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Abstract. We present a concise proof for the existence and construction of a strong resolution
of excellent schemes of finite type over a field of characteristic zero. Our proof is based on earlier
work of Villamayor, Encinas–Villamayor and Bierstone–Milman. It proposes some substantial
simplifications which may be helpful for a better understanding of how to prove Hironaka’s
famous theorem on embedded resolution of singularities.
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Hironaka’s spectacular proof of resolution of singularities is built on a multiple and
intricate induction argument. It is so involved that only few people could really un-
derstand it. The constructive proofs given later by Villamayor, Bierstone–Milman
and Encinas–Villamayor presented important steps towards a better understand-
ing of the reasoning. They describe an algorithmic procedure for resolution, using
a local invariant to show that the situation improves under blowup. The centers
of blowup are given as the locus where the invariant attains its maximal value.

Despite this simple outset, the proofs are not easy, mostly because the definition
of the invariant involves the whole sequence of blowups having occurred so far in
the resolution process. To make the invariant intrinsic and to patch the local
constructions various equivalence relations have to be introduced.

When trying to understand these proofs it became clear that to define the
invariant it is actually not necessary to refer to the entire sequence of earlier
blowups. It is sufficient to have information on two sets of exceptional components
at each stage of the process. Including this information to the resolution datum
(called mobile in this paper) the invariant can be defined directly without going
back to the very beginning of the resolution process.

“If you wish to cross the Sahara, better take a map with you where you mark
daily the trajectory you have made so far rather than to return every morning to
the starting point in order to know in which direction to continue.”

Already Abhyankar and Hironaka took a map with them, and the idea is also
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used in the other papers, though in a different way. The extra luggage we shall
carry with us in this paper specifies exactly the combinatorial book-keeping infor-
mation which allows to construct the local invariant. The resulting proof should
be regarded as a conceptualized version of the existing proofs. In substance it is
the same proof.

Although the invariant can now be defined promptly potential readers may still
hesitate to try to understand how to prove resolution of singularities. For many,
it is a black box better not to be touched. But Hironaka’s proof is a phantastic
proof, and very beautiful. Our objective is to transmit this fascination – and to
open the box. So let us start.

The result

Let X be a reduced singular scheme. A strong resolution of X is, for every closed
embedding of X into a regular ambient scheme W , a proper birational morphism
ε from a regular scheme W ′ onto W subject to the following conditions.

Explicitness. ε is a composition of blowups of W in regular closed centers Z
transversal to the exceptional loci.
Embeddedness. The strict transform X ′ of X is regular and has normal crossings
with the exceptional locus in W ′.
Excision. The morphism X ′ → X does not depend on the embedding of X
in W .
Equivariance. ε commutes with smooth morphisms W− → W , embeddings
W → W+, and separable field extensions. In particular, ε is an isomorphism
outside the singular locus of X and commutes with group actions.

The resolution of X is global with centers equal to the top locus of an upper semicontinuous
invariant ia(X) on W given by the local rings of X (effectiveness). The resolution commutes
with open immersions, local and global diffeomorphisms and taking cartesian products with
regular schemes. The smooth morphisms of equivariance need not be defined over the ground
field. Passage to the completions implies resolution of formal schemes. The resolution process
can be implemented.

The existence of resolutions satisfying the first two properties was established
for excellent schemes of finite type over a field of characteristic zero by Hiron-
aka [H1]. For such schemes, the construction of a strong resolution in the above
sense through a local invariant defining the centers is due to Villamayor [V1, V2],
Bierstone–Milman [BM1, BM2, BM3] and Encinas–Villamayor [EV1, EV2]. The
algorithm was implemented by Bodnár–Schicho [BS].

Weak resolution theorems in characteristic zero have been established with
different methods by Abramovich–de Jong, Abramovich–Wang and Bogomolov–
Pantev [AJ, AW, BP]. The main results on resolution in positive characteristic are
due to Abhyankar, Giraud, Lipman, Cossart, de Jong and Kuhlmann. We refer to
the survey [Ha1] for details.
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The proof of the present paper for the existence and construction of strong
resolutions in characteristic zero relies on ideas and techniques from Hironaka,
Abhyankar and Giraud. The invariant and the centers are almost identical to the
ones used by Villamayor, Bierstone–Milman and Encinas–Villamayor. There are,
however, several improvements with respect to the existing literature. These are
listed below.

The resolution of schemes will be deduced from the resolution of singular mo-
biles. Mobiles are intrinsic global data which encode the singular and combinatorial
structure of the resolution problem and record its transversality with the excep-
tional divisor. Locally, each mobile is exploited through the choice of a punctual
setup associated to it. This is a string of ideals in decreasing dimensions which
determines the resolution invariant. The latter is shown not to depend on the
chosen setup. It thus gives a local measure of the resolution complexity of the
mobile. Its top locus defines a global center of blowup, which in turn determines
the transform of the mobile. The invariant of the transformed mobile is shown to
have decreased and thus induction applies to give the resolution of mobiles and
hence of schemes.

The main issues of the proof are the following.
• Coverings of global and patchings of local objects are avoided by considering
stratified ideals and punctual setups of mobiles defined only locally. This and
the use of transversal handicaps eliminates also the use of equivalence relations.
• All constructions and arguments but one are characteristic free, the exception
being the existence of osculating hypersurfaces.
• The Hilbert–Samuel function and normal flatness are avoided by working
with the order of ideals and weak transforms. The centers of blowup lie in
the weak transforms of the scheme though possibly not in the strict transform.
This is not a serious drawback, since all centers map to the singular locus,
but simplifies things considerably. For equidimensional schemes, the Hilbert–
Samuel function had already been eliminated by Encinas–Villamayor in [EV2]
using a somewhat different argument; for the general case, see also [BV].
• The relevant information on the history of the resolution process is encoded
in the combinatorial and transversal handicap of the mobile and its transforms.
To define the invariant it is no longer necessary to consider the whole sequence
of earlier blowups.

Standard results on the order of ideals and on hypersurfaces of maximal contact as
well as some straightforward verifications are omitted. Paragraphs in small char-
acters provide background information and/or proofs of well known or technical
results appearing in the main body of the text. Superscripts refer to the appendix.
For notational convenience there appear rational powers of ideals. These could be
avoided by raising the ideals to suitable powers, as will be indicated in parentheses.
As taking the order commutes with powers, the exponents are treated as integers.

The various constructions of the present paper are often justified only a poste-
riori through their role in the proof. This makes it hard to get a feeling for them
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at the moment when they are introduced. The expository paper [Ha2] provides
these justifications ab initio. It shows how the constructions arise naturally when
trying to prove resolution of singularities from scratch.

We are indebted to Hironobu Maeda for very valuable references, and to Gábor
Bodnár for many probing questions. Substantial improvements regarding the or-
ganization of the paper were suggested by a highly competent anonymous referee.

