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Why the characteristic zero proof of resolution of singularities

fails in positive characteristic

HERWIG HAUSER

This is – for the time being – the last of a series of papers of the author on resolution of
singularities. This series started with a collection of obstacles which make resolution in
arbitrary dimension and characteristic difficult [Ha 1]. It was followed by a comprehensive
study of Hironaka’s proposal for surface resolution in positive characteristic [Ha 2], in order
to see whether this approach could be extended to higher dimensions. It turned out that its
methods are too limited for the purpose, since they rely heavily on dimension two, with little
chances of extension beyond.

The next step was to understand Hironaka’s original proof of resolution in characteristic
zero for varieties of any dimension [Hi 4]. The algorithmic versions of this proof by Villamayor
and Encinas-Villamayor [Vi 1, Vi 2, EV 1, EV 2], respectively by Bierstone-Milman [BM 1,
BM 2, BM 3], were crucial for getting a clearer view on the reasoning. To axiomatize these
proofs as much as possible seemed to be a prerequisite to locate the problems which pop up
in characteristicp. Also, it was necessary in order to formulate a plausible and characteristic-
free resolution procedure by specifying at each step a correct choice of the center of blowup
(without, of course, proving that the process actually terminates).

This conceptualization and compactification of Hironaka’s proof was done together with
Santiago Encinas in [EH], and is explained with much more motivations and background
information in the monograph [Ha 3]. Special efforts are made in [EH] to construct the
resolution invariant and the centers of blowup in a characteristic independent manner (as
far as possible). Essentially, only the induction itself uses characteristic zero. This hypo-
thesis ensures the existence ofosculating hypersurfaces – these are hypersurfaces which
are especially adapted to the singularity to be resolved and which need not exist in positive
characteristic; they are defined by Tschirnhaus transformations in the sense of Abhyankar.
Such hypersurfaces, if they exist, allow to descend in the embedding dimension, to apply
induction on this dimension, and to show then that the resolution invariant drops under
blowup.

In the paper [Ha 4], we developed techniques which allow to find a substitute for osculating
hypersurfaces and which works in any characteristic and any dimension. The techniques are
inspired by the work of Abhyankar. He proposes in [Ab 1] to consider as a significative
resolution invariant of a plane curve singularity the maximum over all coordinate choices of
the slope of a certain segment of the Newton polygon (related to the classical concept of the
first characteristic pair of a curve). And indeed, the vector formed by the multiplicity and
this slope forms a local invariant which drops lexicographically when blowing up the singular
points of the curve. Together with Georg Regensburger we explain in [HR] the necessary
ingredients from commutative algebra needed for this approach. It is shown explicitly when
and why the invariant drops. Especially, the involved formal coordinate changes required to
realize the maximum of the slope are studied with all details.

The paper [Ha 4] extends these methods to arbitrary dimension. They allow to construct a
whole range of local invariants of singularities and to observe their behaviour under blowup.
However, the definite decrease under blowup of any of these invariants can no longer be
ensured ab initio.
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With the above articles, we dispose nowadays of a very conceptual inductive proof for
resolution in characteristic zero and arbitrary dimension (using osculating hypersurfaces),
and all the necessary devices to replace osculating hypersurface by the more general concept
of hypersurfaces of weak maximal contact (which, essentially, are hypersurfaces which
maximize the order of the ideal generated by the coefficients of the defining polynomials of
the singularity). To complete the picture, it remains to insert the second concept in the first
proof and to search the circumstances where the induction fails in positive characteristic. This
task shall be accomplished in the present paper.

So the intention is to look what happens when trying to carry out Hironaka’s proof in a
characteristic free manner and using weak maximal contact. The first observations in this
direction go back to Narasimhan (a student of Abhyankar) in the papers [Na 1, Na 2] (see
also Mulay’s article [Mu]), and Moh (a student of Hironaka) in [Mo 1, Mo 2]. Narasimhan
constructed an example of a variety in characteristic two, where the locus of points of highest
multiplicity is not contained (even locally) in any regular hypersurface. This prohibits the
existence of hypersurfaces of maximal contact (in the sense of Hironaka, which is stronger
than weak maximal contact) and shows that the descending induction on the embedding
dimension (which is instrumental in zero characteristic) cannot be applied directly in positive
characteristic.

Moh shows that even when replacing osculating hypersurfaces by hypersurfaces of weak
maximal contact there occur problems. Namely, he constructs an example of a variety in
positive characteristic where Hironaka’s resolution invariant (when adapted properly to the
concrete situation) increases under blowup. In addition, Moh is able to bound the maximal
increase of the invariant.

The present paper looks closely at this type of phenomena. We describe and study
completely the cases in characteristicpwhere the arguments and conclusions of characteristic
0 fail. Very strange and subtle things seem to happen. The main observations we will make
can be grouped in six items.

We shall always assume that the characteristic of the ground field isp > 0. For simplicity
of the exposition, we restrict to hypersurface singularities (for which, in particular, the order
of the defining equation at a point coincides with the local multiplicity).

• Failure of maximal contact: In a sequence of permissible blowups of a given ideal,
the sequence of points where the order of the transforms of the ideal remains constant
(equiconstant points) may leave eventually any regular hypersurface accompanying the
process. This prohibits to apply induction on descending embedding dimension (as is
done successfully in zero characteristic).

• Uniqueness of blowups for failure of maximal contact: The sequences of blowups
where equiconstant points leave any given regular hypersurface are essentially unique.
A particularity is that the equiconstant points must loose earlier on their way through
the sequence of blowups at least two exceptional components passing originally through
them.

• Failure of induction on order: The most popular resolution invariant is given by the
lexicographic pair of numbers consisting of the order of the ideal and the order of its
divided coefficient ideal (i.e., the order which is obtained by subtracting from the order
of the coefficient ideal the exceptional multiplicity). In positive characteristic, it may
increase.

• Uniqueness of tangent cone for failure of induction: For hypersurfaces, in order to
have an increase of the above resolution invariant, the weighted tangent cone of the defining
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equation must coincide with a unique universal polynomial. Such special polynomials will
be calledhybrid. They have prescribed coefficients (namely, certain binomial coefficients).
In contrast, a sufficiently generic choice of the coefficients produces a non-increasing
invariant. Thus only very special and explicitly known hypersurface singularities pose
problems. But we do not know how to resolve these.

• Failure of the Bernstein-Kushnirenko theorem modulo p-th powers: We show that
the Bernstein-Kushnirenko theorem equating the number of isolated zeros of a system
of polynomial equations and the Minkowski mixed volume of the associated convex
polytopes fails if the polynomials are replaced by their equivalence classes modulop-th
powers of the variables. It turns out that the counterexamples for this failure coincide
with the weighted homogeneous hybrid polynomials where the induction on the resolution
invariant falls short.

• Estimates on the increase of the resolution invariant: Following Moh, the increase
of the invariant can be bounded. For surfaces, this suffices to show that it drops in the
long run in a sequence of permissible blowups, though it may increase occasionally. This
gives a new proof for the resolution of surfaces in characteristicp, using – in contrast to
the existing proofs – the characteristic zero resolution invariant and the same sequence of
blowups.

Some of the preceding circumstances have already been known for a long time, and appear
– at least implicitly – in the work of Abhyankar, Giraud, Moh, Cossart and others. But it
seems that they were never studied systematically. In particular, it is surprising that nobody
observed that the obstruction can only occur in concrete series of polynomials.

The most striking fact in the above list is the coincidence that all three failures are related
to the same type of equations, the hybrid ones. Let us therefore deviate briefly to have a look
at these polynomials. A typical candidate of a hybrid polynomial in three variables looks like
this (t being a constant in the ground field)

f = xp + P (y, z) = xp + yrzs ·
∑k
i=0

(
k+r
i+r

)
· yi(tz − y)k−i.

Here,r ands are positive integers not divisible byp, r+s+k is a multiple of the characteristic
p, and the residuesrp andsp of r ands modulop satisfy

rp + sp ≤ p.

Such polynomials look quite harmless. Let us see three examples and their behaviour under
the substitutiony → y + tz. Forp = 3, r = s = 1, k = 4 andt = 1 we get

f = x3 + yz · (y4 + y3z + y2z2 − yz3 − z4),

which, by the coordinate changey → y + z, transforms into

f+ = x3 + P+(y, z) = x3 + z · (y5 + z5).

Forp = 3, r = s = 1, k = 7 andt = 1 we get

f = x3 − yz · (y7 + y6z + y5z2 + y4z3 + y3z4 + y2z5 + yz6 + z7),

which, undery → y + z, transforms into

f+ = x3 − z · (y8 − z8).

Forp = 3, r = 2, s = 1, k = 3 andt = 1 we get

f = x3 + y2z · (−y3 + yz2 + z3),

which, undery → y + z, transforms into

f+ = x3 + z · (−y5 + y4z + z5).
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What is the common feature of these examples? It has to do with the above coordinate
change (which corresponds in the application to resolution problems to a translation in the
exceptional divisor). In all cases we see that a purez-power (z6 in the first and last case,
andz9 in the second case) can be eliminated from the polynomialf+ via the substitution
x→ x− z2 (respectivelyx→ x− z3 for the second example). This elimination is the same
as consideringP+ modulop-th powers.

Now, after this substitution, the resulting polynomial (denoted again byP+) has order
at 0 with respect to they-variable equal tok + 1, whereas the order at0 of P minusr + s

(this subtraction corresponds to delete exceptional components from the total transform of
the polynomial) equalsk. Thus, modulop-th powers, the order ofP minus the exceptional
multiplicity is smaller than they-order ofP+. This purely algebraic fact will be the clue in all
observed phenomena. And there are very few polynomials where this “increase” can happen
(we shall classify them completely in the case of two variables).

It is astonishing that the reason why Hironaka’s proof fails in positive characteristic has
such a simple and dull appearance. It is simply the strange behaviour of homogeneous
polynomials (in our caseP ) under linear coordinates changes when considered modulop-th
powers. The first example of a hybrid polynomial was given by Moh [Mo 1, Mo 2].

For each selection ofp, r, s and k subject to the above conditions there is precisely
one hybrid polynomial in three variables with the respective exponents and degrees (up to
coordinate changes). For other values of the parameters there are no hybrid polynomials. In
the course of the paper we shall also indicate how hybrid polynomials appear in the context
of the Bernstein-Kushnirenko theorem.

It has to be added here that the hybrid polynomials represent only the weighted tangent
cone (with respect to suitably chosen weights) of the singularity which has to be resolved,
so that higher order terms may and will occur in general in the defining equation. If there
are no such terms, the singularity can indeed be resolved by direct inspection. Otherwise,
the higher order terms seem to prohibit the precise control of the singularities under blowup.
One possible line of attack could consist in showing that the weighted tangent cone is always
sufficiently dominant in the expansion of the polynomials so as to guarantee the existence of
a resolution. This has not been achieved up to now.
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0. The ingredients of Hironaka’s proof

We now give a more detailed account on the situation and phenomena we will describe. For
this it will be convenient to review briefly the main constructions developed and explained
in [EH] and [Ha 3]. The reader is assumed to have some familiarity with blowups and the
induced transforms of ideals. The necessary definitions can be found in the appendix to [Ha
3].

The basic invariant for the resolution of singular schemes is the order of ideals at a point.
If the schemeX is defined in some regular ambient schemeW by the idealK of the structure
sheafOW , then, for any pointa of W , the order ofK ata is defined as

ordaK = max {k ∈ N, K ⊂ mk
a},

wherema denotes the maximal ideal of the local ringOW,a of W at a. The same number

is obtained when working in the completed local rinĝOW,a of OW,a (this often allows to
simplify computations). If the embedding ofX in W has minimal dimension, the order
provides a rough measure how singularX is ata. It defines an upper semicontinuous function
ord : X → N onX, i.e., for anyc ∈ N, the subschemetop(K, c) formed by the points of
order≥ c is closed inX. We thus get a stratification ofX by locally closed subschemes
along which the order ofK is constant. The smallest stratumtop(K) consists of points of
maximal order and is a closed reduced subscheme ofX. It may be singular. We call it the
top locus of K, respectively ofX, inW .

A classical and easy to prove fact asserts that blowing upX in a regular centerZ contained
in a stratum along which the order ofK is constant, the order ofX does not increase, i.e., at
any pointa′ of the exceptional divisorY ′ of the blowup the order ofX ′ is less or equal to the
order ofX ata ∈ Z. In particular, this holds ifZ is contained in the top locustop(K). Such
centers are calledpermissible. Here, the order of the blowupX ′ of X is understood as the
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order of the strict transformXst of X in the blowupW ′ of W . In contrast, the order of the
total transformX∗ of X usually increases and thus does not serve for induction purposes.

Actually, the order of the strict transform ofX decreases at most points of the exceptional
divisor. At these points, the situation has improved, and induction on the order can be applied.
At some special points, however, the order may remain constant. We call these points the
equiconstant points ofK orX inW ′. They are also known in the literature as very infinitely
near points. It is at these equiconstant points where we need some extra information on the
singularity ofX ′ in order to know that the situation has also improved there, though the
improvement will occur in a less evident way than at the other points.

This information is usually exhibited by adding to the order of the ideal a second local
invariant. The resulting pair of numbers will then be considered with respect to the lexico-
graphic ordering: If the first component, the order ofK, has decreased, we are done. If
it has remained constant (recall that the order cannot increase if the center is permissible),
the second component should have dropped. In particular, this second component becomes
only relevant at the equiconstant pointsa′ of K in W ′. Now it is an exercise on blowups
in local coordinates to see that the equiconstant points ofK in the exceptional divisorY ′

can be determined from the tangent cone ofK ata, and that they lie necessarily in a regular
hypersurfaceV ′ of W ′. So they are relatively rare inY ′.

Let us assume for the moment that this hypersurfaceV ′ has a regular imageV in W , so
thatV ′ is the strict transformV st of V , and thatV contains the centerZ. It is a general fact
that in this caseV ′ coincides with the blowup ofV in Z, yielding the commutative diagram

V ′ ⊂ W ′

↓ ↓

Z ⊂ V ⊂ W

where the vertical arrows denote the blowups ofV andW with centerZ. Let nowa be a point
in Z ⊂ V , and leta′ ∈ Y ′ ∩ V ′ be a point abovea. To determine a suitable candidate for the
second component of the induction invariant ofK at a and its strict transformK ′ = Kst at
a′, it is then natural to useV andV ′ for its definition.

The idea is to associate to the idealsK in W andK ′ in W ′ idealsK− in V and(K ′)− in
V ′ which measure the improvement. At points where the order ofK has remained constant,
we should be able to compareK− and(K ′)− in order to measure the improvement of the
singularities when passing fromX toX ′. Best would be if(K ′)− would again be the strict
transform ofK− in V ′ under the blowup ofZ in V , analogously toK andK ′. This would
allow to control the change betweenK− and(K ′)−. In particular, ifZ were contained in
the top locustop(K−) of K−, the order of(K ′)− ata′ would automatically be less or equal
to the order ofK− at a. Here, of course, it has to be shown that the order ofK− at a does
not depend on the local choice ofV . In the affirmative case the order ofK− in V would be
appropriate to form the second component of the resolution invariant we are looking for.

It is mandatory here that(K ′)− is the transform ofK−, i.e., that the descent in dimension
fromW to V andW ′ to V ′ commutes with blowups

K ′  (K ′)− = (K−)′

↓ ↓

K  K−

We can then write simplyK ′
− for (K ′)− = (K−)′. As explained before, such a commutative

diagram can only be expected at the equiconstant points ofK in W ′. Moreover, we have
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to ensure that the centerZ is contained in bothtop(K) and top(K−). Therefore, when
searching for a suitable idealK−, we have to be cautious so as to meet commutativity of the
diagram and this inclusion simultaneously.

Even in case the construction of a suitable idealK− in V could be realized, there is no
reason why, at an equiconstant pointa′ of K in W ′, the order ofK ′

− should have dropped
compared to the order ofK−. It may equally have remained constant, and the quandary of
equiconstant points seems to repeat.

But now we are much better off, for we may apply induction on the dimension: the ideal
K− in V is defined in a lower dimensional ambient scheme, therefore, by induction, we
may assume that we know how to associate toK− a local invariant – it will consist of a
lexicographically ordered vector of numbers given as the orders of a string of ideals – which
decreases under blowup. We call this type of descent in the dimensionhorizontal induction,
in contrast to thevertical induction implied by the decrease of the resolution invariant.
Using horizontal induction we either arrive in some dimension at an ideal of order0, in
which case no further descent is possible, or at dimension1. In the first case, the situation is
sufficiently specific to allow a direct and combinatorial resolution argument, sometimes called
themonomial case. In the second case one uses that the order of an ideal in a one dimensional
regular scheme always drops under blowup to0 when passing to its strict transform. This
completes the induction argument.

Leaving aside (intricate) technical complications, the preceding reasoning represents the
main outline of Hironaka’s proof for resolution of singularities in characteristic zero, in the
version developed by Villamayor, Bierstone-Milman, Encinas-Villamayor, Bodnár-Schicho,
Encinas-Hauser and Bravo-Villamayor [Hi 4, AHV 1, AHV 2, V1, V2, BM 1, BM 2, BM 3,
EV 1, EV 2, EV 3, BS, EH, BV]. You may consult [Ha 3] for an easily accessible introduction
to the subject.

The most delicate part in this program is the adequate construction of the idealK− in V ,
starting from an idealK in W . This works only locally onW , and depends on the choice
of the local hypersurfaceV , which is by no means unique, nor patches on overlaps to give
a global hypersurface. FromV it is only required that, locally at each pointa of W , V
accompanies the resolution process ofK as long as the order ofK remains constant, i.e.,
that the successive transforms ofV contain all pointsa′, a′′, etc. abovea where the strict
transforms ofK have the same order asK at a. Such hypersurfaces will be said to have
permanent contact with K. In characteristic0, it is known that such hypersurfaces exist.
They can even be chosen so as to contain locallytop(K) and are then known ashypersurfaces
of maximal contact. There is a simple procedure through iterated derivatives how to find
them at any point, see section 2.

Once someV is chosen ata, expand each element ofK as a power series with respect to
a local coordinate definingV in W . The resulting coefficients can be equilibrated by raising
them to a suitable power and then generate an ideal inV , thecoefficient ideal coeffV (K)
of K in V . Do the same withK ′ andV ′. Unfortunately, the coefficient ideal of the strict
transformK ′ of K at equiconstant pointsa′ is not the strict transform of the coefficient ideal
of K ata. Thus the commutativity of the above diagram fails.

The inconvenience can be remedied by a suitable factorization of the coefficient ideals
coeffV (K) into a product of a principal monomial ideal (supported on the exceptional divisor)
and another ideal (the relevant part). With this factorization, commutativity with blowups
can be established for the second factor. This second factor, which we callK− for obvious
reasons, will be the correct candidate for our descent in dimension (for details on the precise
construction and transformation formulas, see again [EH] and [Ha 3]). The idealK− in V
fulfills all the required properties so as to build on it the horizontal and vertical induction. But
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it is essential here that the local hypersurfaceV inW has transformV ′ inW ′ which contains
all equiconstant points ofK in W ′.

