensirLet f(z,y, z) = 2° + y"2° - g(y, z) with ¢ = p be

a weighted homogeneous polynomial, wjthomogeneous of degrégthe case: = p® with

b > 2 should be treated analogously). Consider glge,y, z) = f(z + h(y, 2),y + tz, 2)

as earlier, for some given homogeneous polynorhigl, z) and a constant. We assume
that the ground field is perfect. SB{(y, z) = y"2% - g(y,2) and P* (y,z) = P(y + tz, 2).

We have by definitionvol(f) = vol(P) andheight, ( f) = height, (P*) provided allp-th
powers were deleted fron? and P*. Instead of eliminating these powers, we let again
vol”(P) and height} (P*) be the corresponding values after elimination, i.e., working in

Ky, z]/K[y?, 2P]. By Moh’s result we then have
heighty (P*) < vol”(P) + 1.

We shall investigate in this section the special foRfmmust have in order to produce the
equality

height} (P+) = vol”(P) + 1.

If the expansion off has otherz-powers ofz-exponent not divisible by these cannot
be altered by coordinate changesazirdue to characteristip. Thus if such terms really
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appear,height} ( f) < vol?(f) must hold. Therefore we may restrict to the case where
f =a°+ P(y, z). The case of higher dimension, though interesting, will be postponed.

The invertibility of the transformation matrix between the coefficientg ahd f implies
thatheight? (P*) = vol”(P) + 1 can only hold if the following conditions are satisfied (cf.
Theorem 2 of section 12)

(1) the degree + s + k of P is a multiple ofp,

(2) 7P + 5P < p for the residues? ands? of r ands modulop.

k+r
k+1

B) Py, z) =y = - HE(y, tz —y) = y"2* - Sy Ty (t2 — )",

modulo p-th powers and up to scalar multiplication of the variables, whigtéy, w) is a
hybrid polynomial defined as

k k
HE (y,w) = >0, (ziqf)ylwk '

Similar formulas should hold in higher dimension. In case whermivides (’;i;) the

polynomial y"z* - H(y,tz — y) is a p-th power and thus does not give a candidate for

heighty (P*) = vol”(P) 4 1. We are indebted to R. Blanco for detecting at this place an

inaccuracy in an earlier draft of this paper. For instance, takiagk = 2 andr = s = 3

the polynomialP with height? (P*) = vol”(P) + 1 equalsP = y*z*(y* + 2°) whereas
323 . H3(y, 2 — y) = y*2* yields a square.

In addition, whenevep does not dividg, "), the polynomialP is of the following form,

There is an alternative description of polynomi&svith height? (P*) = vol”(P) + 1.
The partial derivatived, P will eliminate all p-th powers (recall that + s + k is assumed
to be divisible byp by (1)). As derivation with respect t9 commutes with the coordinate
change(y, z) — (y + tz,z), we have(d,P)* = 9,(P"). Observe now thad, P has the
same volumek as P, and that in the derivatives it is no longer necessary to negltict
powers. In order thai, P) ™ has height: it is then immediate thal, P must be of the form
y"12%(y — tz)* (dehomogenizeP, derive and use the fundamental theorem of algebra).
Therefore, up te-th powers and independently of wheth;edivides(ﬁf{) or not, P can be
computed as thg-integral

(3) Ply,2) = [y '2°(y — t2)"dy.