Idea of proof

Let J be the ideal defining X in W . We want to transform J by a sequence of
blowups into a simple form, i.e., so that the pull-back of J becomes a monomial
principal ideal. The resolution of X will be then deduced from this monomializa-
tion. Let us place ourselves at a certain stage of the resolution process. We will
have to decide on the center of the next blowup. The ideal J will stem from ear-
lier blowups, so that exceptional components can be factored from J to a certain
power. This factor will be noted down in what we call the combinatorial handicap.
It is a (non-reduced) normal crossings divisor D in W supported by the current
exceptional locus F so that J factors into J = M · I with M the ideal defining
D in W , and some ideal I of W which is still unresolved. Our objective will be
to lower the order o of I at the points of W by further blowups, until I becomes
1 and J = M is the required monomial. A separate argument will show that the
monomialization of ideals implies the resolution of singular schemes.

Fix the above situation. The center Z of the next blowup π : W ′ → W should
be a closed and globally defined regular subscheme of W , which is transversal to
the exceptional locus. In addition, we wish to have Z inside the top locus of I, i.e.,
in the set of points where the order of I in W is maximal. In particular, o = ordaI
shall be constant for a ∈ Z. This will ensure that the order o′ of the transform of
I under the blowup of W with center Z will not increase. Once Z satisfies these
two conditions, we will have o′ ≤ o for all points of the new exceptional component
Y ′ = π−1(Z) in W ′, and the total transform of M will be an ideal M∗ defining
again a normal crossings divisor in W ′. By construction, the total transform J∗

of J will factor into J∗ = M∗ · I(Y ′)o · Ig, where Ig = I(Y ′)−o · I∗ denotes the
weak transform of I. Setting J ′ = J∗, M ′ = M∗ · I(Y ′)o and I ′ = Ig we get again
a product

J ′ = M ′ · I ′

with prescribed exceptional factor M ′ = IW ′(D′) given by the transformed com-
binatorial handicap D′ = D∗ + o · Y ′, and new exceptional locus F ′. Thus our
(preliminary) resolution datum, made precise later in the concept of mobiles, con-
sists at each stage of a product of ideals J = M · I and two normal crossings
divisors D and F in W .

We are left to determine a suitable center Z, and to show that at the points
where equality o′ = o holds the situation has improved. Both tasks will be accom-
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plished simultaneously by associating to J , D and F a local upper semicontinuous
invariant ia(J). Its top locus will be the required center Z, and ia(J) will drop
after blowup.

The crucial advantage in characteristic zero is that there exists locally at each
point a regular hypersurface V of W whose successive transforms under any blowup
with center inside V contain all equiconstant points, i.e., the points where the
orders o′, o′′, ... of the transforms of I remain constant (hypersurface of maximal
contact). Choose such a V locally at a point a of W . Let Z be any center of blowup
inside V . As the transform V ′ of V contains the points a′ above a where o′ = o it
suffices to compare J and J ′ at points of V and V ′, i.e., inside hypersurfaces.

The idea then is to associate to J = M ·I and J ′ = M ′ ·I ′ ideals J− and (J ′)− in
V and V ′ which reveal the expected improvement. Once we have constructed the
appropriate ideal J− we can apply induction on the dimension to find the center
and the invariant, since J− lives in an ambient space of smaller dimension. In this
way we may assume that we have already constructed a local upper semicontinuous
invariant ia(J−) whose top locus prescribes a regular center Z− in V such that
blowing up V in Z− makes ia(J−) drop (except if J− is already resolved). If ia(J−)
does not depend on any choices (in particular, not on the local choice of V ), the
center will automatically be defined globally. We will give the definition of J− in
a moment.

There arise two problems. The center Z− associated to J− may not be transver-
sal to the exceptional locus F , and the transform of J− under the blowup V ′ → V
with center Z− may not coincide with the ideal (J ′)− associated to J ′ in V ′.

If Z− is not transversal to F , we have to solve this subproblem first. Auxiliary
blowups with smaller centers will make Z− transversal to F , so that it can be
really taken as center. Actually, J− will be built up so that this subproblem is
solved in parallel: we specify the components E of F to which Z− may not be
transversal, noted down in the transversal handicap, and then resolve the ideal
Q = IV (E∩V ) in V by auxiliary blowups. Once its weak transform has become 1,
V and E will be separated from each other, and transversality holds since Z− ⊂ V .
This separation cannot and need not be realized for the whole exceptional locus
F : the components of F \ E will a priori be transversal to Z− and therefore do
not affect the transversality problem. Of course, the critical components E inside
F have to be determined explicitly.

The second problem is handled by taking for (J−)′ an intermediate transform
between total and weak transform (the controlled transform; it is given by a num-
ber c, the control). For this, the required commutativity (J ′)− = (J−)′ is a
check in local coordinates. It is here that we need to work with factorized ideals
J = M · I, because J and I will transform differently. The controlled transform of
J ensures commutativity while its order may increase, whereas the weak transform
of I would not yield commutativity while its order decreases or remains constant.

We see that everything concentrates on defining the correct ideal J−. This
will be achieved through the coefficient ideal of I in V . It is obtained from I by
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expanding its elements with respect to a local coordinate defining V in W and
taking the ideal generated by (equilibrated powers of) its coefficients. To include
the transversality problem, one has to take the coefficient ideal not of I but of a
product I · Q where Q defines the possibly non-transversal components from E.
Then Z− will be contained in the top locus of Q, hence in all components of E.
Therefore it will automatically be transversal to F .

It remains to define the invariant ia(J). It is given as the vector

ia(J) = (ordaI, ordaQ,ma, ia(J−)),

where the component ma is of combinatorial nature. It only becomes relevant when
J− is already resolved and its invariant ia(J−) cannot improve. The invariant is
considered with respect to the lexicographic order. It depends on J , D and E.

If J− is not resolved, we may assume by induction on the dimension that ia(J−)
will improve when blowing up its top locus Z− in V (the case of dimension of V
equal 1 being trivial). Eventually, (ordaI, ordaQ) must drop. When the second
component ordaQ drops, the transversality subproblem improves. After finitely
many steps it is solved, ordaQ = 0. Larger centers become permissible. As ia(J−)
continues to improve the first component ordaI must also drop sometime. Now
induction applies to prove that finitely many blowups yield ordaI = 0, which
signifies that J = M is a monomial.

The above considerations show that we need in each dimension informations on
the divisor D formed by those exceptional components which can be factored from
J and on the divisor E of exceptional components which may pose a transversality
problem. Therefore the combinatorial and the transversal handicap appearing in
mobiles will consist of strings Dn, . . . , D1 and En, . . . , E1 of (stratified) normal
crossings divisors in W . They are global objects which do not depend on any local
choices, and obey prescribed rules of transformations under blowup. Thus we can
define the transform of a mobile under blowup, and its resolution. Mobiles are the
maps we take with us on our trip through the Sahara: Every day we write down
how the combinatorial and transversal handicap have transformed under the last
blowup. The transformation rule for the handicaps will depend on the point of the
blowup we are considering (i.e., on the value of the local invariant at this point).
As the invariant is upper semicontinuous and hence induces a stratification by
locally closed sets, we will get stratified divisors.