The present paper shows why and where the preceding procedure fails in positive character-
istic. First, we exhibit an example where after a number of blowups any regular hypersurface
containing the points where the order of the transforms ofK has remained constant since the
beginning has singular image in the initial ambient schemeW . Therefore there is no local
regular hypersurface inW ata whose transforms contain permanently the points of constant
order abovea, and this until the moment where the order ofK has dropped everywhere.
This makes it necessary to replace occasionally the accompanying regular hypersurface so
as to contain also in the subsequent blowup the points of constant order. The appropriate
adjustment of the hypersurface can be explicitly determined. We can therefore try to apply
again horizontal induction on the dimension by using these variable hypersurfaces.

In positive characteristic, the descent in dimension by constructing an idealK− in a
suitable hypersurfaceV still works, provided one incorporates the necessary modifications.
We thus dispose again of a string of local ideals in descending dimension, and, associated
to it, a resolution invariant formed by the orders of these ideals. We wish to show that the
invariant drops under blowup in the lexicographic order. If the accompanying hypersurface
persists after blowup, i.e., if it has not to be replaced by a new one, the same argument as in
characteristic0 applies and shows that the invariant decreases. The occasional change of the
hypersurface in a sequence of blowups would do no harm as long as the invariant of the ideal
K− decreases at these instances. This is, unfortunately, not the case, as was first observed
by Moh [Mo 2]. We will see an example which shows that whenever the hypersurfaceV has
to be adjusted, the invariant need not decrease under blowup, and, in certain circumstances,
may even increase. This destroys the desiredvertical induction.

The interesting fact here is that – as alluded to in the introduction – the increase only
occurs in very specific situations, and for very special ideals. Among other things, we show
that the tangent cone of the involved ideal must coincide, up to rescaling, with a uniquely
given homogeneous polynomial. In particular, the algebraic relations between the coefficients
of the tangent cone come into play. The “dangerous” homogeneous polynomials forming the
tangent cone of the defining polynomial can be described explicitly. Moreover, the points
in the blowup where the increase occurs lie in a codimension2 subscheme. This, of course,
suggests to investigate these bad cases further, and to profit of their well known internal
structure in order to develop a separate induction argument for their resolution. As experience
shows, the matter seems to be more delicate than to be solvable in a straightforward manner.

I. EXAMPLES

1. Regular hypersurfaces containing the top locus

For an idealK in W we denote bytop(K) the closed reduced subscheme ofW of points
where the order ofK in W is maximal. In characteristic0, there always exists, locally at
each point ofW , a regular hypersurfaceV containingtop(K). This can be seen as follows.
Let a ∈ W be a given point, and setc = ordaK. In characteristic0, an elementg of OW,a
belongs tomk

a for somek ≥ 1, if and only if∂xi
g ∈ mk−1

a for all first order partial derivatives
∂xi

. Thereforetop(K) is given locally ata by the vanishing of all partial derivatives∂αx f
of elements ofK up to order|α| < c. At least one derivative∂αx f with |α| = c − 1 will
have order1 at a, and hence defines in a neighborhood ofa a regular hypersurfaceV in W
containingtop(V ). It can be shown that any such hypersurface has permananent contact with
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K ata: its transforms under blowup ofW in a regular centerZ ⊂ top(K) ⊂ V contain the
equiconstant points ofK [Ab 2, p. 211, Hi 3, p. 106, Ha 3, p. 362].

The argument does not work in positive characteristic, take forK the ideal generated by
f = xp + yp in characteristicp. Here, all partial derivatives vanish up to arbitrary order,
but K has orderp at 0. Nevertheless, there still exists a regular hypersurface containing
top(K) = top(f) (namely,x + y = 0). Narasimhan showed that, in general, this is not the
case.

Example 1. [Na 1, Na 2, Mu, Hi 1, ex. 4] Consider the polynomialf = x2+yz3+zw3+y7w

in four variables over an algebraically closed field of characteristic 2. It has order2 ata = 0.
In a neighborhood of0, its top locustop(f) coincides with the singular locus and is given by
the vanishing off and its first order partial derivatives0, z3 + y6w, yz2 +w3, zw2 + y7. It
is verified that the monomial curveC in A4 parametrized byt32, t7, t19, t15 equalstop(f).
Therefore, this locus cannot be embedded locally at0 into a regular hypersurface inA4.

Take now a regular hypersurfaceV passing througha = 0. We claim that for any sequence
of point blowups whose first center is the origin, the sequence of equiconstant points off

abovea will leave eventually the strict transforms ofV . Indeed, as the point blowups keep
top(f) unchanged outside0, the order of the transforms off will remain constant equal
to 2 at points above points oftop(f) outside0. The strict transform of the curvetop(f)
will therefore consist of points of order2 for f , by the upper semicontinuity of the order.
In particular, the points above0 which lie in these strict transforms will all be equiconstant
points above0.

But, by a sequence of point blowups, the curvetop(f) will always be separated from the
hypersurfaceV and its strict transforms (since it is not contained inV ). Combining both
observations we conclude that the equiconstant points above0 will eventually leave the strict
transforms ofV .

Therefore, to have permanent contact it is necessary to have the entire top locus ofK in
W contained locally in a regular hypersurfaceV . It remains unclear in which situations this
inclusion does not occur. Moreover, even if the top locus is contained locally in a regular
hypersurface, this hypersurface may not have permanent contact withK. The examples of
the next section will shed some light on this type of questions.

2. Failure of permanent contact

We give an example of a polynomial in three variables over a field of characteristic two which
does not possess at the origin ofA3 a local hypersurface of permanent contact, even though its
top locus is contained in a regular hypersurface. For this, we indicate a sequence of blowups
along which the equiconstant point of the polynomials leave eventually the transforms of any
regular hypersurface chosen below.

The example is inspired by the observation of T.T. Moh on the possible increase of the
order of coefficient ideals under blowup [Mo 1, Mo 2, ex. 3.2, Hi 1, ex. 5, Ha 1, ex. 16].
Recall that a local regular hypersurfaceV of W ata has maximal contact with the idealK at
a if it contains locally ata the locustop(K) of points of maximal order ofK in W , and if
the consecutive strict transforms under permissible blowups contain the equiconstant points
of K abovea.

Our example is a polynomialf in characteristic2 for which after six blowups the strict
transform of any regular hypersurface ata does no longer contain the equiconstant points of
f . Hence a new hypersurface must be chosen in the resolution process. This replacement
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of V destroys the descent in dimension and the required commutativity for the passage to
coefficient ideals.

Example 2. Consider a sequence of local blowupsW 6 → . . . → W 1 → W at pointsai in
W i with W = W 0 a regular scheme of dimension three (e.g., affine spaceA3). All blowups
are point or curve blowups. We choose the centers as follows. For given local coordinates
x, y, z inW ata = 0, the first map is the monomial point blowup in they-chart, the second the
monomial point blowup in thez-chart. Hence,a1 anda2 will be the origins of the respective
affine charts ofW 1 andW 2. Note thata2 lies in the intersection of the two exceptional
components having occurred so far. The coordinatesx, y, z in W induce in a natural way
coordinates in eachW i (which will be denoted again byx, y, z).

The third blowup is no longer monomial. Its center is the origina2 of the present chart
of W 2, but the blowup is considered in thez-chart ofW 3 at the pointa3 with coordinates
(0, 1, 0). Said differently, this blowup is the composition of the monomial point blowup in
thez-chart followed by the translationy → y + 1. Hencea3 belongs to the new exceptional
componentY 3 inW 3, but lies outside the strict transforms of the two exceptional components
througha2. The fourth, fifth and sixth blowup are the monomial curve blowup with center
the curve defined byx = z = 0, considered at the origin of thez-chart. In figure 1 we see the
evolution of the exceptional curves when restricting the first three blowups to the hypersurface
V : x = 0 in W .

oldold old

new

new new
a a

a
a0 1 2

3

Figure 1. Configuration of exceptional components.

Take forK the ideal inW generated byf = f0 = x2 + y7 + yz4. The hypersurfaceV
defined inW byx = 0 is regular and contains the top locus off . The coefficient ideal off in
V is generated by the polynomialy7 + yz4. Under the above sequence of blowups, the strict
transformsf i of f and the coordinate changes are of the form

f0 = x2 + 1 · (y7 + yz4), x, y, z,

f1 = x2 + y3 · (y2 + z4), x, y, z → xy, y, zy,

f2 = x2 + y3z3 · (y2 + z2), x, y, z → xz, yz, z,

f3 = x2 + z6 · (y + 1)3((y + 1)2 + 1), x, y, z → xz, yz + z, z,

f4 = x2 + z4 · (y + 1)3((y + 1)2 + 1), x, y, z → xz, y, z,

f5 = x2 + z2 · (y + 1)3((y + 1)2 + 1), x, y, z → xz, y, z,

f6 = x2 + 1 · (y + 1)3((y + 1)2 + 1), x, y, z → xz, y, z.

The strict transformsV i of V are always given byx = 0. The monomial factors in front
of the parentheses inf i denote exceptional components of the restriction off i to V i (more
precisely, of the coefficient ideal off i in V i). The order off i at ai has remained constant
equal to2 for i ≤ 5, and has dropped to0 ata6. Soa6 is not an equiconstant point forf . But,
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if the characteristic is2, there is another equiconstant point in the exceptional divisorY 6 of
W 6, namely the pointb6 = (1, 0, 0). At this point,f6 has again order2, but b6 does not lie
in V 6. The expansion off6 at b6 is obtained by applying the translationx→ x+ 1 to f6. It
yields the polynomial

f̃6 = x2 + 1 · (y5 + y3 + y2)

of order2 at the origin. This shows that the order off6 atb6 is2. ThusV is not a hypersurface
of permanent contact forf ata. It has onlytemporary contact.

Of course, it is possible to choose ata5 instead ofV 5 a new local hypersurfaceU5 whose
strict transformU6 in W 6 does containb6. It suffices to take forU5 the hypersurface defined
by x + z = 0. Observe here that replacingx by x + z in f5 will eliminate the monomial
z2 from the expansion off5, transforming the tangent cone into a monomial. But the image
U of U5 in W is singular ata. ThereforeU5 is not the strict transform of some regular
hypersurface inW (see figure 2).

Y Y Y

U U U

V V V
a a

b

5

5

5

5 6

6

6

6

a6

Figure 2. Failure of permanent contact.

The reason for the loss of contact inW 6 is that one step earlier, inW 5, the hypersurface
V 5 does not maximize the order of the coefficient ideal off5 in V 5. Indeed,coeffV 5(f5)
has order2, whereas the maximal order is3 (take the coefficient ideal with respect to the
hypersurface defined byx + z(y + 1)2 + z = 0). It is easy to see that if a hypersurfaceU
maximizes the order of the coefficient ideal of an idealK, its strict transformUst contains
all equiconstant points ofK in W ′. Conversely, a hypersurface of permanent contact must
maximize the order of the coefficient ideal at the beginning.

Maybe we can modifyU5 from before slightly to a hypersurfacẽU5 which maximizes the
order of the coefficient ideal off5 in Ũ5 and which does stem from a regular hypersurface
Ũ0 in W . A computation shows that the linear term of the equation ofŨ0 must bex (up to a
constant factor). So let us writeg0 = x+

∑
gjky

jzk for the equation of̃U0 in W . We get

g0 = x+
∑
gjky

jzk,

g1 = x+
∑
gjky

j+k−1zk,

g2 = x+
∑
gjky

j+k−1zj+2k−2,

g3 = x+
∑
gjk(y + 1)j+k−1z2j+3k−4,

g4 = x+
∑
gjk(y + 1)j+k−1z2j+3k−5,

g5 = x+
∑
gjk(y + 1)j+k−1z2j+3k−6.

11



Substituting this polynomial inf5 shall maximize the order of the coefficient ideal off5,
i.e., it must eliminate the termz2(y+ 1)3y from f5. Therefore the coefficientgjk of g5 must
be non-zero forj+k−1 = 1 and2j+3k−6 = 1. But there is no pair(j, k) of non-negative
integers withj + k = 2 and2j + 3k = 7. This shows that there is no regular hypersurface
Ũ0 in W whose transform̃U5 in W 5 maximizes the order of the coefficient ideal off5.

Let us examine the recipe for constructing such type of examples. The first two monomial
blowups in opposite charts are needed to produce two exceptional components and a point
a2 in their intersection. The third blowup is characterized by the “disappearance of the two
exceptional components” when passing froma2 to a3. The last three blowups are only used
to exhibit the pointb6 outsideV 6 by making the exceptional multiplicities drop until they
equal0.

It is betweena2 anda3, i.e., in the third blowup, where the key phenomenon occurs.
It consists in the increase of the order of the coefficient idealy2 + yz + z2 of f2 in V 2

(after having factored from it the exceptional monomialyz). Applying the coordinate change
x → x + z3 to f3 eliminates the monomialz6 and thus produces the (divided) coefficient
idealy3 of f3 in V 3. It has order3 ata3, whereas the (divided) coefficient idealy2 + yz+ z2

of f2 has order2 at a2. This increase of the order will be discussed separately in the next
section.

It turns out that the above construction produces examples where permanent contact
fails and where the order of the coefficient ideal increases if only if the exponents and
the coefficients off are chosen in a very specific manner. The conditions carry on the
second transformf2 of f , because the passage fromf2 to f3 represents the substance of the
phenomenon. The necessary (and sufficient) conditions onf2 are as follows:

• The residues modulop of the exceptional multiplicities, i.e., of the exponents of the
monomial factors in front of the parentheses off2, must satisfy a prescribed arithmetic
inequality. For surfaces, both must be positive and their sum must not exceedp. The
general inequality is given in section 5. In our case, the coefficient ideal off2 in
V 2 is y3z3 · (y2 + yz + z2). The exceptional multiplicities are both3 and satisfy
32 + 32 = 1 + 1 = 2.

• The order of the coefficient ideal off2 must be a multiple of the characteristic. In the
example, the order is3 + 3 + 2 = 8.

• The coefficients of the weighted tangent cone off2 must be certain binomial coefficients
(up to a rescaling of the coordinates). In the example, where all coefficients are1, this
condition is hidden by the fact that we are working in characteristic2.

The given example is among the simplest ones with these properties. The actual values of
the coefficients of the defining equations of the singularity seem to play a decisive role in
positive characteristic. This is strikingly different from the case of zero characteristic, where
the resolution never refers to the actual values of the coefficients.

Of course, due to the necessity of the three conditions for the failure of permanent contact,
one might hope to find a strategy for the resolution of singularities in positive characteristic
by distinguishing at each blowup two cases, a good and a bad one. The conditions show
that the situations where the characteristic zero arguments fail are very special. One could
then try to treat this critical case separately by a different ad hoc argument. This is done in
a similar manner in characteristic zero in the case where the coefficient ideal is a monomial
ideal supported by the exceptional divisor. There, a simple combinatorial argument saves the
situation, cf. e.g. [Ha 3, section on shortcuts]. In positive characteristic, surprisingly enough,
the special cases seem to be much more malicious then their outfit would suggest. Up to now,
they resisted obstinately the various attempts of attack.
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3. Increase of invariant under blowup

We shall now show that the resolution invariant proposed in [Hi 4, V 1, V 2, BM 1, BM 2,
BM 3, EV 1, EV 2, BS, EH, BV] for characteristic0 does not work in characteristicp in
the special cases of the preceding section. First, we briefly recall its definition, restricting to
surfaces in three-space and omitting some technical complications. For its precise definition,
we refer to the literature.

We shall consider surfaces inW = A3 ata = 0 defined by a polynomialf . Letc = ordaf
and assume given a local hypersurfaceV of equationx = 0 with respect to some local or
affine coordinatesx, y, z. Expandf with respect tox into f(x, y, z) =

∑
i ai(y, z)x

i. After
a generic linear coordinate change (assuming to have an infinite ground field) we may assume
thatac(0, 0) 6= 0, and thus, locally ata and after multiplication off by an invertible power
series, thatac = 1 (this reduction is not obligatory but simplifies the notation). Thus

f = xc +
∑
i<c ai(y, z) · xi moduloxc+1.

The coefficient ideal off with respect toV ata is defined as

coeffV (f) = (a
c

c−i

i , i < c) ⊂ OV,a.

The rational exponents can be avoided by taking insteadc!
c−i , but as all subsequent construc-

tions commute with taking powers of ideals, we prefer to allow quotientsc
c−i in order to keep

the notation simple. The coefficient ideal lives in the local ringOV,a and allows to perform
the descent in dimension. It depends on the choice ofV .

Consider now all regular hypersurfacesV at a for which the order of the associated
coefficient ideal is maximal. It can be shown that eitherf = xc moduloxc+1 and hence
coeffV (f) = 0, or the maximal order is finite. The first case being simple, let us restrict to the
second. Lete be this maximal order,e = orda(coeffV (f)). It is clear thate does not depend
on any choices (of course it depends on the characteristic of the ground field). It will form
(preliminarly) the second component of our local resolution invariantia(f) of f ata. Thus

ia(f) = (c, e, . . .).

Observe here thatc ≤ e. Let us now investigate the behaviour of coefficient ideals and of
the invariant under blowup. Taking simply the coefficient ideal off does not commute with
blowup at points where the order off remains constant: The coefficient ideal of the strict
transform off with respect to the transformV ′ of V at a pointa′ abovea is not the strict
transform of the coefficient ideal off with respect toV ata. But we have the formula

coeffV ′(fst) = I(Y ′)−c · (coeffV (f))∗

whereI(Y ′) denotes the principal ideal defining the exceptional componentY ′ in W ′ and
(coeffV (f))∗ denotes the total transform (= inverse image) ofcoeffV (f) under the blowup
of V in Z. This is easily checked by working in local coordinates for which the blowup is
monomial (cf. section 7). The formula only holds ifZ ⊂ V and at pointsa′ abovea where
c′ = orda′(f ′) equalsc. For an idealJ and an integerc with ordZJ ≥ c we define the
controlled transformJ ! of J with respect toc asJ ! = I(Y ′)−c · J∗. Thus we can phrase the
commutativity of coefficient ideals with blowups as follows.

Blowing up a center Z ⊂ V , the coefficient ideal of the strict transform of f with
respect to V ′ at a′ equals the controlled transform with respect to c = ordZf of the
coefficient ideal of f with respect to V , at points a′ of V ′ above a where c′ = c.

Let us now see how this affects our invariant(c, e). First we assume, as always, that the
centerZ of the blowup is chosen so thatZ ⊂ top(f) andZ ⊂ V locally ata, in particular
c = ordaf = ordZf . This implies thatc′ ≤ c. We wish to show thate′ ≤ ewheneverc′ = c.
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There are three obstructions to this. First, the order of the controlled transform of an ideal
may increase under blowup. This can be overcome by factoring(coeffV (f))! further into
(coeffV (f))! = I(Y ′)e−c · (coeffV (f))g, whereKg = I(Y ′)−ordZK ·K∗ denotes the weak
transform of an idealK. We have already mentioned that the order does not increase when
passing to the weak transform (provided that the order ofK is constant along the center).
Thus we should take instead ofe = orda(coeffV (f)) the ordero of the ideal obtained from
coeffV (f) after factoring a suitable (and prescribed) power of the exceptional component. We
call o thesecondary order of f . The resultingdivided coefficient ideal is defined in a way so
that it passes to its weak transform under blowup, while the undivided coefficient ideal passes
to its controlled transform (always considered at equiconstant points off in the exceptional
divisor), cf. [EH, Ha 3] for more details. Doing so we get for the pair(c, o) the inequality

(c′, o′) ≤ (c, o)

lexicographically, wherec′ denotes the order off ′ = fst ata′ ando′ the order of the divided
coefficient ideal off ′ ata′ with respect toV ′.