To prove (3), recall that we have already seen in Theorem 1 of section 5 thfaa$aabove
and for givenr, s, k andt the polynomialP(y, z) is uniquely determined up te-th powers
by the equalityheight! (P*) = vol”(P) + 1. To prove the formula from above it therefore
suffices to show tha®) = y"2° - HF(y,tz — y) satisfiesheight (Q*) = vol”(Q) + 1 (note
thatheighty (Q*) < k-1 willimply that @* and hence) is not ap-th power). By definition,
Q has volume< k. We will show thatQ* (v, z) = (y +t2)"2* - HF (y + tz, —y) has modulo
p-th powers order k + 1 with respect tq). Computation gives

Q*(y,2) = (y +t2)"z° - HE(y + tz, —y) =
= (y+t2)2 - T () +12) (- =
=2 2 (5 (y + 12) 7 (=)t =
=2 T (M) (y + ) ()P =
= 20y (T () () =zt 0Ty () () ()R =
= 2%y +tz =y — () T (T () () T =
= 2y +tz =y — (=) T () () (- t2) T =
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s r s r—1 / k4+r i r—1—i
=2y +tz —y)FT — (—y) 2 3 <¢+;:+1)(_y) (y+tz) "=

— thtr rtstk _ ( y)kJrl s HL&( y7y+t2)

As H} 1 (—y,y + tz) hasy-order0 if and only if its coeﬁicient(’;iq) at z* is not divisible
by p we get assertion (3).

The above computations with hybrid polynomials give a certain duality betWgen
tz) 2% - HE(y + tz, —y) and(—y)* 12 - H L (—y,y + tz). Asimilar relation, exchanging
y andz, should hold betweeH" (—y, z + ty) andH; ) (z + ty, —y).

To describeP(y,z) = y"2* - H*(y,tz — y) more closely we consider fdr ¢ N and
variablesy andw the binomial expansion dfy + w)**", say

(y+w)k+r _ Zf;rg (lc+r)y whtr—i — Zz . (]H_T)y whtT— z+zk+7“ (]H_T)y whtT—i,
The second summand is divisible y. Dividing it by y" we get
k+r ™, i—1r r—1 k ™, 7
HE (y, w) = 3027 (kj Jy W =300 (fL)y wh
We call this sum the polynomial part 9f " - (y +w)**". Itis a homogeneous polynomial of
degreek. Lets > 0 be such that + s + k is divisible by the characteristic We claim that
if 77 +357 > ptheny”2* - H¥ (y, tz — y) is ap-th power. This shows why fa®” + 37 > p the
equalityheighty (f) = vol”(f) + 1 cannot occur. If the homogeneous part of the coefficient
ideal is ap-th power, this order can be increased by a coordinate changehforeover, we
shall show that it = mp + ¢ for somem > 0 and?¢ > 0, we have modulg-th powers the
equality
(y +w)"w® - HE (y,w) = (y + w)"w* - w™ - Hy (y, w).

A direct proof of both assertions is pending. However we can use Proposition 1 of section 11:
The non-existence of polynomial? modulop-th powers withheight, (P*) = vol(P) + 1

if 77 + 3P > p implies thaty” z* - H¥(y, tz — y) must be a-th power. The uniqueness &,

and the fact that botty + w)"w* - H* (y, w) and(y + w)"w?* - w™ - HF" (y, w) allow the
increase of the secondary order when replagiryy ¢z — y implies the above equality.

As g has degreé;, the polynomialP(y, z) = y"2° - g(y, z) has volume< k (i.e., the
length of the convex hull of the support gfis k). After the substitutiony — y + ¢z in
y"z° - g(y, z) the preceding computation shows thap idividesr + s + k, then they-order
modulop-th powers of the resulting polynomi&™ (y, z) = P(y+tz, 2) equalsk + 1. Thus,
modulop-th powersheight, (P*) = vol(P) 4 1.