The descent in dimension via local ideals J− depends on the choice of the
hypersurface V and yields strings of ideals Jn, . . . , J1 (with Jn = J , Jn−1 = J−)
in local flags Wn ⊃ · · · ⊃ W1 of regular subschemes, called the setup of the mobile.
Each ideal factors into Ji = Mi · Ii according to Mi = IWi

(Di ∩Wi), and Ji will
be the coefficient ideal in Wi of some ideal Ki+1 associated to Ji+1 (the ideal Ki

is essentially the product Ii ·Qi with Qi = IWi
(Ei ∩Wi) given by the transversal

handicap). The ideals Ii and Qi depend on choices, but their orders, which form
the components of the invariant ia(J), do not. Thus ia(J) is intrinsic, and upper
semicontinuous because orders of ideals are.
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It then has to be shown that the top locus of ia(J) is in fact regular and
transversal to the exceptional locus. This allows to choose it as the center of the
next blowup. It remains to prove that the transform of the mobile in W ′ admits
at each point a setup which is the transform of the setup of the initial mobile
(commutativity), thus its invariant can be computed from the invariant below and
must have decreased. As the invariant ia(J) can only drop finitely many times, it
must eventually achieve its minimal value 0. In this case, ordaI = 0 and J = M
as required.

The above proof is based on a cartesian scheme of induction: the descending
horizontal induction on the dimension is combined with the vertical induction on
the resolution invariant. In total, fourteen inductions are required. Once the
relevant objects like mobiles, setups and their transforms are defined properly, the
inductions follow always the same pattern.

Concepts

Throughout, we fix a regular ambient scheme W and a regular locally closed n-
dimensional subscheme V of W . By a divisor in W we shall mean an effective
Weil divisor D. A closed subscheme D of W has normal crossings if it can be
defined locally by a monomial ideal. The subscheme V meets D transversally if
the product of the defining ideals of V and D defines a normal crossings scheme.

A local flag in V at a is a decreasing sequence Wn ⊃ . . . ⊃ W1 of closed i-
dimensional regular subschemes Wi of a neighborhood U of a in V . An ideal K in
V is bold regular if it is a power of a regular principal ideal in V . A stratified ideal
in V is a collection of coherent ideal sheaves each of them defined on a stratum of
a stratification of V by locally closed subschemes. A stratified divisor is defined by
a stratified principal ideal. All ideals and divisors will be stratified without notice,
except if said to be coherent. For normal crossings divisors D, the underlying
stratification strat(D) need not have normal crossings strata.

A map Qb → (Qb)] associating to stalks of ideals Qb in an open subscheme U
of W stalks of ideals (Qb)] in V is tuned along the stratum S of a stratification
of V through a point b of V if Qb and (Qb)] admit locally at any point b of V

coherent representatives Qb on U and (Qb)] on V so that the stalks ((Qb)a)] and
((Qb)])a at a coincide for a in S. This is abbreviated by saying that the ideals
(Qb)] are tuned along the stratum S.

A shortcut of a normal crossings divisor M in W is a divisor N obtained from
M by deleting on each stratum of the underlying stratification strat(M) of M
some components of M . The divisor M is labelled if each shortcut N comes with a
different non negative integer labN , its label. The empty shortcut has label 0. A
shortcut N of a normal crossings divisor M is tight at a of order ≥ c if it has order
≥ c at a and if any proper shortcut of N has order < c at a. It is maximal tight
at a if M is labelled and if (ordaN, lab N) is lexicographically maximal among the
tight shortcuts of M of order ≥ c at a <1>.

A handicap on W is a sequence D = (Dn, . . . , D1) of stratified normal crossings
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divisors Di of W . The truncation of D at index i is iD = (Dn, . . . , Di).
A singular mobile in W is a quadruple M = (J , c,D,E) with J a coherent

nowhere zero ideal sheaf on V , c a non negative constant associated to V , and D
and E handicaps in W with D labelled and E reduced<2>. We call c the control of
J , and D and E the combinatorial and transversal handicap of M. The truncation
iM at index i of M is (J , c, iD, iE).

The transversality locus of a mobile M is |E| = En ∪ . . .∪E1. The exceptional
locus of a sequence of blowups of M is the reduced inverse image of the union of
all centers and of |E|.

The control c is allowed to be 0 if and only if J = 1. Throughout, we denote by calli-
graphic letters stratified ideal sheaves, and by roman letters their stalks or sufficiently small
representatives of them.

A strong resolution of a mobile M = (J , c,D,E) in W is a sequence of blowups
of W in regular closed centers Z such that the ideal J ′ of the final transform
M′ = (J ′, c′, D′, E′) of M as defined in the section “Transform of mobile” has
order < c. We require that the centers are transversal to the exceptional loci, and
that the resolution is equivariant.

The top locus of an upper semicontinuous function t on V is the reduced closed
subscheme top(t) of points of V where t attains its maximum. The order at a
of an ideal J of V is the largest power o = ordaJ of the maximal ideal of OV,a

containing the stalk J of J at a. We set top(J ) = top(ordJ ) and denote by
top(J , c) the locus of points in V where the order of J is at least c. For closed
subschemes of V , the analogous loci are defined through the associated ideals.
When working locally at a point a, top(t) also denotes the local top locus of t in
a neighborhood of a.

Let W ′ → W be the blowup of W with center Z inside V and exceptional
component Y ′. The total and weak transform of an ideal J of V are the inverse
image J ∗ of J under the induced blowup V ′ → V and the ideal Jg = J ∗ · I(Y ′∩
V ′)−o with o = ordZJ . The controlled transform of J with respect to c ≤ o is the
ideal J ! = J ∗ · I(Y ′ ∩ V ′)−c in V ′ <3>.

The companion ideal P of a product J = M · I of ideals in V at a with respect
to a control c ≤ ordaJ on V is the ideal P in V at a given by

P = I + M
o

c−o if 0 < o = ordaI < c,

P = I otherwise.

To avoid rational powers of ideals, one could take P = Ic−o + Mo if 0 < o < c, and P = I
otherwise.

Companion ideals are tuned along top(I)∩strat(M) and satisfy top(P ) = top(I)∩
top(M, c − o) ⊂ top(J, c). The transversality ideal Q in V of a normal crossings
divisor E of W is the ideal

Q = IV (E ∩ V )
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defining E ∩ V in V . The composition ideal K in V of a product J = M · I of
ideals in V at a with respect to a control c and a normal crossings divisor E in W
equals <4>

K = P ·Q if I 6= 1,
K = 1 if I = 1,

with P the companion ideal of J and c, and Q the transversality ideal of E in
V . Composition ideals are tuned along top(I) ∩ strat(M) ∩ strat(E) and satisfy
locally top(K) = top(P ) ∩ top(Q) if I 6= 1 and Q 6= 0.

The weight on M in the definition of P is necessary to have Pg = (I + Mo/c−o)g =

Ig+(M ′)o′/c′−o′ when c′ = c and o′ = o. This ensures that the passage to companion ideals
commutes with blowups. The equality top(P ) = top(I)∩top(M, c−o) uses that ordaMo/c−o

is ≥ o for a in top(J) since there c ≤ ordaJ = o + ordaM . Note that ordaP = ordaI = o
along top(P ) ⊂ top(I), and thus P = 1 if and only if I = 1.