The second obstruction is that the transformV ′ of V with respect to which the coefficient
ideal ata′ is taken may not maximize the order ofcoeffV ′(f ′). Thuso′ need not be intrinsic.
It may be necessary to choose a new local hypersurfaceV ′ at a′ maximizing the order of
coeffV ′(f ′). It can be shown (in any characteristic) that a suitable choice ofV (not just
maximizing the order ofcoeffV (f), but subject to further conditions) yields a maximizingV ′,
cf. section 9. This question is studied extensively in [Ha 4]. But such aV may not admit the
required factorization ofcoeffV (f), and, more essentially, its transforms need not maximize
the order of the coefficient ideals through a given sequence of blowups. It may only work for
one blowup. Therefore, the substitution ofV ′ by a maximizingṼ ′ cannot be avoided.

The third obstruction is related to this, and relies on what we have seen in examples 1 and
2. After a finite number of blowups the strict transformV ′ of V may no longer contain all
equiconstant points off . Again it is necessary to adjustV from time to time. The reason
for this is the same as before. To have the strict transfoms ofV maximize the order of
the coefficient ideal throughout the sequence of points along which the order off remains
constant we must choose a new local hypersurface occasionally.

We will show in the example below that this adjustment may destroy the required inequality
(c′, o′) ≤ (c, o), i.e.,c′ = c ando′ > o may indeed occur, where nowo′ denotes the maximal
order ata′ of the divided coefficient ideal off ′, maximized over all choices of regular
hypersurfacesV ′ ata′. We have seen a glance of this already in example 2.

The definition of the coefficient ideal shows that to understand the phenomena it is
sufficient to consider polynomials of the formf(x, y, z) = xc+h(y, z), i.e., no other powers
of x appear in the expansion off . Hereh generates the coefficient ideal off with respect
to V = {x = 0} andc is the order off at a = 0, with e = ordah ≥ c. We assume further
thate is maximal and thath comes with a factorizationh(y, z) = m(y, z) · g(y, z) wherem
is a prescribed monomial in the exceptional components having been produced by the earlier
blowups. Thusg is just the divided coefficient ideal off in V . Take now

o = ordag

as the second component of the invariant off at0.

Let nowπ : W ′ → W be the blowup ofW = A3 with centerZ = {0} and exceptional
divisorY ′ = π−1(Z) ⊂W ′. Leta′ be a point ofY ′ where the orderc′ of the strict transform
f ′ of f has remained constant,c = c′. The transformation rules forf andg are as follows.
Both f and g pass to their strict transformsf ′ and g′, and the exceptional monomialm
transforms accordingly so as to yield again a decomposition
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f ′(x, y, z) = xc +m′(y, z) · g′(y, z).

The monomialxc survives andorda′(m′(y, z) · g′(y, z)) ≥ c becausec′ = c. We have

m′(y, z) = m∗(y, z) · I(Y ′)o−c

with m∗ = π−1(m) the total transform ofm. But inW ′ we may have to apply a coordinate
change ata′ in order to maximize again the order ofg′, yielding the samem′ but a newg′.
The next example shows that in this setting the pair(c, o) may increase under blowup with
respect to the lexicographic order. The phenomenon was first observed by Moh [Mo 2]. He
gave in [Mo 1] a bound on the maximal increase, see section 14 for more details.

Example 3. Similarly as in example 2, consider the polynomialf = f0 = x2 + y7 + t2yz4

wheret ∈ K is a non-zero constant, and letV be the hypersurface ofW defined byx = 0.
Take the sequence of blowupsW 5 → W as in example 2. The pointa5 will now have
coordinates(0, t, 0). Hence the third blowup is the composition of the monomial point
blowup in thez-chart followed by the translationy → y + t. The resulting sequence of strict
transformsf i of f is

f0 = x2 + 1 · (y7 + t2yz4),

f1 = x2 + y3 · (y2 + t2z4),

f2 = x2 + y3z3 · (y2 + t2z2),

f3 = x2 + z6 · (y3 + t3).

Fromf0 to f4 the strict transformsV i of V maximized the order of the coefficient ideal of
f i with respect toV i. This is no longer the case forf3. If t3 is a squares2 in the ground field
we may apply the local coordinate changex→ x+ sz3 ata3 to f3 and get

f̃3 = x2 + z2 · y3

with secondary order̃o3 = 3. Hence the hypersurfaceV 3 = {x = 0} ata3 with o3 = 0 did
not maximize the order of the divided coefficient ideal off3. But Ṽ 3 = {x+ sz3 = 0} does
maximize this order, and we get

(c3, õ3) = (2, 3) >lex (c4, o4) = (2, 2).

Actually, to be precise, the ordero should always come with an index indicating the respective
hypersurface.

We conclude that our invariant has increased when passing froma2 to a3. Observe that
the coordinates ofa3 are related to the coefficients off , and thata3 is the only point where
the increase of(c, o) can happen. Moreover, changing the coefficients off , the increase
disappears. We will describe this fact with precision in later sections.

4. Estimating the decrease of the invariant in earlier blowups

We have seen before that the increase of the resolution invariant requires a special configuration
of the exceptional divisor at the point in question. These exceptional components must have
been produced by specific earlier blowups. It would be natural to expect that these preliminary
blowups cause a drop in the invariant which is larger than the subsequent increase, so that
in total a decrease would result. This works for surfaces – producing a new proof of surface
resolution – but gets stuck in dimension3 and higher. In the example of the last section, the
order ofg decreases from5 to 2, then remains constant in the second blowup, and finally
increases from2 to 3. So in total, over all three blowups, the secondary order has dropped.
For surfaces, this is a general fact, which will be proven in section 6.
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In the next section, we will give an example of a hypersurface in four-space where after
the whole sequence of blowups the secondary order has not decreased.

Let us call kangaroo point a point a′ in a sequence of blowups where the jump of
the resolution invariant may have occurred in the last local blowup(W ′, a′) → (W,a).
Necessarily, there pass less exceptional components througha′ than througha, cf. Theorem
1 in section 5. The predecessor pointa of a′ is called theantelope point of a′. Let
(W,a) → (W ◦, a◦) be the shortest sequence of local blowups producing all the exceptional
components inW which pass througha. We calla◦ theoasis point of a, for obvious reasons,
cf. figure 3. Oasis points are the starting point of a sequence of blowups which gives rise to
the described complications when passing from the antelope pointa to the kangaroo pointa′.
It is then appropriate to compare the resolution invariant ata◦ with the one ata′.

oldold old

new

new new
a a

a
a0 1 2

3

oasis

antelope

kangaroo

Figure 3. Oasis, antelope and kangaroo points.

For surfaces in three-space (and restricting to point blowups), the sequence of blowups
between oasisa◦ and antelope pointa can be characterized in suitable coordinates inW ◦ as
one monomial point blowup in they-chart followed by an arbitrary number of monomial point
blowups in thez-chart. Restricting to a hypersurfaceV ◦ having permanent contact between
a◦ andawe get a sequence of monomial point blowups in the plane with one change of charts
after the first blowup. It is an amusing exercice to show that any polynomial of ordero in
two variables transforms under such a sequence into a polynomial of ordero′ ≤ o/2 (taking
always the strict transform of the polynomial).

If o > 2, this drop will make up with the increase by at most1 in the blowup froma to a′.
If o = 2, the polynomial has become regular ata. This gives a rough outline how to treat the
case of surfaces in positive characteristic, using orders of ideals as invariants.

We next give an example where the order of the divided coefficient ideal of a polynomial
f increases along a sequence of point blowups between oasis and kangaroo point. In the
example, occasionally curves could be taken as permissible centers. However, transversality
problems with still older exceptional components may prohibit to choose one-dimensional
centers, thus forcing point blowups.

Example 4. LetW be a4-dimensional regular ambient scheme, and leta = 0 be a point of
W . Choose local coordinatesx, y, z, w inW ata, and letV be the hypersurface inW defined
by x = 0. We consider the sequence of local point blowups

(W 3, a3) → (W 2, a2) → (W 1, a1) → (W,a) → (W−1, a−1) → (W−2, a−2)

given as follows: The first two blowups are monomial and of auxiliary nature,a−1 is the
origin of thez-chart,a is the origin of they-chart. We will be interested in the situation ata,
the two prior blowups ensure to have already two exceptional components passing througha.
The next two blowups are again monomial,a1 is the origin of they-chart,a2 is the origin of
thez-chart. The next blowup involves a translation:a3 is the point with coordinates(0, 1, 0)
of thez-chart. Thusa3 is a kangaroo point with antelopea2, anda is the oasis point ofa3.
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Take the hypersurfacef−2 = x5 + 1 · (yw5 + y2z8) in W−2 = A4 at a−2 = 0, with
coefficient idealh(y, z, w) = 1·(yw5+y2z8) in V −2 : x = 0. We get the following sequence
of transforms and coordinate substitutions under the above sequence of point blowups.

f−2 = x5 + 1 · (yw5 + y2z8),

f−1 = x5 + y · (w5 + y4z8), x, y, z, w → xz, yz, z, wz,

f = f0 = x5 + yz · (w5 + y4z7), x, y, z, w → xy, y, zy, wy,

f1 = x5 + yz2 · (w5 + y4z6), x, y, z, w → xy, y, zy, wy,

f2 = x5 + y3z2 · (w5 + y5z6), x, y, z, w → xz, yz, z, wz,

f3 = x5 + z5(y + 1)3 · (w5 + z6(y + 1)5), x, y, z, w → xz, yz + z, z, wz.

The order off and of its transforms has remained constant at the successive points of the
blowups, andV has permanent contact along the sequence. The order of the divided coefficient
ideal off3 in these coordinates with respect toV 3 : x = 0 is 5. This order is not maximal,
as is seen by applying the coordinate changex → x+ zw. After this substitution, the order
has become6 and is then maximal. The divided coefficient ideal off at the oasis pointa
wasg = w5 + y4z7 of order5. Thus the order of the divided coefficient ideal has increased
between the oasis point and the kangaroo point (and not just between the antelope point and
the kangaroo point). This seems to make also induction relying “on the long run” of the
invariants obsolete.

II. RESULTS

5. The main result

Let W be a regular ambient scheme (excellent of finite type over an algebraically closed
field), and leta be a point ofW , dimaW = n. As all considerations are local,we may as well
assume thatW is n-dimensional affine spaceAn. LetD be a given normal crossings divisor
in W at a (correspondig to the exceptional divisor of earlier blowups) and letK be an ideal
in W . For simplicity of exposition and notation, we shall always restrict toprincipal ideals
K = (f). LetV be a hypersurface inW which has weak maximal contact withK ata relative
toD. By this we mean thatV maximizes the order of the coefficient idealJ = coeffV (K)
of K in V at a, thatV is transversal toD and thatJ allows a factorizationJ = M · I with
M = IV (D ∩ V ) a principal monomial ideal andI an ideal inV at a. It can be shown that
hypersurfaces of weak maximal contact always exist (at least as formal subschemes ofW at
a), see [Ha 4]. Although we shall use some of the constructions of [EH], this paper is not a
prerequisite for understanding the results of the present paper. The references mainly serve
to embed the used objects into a larger context so as to justify their consideration.

For Z a regular subscheme ofW let W ′ → W denote the blowup ofW in Z with
exceptional componentY ′. We assume thatZ is contained intop(K) andV and transversal
toD andV . This is the case in the actual resolution process, see the sectionTransversality
of [EH]. Note thatW ′ → W induces by restriction a morphismV st → V which coincides
with the blowup ofV with centerZ. Let a′ ∈ Y ′ be a given point above a pointa in Z. As
all arguments and computations are local ata anda′, we will work with ideals in the local
rings ofW andW ′ ata anda′ (or their completions).

Let K ′ = Kg = K∗ · I(Y ′)−ordZK denote the weak transform ofK in W ′. AsK is
assumed principal,Kg coincides with the strict transformKst of K. FromZ ⊂ top(K)
follows that the orderc′ of K ′ ata′ is less or equal the orderc of K ata. Since in case where
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the inequality is strict induction on the order applies, we shall assume throughout thata′ is an
equiconstant point forK, say

c = ordaK = orda′K ′ = c′.

DefineD′ = D∗ + (o− c) ·Y ′ withD∗ the total transform ofD ando = ordaI the order
of the second factorI of J = M · I at a. AsZ is transversal toD ande = ordaJ ≥ c, D′

is an effective normal crossings divisor inW ′ (all multiplicities ofD′ are non-negative). The
strict transformV � = V st of V containsa′ becauseV is assumed to have weak maximal
contact withK (cf. [EH]). Moreover,V � is transversal toD′. A computation shows that
the coefficient idealJ� = coeffV �(K ′) of K ′ with respect toV � admits a factorization
J� = M� · I� withM� = IV �(D′ ∩ V �) andI� an ideal ofV � ata′. It can be shown thatI�

is the weak transform ofI in V �, cf. the sectionCommutativity of [EH]. Seto� = orda′I�.

In characteristic0, the hypersurfaceV can be chosen so thatV � has again weak maximal
contact withK ′ ata′, i.e.,o� is maximal over all choices of local hypersurfaces ata′. This is
not the case in arbitrary characteristic, as we saw in the earlier examples. There may exist a
regular hypersurfaceV ′ in W ′ at a′ transversal toD′ so thatJ ′ = coeffV ′(K ′) factors into
J ′ = M ′ · I ′ with M ′ = IV ′(D′ ∩ V ′) and the ordero′ = orda′I ′ of I ′ at a′ exceedso�.
Any such hypersurface is the image ofV � under a local automorphism ofW ′ at a′. In the
computations of the respective coefficient ideals, this will correspond to a coordinate change
as already occurred in the examples when eliminating certain monomials from the expansion
of f andf ′. We sete′ = orda′J ′.

The resolution invariant ofK andD at a pointa of W is a vectoria(K) of numbers.
Its first two components, which shall only interest us here, are the respective ordersc and
o as defined above. Our purpose is to observe the behaviour of(c, o) under blowup, i.e.,
to compare(c, o) with (c′, o′). As we may ( and will ) assume thatc = c′, we are left to
compareo = ordaI with o′ = orda′I ′. For this, the general procedure will be to compute
first o� = orda′I� and then apply coordinate changes to maximize the ordero′ = orda′I ′ of
the resulting idealI ′.

The examples of section 3 have shown thato′ > o may occur. We shall classify in the
sequel all cases where such an increase can happen.

For this, the multiplicities of the exceptional monomial factorM = IV (D ∩ V ) of the
coefficient idealJ have to be taken into account. In reality,D is the exceptional divisor
produced by earlier blowups, andD ∩ V is the exceptional divisor of the restriction of these
blowups to hypersurfaces of weak maximal contact. We therefore call the components of
D∩V the exceptional components ofV ata. We may choose local coordinates(x, ym, . . . , y1)
of W ata (with m = n− 1) so thatV is given byx = 0 andM is generated by a monomial
in the coordinatesym, . . . , y1. Let q ∈ Nm be the vector of exponents of this monomial, i.e.,
the vector of exceptional multiplicities inV ata.

Let V � = V st. Fix now a′ in V � abovea with c′ = c, and consider the exceptional
monomialM� = M∗ · IV �(Y ′ ∩ V �)o−c of J� = coeffV �(K ′) at a′, i.e.,J� = M� · I�.
Here,M∗ denotes the total transform ofM under the induced blowupV � → V . Observe
thatM� = IV �(D′ ∩ V �), by definition ofD′.

We wish to describe the exponentsq� of M�. Their detailed description using local
coordinates is given in section 7. Exceptional components of the blowupV � → V at a′

which are the strict transforms of components inV througha will have the same exponent as
their image below. So for these, we will haveq�i = qi. The new exceptional component ata′

isY ′ ∩V �. It has exponento− c. The remaining exceptional components ofD′ will not pass
througha′, so their exponent inM� is 0. Combining these observations, we can decompose
q into q = r+ ` wherer and` are obtained fromq ∈ Nm by setting certain componentsqi of
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q equal to zero and leaving the others unchanged. The non-zero components ofr correspond
to components ata whichdisappear ata′, whereas the non-zero components of` correspond
to those whichpersist ata′. We callr ∈ Nm thered exceptional multiplicities (or exponents)
of K in V , and` ∈ Nm theyellow exceptional multiplicities ofK in V . The value of the
red exponents will be of special interest for the phenomena to be studied. Of course, the
decomposition ofq depends on the choice of the pointa′.

For an integral vectorr ∈ Nm, letφc(r) denote the number of components ofr which are
not divisible byc,

φc(r) = #{i, ri 6≡ 0 modp}.

For r ∈ Nm andc ∈ N definerc = (rc1, . . . , r
c
m) as the vector of the remainders0 ≤ rci < c

of the components ofr moduloc. We set|rc| = rc1 + . . .+ rcm.

We say that an equiconstant pointa′ ∈ W ′ abovea of the idealK in W is tame with
respect to a given regular hypersurfaceV of W at a, if either the orderc of K at a is not
divisible by the characteristic of the ground field, ore = ordaJ = orda(coeffV (K)) is not
divisible by c (in both cases all pointsa′ abovea are tame), ore is a multiple ofc and the
residuesrci moduloc of the red exeptional multiplicitiesri of K in V satisfy the arithmetic
inequality

|rc| = rc1 + . . .+ rcm > (φc(r)− 1) · c.

A similar inequality appears in the work of Abhyankar on good points [Ab 2], but is used
there with a completely different perspective. It is easy to see that the inequality is equivalent
to

d r
c
1
c e+ . . .+ d r

c
m

c e = d r
c
1+...+r

c
m

c e,

wheredue denotes the smallest integer≥ u. If none of the three conditions hold,a′ is called
wild abovea. Hence,a′ is wild abovea with respect toK andV if and only if

• The characteristicp of the ground field dividesc = ordaK.

• The ordere = ordaJ of the coefficient idealJ of K in V ata is a multiple ofc.

• The red exceptional multiplicitiesri of K satisfy

rc1 + . . .+ rcm ≤ (φc(r)− 1) · c.

Note that if only one exceptional component is lost when passing froma to a′ (or a lies
in no exceptional component), then allri but one are0 andϕc(r) equals1 or 0, so that
|rc| > (ϕc(r) − 1) · c is satisfied. Therefore, at a wild pointa′, at least two exceptional
components have disappeared.

The main result of this paper is as follows.

Theorem 1. Given are a principal ideal K in W at a with coefficient ideal J = M · I
in a hypersurface V of weak maximal contact with K at a. Set c = ordaK and
o = ordaI. Let (W ′, a′) → (W,a) be a local blowup with center Z ⊂ top(K) ∩ top(I)
and exceptional component Y ′. Set c′ = orda′K ′ with K ′ = Kg the weak transform
of K. Assume that c′ = c. Let V ′ be a local hypersurface in W ′ at a′ with weak
maximal contact with K ′, and let J ′ be the coefficient ideal of K ′ with respect to V ′.
Assume given the decomposition J ′ = M ′ · I ′ with M ′ = IV ′(D′ ∩ V ′) and D′ the
normal crossings divisor D′ = D∗ + (o− c) · Y ′. Set o′ = orda′I ′.