Settingk = mp + [ with m > 0 and0 < ¢ < p we may also write modulp-th powers
y' 2t HE(ytz —y) =gz (y — t2)™ HT (y,tz —y) =
=y (y —t2)" - S ()it — ) =
=y2" - (y —t2)™ - e s () () (k)
The expansion ofl®(y, tz — y) as a polynomial iy andz also equals
HE (y, 12 — ) = Yo (=D () (77 eh iy,

This can be seen by expandifig (y,tz — y) = Zfzo (’;I;)yz(tz — y)*~% binomially, and
using the formulas

oGS = G0,
Simo (=) = (CDH(TT)
from [Ri, p. 3, GKP, p. 168 and p. 165]. The coefficientbfy’2*~* thus equals
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Z; 0 (k l+])(k]:_ij) =
= 3ol (’“*’")(Z ") =

= (1) (-1 (%) =
= (1) <Z+’ =

k+ry (it+r—1
= D' GE) ()
This leaves us with the question whether there is some intrinsic description of polynomials of
form H”(y, tz — y), for instance as a derivative of certain polynomials.
The computation also shows after dehomogenization by settingl thatH* (y + ¢,t) =

S (517 (y + t)'(—y)"~" equals the expansion 6f*" (¢ + )" truncated at degreein

y. This implies that

M (y,w) = S () (w +w)* (—w)’,
hence

P(y,2) =y 25 HE(y.tz—y) = y"2* 30 () (y—t2)i(tz)" .
This description ofP as a truncated inverse should be the starting point to deterfiime

the case of three variables (take the truncatioRof 1! (£, 25) - (t1 4+ y1) " (ta +12) " at
11y2-degreek, with R homogeneous of degréet |r|).

17. Examples of hybrid polynomials

We will now give some examples for hybrid polynomials in two variables. We shall always
consider two prior monomial blowups i in different charts producing the two exceptional
componentg” andz® appearing inP.

Ezxample 10. Takef = 23 +y7 — yt°2? in characteristi@ with secondary ordes = 7. Two
monomial point blowups, first in the-chart, then in the-chart, yield

fo=ad gyl —yt3s,
Flead 1 yTet — g3 =ad 424 (y7 — 1329),
F2 =23 4 yBt — 13T = 2B 4Pt (1F — £329).

Two further curve blowups with centefs;, y) and (z, z) allow to reduce the exceptional
components to

P=a3+ %z (y—t2)3.

The secondary order gf is 3. Applying now the translatiop — y + ¢z followed by the
monomial point blowup in the-chart and the change— = — yzt>/> we get

fP=a+(y+t2)2- 97
=3 +23. 3(y+t)2,
fr=a%+ 233 (y% + 2ty).

The secondary order of* is 4. However, if there are no higher order termsgh =
y3(y? + 2ty) we may reduce it td by a curve blowup with permissible center,y). But
if g* is not homogeneous, the order pf will in general not be constant along theaxis
defined by(z, y), and thus this center is not permissible.

Example 11. Letp = 11, £k = 12 andr = 6, s = 4. A sequence of a monomial point
blowups in thez-chart, a monomial curve blowup in thechart with center(z, z) and a
monomial point blowup in thg-chart yield
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fr=alt 1 yz(6y® — Tt2%) (y* — t2°)1
fl=at + 215 y(6y? — Ttz)(y? — tz)
2=t 421 y(6y? — Ttz)(y? — t2)!

~—  —

f3=a + 821 (6y — Tt2)(y tz)“.
The secondary order i2. The translatiory — y + tz applied tof? gives
fP=a 4 (y+12)%2* - (6y — t2)y"t

We apply tof3 the monomial point blowup in the-chart followed by the coordinate change
x — x — yzt"/"* and obtain

J=att 42t (y + %6y — t)y'=
=t + 2 (6y7 + ...+ 3675 —t7)y't,
fP=att 426y + .. 4 3670 )yt
This last polynomial has secondary ordér

Example 12. We have proven earlier that the order cannot increage+f s?» > p = cor if
r or s are divisible byp. The resultingd” is identically zero modulg-th powers. Take for
instancep = 3,r = s =2andk = 2. Thent? +s? =2+ 2 > p = 3, and

P(y,z) =y 2° -Hf(y,tz —y) =
=y?22(("T")(tz —y)* + (T w(tz =) + (517)v*) =
=y* 22 () (tz = 9)” + Byt — ) + (y*) =
=222 (0(tz —y)? + dy(tz —y) + ) = ty®2° =0

is identically zero modulo third powers. We leave it as an exercise to check this fgrsall
andk with 7P + 3P > p andr + s + k divisible byp.