In the application, V will be a member Wi of the local flag and E will be a member Ei of
the transversal handicap; the latter does not contain Wi and thus Qi 6= 0. Moreover, Wi

will be transversal to Ei and thus ordaQi = ordaEi, i.e., equal the number of components
of Ei passing through a, since Ei is reduced. We have top(Qi) = Wi ∩ top(Ei) locally at a.
Therefore any Z ⊂ top(Qi) is contained in the components of Ei it meets.

The tag of an ideal J in V at a with control c and normal crossings divisors
D and E in W such that J = M · I for M = IV (D ∩ V ) with D labelled and
transversal to V is the vector

ta(J) = (o, k,m) ∈ N4,

equipped with the lexicographic order. Here, o = ordaI and k = ordaK with
K = P · Q the composition ideal of (J, c, E,D). We set m = (0, 0) if o > 0, and
m = (ordaN, lab N) otherwise with N the maximal tight shortcut of M at a of
order ≥ c.

The combinatorial tag m measures the improvement of the controlled transform of M once
we have J = M , the singular tag (o, k) measures the improvement of the weak transforms of
I and K.

The coefficient ideal <5> of an ideal K of W at a with respect to V is an ideal
in V which is built from the coefficients of the Taylor expansion of the elements
of K with respect to the equations defining V . Let x, y and y be regular systems
of parameters of OW,a and OV,a so that x = 0 defines V in W . For f in K denote
by af,α the elements of OV,a so that f =

∑
α af,α · xα holds after passage to the

completion. Then set

coeffV K =
∑
|α|<c

(af,α, f ∈ K)
c

c−|α| .

Replacing the exponents by c!
c−|α| , rational powers of ideals could be avoided.

Coefficient ideals are tuned along top(K) ∩ V . Let V ′ → V be the blowup of
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V induced by W ′ → W with center Z contained in top(K) ∩ V and exceptional
component Y ′ ∩V ′. At points a′ of Y ′ ∩V ′ where c′ = orda′K

g = ordaK = c one
has (coeffV K)! = coeffV ′(Kg). Thus the descent to the coefficient ideal commutes
with taking the weak, respectively controlled transform at these points.

The proof of commutativity goes as follows, using that afg,α = (af,α)∗ · I(Y ′ ∩ V ′)|α|−c:

coeffV ′ (K′) = coeffV g (Kg) =

= coeffV g
( ∑
|α|<c′

afg,α · xα, fg ∈ Kg
)

=

= coeffV g
( ∑
|α|<c′

aI(Y ′∩V ′)−c·f∗,α · xα, fg ∈ Kg
)

=

= coeffV g
( ∑
|α|<c

(af,α · xα)∗ · I(Y ′ ∩ V ′)−c, f ∈ K

)
=

=
∑
|α|<c

(a∗f,α, f ∈ K)c/(c−|α|) · I(Y ′ ∩ V ′)−c =

=

( ∑
|α|<c

(af,α, f ∈ K)c/(c−|α|)
)∗

· I(Y ′ ∩ V ′)−c =

= I(Y ′ ∩ V ′)−c · (coeffV K)∗ = (coeffV K)!.

The coefficient ideal depends on the choice of V and the regular systems of parameters. It
satisfies ordacoeffV K ≥ ordaK for a ∈ V .

The junior ideal J in V of an ideal K of W at a is the coefficient ideal coeffV K
of K in V if K is not bold regular or 1, and is set equal to 1 otherwise.

The scheme V has weak maximal contact with an ideal P of W at a if V
maximizes the order of coeffV P at a. It is osculating <6> for P if there is an
f ∈ P with ordaf = ordaP and ordacoeffV f = ordacoeffV P such that af,α = 0
for all α with |α| = ordaP − 1.

The coefficient ideal of K 6= 0 in a hypersurface of weak maximal contact V is zero if and
only if K is bold regular or equal 1. Namely, if K is bold regular then top(K) = V , by weak
maximal contact, and the coefficient ideal is zero. Conversely, if K 6= 1 and the coefficient
ideal is zero, then af,α = 0 for f ∈ K and |α| < c. Thus K ⊂ (xc) with x defining V in W .
Hence the support of K contains the hypersurface defined by xc. As the order of K is at
most c we get K = (xc) bold regular.

Junior ideals avoid getting zero ideals J and I having infinite order. They are tuned along
top(K)∩V . The passage to junior ideals in hypersurfaces of weak maximal contact commutes
with taking the weak, respectively controlled transform, at points a′ above a where the order
of K has remained constant. This holds for coefficient ideals. If K is not bold regular or 1
but K′ is this implies that the order of K has dropped, by the commutation of coefficient
ideals with weak and controlled transforms. If K is bold regular but not 1 commutativity
does not hold except if the center equals the support of K. But by construction of Z in the
actual resolution process, it does equal the support of K in this case.
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The following properties of osculating hypersurfaces will be used later (see
below for proofs.) In characteristic zero, any a in W admits a neighborhood U
and a hypersurface V of U which is osculating for P at all points of top(P ) in
U . If P 6= 0, 1 then V contains top(P ) ∩ U and satisfies top(JP , cP ) = top(P ) for
cP = ordaP and JP the coefficient ideal of P in V . Any V which is osculating for
P has weak maximal contact with P . If V has weak maximal contact with P 6= 1
then it has also weak maximal contact with any product K = P ·Q.

If V has weak maximal contact with P its weak transform V g under blowup
of W in a regular center Z ⊂ top(P ) contains all points a′ of W ′ where the order
of Pg has remained constant. If V is osculating for P , then V g is osculating for
Pg at these points. Hence, if V has weak maximal contact with K = P · Q for
being osculating for P and if Z ⊂ top(K) then V g has weak maximal contact
with Kg = Pg ·Qg at all points a′ of W ′ where orda′P

g = ordaP , regardless of
the order of Kg at a′.

We indicate how to prove the more delicate of the above assertions. For the existence of
osculating hypersurfaces, take an element f ∈ P of minimal order ordaf = ordaP at a. In
characteristic 0, a suitable partial derivative of f of order ordaf − 1 has order 1 at a and can
be taken as defining equation for V . From this, top(JP , cP ) = top(P ) ⊂ V is immediate.
Equivalently, V can be obtained by a Tschirnhaus coordinate transformation<6>.

That osculating with P implies weak maximal contact with P is a direct check on Newton
polyhedra. The properties with respect to blowup are classical and proven by computing the
transforms of the ideals in local coordinates for which the blowup reduces to a monomial
substitution of variables. We show here that weak maximal contact with P 6= 0, 1 implies
weak maximal contact with K = P ·Q. Let c, cP and cQ be the orders of K, P and Q. We
may assume that Q 6= 0, 1, so that all orders are positive and finite. Let J , JP and JQ be
the associated coefficient ideals, and e, eP and eQ their respective orders in N ∪ {∞}. We
claim that

e/c = min{eP /cP , eQ/cQ}.

The equality also holds when P is bold regular, in which case JP = 0 and eP = ∞.