(a) If a′ is tame above a, then

o′ ≤ o.
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(b) If a′ is tame above a, the strict transform V st of V need not have weak maximal
contact with K ′.

(c) If a′ is wild above a, then

o′ > o,

may occur.

(d) If a′ is wild above a and o′ > o, the weighted tangent cone of (a generator of) K
is uniquely determined, up to coordinate choices and multiplication with p-th powers,
by o and the red exceptional multiplicities ri of K in V .

In assertion (d), we understand by the weighted tangent cone ofK the ideal inW
generated by the initial weighted homogeneous forms of elements ofK with respect to the
weight(w, 1, . . . , 1) wherew = e/c ande = orda(coeffV (K)), cf. [AHV].

To illustrate assertion (d), we indicate the form of the tangent cone for surfaces inW = A3

defined by a polynomial of the special form

f = xc + yr11 y
r2
2 · g(y1, y2).

Here,a = 0 is the origin,V is defined byx = 0, and the coefficient ideal off in V is
generated byyr11 y

r2
2 · g(y1, y2) with exceptional monomialyr11 y

r2
2 . The centerZ is the origin

of A3 and(W ′, a′) → (W,a) is the local point blowup witha′ a point ofY ′ outside the strict
transforms of the two exceptional components{y1 = 0} and{y2 = 0} at a. Hence both
exceptional multiplicitiesr1 andr2 of f in V are red (so, in the notation from above,q = r

and` = 0). We havec = ordaf ≤ e = r1 + r2 + ordag ando = ordag. Assume thata′ is
wild abovea. We may assume thata′ lies in they2-chart ofW ′ and has coordinates(0, t, 0)
there, for somet 6= 0 in the ground field. For simplicity, we suppose thatc = p equals the
characteristic. The arithmetic conditions fora′ to be wild are

w =
e

c
∈ N and rc1 + rc2 ≤ c.

Assume now that the order ofg has increased ata′, sayo′ > o. Theng must have the
following form

g(y1, y2) =
∑o
i=0

(
o+r1
i+r1

)
yi1(y2 − ty1)o−i.

Similar but much more complicated formulas could be given for the tangent cone of arbitrary
surfaces inA3, cf. the computations of the next section.

If a′ is wild abovea it is possible to bound the increase ofo′ with respect too, namely

o′ ≤ o+ µ

with µ =
∑
i r
c
i − max {rcj , j = 1, . . . ,m}. A sharper bound is given by Moh [Mo 1].

Namely, ifc = pk with p the characteristic and if the elements of the coefficient idealJ of K
with respect toV are not purepi-th powershp

i

for any1 ≤ i ≤ k, then

o′ ≤ o+ pk−1.

We are going to reprove this inequality in section 14. The theorem is proven in sections 11
and 12. The form of the uniquely determined weighted tangent cone of (b) is described for
three variables in sections 16 and 17 on hybrid polynomials. The non-persistence of weak
maximal contact under tame blowups is discussed in section 13.
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6. The theorem in the case of surfaces

The description of the observed phenomena in later sections and the proof of the main theorem
will be somewhat technical. Therefore, to illustrate the underlying ideas, we first treat in detail
a specific example. As before, we shall restrict to surfaces of the form

f(x, y, z) = xc + yrzs · g(y, z),

with c = ordaf , o = ordag, e = r + s + o = orda(yrzs · g) anda = 0. We assume thatc
equals the characteristicp of the ground field, thate is divisible byc and that no monomial
of yrzs · g(y, z) can be eliminated fromf by a coordinate change inx, i.e., no monomial is
a c-th power. Both exponentsr ands will assumed to be red. In this section, we shall only
consider the case whereg is homogeneous of degreeo. We set

P (y, z) = yrzs · g(y, z) =
∑
aijy

izj ,

P+(y, z) = P (y + z, z) =
∑
bmny

mzn,

where the sums range overi, j with i + j = r + s + o, i ≥ r, j ≥ s, respectively
m + n = r + s + o, m ≥ 0 andn ≥ s. Of course, the indicesj andn are determined byi
andm and could be omitted. Thesupport supp(P) of a polynomialP is the set of exponents
of the monomials ofP with non-zero coefficients.

o = vol(P)

y

z

(r,s)

supp(P)

o+r+s

r

s

r+o

height  (P  )y

y

z

(r,s)

supp(P  )

o+r+s

r

s

r+o

+

+

Figure 4. Height and volume of a polynomial.

Let us callvolume vol(P ) of P the integer volume of the convex hull of the support ofP

in R2, say the euclidean volume of this convex hull in the one-dimensional affine sublattice
{(i, j) ∈ N2, i+ j = r + s+ o} of N2, setting the length of a generator of this lattice equal
to 1. Thus

vol(P ) = max {i, aij 6= 0} −min {i, aij 6= 0} ≤ o.

We may assume thatyrzs is the maximal monomial which can be factored fromP (using that
P is homogenous). In this case we havear,s+o 6= 0 andar+o,s 6= 0, hencevol(P ) = o. The
height heighty(P+) of P+ is the order ofP+ with respect toy, say

heighty(P+) = min {m, bmn 6= 0}.
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These two numbers can be easily read off from the Newton polygon ofP andP+, see figure 4.
In higher dimensions, the height will still be the order ofP+ with respect to some variables,
but the volume ofP will be defined differently as the order ofg.

For later applications when observing the increase of the resolution invariant, we wish to
boundheighty(P+) in terms ofvol(P ). LetA denote the transformation matrix between the
coefficients ofP andP+,

bmn =
∑
ij Aij,mn · aij .

We will be particularly interested in the(o+ 1)-square submatrixA� = A�(o, r, s) of A of
columns indexed bym,n with m ≤ o, relating the coefficients ofP with the coefficients of
monomials ofP+ of y-degree≤ o. Computation gives by binomial expansion

A� =


(
r
0

)
· · ·

(
r+o
0

)
· ·
· ·
· ·(
r
o

)
· · ·

(
r+o
o

)
.

If P+ would be obtained fromP by the changey → y + tz the entries of this matrix would
have to be multiplied with powers oft. Subtracting them-th column from the(m + 1)-st
column for everym ≥ 1, and using the binomial identity

(
k
`

)
+

(
k+1
`

)
=

(
k+1
`+1

)
, we get a

matrix with first row(1, 0, . . . , 0) and whose submatrix obtained by deleting the first row and
column is the matrixA�(o− 1, r, s) of sizeo− 1

A�(o− 1, r, s) =


(
r
0

)
· · ·

(
r+o−1

0

)
· ·
· ·
· ·(
r
o−1

)
· · ·

(
r+o−1
o−1

)
.

Induction on the size of the matrices shows thatA� has determinant1. This implies that the
correspondence between the coefficientsaij with r ≤ i ≤ r+o and the coefficientsbmn with
0 ≤ m ≤ o is a linear bijection. In particular, ifheighty(P+) > o and hencebmn = 0 for all
0 ≤ m ≤ o, thenP = 0. Conversely,P 6= 0 implies that

heighty(P+) ≤ vol(P ).

The equalityheighty(P+) = vol(P ) = o can only occur ifbmn = 0 for all 0 ≤ m ≤ o− 1,
b := bo,r+s 6= 0 and the coefficientsaij of P are theb-th multiple of the last column of
(A�)−1. They are thus unique.

The inequalityheighty(P+) ≤ vol(P ) is related to the Bernstein-Koushnirenko theorem
[Be] on the comparison between the number of isolated zeroes of a system ofn polynomial
equations in(C∗)n and the mixed volume of the convex polytopes given as the convex hulls
of the supports of the polynomials (see section 15).

Let us now consider the surface

f = xc + yrzs · g(y, z) = xc + P (y, z)

with g homogeneous of degreeo. We set

f+ = xc + (y + z)rzs · g(y + z, z) = xc + P+(y, z).

For general positions of the wild pointa′ inW ′, we would have to consider coordinate changes
of form y → y + tz with t in the ground field. The first two components of the resolution
invariant off at a = 0 are(c, o). As we have seen in examples 3 and 4 of section 3,o may
increase too+ 1 under a point blowup when taking inW ′ the strict transform off at a point
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outside the two intersection points of the three exceptional components and the hyperplane
x = 0. Our purpose here is to describe the circumstances where such an increase can happen.

It turns out that the ordero′ of the strict transformg′ of g is bounded from above by the
heightheightyP+ of P+. This is proved by a computation in local coordinates as given by
the lemma of section 7. On the other hand,o bounds from abovevol(P ). Thus

o′ ≤ heighty(P+) and vol(P ) ≤ o.

Both inequalities are sharp, i.e., equality may hold. To compareo with o′, it is therefore
plausible to investigate more closely the inequalityheighty(P+) ≤ vol(P ) in the context
of polynomialsf . Observe here that the presence ofxc in f with c the characteristic of the
ground field allows to eliminate monomials fromP andP+ which arec-th powers. Thus
P andP+ are only given moduloc-th powers. Asvol(P ) andheighty(P+) are given by
support conditions this will effect the validity of the inequalityheighty(P+) ≤ vol(P ).

We shall assume throughout that the ordero of g is maximal over all coordinate choices,
i.e., thatP is not ac-th power. However, some of its monomials could bec-th powers. Let us
therefore definevolp(f) as the minimal volumevol(P ) over all polynomialsP (y, z) occurring
after coordinate changesx → x + a(y, z) in f , and similarlyheightpy(f

+) as the maximal
heightheighty(P+) over all polynomials obtained fromP (y+ z, z) after elimination ofc-th
powers. We then still have

o′ ≤ heightpy(f
+) and volp(f) ≤ o,

and thus wish to compareheightpy(f
+) with volp(f). Moh has shown in [Mo 1] that forc = p

one always has

heightpy(f
+) ≤ volp(f) + 1,

so that, by the above,o′ ≤ o + 1. To have equalityheightpy(f
+) = volp(f) + 1, some

monomials ofP (y + z, z) = P+(y, z) must bec-th powers, because ofheighty(P+) ≤
vol(P ). A first necessary condition foro′ = o + 1 is therefore that the degreer + s + o of
P andP+ is divisible byc. Else no monomial ofP or P+ would be ac-th power. We shall
prove thato′ = o + 1 can only occur ifyr andzs are red exceptional components and in
addition

rc + sc ≤ c,

whererc andsc denote the residues ofr andsmoduloc. Note thatϕc(rc, sc)− 1 = 1 if both
rc aresc are positive. By prior auxiliary curve blowups with centers(x, y) or (x, z) one can
always achieve thatr < c ands < c, in which case the inequalityrc + sc ≤ c simply reads
r + s ≤ c. This reduction step is not a prerequisite.

Let us interpret the inequalityrc + sc ≤ c geometrically. It is equivalent to

d rc e+ d sce > d r+sc e.

Note thatd rc e + d sce ≥ d r+sc e always holds. To see the equivalence, we may assume that
bothr ands are< c and non-zero, so that the left hand side ofd rc e+ d sce > d r+sc e equals2.
The right hand side is< 2 if and only if r + s ≤ c.

The inequalityd rc e+ d sce ≤ d r+sc e signifies that the straight segmentS in N2 connecting
the points(e− s, s) and(r, e− r) contains as manyc-multiples, i.e., points inc · N2, as the
segmentU connecting(o, e− o) with (0, e) (see figure 5).

23



y

z

r

s
 (0,r+s+o) = (0,e)
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Figure 5. c-multiples on segments.

Note here that the first segment is just the maximal possible support ofP , whereas the second
corresponds to monomials whose coefficients in the expansion ofP+ must be zero in order
to haveheightyP+ > o. And c-multiples in these segments correspond to monomials which
can be eliminated fromP or P+ by coordinate changes inx applied tof and f+. It is
clear thatS \ c · N2 has at most one element more thanU \ c · N2. Heuristically speaking,
applying coordinate changesx → x + a(y, z) andy → y + z to f may produce at mosto
zero coefficients inP+, thus giving

heighty(f+) ≤ vol(f) + 1.

In addition to the preceding condition on the exceptional exponents, the occurrence of the
equalityheightpy(f

+) = volp(f)+1 implies for each value ofo, r ands, thatP is a uniquely
determined polynomial (up to a rescaling of the coordinates). The uniqueness ofP will be
proven in Proposition 1 of section 11. We have assumed here thatP is homogeneous, for
arbitrary polynomialsP only the tangent cone ofP would be prescribed. The shape ofP can
be explicitly be determined. It is given as follows (cf. section 16). Consider the polynomial
Ho
r given as

Ho
r(y, w) =

∑o
i=0

(
o+r
i+r

)
yiwo−i.

We then have

P (y, z) = yrzs ·Ho
r(y, z − y).

To prove the equality of the two polynomials it is sufficient, by the uniqueness ofP , to show
thatyrzs ·Ho

r(y, z−y) has the same properties asP with respect to the substitutiony → y+z.
This is easy to check, simply replacey by y+ z in yrzs ·Ho

r(y, z−y) and get by computation

(y + z)rzs ·Ho
r(y + z,−y) = zo+r+s − (−y)o+1 ·Hr−1

o+1(−y, y + z).

Working moduloc-th powers, we may deletezo+r+s from the sum on the right hand side so
that the height with respect toy of this polynomial is≥ o + 1 (actually, it is equal too + 1
sinceHr−1

o+1(−y, y + z) hasy-order0). Observe that

yr ·Ho
r(y, z − y) =

∑o
i=0

(
o+r
i+r

)
yi+r(z − y)o−i =

∑o+r
i=r

(
o+r
i

)
yi(z − y)o+r−i

equals the terms ofy-degree≥ r of the binomial expansion ofzo+r = (y + (z − y))o+r.

Let us return tof = xc + P (y, z). Assume thatheightpy(f
+) = volp(f) + 1 and

that f = xc + P (y, z) with homogeneous polynomialP (y, z) = yrzs · Ho
r(y, z − y).

We see from the above that ifo + 1 ≥ c then f has constant orderc along the curve
(x − z(r+s+o)/c + · · · , y − z), where the dots denote further monomials which eliminate
c-th powers fromP . Hence this curve is a permissible center of blowup forf (this is only
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the case ifP is homogeneous). Changing coordinates accordingly inx andy, f becomes
f̃ = xc − (−y)o+1 · Hr−1

o+1(−y, y + z). The permissible curve is defined now by(x, y).
Blowing it up decreases the exponento+1 of y by c and leaves the rest of̃f unchanged. This
can be repeated until the exponent ofy is< c. AsHr−1

o+1(y, z− y) hasy-order0, a subsequent
point blowup will make the order off drop belowc.

We may therefore assumeo + 1 < c from the beginning. In this case, applying a point
blowup tof = xc + yrzs ·Ho

r(y, z − y) yields a strict transformf ′ = xc + zo+r+s · g′(y, z)
with g′ of order≤ o + 1 < c. As r + s + o is a power ofc, we can now blow up the
curve(x, z) several times to make the factorzr+s+o equal to1. This yields a strict transform
f ′′ = xc + g′′ with g′′ = g′ of order< c. Hence the order off is < c, showing that it has
dropped. Then induction on the order off applies to resolvef .

This argument does not work if the polynomialP is not homogeneous, because then the
curve(x− z(r+s+o)/c + · · · , y − z) need no longer be permissible forf .

III. TECHNIQUES

7. Description of blowups in local coordinates

Let W be a regular scheme of dimensionn, and letZ be a closed regular subscheme of
dimensiond. Let π : W ′ → W be the induced blowup with centerZ and exceptional
componentY ′, and let(W ′, a′) → (W,a) denote the corresponding local blowup for some
pair of pointsa ∈ Z and a′ ∈ Y ′ abovea. We shall assume that the ground field is
algebraically closed. As the order of ideals is an upper semicontinuous function of the point
in question, we may and will restrict to closed pointsa anda′. Let V be a local regular
hypersurface ofW ata containingZ locally.

Assume given an idealK in W at a, with coefficient idealJ = coeffV (K) in V . LetD
be a normal crossings divisor inW at a transversal toV , setM = IV (D ∩ V ) and assume
thatJ factorizes intoJ = M · I. Let c = ordaK andc′ = orda′K ′ withK ′ = Kg the weak
transform ofK in W ′. Assume thatV has weak maximal contact withK (i.e., maximizes
the order ofJ), and thatZ is transversal toD. Moreover, we shall assume thata′ is an
equiconstant point forK, i.e., the orderc′ = c has remained constant. In this situation, local
coordinates can be chosen inW at a which make the description of the blowup and of the
transforms of ideals particularly explicit.

Lemma. There exist local coordinates x = (xn, . . . , x1) of W at a, i.e., a regular
system of parameters of OW,a, such that

(1) a has components a = (0, . . . , 0) with respect to x.

(2) V is defined in W by xn = 0.

(3) Z is defined in W by xn = . . . = xd+1 = 0.

(4) M is generated by the monomial xqn−1
n−1 · · · xq11 for some q ∈ Nn−1.

(5) Let π : (xn, . . . , x1) → (xnxn−1, xn−1, xn−2xn−1, . . . , xd+1xn−1, xd, . . . , x1) be the
expression of the blowup W ′ →W in the xn−1-chart. In the coordinates in W ′ induced
by π, the point a′ has components

a′ = (0, 0, a′n−2, . . . , a
′
j+1, 0, . . . , 0)

for some d ≤ j ≤ n − 2 and with a′n−2, . . . , a
′
j+1 6= 0. Here, j − d is the number of

components of D whose transforms pass through a′.
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(6) Local coordinates in W ′ at a′ are given by the monomial blowup π followed by the
translation x→ x+t with t = (0, 0, tn−2, . . . , tj+1, 0, . . . , 0) and ti = a′i. Alternatively,
they are given as the composition of the linear map λt : x→ (x+ txn−1) in W at a,
followed by the monomial blowup π of W . The map λt preserves Z and V and the
factorization J = M · I, but destroys the monomiality of M as in (4) with respect to
the given coordinates.

(7) The decomposition q = r+ ` of the exponent q of M in red and yellow components
is given by r = (qn−1, . . . , qj+1, 0, . . . , 0) and ` = (0, . . . , 0, qj , . . . , q1).

(8) The weak transform V ′ of V in W ′ is given in the induced coordinates at a′ by
xn = 0.

(9) If condition (4) is not imposed, the coordinates xn, . . . , x1 can be chosen so that a′

is the origin of the xn−1-chart and so that (W ′, a′) → (W,a) is the monomial blowup
π from (5) .