Example 13. Forp = 5, r = 4, s = 4 andk = 2 we haver? + 35 = 8 > p and
r+s+ k=10 =2p. We get

P(y,z) =y'z* - Hj(y, tz —y) =
=yt () (2 = )* + (()ytz —y) + (51)%) =
=y 2 (D2 =)+ yltz —y) + ()v?) =
= y'2t(0(tz —y)® +yltz —y) +y°) =
= 9424 (0y? + tyz + 0t222) = ty°2° = 0.

Example 1. If one ofr or s is divisible byp we get the following examples. Taking= 3,
r=0,s=2andk = 1givesg(y,z) = 2%(y + (tz — y)) = tz* = 0. Similarly,p = 3,
r=0,s=1andk = 2 gives

Py, z) = 2(y* + 2y(tz — y) + (tz — y)*) =
= 2(y? =292+ 2tyz+t222 —2tyz+y?) = 2(0y2+0tyz+t222) = 223 = 0.

Example 15. In contrast, iff? + 37 < p, the polynomialP(y, z) = y"z* -HF(y, tz —y) need
not be ap-th power. We list the following examples, none of which is congriemodulo
p-th powers. For simplicity, we take always= 1.

@p=3,r=s=k=1
Py, z) = —yz- (y + 2).
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B)p=3r=s=1,k=4:
P(y,z) =yz- (Y +y°z +y?2% —y2® — 2%),
which, by the coordinate change— y + z, transforms into
PH(y,2) =2z (y° +2°).
Cp=3,r=s=1,k=T1:
Py, 2) = —yz- (v + 402+ P22 + y*28 + 432" + 4225 +y2b +27) =
= —yz- (y° = 2%)/(y - 2),
which, by the coordinate change— y + z, transforms into
Pty 2) =~z (y° = 2%).
Dp=3,r=2,s=1,k=3:
Py,2) =y*z - (—y* +yz* + 2%),
which, by the coordinate change— y + z, transforms into
PH(y,2) =z (=y° +y'z +2°).
@p=5r=1s=2k=2:
P(y, z) = y2% - (y* + 2yz + 322).
Op=5r=2,s=1,k=2: symmetric to (e), say
Ply,z) = y*z- (y* —yz +227).
@p=5r=1s=1,k=3:
Py, 2) = —yz- (3 +y22 +y22 +23) =
=—yz-(y+ 2)(y + 22)(y + 32).

Observation 1. It turns out that we may assume that the secondary arderk of f =

x¢ +y"2% - g is > ¢ = p whenever an increase ofoccurs. Indeed, after the increase the
exceptional factor ig*+7+s. Write k + r + s = mp. Thenm curve blowups with center
(z, z) make the exponent drop tbwithout changing the rest of the polynomil Now, if
ord g would be< ¢ — 1, then the transform of"z° - g under the first point blowup and the
following sequence of curve blowups would have, using again Moh’s result, ordér< c,
making the order of the transform ¢fdrop belowe. This shows that we may restrict to the
casen > ¢— 1. Butif o = ¢ — 1, thenr + s + o cannot be divisible by since0 < r + s < ¢,
and no increase would occur. Thus we may even assume that

Observation 2. If f = z¢ 4 y"2° - g were really weighted homogeneous, and heqnce
homogeneous with = H*(y, tz — y), we could perform the coordinate change- y + tz
getting modulagy-th powers the polynomial (setting agdin= o)

a4 (—y)* e L (g, y + ta).

Here the curve: = y = 0 is permissible sincé > ¢, and blowing it up makes the exponent
k+1droptok+ 1 —p. This can be repeated until the exponent-e) is less tham, leaving
the rest of the polynomial unchanged. ButH;sj&(y,y + tz) has degree — 1 < p — 1,
blowing up the origin followed by curve blowups makes as in observation 1 the ordger of
drop belowe.