To prove the claim, we fix local coordinates (x, yn−1, . . . , y1) at a in W with V defined in
W by x = 0. We treat first the case of single elements f ∈ P and g ∈ Q. Their Newton
polyhedra satisfy N(f · g) = N(f) + N(g), as is shown by a computation of the vertices of
N(f · g). Interpret then the order ef·g of the ideal generated by the equilibrated powers of
the coefficients of f · g in J as the order of the projected Newton polyhedron π(N(f · g))
under the projection π from the point (c, 0, . . . , 0) of Nn = N×Nn−1 to Qn−1 defined for
points (j, γ) with j < c by (j, γ) → c

c−j
· γ. (Read (j, γ) → c!

c−j
if you have taken exponent

c!
c−|α| in the definition of coefficient ideals and wish to project to Nn−1.)

Let ef and eg denote the orders of the ideals generated by the equilibrated powers of the
coefficients of f and g in JP and JQ respectively (not of the coefficient ideals of the ideals
generated by f and g). The equality ef·g/c = min{ef /cP , eg/cQ} then follows from N(f ·g) =
N(f) + N(g) by a computation in Nn.

Write now elements h ∈ K as h =
∑

j
ah,j(y) · xj so that J =

∑
j<c

(ah,j , h ∈ K)c/c−j ,

and similarly for P and Q. There exists a finite generator set H of K such that J =∑
j<c

(ah,j , h ∈ H)c/c−j . Let F and G be defined analogously for P and Q. Each h ∈ H is

a linear combination of products f · g with f ∈ F and g ∈ G. Enlarging F and G we may
assume that all coefficients in the sum are 0 or 1. Replacing H by all summands of all h we
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obtain H = F · G. The coefficients of the elements of the new H generate again J . By the
formula above we get

e/c = min
h∈H

eh/c =

= min
fg∈H

min {ef /cP , eg/cQ} =

= min {min
f∈F

ef /cP , min
g∈G

eg/cQ} =

= min {eP /cP , eQ/cQ}.
This proves the claim. Assume now that V has weak maximal contact with P , i.e., that
eP is maximal. If eP /cP ≤ eQ/cQ then e/c and hence e is already maximal, by the above
formula. So assume that eP /cP > eQ/cQ, and that e/c = eQ/cQ is not maximal. Increasing
eQ/cQ by a coordinate change requires up to permutations a change (x, y) → (x + g(y), y)
with slope ord g = eQ/cQ.

Let P∼ and Q∼ be the resulting ideals. Then, as P 6= 0, 1 and eP /cP > eQ/cQ, we get
eP∼/cP∼ = eQ/cQ, hence e/c = min{eP∼/cP∼ , eQ∼/cQ∼} = eQ/cQ remains constant, i.e.,
was already maximal. This shows that weak maximal contact with P 6= 0, 1 implies weak
maximal contact with K = P ·Q.

Setup

Let M = (J , c,D,E) be a singular mobile in W with J a coherent ideal in a
locally closed regular n-dimensional subscheme V . Write Jn for the stalk of J at
a point a of V . A punctual setup <7> of M at a is a sequence (Jn, . . . , J1) of
stalks of ideals Ji in a local flag (Wn, . . . ,W1) of V at a satisfying for all i ≤ n

(1) Ji = Mi · Ii with Mi = IWi
(Di ∩Wi) and Ii an ideal in Wi at a.

(2) Mi defines a normal crossings divisor in Wi at a.
(3) Wi−1 has weak maximal contact at a with the composition ideal Ki in Wi

of (Ji, ci+1, Di, Ei). Here, ci+1 is the control of Ji on Wi. It is given for
i < n as the order of Ki+1 in Wi+1 at a, and cn+1 = c.

(4) Ji−1 is the junior ideal of Ki in Wi−1.
Setups depend on and are determined by the choice of the local flag subject to the
above conditions. They commute with the operations described in equivariance.

Let d be maximal with od = 0, and set d = 0 if all oi = ordaIi > 0. From (3) follows that

Ki = Pi ·Qi for i > d, with Pi = Ii + M
oi/(ci+1−oi)

i and Qi = IWi
(Ei ∩Wi). For i ≤ d we

have Ki = 1.

A tuned setup of (J , c,D,E) on an open subscheme U of V is a sequence of
coherent ideal sheaves Jn, . . . ,J1 in a decreasing flag Wn, . . . ,W1 of closed sub-
schemes of U such that, for any i ≤ n, the stalks Jn, . . . , Ji at a define the trun-
cation of a punctual setup of (J , c,D,E) for all points a of U ∩ top(tn, . . . , ti+1).
Here, ti = (oi, ki,mi) denotes the tag of (Ji, ci+1, Di, Ei) at a.

Thus oi = ordaIi, ki = ordaKi in Wi, and mi is the combinatorial tag of the maximal
tight shortcut Ni of Mi of order ≥ ci+1 at a. The restriction (Ji−1, . . . , J1) is a punctual
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setup at a in Wi−1 of the restricted mobile (Ji−1, ci, D
i−1, Ei−1) in Wi−1 where Di−1 =

(Di−1, . . . , D1) and Ei−1 = (Ei−1, . . . , E1).

Indices indicate, except for handicaps, the dimension of the corresponding ambient scheme.
The order of an ideal is taken with respect to this ambient scheme. Observe that, by defini-
tion, ci+1 is constant on Wi and only defined there, whereas Di and Ei are defined in W .
More accurately we should write Wi = Wi(a). Then, locally at a point b, we will be able to
choose Wi so that Wi(a) = Wi(b) for all a in top(Ki+1) near b.

Invariant

Let M = (J , c,D,E) be a mobile in W with J a non zero coherent ideal sheaf
in V . Assume that M admits locally on V tuned setups with induced punctual
setups (Jn, . . . , J1). Set

ia(M) = (tn, . . . , t1) ∈ N4n

with ti = (oi, ki,mi) the tag of (Ji, ci+1, Di, Ei) at a <8>. Equipping N4n with
the lexicographic order this vector satisfies the following properties.

(a) ia(M) does not depend on the chosen setup of M at a and commutes with
the operations described in equivariance.

(b) The map a → ia(M) is upper semicontinuous on V . The induced stratifi-
cation of V refines the stratification underlying D and E.

(c) The top locus Z of ia(M) is regular. Locally, Z lies in the top loci of all Ii,
Pi, Qi and Ki. It only depends on the restriction of ia(M) to the support
of J .

(d) Z is transversal to all Di and Ei.
The first part of properties (a) and (b) will be proven in the section “Independence
and semicontinuity”, the second part of (a) holds by construction of ia(M), and
the second part of property (b) is proven in “Transform of mobile”. The first two
parts of property (c) are proven in “Top loci”. The third part holds by construction
of ia(M), since its first component on = ordaIn has top locus inside the support
of J and all remaining components defining Z are orders of ideals taken at points
of this locus. Property (d) is proven in “Transversality”.

Equivariance of the invariant signifies that the invariant remains the same under smooth
morphisms and field extensions. And, if W → W+ is a closed embedding of W into a regular
scheme W+, and M+ a mobile in W+ inducing by restriction to W the mobile M, then for
a in W the restriction of ia(M+) to dimension n = dim W equals the invariant ia(M). We
will use this property in “Resolution of schemes” only in case the divisors of the handicaps
D and E of M are empty with the exception of En ⊂ W .