The assertions can be proven as follows. It is clear that(xn, . . . , x1) can be chosen
satisfying (1) to (3), and (4) can be achieved becauseD andZ are transversal. As for (5),
we know by (3) that the exceptional componentY ′ is covered by the charts corresponding
to xn, . . . , xd+1. As c′ = c andxn is supposed to appear in the tangent cone ofK we
conclude thata′ cannot lie in thexn-chart. Hencea′ lies in the other charts and satisfies there
a′n = 0. A permutation ofyn−1, . . . , yd+1 allows to assume thata′ lies in thexn−1-chart.
This permutation does not alter (2) and (3). AsY ′ is given in thexn−1-chart byxn−1 = 0
and asa′ ∈ Y ′ we geta′n−1 = 0. Fromad = . . . = a1 = 0 follows thata′d = . . . = a′1 = 0.
After a permutation ofxn−2, . . . , xd+1 we may assume thata′i 6= 0 for n − 2 ≥ i ≥ j + 1
anda′i = 0 for j ≥ i ≥ 1 andi = n− 1 with n− 2− j the number of non-zero components
of a′. This establishes (5).

Assertions (6), (7) and (8) follow from (5) and direct computations in the coordinates.
Finally, (9) is a consequence of the second part of (6).

In the sequel, we shall mostly assume that there are no yellow components inD (these are
the simple ones), so thatq = r consists only of red components, i.e., all components ofD at
a have transforms inW ′ which do not pass througha′. This is not a substantial restriction,
but simplifies the exposition considerably.

8. Height and volume of polynomials

The description of blowups in local coordinates as in the lemma of the last section allows
to observe the behaviour of polynomialsf in An when passing to their strict transform.
Assertion (6) shows that it suffices to apply to the polynomial the linear coordinate changeλt :
(xn, . . . , x1) → (xn, . . . , x1) + txn−1 in An at 0 with t = (0, 0, tn−2, . . . , tj+1, 0, . . . , 0),
and then the monomial substitution

π : (xn, . . . , x1) → (xnxn−1, xn−1, xn−2xn−1, . . . , xd+1xn−1, xd, . . . , x1).

The order of the coefficient ideal off in V : xn = 0 and of its strict transform can be estimated
by two numbers, the height and the volume off , associated to its Newton polyhedron. We
first define them for polynomials inV , and then for polynomials inW by passage to their
coefficient ideal inV .

To easen the notation, we shall writem for n − 1 andym, . . . , y1 for xn−1, . . . , x1. Let
y = (ym, . . . , y1) and setz = (ym−1, . . . , y1). Let P (y) be a polynomial iny, and letyr

with r ∈ Nm be the largest monomial which can be factored fromP ,
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P (y) = yr · g(y),

with some polynomialg(y). We write r instead ofq because, as mentioned above, we
shall assume that all components of the exponent are relevant, i.e., red. For a given vector
t = (0, tm−1, . . . , t1) of constantsti in the ground field, we set

P+(y) = Q(y) = P (y + tym).

We define thevolume of P as

vol(P ) = ord g = ordP − |r|,

i.e., as the orderord g of g at0. We shall often writeo for ord g. Theheight of P with respect
to z is defined as

heightz(P+) = ordzP+,

whereordzP+ denotes the order ofP+ with respect to the variablesz = (ym−1, . . . , y1),
i.e. ordzP+ = max {k, P+ ∈<ym−1, . . . , y1>

k}. The height of an ideal is defined as the
minimum of the heights of its elements. For a polynomial in two variables, the height and
volume are illustrated in figure 6.

o = vol(P) 

y

(r ,r )

supp(P)

o+r + r

r

r

r +o

height   (P )

supp(P  )

y

+

+

1

1

1

1

1

2

2

2
2

y

y

(r ,r )

o+r +r

r

r

r +o

1

1

1

1

1

2

2

2
2

y
1

p p-th power

Figure 6. Height and volume of polynomials.

Let now x be another variable and letf be a weighted homogeneous polynomial in
(x, ym, . . . , y1) of weighted degreee with respect to weights(w, 1, . . . , 1) with w ≥ 1. Let
c be the order off at0. Write

f(x, y) =
∑
akαx

kyα,

f+(x, y) = f(x, y + tym) =
∑
blβ(t)xlyβ ,

wherewk + |α| = e andwl+ |β| = e, with constantsakα and polynomialsblβ(t). LetV be
the hypersurfacex = 0 and let

coeffV (f) = (a
c

c−i

i , i < c)

be the coefficient ideal off in V (which we assume to be non-zero to avoid trivial cases). The
order ofcoeffV (f) at0 will be denoted bye. Let yr be the maximal monomial which can be
factored fromcoeffV (f), saycoeffV (f) = yr · I for some idealI. We set (see figure 7)

vol(f) = ord I = ord (coeffV (f))− |r| = e− |r|.

Similarly, we set

heightz(f+) = heightz(coeffV (f+)).
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In case wheref has the formf = xc+P (y) with a homogeneous polynomialP (y) of degree
e (this case will be significant in the sequel) we simply get

vol(f) = vol(P )

and

heightz(f+) = heightz(P+).
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Figure 7. Height and volume of weighted homogeneous polynomials.

By definition,vol(f) coincides with the ordero at0 of the divided coefficient ideal off in V .
We will see in the next section thatheightz(f+) bounds from above the ordero′ at 0 of the
divided coefficient ideal of the strict transformf ′ of f in V ′ under a blouwp as in the lemma
of the last section. As we wish to compareo with o′, we will be lead to comparevol(f)
with heightz(f+) (which can be treated as a question on the behaviour of polynomials under
linear coordinate changes without involving blowups). To maximize the order of the divided
coefficient ideals off andf ′ we will have to eliminatep-th powers appearing incoeffV (f)
andcoeffV ′(f ′) by coordinate changes inx. This can be best seen forf = xc + P (y) and
characteristicp = c, where changesx → x+ yα may cancel some monomials ofP , say, of
coeffV (f). Therefore we will also define volume and height of a polynomial modulop-th
powers, say

volp(f) = ord (coeffV (f)/modulop-th powers)− |r|.

and

heightpz(f
+) = heightz(coeffV (f+)/modulop-th powers),

where/modulo denotes the ideal obtained after elimination of all monomials which arep-th
powers iny.

9. Realizing weak maximal contact after blowup

We have seen in the examples that a hypersurfaceV which has weak maximal contact with
an idealK may transform under blowup into a hypersurfaceV st which has no longer weak
maximal contact with the transformed idealK ′ of K. In this section we study the local
isomorphisms of the blown up ambient schemeW ′ which mapV st into a hypersurfaceV ′ of
weak maximal contact above. This will allow to read off the possible increase of the order of
the corresponding coefficient ideal already below, and to relate it to the volume and height of
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the weighted tangent cone of the ideal. For convenience we work in the completions of the
local rings. In the sequel, “local” shall always refer to objects defined in the completions of
the local rings.

Let (W ′, a′) → (W,a) be a local blowup with exceptional componentY ′, let K be an
ideal inW andK ′ = Kg its weak transform ata′. We assume that the order ofK has
remained constant ata′, i.e., thatc′ = c. Let already be chosenV in W at a with weak
maximal contact withK relative to a normal crossings divisorD in W , i.e.,J = coeffVK
factorizes intoJ = M · I withM = IV (D ∩V ), whereV is transversal toD ando = ordaI
is maximal among all such choices ofV . Our objective is to find a hypersurfaceV ′ of weak
maximal contact withK ′ at a′. In addition we wish to read off directly fromK an upper
bound for the order of the associated (divided) coefficient idealI ′ of K ′ with respect toV ′.

We place ourselves in the situation of the lemma of section 7, with local coordinates
xn, . . . , x1 chosen ata so that the various conditions of this lemma are met. In particular,
ym, . . . , y1 will denotexn−1, . . . , x1. We assume for simplicity that the idealK is principal.
Let V � = V st be the strict transform ofV ata′. The superscript� will correspond to objects
defined throughV �, whereas a prime denotes objects inW ′ which play the same role as the
corresponding objects without prime inW . As c′ = c andV has weak maximal contact with
K at a we have by the lemma thata′ ∈ V �. Let J� be the coefficient ideal ofK ′ in V �.
By the commutation of the passage to coefficient ideals with local blowups at equiconstant
points (see the sections on commutativity in [EH] or [Ha 3]) we have thatJ� = M� · I� with
M� = IV �(D′∩V �) andI� = Ig, whereD′ = D∗+(o−c) ·Y ′. However, as the examples
3 and 4 from section 3 show,V � need not maximizeo� = orda′I�, i.e.,V � need not have
weak maximal contact withK ′ relative toD′.

Choose a local regular hypersurfaceV ′ inW ′ ata′ which has weak maximal contact with
K ′ relative toD′. There then exists a local automorphismψ′ of W ′ ata′ which mapsV � on
V ′. By the Gauss-Bruhat decomposition of the group of formal automorphisms with respect
to the lexicographic order as described in [Ha 1] we may assume, up to permutations, thatψ′

has in the induced coordinates ata′ the formψ′(xn, y) = (xn + b′(y), y) with some formal
power seriesb(y). In particular,ψ′ preservesD′ ∩ V � and hence the idealM�.

A look at the Newton polyhedron ofK shows, similarly as in [Hi 2, Ha 2, proof of Thm.
8.1], thatψ′ is induced from an automorphismψ(x, y) = (xn + b(y), y) of W ata for some
formal power seriesb, i.e., the respective diagram is commutative

(W ′, a′) −→ψ
′

(W ′, a′)

↓ ↓

(W ′, a′) −→ψ (W ′, a′)

Butψ need not preserveV nor allow to factor the exceptional components from the coefficient
ideal ofK in ψ(V ) (cf. the examples in section 3). We denote byψ∗ the dual map ofψ
between the local rings.

Let f(x, y) be an element of the weighted tangent cone ofK with respect to the given
coordinates(xn, ym, . . . , y1) at a and weights(w, 1, . . . , 1) ∈ Qn with w = e/c ≥ 1 and
e = ordaJ . Thenf has orderc at 0. It is weighted homogeneous of weighted degree
e = |q|+ o, whereJ = yq · I ando = ord I.

Set f̃(x, y) = f(x + h(y), y + tym) with h the homogeneous tangent cone ofb and
t = (tm, . . . , t1) = (0, tm−1, . . . , tj+1, 0, . . . , 0) with componentsti prescribed by the
coordinates ofa′. Asf(x+h(y), y) belongs to the weighted tangent cone ofψ∗(K) and as the
blowup(W ′, a′) → (W,a) is the composition ofλt : (x, y) → (x, y+tym) and the monomial
blowupπ ofZ in theym-chart which maps(xn, ym, . . . , y1) to (xn, ym, ym−1ym, . . . , y1ym),
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we see that the strict transform(f̃)g of f̃ under the monomial blowupπ is an element of the
weighted tangent cone of(ψ′)∗(K ′) whose coefficient ideal inV ′ belongs to the homogeneous
tangent cone ofJ ′.

As V ′ is assumed to maximize the ordere′ of J ′ in W ′ ata′, the order of(coeffV ′ f̃)g at
a′ thus bounds the ordere′ of J ′, say

e′ ≤ orda′((coeffV ′ f̃)g).

Let q′ ∈ Nm denote the exponent of the monomial factorM ′ of J ′ = M ′ · I ′ and set
z = (ym−1, . . . , y1). The exponentq′ stems from the exponentq of M via the formulas
from the last section:q decomposes intoq = r + ` with r = (qm, . . . , qj+1, 0, . . . , 0) the
red components and̀= (0, . . . , 0, qj , . . . , q1) the yellow components, andq′ = (qm + o −
c, 0, . . . , 0, qj , . . . , q1).

As the blowupπ is monomial in theym-chart we can interpret the preceding inequality
in terms off̃ before blowing up. A direct inspection of the Newton polyhedra yields the
(slightly weaker) bound

e′ ≤ ordz(coeffV (f̃)) + q′m = heightz(coeffV (f̃)) + q′m.

We could also take here the order with respect toz of coeffψ(V )(f), but computationally it is
easier to handlecoeffV (f̃). We obtain foro′ = orda′I ′ the inequality

o′ = e′ − |q′| ≤ heightz(f̃)− |`|.

In order to showo′ ≤ o it therefore suffices to show, usingo = e− |q| = vol(f), that

heightz(f̃)− |`| ≤ vol(f).

In the particular case where no transforms of exceptional components througha persist ata′,
say if ` = 0 andr = q, we get the sufficient inequality

heightz(f̃) ≤ vol(f).

If it holds, theno′ ≤ o will follow. But, by the examples 3 and 4 of section 3, we know
thatheightz(f̃) = vol(f) + 1 may occur. The next section prepares the material to compare
heightz(f̃) with vol(f).

10. Zwickels

Zwickels are convex polytopes inNn which we shall use to prescribe the supports of our poly-
nomials and to express conveniently the volume and the height of a weighted homogeneous
polynomial.

Let be givenc ≤ e in N and writecw = e with andw ∈ Q. Let

Lc = {(k, α) ∈ N1+m, k < c} → Qm : (k, α) → c
c−k · α

be the map projecting elements(k, α) of the layerLc in N1+m to elements ofQm. The center
of the projection is the point(c, 0, . . . , 0) (see figure 8).
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Figure 8. Projection ofLc ⊂ N1+m to Qm with center(c, 0, . . . , 0).

Let q ∈ Nm with |q| = q1 + . . . + qm ≤ e be fixed, and assume given a decomposition
q = r+`with r = (qm, . . . , qj+1, 0, . . . , 0) and` = (0, . . . , 0, qj , . . . , q1) for somej between
m − 1 andd ≥ 0. Define theupper zwickel Z(q) in N1+m as the set of points(k, α) with
0 ≤ k ≤ c,wk+ |α| = e and projection c

c−k · α ≥cp q, denoting by≥cp the componentwise
order (see figure 9). ThusZ(q) is given by

Z(q) : wk + |α| = e and α ≥cp d c−kc · (qm, . . . , q1)e.

x

y y

Z(q)

x

y

1 1

2

c

e

e
1q

q

e-q -q

y2

2

1 2

Figure 9. The upper zwickelZ(q) in N3.

Define thelower zwickel Y (r, `) in N1+m as the set of points(k, β) in N1+m with 0 ≤ k ≤ c,
wk + |β| = e and projection c

c−k · β ≥cp (|r|, 0, . . . , 0, `) (see figure 10). ThusY (r, `) is
given by

Y (r, `) : wk + |β| = e and β ≥cp d( c−kc · |r|, 0, . . . , 0, c−kc · qj , . . . , c−kc · q1)e.
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Figure 10. The lower zwickelY (r, `) in N3.

For j = m − 1 and hencer = (qm, 0, . . . , 0) and` = (0, qm−1, . . . , q1) we haveZ(q) =
Y (r, `). In general, the two zwickels are different.

We will show first that for anyr and` and0 ≤ k ≤ e/w = c the slice

Y (r, `)(k) = {(k, β) ∈ Y (r, `)} = Y (r, `) ∩ ({k} × Nm)

has at least as many elements as the slice

Z(q)(k) = {(k, α) ∈ Z(q)} = Z(q) ∩ ({k} × Nm).

This holds fork = 0, by definition ofZ(q) andY (r, `). For arbitraryk, the inequality
d c−kc · |r|e ≤ |d c−kc · re| implies that the condition

wk + |β| = e and β ≥cp (|d c−kc · re|, 0, . . . , 0, d c−kc · qje, . . . , d c−kc · q1e)

is more restrictive than the condition

wk + |β| = e and β ≥cp (d c−kc · |r|e, 0, . . . , 0, d c−kc · qje, . . . , d c−kc · q1e)

definingY (r, `)(k). For eachk, the set of pairsk, β satisfying the first condition has as many
elements asZ(q)(k) because|r|+ qj + . . .+ q1 = |q|. The claim follows.

We now invoke the arithmetic inequality|rc| > (φc(r)− 1) · c from the definition of tame
and wild points in section 5. We will show that if it holds, the upper zwickelZ(q) contains
as manyc-rays as the lower zwickelY (r, `). Here, ac-ray is the segment inZ(q) between
the point(c, 0, . . . , 0) ∈ N1+m and a lattice point in{0} × c · Nm.

For the proof, let(0, cα) be a point of0× c ·Nm. It belongs toZ(q)(0)∩ c ·Nm+1 if and
only if |cα| = e and

cα ≥cp d(qm, . . . , q1)e = (dqme, . . . , dq1e).

As the components ofα are integers, the second inequality is equivalent to

α ≥cp (d qm

c e, . . . , d
q1
c e).

Conversely,(0, cβ) in 0× Nm belongs toY (r, `)(0) ∩ c · Nm+1 if |cβ| = e and

cβ ≥cp d(|r|, 0, . . . , 0, qj , . . . , q1)e = (d|r|e, 0, . . . , 0, dqje, . . . , dq1e),

say

β ≥cp (d |r|c e, 0, . . . , 0, d
qj

c e, . . . , d
q1
c e).
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The hypothesis|rc| > (φc(r)− 1) · c is equivalent to the equality

|d r
c

c e| = d |r
c|
c e

and hence also to

|d rc e| = d |r|c e.

This implies that the second condition on(0, cβ) can be written as

β ≥cp (|d rc e|, 0, . . . , 0, d
qj

c e, . . . , d
q1
c e).

Now the assertion follows from

|d rc e| = d qm

c e+ . . .+ d qj+1
c e.

We have shown that the arithmetic inequality implies that the upper zwickelZ(q) contains as
manyc-rays as the lower zwickelY (r, `).

The relation of zwickels with the concepts of height and volume of the last section is the
following (we leave the verification as an exercise). Iff(x, y) is a weighted homogeneous
polynomials of weighted degreee with respect to(w, 1, . . . , 1) and if the hypersurfaceV is
given byx = 0 thenyq is a factor ofcoeffV f , i.e., coeffV f = yq · I, if and only if f has
support inZ(q). If f̃(x, y) = f(x + h(y), y + tym) is associated tof(x, y) as in the last
section theñf(x, y) satisfies the relevant inequality

heightz f̃ − |`| > e− |q| = vol(f)

if and only if all coefficients off̃ in Y (r, `) are zero except the coefficient ofxc. Therefore,
to prove the inequality

heightz(f̃)− |`| ≤ vol(f)

it is sufficient to show that some coefficient off̃ in Y (r, `) different from the coefficient of
xc is non zero.

We will show in the next section that if all these coefficients off̃ are zero and if the
arithmetic inequality|rc| > (φc(r) − 1) · c holds thenf must be ac-th power, sayf =
(x + a(y))c for some seriesa(y). This shows in turn that the order ofcoeffV (f) was
not maximal over all coordinate choices, i.e. that the hypersurfaceV does not have weak
maximal contact withf , contradictory to the assumption. Hence we may conclude that
|rc| > (φc(r)−1) · c impliesheightz(f̃)−|`| ≤ vol(f) and hence, as seen earlier,o′ ≤ o. In
case|rc| ≤ (φc(r)−1)·c this need not follow, but we can show that at leastheightz(f̃)−|`| ≤
vol(f) + 1 holds. The polynomialsf in three variables for which equality occurs here will
be completely determined.