Thus only the higher order terms @fake troubles, since then= y = 0 need no longer
be permissible. Possibly it is appropriate to weaken the notion of permissibility (still ensuring
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that the order off does not increase). Compare this with remark 2 at the end of section 14.
Also note that the Newton polygon ¢fis a simplex.

Observation 3. Let V' be a finite dimensional vector space of polynomials in two variables,
for example the space of polynomials of degreed for a certaind. Consider forf =

x¢+y 2% g(y, z) with g € V the sequence of blowups given by the resolution invariant as in
[EH]. Assume that the process does not terminate. Then there exists a valuation along which
the increase of the secondary ordef f happens infinitely many times. As we have seen in
this section, each increase imposes linear relations between the coefficients of the polynomial
we started with (no relations only occurdf= 1, which is a case excluded by observation

1). Thus the set of polynomials i for which the resolution process may not terminate is
Zariski-closed. If the linear relations imposed on the coefficientg loy each increase are
sufficiently independent (e.g., define a regular sequence of polynomi&g/}), then their
common solution set would be empty, thus showing that for@ary V' the increase of the
secondary order of = z¢ + g can occur only finitely many times. This would prove the
existence of resolutions in a non-constructive way.

The definition of H”(y, w) shows that at each stage of the resolution process where the
secondary order increases the tangent cone is specified by prescribed coefficients. Linear
coordinate changes correspond to multiplying the vector of all coefficients of monomials of
the tangent cone by an invertible matrix of binomial coefficients. Thus the equations appear
on the orbits of the action of this matrix in each degree. A monomial blowup alters the tangent
cones by making them weighted homogeneous. These structures had to be made more precise
to show that the resulting linear equations on the coefficients at the initial stage of the process
are linearly independent.

Observation 4. For surfaces, the point abovea where the order may increase, is unique,
and determined by the coefficients of the tangent cone athis suggests that in higher
dimensions it is always contained in a regular codimengischeme. It is however not clear
how to profit of this descent in dimension.

Observation 5. As mentioned in section 14, the derivative of hybrid polynomials with respect
to one variable is a product of three linear polynomials. For instance, in the examples above,
we have

Oyly"z® -HE(y,z —y)| =y 12 (y — 2)k.

Ezxercise. Construct a polynomial in three variables and a sequence of blowups where the
increase of the secondary order occurs twicek{times). Determine the shape of hybrid
polynomials in several variables.

Table of hybrid polynomials P = H(y, 2 —y) = S2F o (“I7)y (> — y)*~* modulo p

i=0 \itr

[p, 7, s, k] P(y,z) mod p

2,1,1,2] y? + 2% (bUtHY (y, = — y) = y= differs, becaus¢, ") is even),
[3,1,1,1] 2z — v,

[3,1,1,4] 224 + 223y + 2292 + 22 +

[3,1,1,7] 2y + 225y + 22592 + 2243 + 223y + 22295 + 2295 + 227,
[3,1,2,3] 23 4+ 2% + 243,

[3,1,2,6] Y + 22492 + 2393 4 2295 + 26,

3,2,2,2] zy, (T +3 > p, hencey”z° P(y, z) is p-th power),
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3,2,2,5] 224y + 22y, (F + 3 > p, hencey”2° P(y, ) is p-th power),
[5,1,1,3] 423 + 42%y + dzy? + 493,

[5,1,1,8] y® + 427y + 42092 + 42593 + 2yt 4 2390 + 220 + 2y7 4 428,
[5,1,2,2] 322 4+ 22y + 42,