The first two properties of equivariance hold because they hold for order of ideals and because
mobiles and their setups commute with these operations. The third property follows from
the fact that the order of the ideal J+ in W+ extending J is 1 if dim W < dim W+. If
D+

n+ and E+

n+ are empty and dim W < dim W+, the first composition ideal K+ equals J+,

and its coefficient ideal in a hypersurface V + of W+ is just the restriction of J+ to V +.
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This hypersurface can be chosen to contain W . By induction on the dimension, we reach by
iteration a coefficient ideal which equals J , and the first components of ia(M+) are either
1 (as for o and k) or 0 (as for m). Therefore the invariant of M+ restricts on W to the
invariant of M. We omit the reasoning for arbitrary D+ and E+.

Comments

Mobiles are the minimal resolution datum needed to define at each stage of the
resolution process the local invariant. They present global information and only
depend on the initial mobile and the transformation laws: J is the ideal we wish to
resolve, i.e., to transform into a principal monomial ideal supported by exceptional
components. The control c indicates how J transforms under blowup; in addition,
it prescribes the objective: to drop the order of the transforms of J below c. The
components Di of D keep track which part of Ji has already been monomialized.
The components Ei of E collect the exceptional components which may fail to be
transversal to Wi−1. They both live in W and are independent of the choice of the
local flags, whereas the associated ideals Mi = IWi

(Di∩Wi) and Qi = IWi
(Ei∩Wi)

live in Wi and depend on the flag.
Setups are auxiliary local data depending on the flags. They are defined so that

the resulting invariant does not depend on the chosen flag. Their tunedness ensures
the semicontinuity of the invariant. The passage from Ii to Pi is necessary because
top(Ii) need not be contained in top(Ji, ci+1) when the order of Ii has become
small. Multiplication of Pi with Qi allows to treat the transversality problem with
the exceptional components simultaneously with the monomialization of Ji. The
inclusions

top(Ii) ⊃ top(Pi), top(Ei) = top(Qi) ⊃ top(Ki)

and

. . . ⊃ top(Ki+1) ⊃ top(Ji, ci+1) ⊃ top(Pi) ⊃ top(Ki) ⊃ . . . ⊃ Z

imply that the orders of the weak transforms of Ii and Ki do not increase under
blowup. It is shown that they can only remain constant in a very specific situa-
tion, in which case the combinatorial tag mi drops. This establishes the vertical
induction on the resolution invariant.

Weak maximal contact may not persist under blowup, and osculating hyper-
surfaces are a characteristic zero device to achieve this persistence. For techni-
cal reasons it is appropriate to take Wi osculating with Pi+1 instead of Ki+1 =
Pi+1 · Qi+1. The key point of the proof is the commutativity of the descent in
dimension via coefficient ideals with the passage to points of the blowup where the
order has remained constant. This allows descending induction on the dimension.
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Transform of mobile

Suppose given a mobile with empty combinatorial handicap. By horizontal induc-
tion on the dimension it admits locally tuned setups. Thus the invariant is defined.
Its top locus is closed and regular and gives the center of the first blowup.

Assume then constructed at a certain stage of the resolution process the mobile
M = (J , c,D,E) in W with J an ideal of control c in V and locally tuned setups
with invariant i(M). If J has order < c on V the mobile is resolved. If not, let
W ′ → W be the blowup of W in the top locus Z of i(M) with new exceptional
component Y ′. The transform M′ = (J ′, c′, D′, E′) of M and a locally defined
tuned setup of M′ are constructed as follows <9>.

By the first component of ia(M) we will know that the center Z is contained
in V thus inducing a blowup V ′ → V . If the controlled transform J ! of J in V ′

has order < c on V ′ the resolution of J is completed. If not, set J ′ = J ! and
c′ = c. Let a′ be a point of V ′ and denote by J ′n the stalk of J ′ at a′. Assume
constructed for some i < n the truncated mobile i+1M′, and, locally on V ′, flags
W ′

n, . . . ,W ′
i+1 with truncated tuned setup J ′n, . . . ,J ′i+1 of i+1M′.

We shall define the truncated mobile iM′ and, locally on W ′
i+1, regular hyper-

surfaces W ′
i , such that the junior ideal J ′i of K ′

i+1 in W ′
i yields a punctual truncated

setup J ′n, . . . , J ′i of iM′ induced from a tuned truncated setup J ′n, . . . ,J ′i . The
transform M′ of M is then defined by descending induction on i and will admit
locally tuned setups.

For a′ ∈ W ′, let J ′n, . . . , J ′i+1 denote the truncated punctual setup of i+1M′

induced by J ′n, . . . ,J ′i+1. Thus (t′n, . . . , t′i+1) is defined. By “Independence and
semicontinuity” it will be independent of the choice of the flag.

For n ≥ j ≥ i + 1, let T ′j+1 be the locus of points in W ′ where (t′n, . . . , t′j+1)
equals the value of (tn, . . . , tj+1) along Z. We agree that T ′n+1 = W ′

n. Let O′
j

be the locus in T ′j+1 where o′j is positive and equal the value of oj along Z. The
independence of the truncated invariant implies that these loci do not depend on
the chosen flags. By descending horizontal induction on i we shall assume that
the handicaps of i+1M′ satisfy for all j ≥ i + 1 the equalities

D′
j = D∗

j + (oj − cj+1) · Y ′ on T ′j+1,

D′
j = ∅ outside T ′j+1,

E′
j = Eg

j on O′
j ,

E′
j = (Y ′ + |E|g)− (E′

n + . . . + E′
j+1) outside O′

j .

Here, D∗
j denotes the pull-back of Dj under W ′ → W . Define T ′i+1 and D′

i by
setting j = i in the above formulas. Then D′

i does not depend on the chosen flags.
It is stratified with underlying stratification given by T ′i+1. This establishes the
second part of property (b) of the invariant for D′

i. It is shown in “Transversality”
that D′

i is a normal crossings divisor in W ′. It is labelled as follows. Shortcuts
which do not involve Y ′ get the label of their image in W . The remaining shortcuts
are labelled arbitrarily by distinct and pairwise different numbers.
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The coherence of D′
i along T ′

i+1 is proven by vertical induction. Assume that Di is coherent
along Ti+1. If T ′

i+1 = ∅, nothing is to show. If not, T ′i+1 = top(t′n, . . . , t′i+1) lies over
top(tn, . . . , ti+1), since the truncated invariant does not increase under blowup, see “Decrease
of invariant”. This and the coherence of Di on top(tn, . . . , ti+1) imply that D∗

i is coherent

on T ′i+1. As both oi and ci+1 are constant on Z, the factor I(Y ′)oi−ci+1 is coherent on Y ′
and hence on W ′. Therefore D′

i is coherent on T ′
i+1.