11. Transformation matrices

This section determines the relation between the coefficients of polynomials obtained from
each other by specific coordinate changes. In the sequel letf(x, y) and f̃(x, y) = f(x +∑
γ hγy

γ , y+tym) be weighted homogeneous polynomials of weighted degreeewith respect
to weights(w, 1, . . . , 1) on (x, y) = (x, ym, . . . , y1), where the sum

∑
γ hγy

γ ranges over
γ ∈ Nm with |γ| = w, and wherehγ and the components oft = (0, tm−1, . . . , t1) belong to
the ground field. Letc = e/w be the order off . Write

f(x, y) =
∑
akαx

kyα and f̃(x, y) =
∑
blβ(t)xlyβ

with wk + |α| = wl + |β| = e. We assume thatac0 6= 0, i.e., thatxc appears with non-zero
coefficient. This can be achieved for infinite ground fields by a generic linear coordinate
change. For simplicity, we shall takeac0 = 1. LetV be the hypersurface inW = An defined
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by x = 0. Let us fix the decompositionq = r + ` ∈ Nm with r = (qm, . . . , qj+1, 0, . . . , 0)
and` = (0, . . . , 0, qj , . . . , q1) for some indexj betweenm − 1 and0 (the center of blowup
may still have dimensiond ≥ 0). Thenyq is a factor ofcoeffV f if and only if f − xc has
support in the upper zwickelZ = Z(q) with q ∈ Nm, andcoeffV f̃ has order> e − |r| in
z = (ym−1, . . . , y1), i.e.,heightz f̃ − |`| > e− |q|, if and only if all coefficients off̃ − xc in
the lower zwickelY (r, `) are zero.

Write elementsβ ∈ Nm as(βm, β-) whereβ- = (βm−1, . . . , β1) ∈ Nm−1. LetY ∗(r, `)
be the subset ofY (r, `) of elements(k, β) ∈ N1+m given by

|β-| ≤ e− wk − d c−kc · |r|e,

β- ≥cp d c−kc · (0, . . . , 0, qj , . . . , q1)e.

By definition, for eachk, the sliceY ∗(r, `)(k) has the same cardinality as the sliceZ(q)(k) of
the upper zwickelZ(q). Forα andδ in Zm set

(
α
δ

)
=

∏
i

(
αi

δi

)
where

(
αi

δi

)
is zero ifαi < δi

or δi < 0. For Γ a subset ofNm, define fork ∈ N andλ = (λγ)γ∈Γ ∈ NΓ the alternate
binomial coefficient

[
(
k
λ

)
] =

∏
γ∈Γ

(
k−|λ|γ
λγ

)
with |λ|γ =

∑
ε∈Γ,ε<lexγ

λε.

Let Γ ⊂ Nm be the set ofγ ∈ Nm with |γ| = w and writeh = (hγ)γ∈Γ ∈ KΓ. Set
λ · Γ =

∑
γ∈Γ λγ · γ ∈ Nm and fix t = (0, tm−1, . . . , tj+1, 0, . . . , 0). The transformation

matrix between the coefficientsakα andblβ(t) of f andf̃ looks as follows.

Proposition 1. Let f(x, y) =
∑
akαx

kyα and f̃(x, y) = f(x +
∑
γ∈Γ hγy

γ , y + tym) =∑
blβ(t)xlyβ be weighted homogeneous polynomials with respect to weights (w, 1, . . . , 1)

as above. Fix q = r + ` ∈ Nm with zwickels Z(q) and Y ∗(r, `) ⊂ Y (r, `).

(1) The transformation matrix A = (Akα,lβ) from the coefficients akα of f to the
coefficients b`β(t) of f̃ is given by

Akα,lβ =
∑

λ∈NΓ,|λ|=k−l

(
k
l

)
[
(
k−l
λ

)
]
(
α

δαβλ

)
· hλ · tα−δαβλ ,

where δαβλ = (αm, β- − (λ · Γ)-) ∈ Nm and hγ = Πγh
λγ
γ .

(2) The quadratic submatrix A� = (Akα,lβ) of A with (kα, lβ) ranging in Z(q) ×
Y ∗(r, `) has determinant tρ(Z,Y

∗(r,`)) where ρ(Z, Y ∗(r, `)) is a vector in Nm−1 inde-
pendent of h = (hγ)γ∈Γ with ρm = 0 and ρj = · · · = ρ1 = 0.

(3)Assume that f has support in Z(q). If tm−1, . . . , tj+1 are non zero, the coefficients
blβ of f̃ in the lower zwickel Y (r, `) determine all coefficients of f . In particular, there
is at most one non-zero polynomial f(x, y) with support in Z(q) such that f̃(x, y)−xc
has all coefficients in Y (r, `) equal to zero.

Proof. Multinomial expansion off̃(x, y) = f(x +
∑
γ hγy

γ , y + tym) gives for each
kα ∈ N1+m

(x+
∑
γ∈Γ hγy

γ)k(y + tym)α =

=
∑
l∈N,l≤k

(
k
l

)
xl(

∑
γ∈Γ hγy

γ)k−l
∑
δ∈Nm,δ≤cpα

(
α
δ

)
yδtα−δy

|α−δ|
m =

=
∑
l

(
k
l

)
xl

∑
λ∈NΓ,|λ|=k−l

∏
γ∈Γ

(
k−l−|λ|γ

λγ

)
(hγyγ)λγ ·

∑
δ

(
α
δ

)
yδtα−δy

|α−δ|
m =

=
∑
l

∑
λ

∑
δ

(
k
l

) ∏
γ

(
k−l−|λ|γ

λγ

)(
α
δ

)
· hλ · tα−δ · xl · yΣγλγ · yδ · y|α−δ|m =

=
∑
l

∑
λ

∑
δ

(
k
l

)
[
(
k−l
λ

)
]
(
α
δ

)
· hλ · tα−δ · xl · yλ·Γ+δ · y|α−δ|m .

As δαβλ = ((δαβλ)m, δ-αβλ) = (αm, β-− (λ · Γ)-) we can rewrite for givenk, α andl a sum∑
eλδ · yλ·Γ+δ · y|α−δ|m overλ ∈ NΓ andδ ∈ Nm with coefficientseλδ as
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∑
λ∈Nm,|λ|=k−l

∑
δ≤cpα

eλδ · yλ·Γ+δ · y|α−δ|m =

=
∑

|λ|=k−l
∑
δ≤cpα

eλδ · (y-)(λ·Γ)-+δ- · y|α−δ|+(λ·Γ+δ)m
m =

=
∑
β∈Nm

∑
|λ|=k−l eλδαβλ

· (y-)β
- · yβm

m =

=
∑
β∈Nm (

∑
|λ|=k−l eλδαβλ

) · yβ .

Here the coefficientseλδαβλ
of the last two sums are set equal to zero ifδαβλ 6∈ Nm or

δαβλ 6≤cp α, say if
(
α

δαβλ

)
= 0. Thus

f̃(x, y) =
∑
kα akα · (x+

∑
γ∈Γ hγy

γ)k · (y + tym)α =

=
∑
kα

∑
lβ

∑
|λ|=k−l akα

(
k
l

)
[
(
k−l
λ

)
]
(
α

δαβλ

)
· hλ · tα−δαβλ · xl · yβ =

=
∑
lβ βlβ · xl · yβ .

This gives assertion (1). Observe here that we have used thatac0 = 1 andbc0 = 1.

For (2), note thatAkα,lβ = 0 if k < l. Hence the matrixA is block triangular with blocks
A(k) = (Akα,kβ)αβ on the diagonalk = l. By the choice ofY ∗(r, s), the induced blocks
A�(k) of A� are square matrices. HenceA� is a square matrix. We get from assertion (1)
that

Akα,kβ =
∑

|λ|=0

(
α

δαβλ

)
· hλ · tα−δαβλ =

(
α

δαβ0

)
· tα−δαβ0 =

(
α-
δ-

αβ0

)
· tα

-−δ-αβ0 ,

with α = (αm, α-) andδαβ0 = ((δαβ0)m, δ-αβ0) = (αm, β-). Recall thatkα andlβ vary in
Z(q) andY (r, s) respectively so that

wk + |α| = e and α ≥cp d c−kc · (qm, . . . , q1)e,

wl + |β| = e and β ≥cp d c−lc · (|r|, 0, . . . , 0, qj , . . . , q1)e.

Hence, ask = l, we have

|α-| = e− wk − αm and α- ≥cp d c−kc · (qm−1, . . . , q1)e,

|δ-αβ0| = |β-| = e−wk−βm and δ-αβ0 ≥cp d c−kc · (0, . . . , 0, qj , . . . , q1)e.

The determinant ofA�(k) is given by the lemma below, taking thereb = (c−k)·w−|d c−kc ·re|,
µ = d c−kc · (0, . . . , 0, qj , . . . , q1)e andθ = d c−kc · (qm−1, . . . , qj+1, 0, . . . , 0)e. Substituting
there the variablestm−1, . . . , t1 by constants in the ground field withtm−1, . . . , tj+1 6= 0
the determinant is non zero. We conclude that allA�(k) and henceA� are invertible. This
proves (2).

Assertion (3) follows from (2) since the transformation matrix between thekα in Z(q)
and thelβ in Y (r, s) has, by (2) and sincetm−1, . . . , tj+1 are non zero, maximal rank equal
to the cardinality ofZ(q). This concludes the proof of the proposition.

Lemma. Let b ∈ N, µ ∈ Nm−1 and U = {δ ∈ Nm−1, |δ| ≤ b, δ ≥cp µ}. Set
g = #U =

(
m−1+b−|µ|

m−1

)
. Let θ ∈ Nm−1 and let t = (tm−1, . . . , t1) be a vector of

variables. Then

det((
(
γ+θ
δ

)
· tγ+θ−δ)γ,δ∈U ) = tρ

with ρ = g · θ ∈ Nm−1 independent of t.

Proof. WriteAθ for the(g × g)-square matrix with entriesAθγδ =
(
γ+θ
δ

)
· tγ+θ−δ. Observe

that forθ = 0 ∈ Nm−1 we havedetA0 = 1, since the matrix is upper triangular with1’s on
the diagonal. From

(
j+1
i

)
=

(
j
i

)
+

(
j
i−1

)
follows for anyε ∈ Nm−1 with |ε| = 1 that

Aθ+εγδ = tε ·Aθγδ +Aθγ,δ−ε if δ ≥cp ε,
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Aθ+εγδ = tε ·Aθγδ else.

Therefore the matrixAθ+ε is obtained fromAθ by multiplying forδ ≥cp ε the columnsAθ−,δ
by tε and then adding the columnAθ−,δ−ε. The other columnsAθ−,δ are only multiplied with
tε. This implies that

det(Aθ+ε) = tg·ε · det(Aθ).

Now induction implies thatdet(Aθ) = tg·θ · det(A0) = tg·θ.

12. Bounding the increase ofo under blowup

Let againf(x, y) be a weighted homogeneous polynomial of weighted degreee with respect
to weights(w, 1, . . . , 1) on (x, y) = (x, ym, . . . , y1), and letc = e/w be the order off
at 0. Set f̃(x, y) = f(x +

∑
γ hγy

γ , y + tym) with γ ∈ Nm, |γ| = w, wherehγ and the
components oft = (0, tm−1, . . . , t1) belong to the ground field. Write

f(x, y) =
∑
akαx

kyα and f̃(x, y) =
∑
blβ(t)xlyβ

with indiceskαandlβ subject towk+|α| = wl+|β| = e. We may assume thatac0 = bc0 = 1.
Let V be the hypersurface defined byx = 0. Recall thatheightz(f̃) = ordz(coeffV f̃) for
z = (ym−1, . . . , y1) andvol(f) = e− q for coeffV (f) = yq · I with q ∈ Nm.

Fix a decompositionq = r + ` = (qm, . . . , qj+1, 0, . . . , 0) + (0, . . . , 0, qj , . . . , q1) for
somem − 1 ≥ j ≥ 0 with induced zwickelsZ(q) andY (r, `) in N1+m. Let φc(r) denote
the number of components ofr not divisible byc.

Theorem 2. Let f(x, y) =
∑
akαx

kyα and f̃(x, y) = f(x +
∑
γ hγy

γ , y + tym) =∑
blβ(t)xlyβ be as above, t = (0, tm−1, . . . , tj+1, 0, . . . , 0) for some 0 ≤ j ≤ m − 1.

Assume that tm−1, . . . , tj+1 are non-zero. Let q = r + ` = (qm, . . . , qj+1, 0, . . . , 0) +
(0, . . . , 0, qj , . . . , q1).

(1) Assume that e/c 6∈ N or |rc| > (φc(r) − 1) · c or h = 0. If f has support in Z(q)
and if f̃ − xc has support outside Y (r, `) then f is a c-th power.

(2) Assume that e/c 6∈ N or |rc| > (φc(r) − 1) · c or h = 0. If f has support in Z(q)
and is not a c-th power then f̃ satisfies the inequality

ordzcoeff(f̃) ≤ e− |r|.

Equivalently,

heightz(f̃)− |`| ≤ e− |q| = vol(f).

(3) If e/c ∈ N and |rc| ≤ (φc(r)− 1) · c we have

ordzcoeff(f̃) ≤ e− |u|,

where u ∈ Nm is maximal with respect to the componentwise order satisfying u ≤cp r
and |uc| > (φc(u)− 1) · c. In particular, we get the bound

ordzcoeff(f̃) ≤ e− |r|+ |rc| −maxm≥i≥j+1r
c
i ,

or, equivalently,

heightz(f̃)− |`| ≤ e− |q|+ |rc| −maxm≥i≥j+1r
c
i .
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As an immediate consequence of these estimates we obtain.

Corollary . Let f be an element of the weighted tangent cone of a principal ideal K
in W at a. Assume that J = coeffV (K) factors into J = yq · I with q ∈ Nm. Let
W ′ → W be the blowup of W with regular center Z ⊂ V and exceptional divisor Y ′.
Let a′ ∈ Y ′ be a point above a ∈ Z such that c′ = c for the orders of K at a and
its weak transform K ′ at a′. Let o = e − |q| = ordaI, o′ = orda′I ′. If e/c 6∈ N or
|rc| > (φc(r)− 1) · c, then

o′ ≤ o.

Proof of the theorem. Let us prove assertion (1). From Proposition 1 of section 11 follows
that f is uniquely determined bỹf . It therefore suffices to construct ac-th powerf with
support inZ(q) whose associated polynomialf̃ has support outsideY (r, `).

If w 6∈ N, there are nohγ ’s, sayh = 0 and the coordinate changex+ h(y) is the identity.
The proof is then similar to the proof in casew ∈ N by setting allhγ = 0, but without using
the arithmetic condition|rc| > (φc(r)− 1) · c. We will omit it.

So assume thatw ∈ N. The setT of γ’s in Nm satisfying

|γ| = w and γ ≥cp (d| rc |e, 0, . . . , 0, d
qj

c e, . . . , d
q1
c e)

forms an equilateral(m − 1)-dimensional simplex inΓ = {γ ∈ Nm, |γ| = w} ⊂ Nm.
Consider its projectionT - in Nm−1 obtained by omitting the first componentγm. It consists
of elementsγ- in Nm−1 subject to

T - : |γ-| ≤ w − d| rc |e and γ- ≥cp (0, . . . , 0, d qj

c e, . . . , d
q1
c e).

ThusT - forms an equilateral(m − 1)-dimensional simplex inNm−1 with side lengthw −
d| rc |e−|d

`
ce|and(m−1)-dimensional volume 1

(m−1)! ·(w−d|
r
c |e−|d

`
ce|)

m−1. Asγ- ∈ Nm−1

determinesγ ∈ Γ we may writehγ- for hγ . Consider the system of equations

hγ- = −
∑

δ-≥cpγ-

(
δ-
γ-

)
tδ

-−γ-gδ- , γ- ∈ T -,

with unknownsgδ- = gδ and indicesδ- ranging in the equilateral simplexS- in Nm−1 given
by

S- : |δ-| ≤ w − d qm

c e and δ- ≥cp (d qm−1
c e, . . . , d q1c e).

ThusS- has side lengthw − |d qc e| and hence(m − 1)-dimensional volume 1
(m−1)! · (w −

|d qc e|)
m−1. The assumption|rc| > (φc(r)− 1) · c is equivalent to

|d rc e| ≤ d| rc |e,

which in turn is equivalent to

|d qc e| ≤ d| rc |e+ |d `ce|.

HenceT - = U - with U - as in the lemma of the last section, takingb = w − d| rc |e and
µ = (0, . . . , 0, d qj

c e, . . . , d
q1
c e). The lemma implies together withtm−1, . . . , tj+1 6= 0 that

the system

hγ- = −
∑

δ-≥cpγ-

(
δ-
γ-

)
tδ

-−γ-gδ- , γ- ∈ T -,

admits solutionsgδ- with δ- ∈ S-. Setf(x, y) = (x +
∑
δ∈S gδy

δ)c with δ = (δm, δ-)
satisfyingδ- ∈ S-. This polynomial is a weighted homogeneousc-th power of weighted
degreee and with support inZ(q), by definition ofS-. Moreover, astm = 0,

f(x, y + tym) = (x+
∑
δ∈S gδ · (y + tym)δ)c =

37



= (x+
∑
δ∈S gδ · yδm

m · (y- + t-ym)δ
-
)c =

= (x+
∑
δ-∈S- gδ · yw−|δ

-|
m ·

∑
γ∈Γ,γ-≤cpδ-

(
δ-
γ-

)
· (y-)γ

- · (t-)δ-−γ- · y|δ
-−γ-|

m )c =

= (x+
∑
γ∈Γ

∑
δ-∈S-,δ-≥cpγ- gδ · y

w−|γ-|
m ·

(
δ-
γ-

)
· (y-)γ

- · (t-)δ-−γ-)c =

= (x+
∑
γ∈Γ y

γ ·
∑
δ-∈S-,δ-≥cpγ- gδ ·

(
δ-
γ-

)
· (t-)δ-−γ-)c =

= (x−
∑
γ∈T y

γ · hγ +
∑
γ∈Γ\T y

γ · (. . .))c

with some unspecified sum(. . .). Observe that ifhγ = 0 for all γ ∈ T , then allgδ = 0. The
equalities imply that

f̃(x, y) = f(x+
∑
γ∈Γ hγy

γ , y + tym) =

= f(x+
∑
γ∈T hγy

γ , y + tym) +R(x, y) =

= xc +R(x, y),

whereR is a polynomial with support outsideY (r, `), by definition ofT . Thusf̃ − xc has
zero coefficients inY (r, `). This proves assertion (1). Assertion (2) follows from assertion
(1) and the description of the order ofcoeffV f̃ in terms ofY (r, `) given in section 10 on
zwickels. Assertion (3) holds by replacing inr all componentsri but the maximal component
rj by ui = ri − rci . This newu satisfies the arithmetic condition and hence the described
inequalities.

13. Persistence of hypersurfaces of weak maximal contact

We have already seen that in specific circumstances, the strict transform of a hypersurfaceV

of weak maximal contact with an idealK at a need no longer have weak maximal contact
with the weak transformKg of K at a pointa′ abovea. We show that if the order of the
divided coefficient ideal does not increase, weak maximal contact may neither persist under
blowup.

Example 5. Letf = x3+yz2 ·((y−z)2+z3) be given in characteristicp = 3 with coefficient
idealyz2 · ((y − z)2 + z3) in the hypersurface of weak maximal contactV = {x = 0}. The
divided coefficient ideal is((y − z)2 + z3) of order2 (this is the secondary order off ).
Then f+(x, y, z) = f(x, y + z, z) equalsf+(x, y, z) = x3 + (y + z)z2 · (y2 + z3) =
x3 + z2 · (y2(y+ z)+ z3(y+ z)) (recall that in the examples, the role ofy andz is exchanged
with respect to the notation used for(ym, . . . , y1)). Its strict transform under the monomial
point blowup in thez-chart is

f ′ = x3 + z2 · (y2(y + 1) + z(y + 1)).