[5,1,2,7] 4y" + 327 + 225y + 2592 + 23yt + 22295 4 3295,
[5,1,3,1] 2z —y,

[5,1,3,6] Y0 + 22 + 425y + 22y + 3297,

[5,1,4,5] 25+ 2yt + 4y,

[5,2,2,1] 3z + 3y,

[5,2,2,6] 295 4 325 4+ 325y + 2393 + 2215,

[5,2,3,5] 25 4 22y3 + 4y,

[5,3,3,4] 22y?, (r +35 > p, hencey” z° P(y, ) is p-th power)
[5,4,4,2] zy, F+3 > p, hencey"z* P(y, z) is p-th power),
[7,1,1,5] 62° + 624y + 623y% + 6223 + 62y* + 69°,
[7,1,2,4] 524 4+ 423y + 32292 + 2293 + 4,

[7,1,3,3] 425 + 2%y + 42y® + 613,

[7,1,4,2] 322 4 dzy + 92,

7,1,5,1] 2z + 6y,

7,2,2,3] 325 + 2%y + 2y? + 3y°,

[7,2,3,2] 622 + 62y + 3y2,

[7,2,4,1] 3z + by,

7,3,3,1] 4z + 4y,

18. Quings

The failure of commutativity in characteristic> 0 can be reformulated as an independent
problem on equivalence classes of polynomials mogttlo powers.

A quing is the quotient of a polynomial rin@ = K]z], := K[z]/K][z]? in n variables
x = (x1,...,x,) over a fieldK of characteristip (settingp = oo if the characteristic is
zero). lts elements will be callegii’'nomials. We haveK|[z]/K[z]? = K|z]/K[zP] where
K[xP] denotes the subring generated bypaih powers of the variables. In this case, denoting
by L the sublattice - Z™ of Z™, we have@) = K[z], = K[Z \ L], i.e., each qu’nomial i)
has support itZ \ L.

Clearly, quings are abelian groups but not rings. A qu’hypersurface in affine affaise
defined as a non-zero qu'nomial. The first objective should be to prove the resolution of plane
gu'curves. A plane gu’curve is given by a qu’nomial in two variables, i.e., the equivalence
class inK[z, y] /K[z?, y?] of a polynomial inK[z, y].

The main problem here is to develop a reasonable concept of the order of qu'nomials
(more precisely, of products of monomials with qu’nomials). This order shall be intrinsic
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(i.e., invariant under coordinate changes and under multiplication by invertible power series),
upper semicontinuous and shall not increase under blowup in permissible centers.

We have seen that examples of type= y"z° - g(y, z) of degree a power agf with g as
before of ordelk are essentially the unique qu’nomials in two variables where the definition
of the order causes problems. This is due to the fact that when applyifitheocoordinate
changey — y + 2z we getf = 2"tk 4 h(y, z) whereh consists of monomials of degree
> k+1iny. Asr+ s+ kis a multiple ofp, fis equivalent tah. Defining the order off
ask (the monomial factor is deduced as is done when passing from total to weak transforms
under blowups), the Bernstein-Kushnirenko theorem would say in this case thabtder
of f is bounded from above by. This does not hold here, since therder ofh is > k + 1
(actually, equal td: + 1 by Moh’s result or direct verification).

The example is rather special, and its coefficients are quite unique in order to allow the
phenomenon to take place. To see this it suffices to take a homogeneous polyfiahial
degreer + s + k with unknown coefficients and monomial factgiz® and to apply a linear
coordinate changge — v + tz such that the resulting hasy-order> & + 1 modulop-th
powers. You will fallonf = y"2* - g(y, z) of degree a multiple gb and withg of the special
form from above.

The task for resolution of plane qu’curves in this vein would therefore be to detect these
hybrid gu’nomials and either to treat them separately, or to define a new concept of order
where these examples have ordek + 1, but the order still does not increase under blowup.
Or, alternatively, to show that in an infinite sequence of point blowups, the homogeneous
forms of lowest degrees of the transforms of the qu’nomial to be resolved can only be finitely
many times hybrid.

A satisfactory theory of quings and a concept of order of qu’nomials cannot be anticipated
yet.
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