Let K ′
i+1 be the composition ideal of (J ′i+1, c

′
i+2, D

′
i+1, E

′
i+1) in W ′

i+1. It is
stratified in W ′

i+1 with strata given by the order o′i+1 of I ′i+1 and by the stratifi-
cations underlying D′

i+1 and E′
i+1. Choose in a neighborhood of a′ a hypersurface

W ′
i in W ′

i+1 which has weak maximal contact with K ′
i+1 along top(K ′

i+1).
Define J ′i as the junior ideal of K ′

i+1 in W ′
i . In “Commutativity” it is shown that

W ′
i can be taken osculating for P ′i+1, and that then J ′n, . . . , J ′i form a truncated

punctual setup of iM′ along top(t′n, . . . , t′i+1). In particular, J ′i = M ′
i · I ′i with

M ′
i = IW ′

i
(D′

i ∩W ′
i ) a normal crossings divisor in W ′

i , and o′i = orda′I
′
i is defined

for a′ in W ′
i . Let O′

i be the locus of points a′ in T ′i+1 where o′i is positive and equal
the value of oi along Z. In “Independence and semicontinuity” it is shown that o′i
and hence O′

i do not depend on the choice of W ′
i . Define

E′
i = Eg

i on O′
i,

E′
i = (Y ′ + |E|g)− (E′

n + . . . + E′
i+1) outside O′

i.

The divisor E′
i shall collect the exceptional components which may not be transversal to

W ′
i−1. As W ′

i−1 will equal on O′
i the transform of Wi−1 the new exceptional component Y ′

will be transversal to W ′
i−1, so that we set E′

i = Eg
i on O′

i. Outside, a new W ′
i−1 will be

chosen, and hence need not be transversal to any exceptional component. Thus E′
i consists

of all exceptional components except those taken care of in E′
n + . . . + E′

i+1. Observe that
Z ⊂ top(Pi)∩ top(Qi) implies that Z is contained for i > d in the components of Ei it meets,
and is hence transversal to all components of Ei.

It is shown in “Transversality” that E′
i is a reduced normal crossings divisor in

W ′. It does not depend on the flag W ′
n, . . . ,W ′

i . By vertical induction, we may as-
sume that Ei is coherent along Oj\Oj−1 for all j ≥ i. As O′

j = top(t′n, . . . , t′j+1, o
′
j)

lies over top(tn, . . . , tj+1, oj) we conclude that E′
i is coherent along O′

j \O′
j−1 for

all j ≥ i, proving for E′
i the second part of property (b) of the invariant. This com-

pletes the construction of iM′ and of its locally tuned truncated setups J ′n, . . . ,J ′i .
The transform M′ of M and the ideals J ′n, . . . ,J ′1 are then defined by descending
horizontal induction on i.

Logical structure of proof

In “Top loci” it is shown by descending horizontal induction on the dimension
that, locally at points a in W , the center Z is contained in the members Wi of the
local flag at a for all i ≥ d, where d is maximal with od = 0.

In “Commutativity” it is shown, assuming that the assertions of the later section
“Transversality” hold at the present stage W of the resolution process, that at
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points of W ′ where a truncation of the invariant at a certain index i has remained
constant, the subsequent descent in dimension and the truncation at the next index
i−1 commute with blowup. This and the inclusions of “Top loci” allow to show in
“Decrease of invariant” that the complete invariant cannot increase when passing
from W to W ′. From horizontal induction on the dimension then follows that it
actually decreases. This in turn is used together with “Commutativity” and “Top
loci” to show in “Transversality” that the handicaps in W ′ are normal crossings
divisors and transversal to the next center. In this way, the circle of implications
winds up like a spiral through the resolution process. The sections “Independence
and semicontinuity” and “Order of coefficient ideals” show that the invariant does
not depend on the local choices and is upper semicontinuous.

Top loci

Let (Jn, . . . , J1) be a punctual setup of M at a. Let d be maximal with od = 0.
We show that top(tn, . . . , td+1) coincides with top(td+1) = top(od+1, kd+1) =
top(Kd+1) in Wd+1. Locally at a this locus lies in Wd if d ≥ 1, and equals a if
d = 0.

Assume that top(tn, . . . , ti+1) = top(ti+1) = top(Ki+1) holds for some i > d.
Then top(tn, . . . , ti+1, ti) = top(ti+1, ti) = top(ti) in Wi because top(ti+1) =
top(Ki+1) contains top(Ji, ci+1) ⊃ top(Pi) and hence top(ti). Descending hori-
zontal induction then yields the assertion.

We show that Z = top(i(M)) equals, locally at a, the top locus in Wd of the
maximal tight shortcut Nd of Md of order ≥ cd+1 if d ≥ 1, and Z = {a} if d = 0.
In the second case, K1 is bold regular and different from 1 in W1 with support
Z = {a}. If d ≥ 1 then od = 0 implies Kd = 1, kd = 0, so that td = (0, 0,md) and
the remaining components of the invariant are zero. By the above, Z = top(i(M))
lies in Wd. It hence equals top(md) = top(Nd) in Wd.

Commutativity

Suppose given a mobile M = (J , c,D,E) in W at a certain stage of the resolu-
tion process, with truncated transform i+1M′ in W ′ as defined in “Transform of
mobile”, for some i < n.

Assume constructed truncated punctual setups (Jn, . . . , Ji+1) of i+1M in local
flags Wn, . . . ,Wi+1 at a and (J ′n, . . . , J ′i+1) of i+1M′ in local flags W ′

n, . . . ,W ′
i+1

at a′ such that W ′
j = Wg

j on O′
j+1, J ′j = J !

j and I ′j = Ig
j on T ′j+1, and P ′j = Pg

j ,
Q′

j = Qg
j and thus K ′

j = Kg
j on O′

j for all j ≥ i + 1. In particular, D′
i can then

be defined as in “Transform of mobile”. Assume also that Wj is chosen osculating
for Pj+1 at a if j ≥ i, and that W ′

j is chosen osculating for P ′j+1 at a′ if j ≥ i + 1.
We show that there exists, locally at a′ in W ′

i+1, a regular hypersurface W ′
i

which is osculating for P ′i+1 and such that the above commutativity relations also
hold for j = i, where the ideals J ′i , I ′i, P ′i , Q′

i and K ′
i are defined as in “Transform

of mobile”. This allows in particular to define E′
i and the truncated mobile iM′ as
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in “Transform of mobile”. Moreover, (J ′n, . . . , J ′i) will define a truncated punctual
setup of iM′ at a′, completing the induction step from i + 1 to i.

For W ′
j = Wg

j we need that P ′
j+1 = Pg

j+1 and o′j+1 = oj+1 on O′
j+1. For J ′j = J !

j we need

that K′
j+1 = Kg

j+1 and k′j+1 = kj+1 on T ′
j+1. For I′j = Ig

j we need that K′
j+1 = Kg

j+1 and

k′j+1 = kj+1 and D′
j = D∗

j + (oj − cj+1) · Y ′ on T ′
j+1. For P ′

j = Pg
j we need that I′j = Ig

j

and o′j = oj on O′
j . For Q′

j = Qg
j we need that E′

j = Eg
j on O′

j . For K′
j = Kg

j we need

that P ′
j = Pg

j and Q′
j = Qg

j on O′
j for j > d′ = d, respectively o′j = oj = 0 on O′

j for j ≤ d′.
As Z ⊂ top(Pj) ∩ top(Qj) for j > d and hence oj = ordaPj = ordZPj and rj = ordaQj =
ordZQj we get on O′

j from P ′
j = Pg

j and Q′
j = Qg

j for j > d′ that

K′
j = P ′

j ·Q′
j = Pg

j ·Qg
j =

= P ∗
j ·Q∗

j · IW ′
j
(Y ′ ∩W ′

j)
−(oj+rj) =

= (Pj ·Qj)
g = Kg

j .