The secondary order with respect toV g = {x = 0} is 1. It is not maximal since the
coordinate changex→ x− z yields

f̃ ′ = x3 + z2 · (y2(y + 1) + zy)

of secondary order2. Thus the weak maximal contact ofV with K does not persist ata′

when passing to the transformsV ′ = V st andK ′ = Kg.

In figure 11, we see that in order to maximizeo′ the dotted points in the polygon on the
right hand side have to be eliminated by a coordinate change inx. This may be also achieved
before blowup by eliminating the dotted points in the polygon on the left hand side by a
coordinate change inx, but this has no effect on the ordero. Thus, thoughV = {x = 0} has
weak maximal contact, the maximality ofo′ after blowup is not necessarily realized byV st.
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Figure 11. Newton polygon before and after blowup.

Observe that in the case where the secondary order drops, the persistence ofV is not
needed, since induction on the first two components of the invariant suffices. But ifo′ = o,
further components of the invariant defined through subsequent coefficient ideals have to be
compared, and this is only possible if the respective coefficient ideals are transforms of each
other inside hypersurfaces ofV andV st.

IV. OUTLOOK

14. Moh’s upper bound for the increase of the secondary order

We reproduce the proof of Moh’s theorem from [Mo 1] showing that under blowup of a
polynomialf = xc + yq · g of orderc = pb the ordero of g at any point of the exceptional
divisor wherec remains constant can increase at most bypb−1.

Theorem 3. Let x and y = (ym, . . . , y1) be variables, and consider a polynomial
f = xp

b

+yq ·g(y) modulo pb-th powers in y, where p is the characteristic of the ground
field, b ≥ 1 and q ∈ Nm. Let ordp

b

y g = volp
b

f be the order of g after elimination of all

pb-th powers. Assume that |q|+ ordp
b

y g ≥ pb, and that yq · g(y) is not a pb-th power.
Fix some vector t = (0, tm−1, . . . , t1) with non-zero components in the ground field,
and set f+ = xp

b

+ (y + tym)q · g(y + tym), where (y + tym)q · g(y + tym) is again
considered modulo pb-th powers. Set z = (ym−1, . . . , y1). Then

heightp
b

z f
+ ≤ volp

b

f + pd,

where d ≤ b− 1 is maximal such that the tangent cone of yq · g(y) is a pd-th power.

Thus the ordero of g modulopb-th powers iny can increase under blowup at most bypb−1

at points in the exceptional divisor where the order off remains constant, say

o′ ≤ o+ pb−1.
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In particular, forb = 1, we haveo′ ≤ o + 1. Here, the center of blowup is assumed to be
regular and contained in the top locus off , and coordinates are chosen as in the lemma on
blowups in local coordinates of section 7.

Observe here that if the equalityheightp
b

z f
+ = volp

b

f + pb−1 occurs, the tangent cone
of yq · g(y) is unique up topb-th powers, by Theorem 1 of section 5 (apply it first to the case
b = 1 and take thenpb−1-st powers).

Proof. Let us treat first the caseb = 1, sayd = 0, in which case the tangent coneP of yq ·g(y)
is not ap-th power. SetP+ = P (y + tym), t- = (tl, . . . , t1) andq- = (ql, . . . , q1) with
l = m − 1. Let o = volpf = ordyP − |q| = deg P − |q| andu = heightpzf

+ = ordzP+,
both orders taken up top-th powers.

FromP divisible byyq follows thatP+ belongs to the idealyqm
m · <z+ t-ym>|q-|, which

implies that

∂zi
P+ ∈ yqm

m · <z + t-ym>|q-|−1

for all i betweenl and1. Fromu = heightpzP
+ follows that we can writeP+ up to p-th

powers as

P+(ym, z) =
∑

|α|=u aα(ym, z) · zα,

where for at least oneα ∈ Nl with |α| = u we haveaα(0) 6= 0 andα is not a multiple of
p. Choose such anα. There is ani betweenl and1 such thatαi is not a multiple ofp. Fix
such ani, for examplei = l. Then∂zl

P+ 6= 0 and∂zl
P+ ∈<z >|u|−1. Combining both

inclusions we get

∂zl
P+ ∈ yqm

m · <z+t-ym>|q-|−1 ∩ <z>u−1= yqm
m · <z+t-ym>|q-|−1 · <z>u−1.

The last equality holds becauseti 6= 0 for all i. The order ofP+ with respect toy is |q|+ o,
and as∂zl

P+ 6= 0 we can conclude that

qm + |q-| − 1 + u− 1 ≤ |q|+ o− 1,

say
u ≤ o+ 1 or heightpzf

+ ≤ volpf + 1.

This settles the caseb = 1. For arbitraryb, letd ≤ b−1 be maximal so thatP andP+ arepd-

th powers. The preceding argument applied to thepd-th rootQ+ of P+ yieldsheightp
b

z Q
+ ≤

volp
b

Q+ 1, henceheightp
b

z P
+ ≤ volp

b

P + pd, sayheightp
b

z f
+ ≤ volp

b

f + pd.

Remark 1. Let us assumeb = 1 andm = 2, sayf = xp + yrzs · g(y, z) with ord g = o.
Let g be homogeneous. Then, up to permutation ofy and z, yr−1 and (y − z)o divide
∂y[yrzs · g(y, z)], hence, by comparison of degrees and up to units

∂y[yrzs · g(y, z)] = yr−1zs · (y − z)o.

This identity is in particular fulfilled by the examples in the table of section 17. Similar
formulas should hold in several variables.

Remark 2. If the reasoning of the proof would go through consideringyq · g(y) instead of
its tangent coneP (y) we would get that

∂zl
(y + tym)q · g(y + tym) ∈ yqm

m · <z + t-ym>|q-|−1 · <z>|u|−1.

In particular, the ideal ofK[x, y] generated byx+ h(y) (with suitablep-th powersh(y)) and
<z− t-ym>would give a permissible center forf as long asu = o+1 ando ≥ ord f −1 =
c− 1. Compare this with observations 1 and 2 from section 17.
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15. Comparison with the Bernstein-Kushnirenko theorem

We show how the inequalities betweenheightpz(f
+) andvolp(f) are related to Bernstein-

Kushnirenko theorem on the number of isolated zeros of systems of polynomial equations
and the Minkowski mixed volume of the associated convex polytopes.

Let K1, . . . ,Kn be convex integer polytopes (= convex hull of finitely many points in
Nn) in Rn. Assume givenn complex polynomialsP1, . . . , Pn in n variables with support in
K1, . . . ,Kn. For sufficiently generic coefficients the common zero-set of the polynomials is
finite (we allow that some zeros appear with multiplicities). The following result was proven
by Bernstein and Kushnirenko [Be, Kh1, Kh2, Kh3, Ku1, Ku2, HS, Ro and RW].

Theorem 4. The number of isolated zeros of n complex polynomials P1, . . . , Pn in
the torus (C∗)n is bounded from above by the mixed volume MV(K1, . . . ,Kn) of
K1, . . . ,Kn. Equality holds if all zeros are isolated, counted with multiplicity, and
if the Ki are the convex hulls of the supports of the Pi.

The mixed volume ofK1, . . . ,Kn is defined asMV(K1, . . . ,Kn) = voln(K1 + . . .+Kn)−∑n
i=1 voln(K1 + . . .+ K̂i + . . .Kn) + . . .+ (−1)n−1

∑n
i=1 voln(Ki), wherevoln denotes

the euclidean volume inRn (see figure 12).

0

K2

o

o

α

β

K1

0

K2

o

o

α

β K  + K 1 2

Figure 12. Mixed volume of two polytopes inR2.

Example 6. In one variable, the number of non-zero roots of a polynomial is given by the
difference of the degree of the polynomial and the order of its Taylor expansion at zero. This
difference is just the volume of the convex hull of its support.

Example 7. The circleP1 : x2 + y2 = 25 and the straight lineP2 : 3x + 4y = 25 meet
tangentially in the point(3, 4), which is a double point of the intersection. The associated
polytopes areK1 = conv{(0, 0), (2, 0), (0, 2)} andK2 = conv{(0, 0), (1, 0), (0, 1)}. We
haveK1 +K2 = conv{(0, 0), (3, 0), (0, 3)}. ThereforeMV = vol(K1 +K2)− vol(K1)−
vol(K2) = 9/2− 4/2− 1/2 = 2 as asserted.

Example 8. Let be givenn − 1 quadratic homogeneneous equationsPi(x) = 0 and one
inhomogeneous linear equationPn(x) = 0. If the common zeros are isolated, their number
is 2n−1. Indeed, the quadratic equations have identical polytopesK = 2 · S whereS is
the (n − 1)-simplex spanned by the standard basise1, . . . , en of Nn, and the polytopeL
of the linear polynomialPn is spanned by the origin0 of Nn ande1, . . . , en. The mixed
volume MV(K, . . . ,K, L) equals by multilinearity the product2n−1 · MV(S, . . . , S, L).
Using the Bernstein-Kushnirenko theorem,MV(S, . . . , S, L) equals the number of isolated
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zeros of one inhomogeneous linear andn−1 homogeneous linear equations. This is1, hence
MV(K, . . . ,K, L) = 2n−1.

Example 9. Consider now a hypersurfaceX in Cn given by the polynomial equation
P (x) = 0. We wish to determine or bound from above the order ofX at a pointa ∈ (C∗)n.
The first possibility is to compute the Taylor expansion ofP at a by expandingP (x + a)
binomially and taking the order of the resulting series inx. This order is the order ofX at
a. Another way to determine the order ofX at a is to take a sufficiently generic section of
X with a straight line througha and to compute the multiplicity of the intersection point.
For this we can use the Bernstein-Kushnirenko theorem. The straight line is given byn − 1
linearly independent equationsP1, . . . , Pn−1. They can be chosen non-homogeneous because
a ∈ (C∗)n, and so that their polytopesK1, . . . ,Kn−1 are spanned by0 ∈ Nn ande1, . . . , en.
It then suffices to compute the mixed volume ofK1, . . . ,Kn−1 andKn, whereKn is the
polytope associated toP .

Let’s do this in two variables,X : P (y, z) = 0. LetK1 be the2-simplex spanned by0,
e1 ande2, and letK2 ⊂ N2 be an arbitrary convex polytope. LetQ ⊂ N2 be the smallest
quadrantα+ N2 containingK2, and seto = maxβ∈K2 |β| − |α|. That the mixed volume of
K1 andK2 equalso can be seen from figure 12.

Homogenizing the polynomialP (y, z) we get a homogeneous polynomialP (y, z, w) of
degree|α| + o. The monomialyα1zα2 can be factored fromP , yielding a homogeneous
polynomial of degreeo. This is just the volumevol(P ) of P as defined in earlier sections.

SettingP
+
(y, z, w) = P (y, z + ty, w + t′y) with non-zerot, t′ in the ground field, we

conclude by the above that the(z, w)-order ofP
+

is bounded from above byo. Hence

heightz,wP
+ ≤ o. This coincides with our results on transformation matrices (see Theorem

2 in section 12 in caseh = 0).

It can be expected that similar assertions hold in higher dimensions. Already in three vari-
ables it is more complicated though feasible to compare the mixed volumeMV(K1,K1,K2)
– withK1 spanned by0 ande1, . . . , e3 in N3 andK2 ⊂ N3 arbitrary – with the degree of the
polynomialP minus the degree of the largest monomial which can be factored fromP .

16. Description of tangent cone for increase of secondary order

We place ourselves again in dimension3. Let f(x, y, z) = xc + yrzs · g(y, z) with c = p be
a weighted homogeneous polynomial, withg homogeneous of degreek (the casec = pb with
b ≥ 2 should be treated analogously). Consider alsof̃(x, y, z) = f(x + h(y, z), y + tz, z)
as earlier, for some given homogeneous polynomialh(y, z) and a constantt. We assume
that the ground field is perfect. SetP (y, z) = yrzs · g(y, z) andP+(y, z) = P (y + tz, z).
We have by definitionvol(f) = vol(P ) andheighty(f̃) = heighty(P+) provided allp-th
powers were deleted fromP andP+. Instead of eliminating these powers, we let again
volp(P ) and heightpy(P

+) be the corresponding values after elimination, i.e., working in
K[y, z]/K[yp, zp]. By Moh’s result we then have

heightpy(P
+) ≤ volp(P ) + 1.

We shall investigate in this section the special formP must have in order to produce the
equality

heightpy(P
+) = volp(P ) + 1.

If the expansion off has otherx-powers ofx-exponent not divisible byp these cannot
be altered by coordinate changes inx due to characteristicp. Thus if such terms really
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appear,heightpy(f̃) ≤ volp(f) must hold. Therefore we may restrict to the case where
f = xc + P (y, z). The case of higher dimension, though interesting, will be postponed.

The invertibility of the transformation matrix between the coefficients off andf̃ implies
thatheightpy(P

+) = volp(P ) + 1 can only hold if the following conditions are satisfied (cf.
Theorem 2 of section 12)

(1) the degreer + s+ k of P is a multiple ofp,

(2) rp + sp ≤ p for the residuesrp andsp of r ands modulop.

In addition, wheneverp does not divide
(
k+r
k+1

)
, the polynomialP is of the following form,

(3) P (y, z) = yrzs ·Hk
r (y, tz − y) = yrzs ·

∑k
i=0

(
k+r
i+r

)
yi(tz − y)k−i,

modulop-th powers and up to scalar multiplication of the variables, whereHk
r (y, w) is a

hybrid polynomial defined as

Hk
r (y, w) =

∑k
i=0

(
k+r
i+r

)
yiwk−i.

Similar formulas should hold in higher dimension. In case wherep divides
(
k+r
k+1

)
the

polynomial yrzs · Hk
r (y, tz − y) is a p-th power and thus does not give a candidate for

heightpy(P
+) = volp(P ) + 1. We are indebted to R. Blanco for detecting at this place an

inaccuracy in an earlier draft of this paper. For instance, takingp = k = 2 andr = s = 3
the polynomialP with heightpy(P

+) = volp(P ) + 1 equalsP = y3z3(y2 + z2) whereas
y3z3 ·H2

3(y, z − y) = y4z4 yields a square.

There is an alternative description of polynomialsP with heightpy(P
+) = volp(P ) + 1.

The partial derivative∂yP will eliminate all p-th powers (recall thatr + s + k is assumed
to be divisible byp by (1)). As derivation with respect toy commutes with the coordinate
change(y, z) → (y + tz, z), we have(∂yP )+ = ∂y(P+). Observe now that∂yP has the
same volumek asP , and that in the derivatives it is no longer necessary to neglectp-th
powers. In order that(∂yP )+ has heightk it is then immediate that∂yP must be of the form
yr−1zs(y − tz)k (dehomogenizeP , derive and use the fundamental theorem of algebra).
Therefore, up top-th powers and independently of whetherp divides

(
k+r
k+1

)
or not,P can be

computed as they-integral

(3’) P (y, z) =
∫
yr−1zs(y − tz)kdy.

To prove (3), recall that we have already seen in Theorem 1 of section 5 that forf as above
and for givenr, s, k andt the polynomialP (y, z) is uniquely determined up top-th powers
by the equalityheightpy(P

+) = volp(P ) + 1. To prove the formula from above it therefore
suffices to show thatQ = yrzs · Hk

r (y, tz − y) satisfiesheightpy(Q
+) = volp(Q) + 1 (note

thatheightpy(Q
+) ≤ k+1 will imply thatQ+ and henceQ is not ap-th power). By definition,

Q has volume≤ k. We will show thatQ+(y, z) = (y+ tz)rzs ·Hk
r (y+ tz,−y) has modulo

p-th powers order≥ k + 1 with respect toy. Computation gives

Q+(y, z) = (y + tz)rzs ·Hk
r (y + tz,−y) =

= (y + tz)rzs ·
∑k
i=0

(
k+r
i+r

)
(y + tz)i(−y)k−i =

= zs ·
∑k
i=0

(
k+r
i+r

)
(y + tz)i+r(−y)k−i =

= zs ·
∑k+r
i=r

(
k+r
i

)
(y + tz)i(−y)k+r−i =

= zs·
∑k+r
i=0

(
k+r
i

)
(y+tz)i(−y)k+r−i−zs·

∑r−1
i=0

(
k+r
i

)
(y+tz)i(−y)k+r−i =

= zs(y + tz − y)k+r − (−y)k+1zs ·
∑r−1
i=0

(
k+r
i

)
(y + tz)i(−y)r−1−i =

= zs(y + tz − y)k+r − (−y)k+1zs ·
∑r−1
i=0

(
k+r
r−1−i

)
(−y)i(y + tz)r−1−i =
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= zs(y + tz − y)k+r − (−y)k+1zs ·
∑r−1
i=0

(
k+r
i+k+1

)
(−y)i(y + tz)r−1−i =

= tk+rzr+s+k − (−y)k+1zs ·Hr−1
k+1(−y, y + tz).

As Hr−1
k+1(−y, y + tz) hasy-order0 if and only if its coefficient

(
k+r
k+1

)
at zk is not divisible

by p we get assertion (3).

The above computations with hybrid polynomials give a certain duality between(y +
tz)rzs ·Hk

r (y + tz,−y) and(−y)k+1zs ·Hr−1
k+1(−y, y + tz). A similar relation, exchanging

y andz, should hold betweenHk
s(−y, z + ty) andHs−1

k+1(z + ty,−y).

To describeP (y, z) = yrzs · Hk
r (y, tz − y) more closely we consider fork ∈ N and

variablesy andw the binomial expansion of(y + w)k+r, say

(y+w)k+r =
∑k+r
i=0

(
k+r
i

)
yiwk+r−i =

∑r−1
i=0

(
k+r
i

)
yiwk+r−i+

∑k+r
i=r

(
k+r
i

)
yiwk+r−i.

The second summand is divisible byyr. Dividing it by yr we get

Hk
r (y, w) =

∑k+r
i=r

(
k+r
i

)
yi−rwk+r−i =

∑k
i=0

(
k+r
i+r

)
yiwk−i.

We call this sum the polynomial part ofy−r · (y+w)k+r. It is a homogeneous polynomial of
degreek. Let s ≥ 0 be such thatr + s+ k is divisible by the characteristicp. We claim that
if rp + sp > p thenyrzs ·Hk

r (y, tz− y) is ap-th power. This shows why forrp + sp > p the
equalityheightpy(f̃) = volp(f) + 1 cannot occur. If the homogeneous part of the coefficient
ideal is ap-th power, this order can be increased by a coordinate change inx. Moreover, we
shall show that ifk = mp + ` for somem ≥ 0 and` ≥ 0, we have modulop-th powers the
equality

(y + w)rws ·Hk
r (y, w) ≡ (y + w)rws · wmp ·H`

r(y, w).

A direct proof of both assertions is pending. However we can use Proposition 1 of section 11:
The non-existence of polynomialsP modulop-th powers withheighty(P+) = vol(P ) + 1
if rp + sp > p implies thatyrzs ·Hk

r (y, tz − y) must be ap-th power. The uniqueness ofP ,
and the fact that both(y + w)rws ·Hk

r (y, w) and(y + w)rws · wmp ·H`+r
r (y, w) allow the

increase of the secondary order when replacingw by tz − y implies the above equality.

As g has degreek, the polynomialP (y, z) = yrzs · g(y, z) has volume≤ k (i.e., the
length of the convex hull of the support ofg is k). After the substitutiony → y + tz in
yrzs · g(y, z) the preceding computation shows that ifp dividesr + s + k, then they-order
modulop-th powers of the resulting polynomialP+(y, z) = P (y+ tz, z) equalsk+1. Thus,
modulop-th powers,heighty(P+) = vol(P ) + 1.

Settingk = mp+ l with m ≥ 0 and0 ≤ ` < p we may also write modulop-th powers

yrzs ·Hk
r (y, tz − y) = yrzs · (y − tz)mp ·H`+r

r (y, tz − y) =

= yrzs · (y − tz)mp ·
∑`
i=0

(
`+r
i+r

)
yi(tz − y)`−i =

= yrzs · (y − tz)mp ·
∑`
i=0

∑`−i
j=0

(
`+r
i+r

)(
`−i
j

)
y`−j(tz)j .

The expansion ofHk
r (y, tz − y) as a polynomial iny andz also equals

Hk
r (y, tz − y) =

∑k
i=0(−1)i

(
k+r
k−i

)(
i+r−1
i

)
tk−iyizk−i.

This can be seen by expandingHk
r (y, tz − y) =

∑k
i=0

(
k+r
i+r

)
yi(tz − y)k−i binomially, and

using the formulas (
k−i+j
k−i

)(
k+r
k−i+j

)
=

(
k+r
k−i

)(
i+r
j

)
,∑i

j=0(−1)j
(
i+r
j

)
= (−1)i

(
i+r−1
i

)
from [Ri, p. 3, GKP, p. 168 and p. 165]. The coefficient oftk−iyizk−i thus equals
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∑i
j=0(−1)j

(
k−i+j
k−i

)(
k+r
k−i+j

)
=

=
∑i
j=0(−1)j

(
k+r
k−i

)(
i+r
j

)
=

=
(
k+r
k−i

) ∑i
j=0(−1)j

(
i+r
j

)
=

=
(
k+r
k−i

)
(−1)i

(
i+r−1
i

)
=

= (−1)i
(
k+r
k−i

)(
i+r−1
i

)
.

This leaves us with the question whether there is some intrinsic description of polynomials of
form Hk

r (y, tz − y), for instance as a derivative of certain polynomials.

The computation also shows after dehomogenization by settingz = 1 that Hk
r (y + t, t) =∑k

i=0

(
k+r
i+r

)
(y + t)i(−y)k−i equals the expansion oftk+r(t+ y)−r truncated at degreek in

y. This implies that

Hk
r (y, w) =

∑k
i=0

(−r
i

)
(y + w)k−i(−w)i,

hence

P (y, z) = yrzs ·Hk
r (y, tz−y) = yrzs ·

∑k
i=0

(−r
i

)
(y−tz)i(tz)k−i.

This description ofP as a truncated inverse should be the starting point to determineP in
the case of three variables (take the truncation ofRk+|r|(t1, t2) · (t1 + y1)−r1(t2 + y2)−r2 at
y1y2-degreek, withR homogeneous of degreek + |r|).

17. Examples of hybrid polynomials

We will now give some examples for hybrid polynomials in two variables. We shall always
consider two prior monomial blowups inA3 in different charts producing the two exceptional
componentsyr andzs appearing inP .

Example 10. Takef = x3 + y7− yt9z9 in characteristic3 with secondary ordero = 7. Two
monomial point blowups, first in thez-chart, then in they-chart, yield

f = x3 + y7 − yt3z9,

f1 = x3 + y7z4 − yt3z7 = x3 + z4 · (y7 − t3z3),

f2 = x3 + y8z4 − y5t3z7 = x3 + y5z4 · (y3 − t3z3).

Two further curve blowups with centers(x, y) and (x, z) allow to reduce the exceptional
components to

f3 = x3 + y2z · (y − tz)3.

The secondary order off3 is 3. Applying now the translationy → y + tz followed by the
monomial point blowup in thez-chart and the changex→ x− yzt2/3 we get

f3 = x3 + (y + tz)2z · y3,

f4 = x3 + z3 · y3(y + t)2,

f4 = x3 + z3 · y3(y2 + 2ty).

The secondary order off4 is 4. However, if there are no higher order terms ing4 =
y3(y2 + 2ty) we may reduce it to1 by a curve blowup with permissible center(x, y). But
if g4 is not homogeneous, the order off4 will in general not be constant along thez-axis
defined by(x, y), and thus this center is not permissible.

Example 11. Let p = 11, k = 12 andr = 6, s = 4. A sequence of a monomial point
blowups in thez-chart, a monomial curve blowup in thez-chart with center(x, z) and a
monomial point blowup in they-chart yield
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f = x11 + 1 · yz(6y2 − 7tz3)(y2 − tz3)11,

f1 = x11 + z15 · y(6y2 − 7tz)(y2 − tz)11,

f2 = x11 + z4 · y(6y2 − 7tz)(y2 − tz)11,

f3 = x11 + y6z4 · (6y − 7tz)(y − tz)11.

The secondary order is12. The translationy → y + tz applied tof3 gives

f3 = x11 + (y + tz)6z4 · (6y − tz)y11.

We apply tof3 the monomial point blowup in thez-chart followed by the coordinate change
x→ x− yzt7/11 and obtain

f3 = x11 + z11 · (y + t)6(6y − t)y11=

= x11 + z11 · (6y7 + . . .+ 36y2t5 − t7)y11,

f3 = x11 + z11 · (6y7 + . . .+ 36y2t5)y11,

This last polynomial has secondary order13.

Example 12. We have proven earlier that the order cannot increase ifrp + sp > p = c or if
r or s are divisible byp. The resultingHk

r is identically zero modulop-th powers. Take for
instancep = 3, r = s = 2 andk = 2. Thenrp + sp = 2 + 2 > p = 3, and

P (y, z) = yrzs ·Hk
r (y, tz − y) =

= y2z2(
(
k+r
r

)
(tz − y)2 +

(
k+r
1+r

)
y(tz − y) +

(
k+r
2+r

)
y2) =

= y2z2(
(
4
2

)
(tz − y)2 +

(
4
3

)
y(tz − y) +

(
4
4

)
y2) =

= y2z2(0(tz − y)2 + 4y(tz − y) + y2) = ty3z3 ≡ 0

is identically zero modulo third powers. We leave it as an exercise to check this for allr, s
andk with rp + sp > p andr + s+ k divisible byp.

Example 13. For p = 5, r = 4, s = 4 and k = 2 we haverp + sp = 8 > p and
r + s+ k = 10 = 2p. We get

P (y, z) = y4z4 ·H2
4(y, tz − y) =

= y4z4(
(
k+r
r

)
(tz − y)2 +

(
k+r
1+r

)
y(tz − y) +

(
k+r
2+r

)
y2) =

= y4z4(
(
6
4

)
(tz − y)2 +

(
6
5

)
y(tz − y) +

(
6
6

)
y2) =

= y4z4(0(tz − y)2 + y(tz − y) + y2) =

= y4z4(0y2 + tyz + 0t2z2) = ty5z5 ≡ 0.

Example 14. If one ofr or s is divisible byp we get the following examples. Takingp = 3,
r = 0, s = 2 andk = 1 givesg(y, z) = z2(y + (tz − y)) = tz3 ≡ 0. Similarly, p = 3,
r = 0, s = 1 andk = 2 gives

P (y, z) = z(y2 + 2y(tz − y) + (tz − y)2) =

= z(y2−2y2+2tyz+t2z2−2tyz+y2) = z(0y2+0tyz+t2z2) = t2z3 ≡ 0.

Example 15. In contrast, ifrp+sp ≤ p, the polynomialP (y, z) = yrzs ·Hk
r (y, tz−y) need

not be ap-th power. We list the following examples, none of which is congruent0 modulo
p-th powers. For simplicity, we take alwayst = 1.

(a)p = 3, r = s = k = 1:

P (y, z) = −yz · (y + z).
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(b) p = 3, r = s = 1, k = 4:

P (y, z) = yz · (y4 + y3z + y2z2 − yz3 − z4),

which, by the coordinate changey → y + z, transforms into

P+(y, z) = z · (y5 + z5).

(c) p = 3, r = s = 1, k = 7:

P (y, z) = −yz · (y7 + y6z + y5z2 + y4z3 + y3z4 + y2z5 + yz6 + z7) =

= −yz · (y8 − z8)/(y − z),

which, by the coordinate changey → y + z, transforms into

P+(y, z) = −z · (y8 − z8).

(d) p = 3, r = 2, s = 1, k = 3:

P (y, z) = y2z · (−y3 + yz2 + z3),

which, by the coordinate changey → y + z, transforms into

P+(y, z) = z · (−y5 + y4z + z5).

(e)p = 5, r = 1, s = 2, k = 2:

P (y, z) = yz2 · (y2 + 2yz + 3z2).

(f) p = 5, r = 2, s = 1, k = 2: symmetric to (e), say

P (y, z) = y2z · (y2 − yz + 2z2).

(g) p = 5, r = 1, s = 1, k = 3:

P (y, z) = −yz · (y3 + y2z + yz2 + z3) =

= −yz · (y + z)(y + 2z)(y + 3z).

Observation 1. It turns out that we may assume that the secondary ordero = k of f =
xc + yrzs · g is ≥ c = p whenever an increase ofo occurs. Indeed, after the increase the
exceptional factor iszk+r+s. Write k + r + s = mp. Thenm curve blowups with center
(x, z) make the exponent drop to0 without changing the rest of the polynomialf . Now, if
ord g would be< c − 1, then the transform ofyrzs · g under the first point blowup and the
following sequence of curve blowups would have, using again Moh’s result, ordero+ 1 < c,
making the order of the transform off drop belowc. This shows that we may restrict to the
caseo ≥ c− 1. But if o = c− 1, thenr+ s+ o cannot be divisible byc since0 < r+ s ≤ c,
and no increase would occur. Thus we may even assume thato ≥ c.

Observation 2. If f = xc + yrzs · g were really weighted homogeneous, and henceg

homogeneous withg = Hk
r (y, tz − y), we could perform the coordinate changey → y + tz

getting modulop-th powers the polynomial (setting againk = o)

xc + (−y)k+1zs ·Hr−1
k+1(y, y + tz).

Here the curvex = y = 0 is permissible sincek ≥ c, and blowing it up makes the exponent
k+1 drop tok+1−p. This can be repeated until the exponent of(−y) is less thanp, leaving
the rest of the polynomial unchanged. But asHr−1

k+1(y, y + tz) has degreer − 1 < p − 1,
blowing up the origin followed by curve blowups makes as in observation 1 the order off

drop belowc.

Thus only the higher order terms ofg make troubles, since thenx = y = 0 need no longer
be permissible. Possibly it is appropriate to weaken the notion of permissibility (still ensuring
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that the order off does not increase). Compare this with remark 2 at the end of section 14.
Also note that the Newton polygon ofg is a simplex.

Observation 3. Let V be a finite dimensional vector space of polynomials in two variables,
for example the space of polynomials of degree≤ d for a certaind. Consider forf =
xc+yrzs · g(y, z) with g ∈ V the sequence of blowups given by the resolution invariant as in
[EH]. Assume that the process does not terminate. Then there exists a valuation along which
the increase of the secondary ordero of f happens infinitely many times. As we have seen in
this section, each increase imposes linear relations between the coefficients of the polynomial
we started with (no relations only occur ifo = 1, which is a case excluded by observation
1). Thus the set of polynomials inV for which the resolution process may not terminate is
Zariski-closed. If the linear relations imposed on the coefficients ofg by each increase are
sufficiently independent (e.g., define a regular sequence of polynomials inK[V ]), then their
common solution set would be empty, thus showing that for anyg ∈ V the increase of the
secondary order off = xc + g can occur only finitely many times. This would prove the
existence of resolutions in a non-constructive way.

The definition ofHk
r (y, w) shows that at each stage of the resolution process where the

secondary order increases the tangent cone is specified by prescribed coefficients. Linear
coordinate changes correspond to multiplying the vector of all coefficients of monomials of
the tangent cone by an invertible matrix of binomial coefficients. Thus the equations appear
on the orbits of the action of this matrix in each degree. A monomial blowup alters the tangent
cones by making them weighted homogeneous. These structures had to be made more precise
to show that the resulting linear equations on the coefficients at the initial stage of the process
are linearly independent.

Observation 4. For surfaces, the pointa′ abovea where the order may increase, is unique,
and determined by the coefficients of the tangent cone ata. This suggests that in higher
dimensions it is always contained in a regular codimension2 scheme. It is however not clear
how to profit of this descent in dimension.

Observation 5. As mentioned in section 14, the derivative of hybrid polynomials with respect
to one variable is a product of three linear polynomials. For instance, in the examples above,
we have

∂y[yrzs ·Hk
r (y, z − y)] = yr−1zs · (y − z)k.

Exercise. Construct a polynomial in three variables and a sequence of blowups where the
increase of the secondary order occurs twice (ork-times). Determine the shape of hybrid
polynomials in several variables.

Table of hybrid polynomials P = Hk
r (y, z − y) =

∑k
i=0

(
k+r
i+r

)
yi(z − y)k−i modulo p

[p, r, s, k] P (y, z) mod p

[2, 1, 1, 2] y2 + z2 (butHk
r (y, z − y) = yz differs, because

(
k+r
k+1

)
is even),

[3, 1, 1, 1] 2z − y,

[3, 1, 1, 4] 2z4 + 2z3y + z2y2 + zy3 + y4

[3, 1, 1, 7] 2y7 + 2z6y + 2z5y2 + 2z4y3 + 2z3y4 + 2z2y5 + 2zy6 + 2z7,

[3, 1, 2, 3] z3 + zy2 + 2y3,

[3, 1, 2, 6] y6 + 2z4y2 + z3y3 + 2zy5 + z6,

[3, 2, 2, 2] zy, (r + s > p, henceyrzsP (y, z) is p-th power),
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[3, 2, 2, 5] 2z4y + 2zy4, (r + s > p, henceyrzsP (y, z) is p-th power),

[5, 1, 1, 3] 4z3 + 4z2y + 4zy2 + 4y3,

[5, 1, 1, 8] y8 + 4z7y + 4z6y2 + 4z5y3 + z4y4 + z3y5 + z2y6 + zy7 + 4z8,

[5, 1, 2, 2] 3z2 + 2zy + y2,

[5, 1, 2, 7] 4y7 + 3z7 + 2z6y + z5y2 + z3y4 + 2z2y5 + 3zy6,

[5, 1, 3, 1] 2z − y,

[5, 1, 3, 6] y6 + 2z6 + 4z5y + z2y4 + 3zy5,

[5, 1, 4, 5] z5 + zy4 + 4y5,

[5, 2, 2, 1] 3z + 3y,

[5, 2, 2, 6] 2y6 + 3z6 + 3z5y + z3y3 + 2zy5,

[5, 2, 3, 5] z5 + z2y3 + 4y5,

[5, 3, 3, 4] z2y2, (r + s > p, henceyrzsP (y, z) is p-th power)

[5, 4, 4, 2] zy, (r + s > p, henceyrzsP (y, z) is p-th power),

[7, 1, 1, 5] 6z5 + 6z4y + 6z3y2 + 6z2y3 + 6zy4 + 6y5,

[7, 1, 2, 4] 5z4 + 4z3y + 3z2y2 + 2zy3 + y4,

[7, 1, 3, 3] 4z3 + z2y + 4zy2 + 6y3,

[7, 1, 4, 2] 3z2 + 4zy + y2,

[7, 1, 5, 1] 2z + 6y,

[7, 2, 2, 3] 3z3 + z2y + zy2 + 3y3,

[7, 2, 3, 2] 6z2 + 6zy + 3y2,

[7, 2, 4, 1] 3z + 5y,

[7, 3, 3, 1] 4z + 4y,

18. Quings

The failure of commutativity in characteristicp > 0 can be reformulated as an independent
problem on equivalence classes of polynomials modulop-th powers.

A quing is the quotient of a polynomial ringQ = K[x]p := K[x]/K[x]p in n variables
x = (x1, . . . , xn) over a fieldK of characteristicp (settingp = ∞ if the characteristic is
zero). Its elements will be calledqu’nomials. We haveK[x]/K[x]p = K[x]/K[xp] where
K[xp] denotes the subring generated by allp-th powers of the variables. In this case, denoting
by L the sublatticep · Zn of Zn, we haveQ = K[x]p = K[Z \ L], i.e., each qu’nomial inQ
has support inZ \ L.

Clearly, quings are abelian groups but not rings. A qu’hypersurface in affine spaceAn is
defined as a non-zero qu’nomial. The first objective should be to prove the resolution of plane
qu’curves. A plane qu’curve is given by a qu’nomial in two variables, i.e., the equivalence
class inK[x, y]/K[xp, yp] of a polynomial inK[x, y].

The main problem here is to develop a reasonable concept of the order of qu’nomials
(more precisely, of products of monomials with qu’nomials). This order shall be intrinsic
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(i.e., invariant under coordinate changes and under multiplication by invertible power series),
upper semicontinuous and shall not increase under blowup in permissible centers.

We have seen that examples of typef = yrzs · g(y, z) of degree a power ofp with g as
before of orderk are essentially the unique qu’nomials in two variables where the definition
of the order causes problems. This is due to the fact that when applying tof the coordinate
changey → y + z we getf̃ = zr+s+k + h(y, z) whereh consists of monomials of degree
≥ k + 1 in y. As r + s + k is a multiple ofp, f̃ is equivalent toh. Defining the order off
ask (the monomial factor is deduced as is done when passing from total to weak transforms
under blowups), the Bernstein-Kushnirenko theorem would say in this case that they-order
of f̃ is bounded from above byk. This does not hold here, since they-order ofh is≥ k + 1
(actually, equal tok + 1 by Moh’s result or direct verification).

The example is rather special, and its coefficients are quite unique in order to allow the
phenomenon to take place. To see this it suffices to take a homogeneous polynomialf of
degreer + s+ k with unknown coefficients and monomial factoryrzs and to apply a linear
coordinate changey → y + tz such that the resulting̃f hasy-order≥ k + 1 modulop-th
powers. You will fall onf = yrzs · g(y, z) of degree a multiple ofp and withg of the special
form from above.

The task for resolution of plane qu’curves in this vein would therefore be to detect these
hybrid qu’nomials and either to treat them separately, or to define a new concept of order
where these examples have order≥ k+ 1, but the order still does not increase under blowup.
Or, alternatively, to show that in an infinite sequence of point blowups, the homogeneous
forms of lowest degrees of the transforms of the qu’nomial to be resolved can only be finitely
many times hybrid.

A satisfactory theory of quings and a concept of order of qu’nomials cannot be anticipated
yet.
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Narváez). Proc. Conf. on Singularities La Rábida. Birkḧauser 1996.
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