Observe that we have I′j = Ig
j on T ′

j+1, whereas P ′
j = Pg

j holds only on O′
j , by the very

definition of companion ideals.

As Wi is osculating for Pi+1 it has weak maximal contact with Pi+1 and hence
with Ki+1. As P ′i+1 = Pg

i+1 holds on O′
i+1 and has order o′i+1 = oi+1 there, Wg

i

is osculating for P ′i+1, hence has weak maximal contact with K ′
i+1 on O′

i+1. We
set W ′

i = Wg
i on O′

i+1. Outside O′
i+1 we take locally along top(P ′i+1) for W ′

i any
hypersurface in W ′

i+1 which is osculating for P ′i+1. Let Ji and J ′i be the junior
ideals of Ki+1 and K ′

i+1 in Wi and W ′
i respectively.

We use here that points where the order of P ′
i+1 has remained constant lie in Wg

i . Note
that the local choices of W ′

i need not patch globally along top(K′
i+1).

As the descent to coefficient ideals commutes with weak, respectively controlled
transforms, we get by definition of junior ideals that J ′i = J !

i on T ′i+1.

We use here that by “Top loci”, the center Z is contained in Wi locally at points of W for
all i ≥ d, so that transforms of ideals in Wi are well defined.

If both Ki+1 and K′
i+1 are not bold regular or 1, the equality of coefficient ideals implies

that J ′i = J !
i on T ′

i+1. If K′
i+1 is bold regular or 1, the equality implies the same for Ki+1,

because coefficient ideals in a hypersurface of weak maximal contact are zero if and only if
the ideal is bold regular or 1. If Ki+1 = 1 then K′

i+1 = Kg
i+1 = 1 on T ′

i+1 and J ′i = J !
i = 1.

If Ki+1 is bold regular and different 1, then oi+1 > 0 by definition of Ki+1. Therefore
mi+1 = 0 and ia(Mi) = ia(1) = 0 so that Z equals the support of Ki+1. Here Mi denotes
the mobile (Ji, ci+1, Di, . . . , D1, Ei, . . . , E1) in W . Then K′

i+1 equals 1 and a′ lies outside

T ′i+1. This shows that in all cases J ′i = J !
i on T ′

i+1.

The definition of M ′
i = IW ′

i
(D′

i ∩ W ′
i ) with D′

i as in “Transform of mobile”
implies that J ′i = M ′

i ·I ′i with I ′i = Ig
i on T ′i+1, and I ′i = J ′i outside. Thus property

(1) of setups holds for J ′n, . . . , J ′i , and (3) and (4) follow from the construction.
As for property (2), we may assume by the assertions of “Transversality” applied
to W that Wi and Z are transversal to Di. As W ′

i = Wg
i on O′

i+1 and D′
i = ∅

outside T ′i+1 ⊂ O′
i+1 we conclude that W ′

i is transversal to D′
i. Hence M ′

i is a
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normal crossings divisor in W ′
i at a′.

The truncated setup J ′n, . . . , J ′i is by construction induced by a locally tuned
truncated setup of iM′ along top(t′n, . . . , t′i+1). By definition of P ′i and E′

i we have
P ′i = Pg

i and Q′
i = Qg

i and thus K ′
i = Kg

i on O′
i. This completes the induction

step from i + 1 to i.

If J = M · I in V with controlled transform J ! = I(Y ′ ∩ V ′)−c · J∗ in V ′ and if M ′ =
I(Y ′ ∩ V ′)o−c ·M∗ with o = ordaI and I′ = Ig = I(Y ′ ∩ V ′)−o · I∗, we get

J ′ = I(Y ′ ∩ V ′)−c · J∗ =
= I(Y ′ ∩ V ′)−c · (M · I)∗ =
= I(Y ′ ∩ V ′)−c ·M∗ · I∗ =
= I(Y ′ ∩ V ′)−c · I(Y ′ ∩ V ′)c−o ·M ′ · I(Y ′ ∩ V ′)o · I =
= M ′ · I′.

We have the following formulas on O′
i. As M ′

i = M∗
i · IW ′

i
(Y ′ ∩W ′

i )
oi−ci+1 and c′i+1 = ci+1

and o′i = oi we get

Pg
i = (Ii + M

oi/ci+1−oi

i )g =

= Ig
i + (M ′

i)
oi/ci+1−oi =

= Ig
i + (M ′

i)
oi/ci+1−oi =

= I′i + (M ′
i)

o′i/c′
i+1−o′i =

= P ′
i .

On the other hand, P ′
i+1 = Pg

i+1 on O′
i+1 and thus W ′

i = Wg
i . As E′

i = Eg
i on O′

i we get,
setting ri = ordaQi,

Qg
i = (IWi

(Ei ∩Wi))
g =

= (IWi
(Ei ∩Wi))

∗ · IW ′
i
(Y ′ ∩W ′

i )
−ri =

= (IW ′
i
(E∗

i ∩W ′
i ) · IW ′

i
(Y ′ ∩W ′

i )
−ri =

= IW ′
i
(E′

i ∩W ′
i ) =

= Q′
i.

The superscript ∗ in the second line above denotes the total transform of IWi
(Ei∩Wi) under

the blowup W ′
i → Wi, whereas in the third line it denotes the total transform of Ei under

W ′ → W .

Observe that if o′i = orda′I
′
i = orda′I

g
i is smaller than oi and if Mi appears in Pi (i.e., if

0 < oi < ci+1) then M ′
i = M∗

i · IW ′
i
(Y ′ ∩W ′

i )
oi−ci+1 6= M∗

i · IW ′
i
(Y ′ ∩W ′

i )
o′i−c′

i+1 , though

still M ′
i = IW ′

i
(D′

i ∩W ′
i ) and J ′i = M ′

i · I′i. Hence P ′
i and K′

i are in this case not the weak

transforms of Pi and Ki. In particular, W ′
i−1 will not be the weak transform of Wi−1. Hence

E′
i must then equal the whole exceptional locus minus E′

n + . . . + E′
i+1 to have the center

transversal to the exceptional locus.

Decrease of invariant

Let M′ = (J ′, c′, D′, E′) be the transform of M = (J , c,D,E) by blowing up
Z = top(i(M)) in W . We show that ia′(M′) < ia(M) for a ∈ Z, a′ ∈ Y ′ and
J 6= 1 <11>.
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By “Top loci”, the center Z is contained for all i in top(Ii) and top(Ki). This
implies for points a′ in W ′

i above a that orda′I
g
i ≤ ordaIi and orda′K

g
i ≤ ordaKi.

From “Commutativity” follows that I ′i = Ig
i and hence o′i ≤ oi on T ′i+1, and

K ′
i = Kg

i with k′i ≤ ki on O′
i. Combining these inequalities gives by descending

horizontal induction for all points a′ of W ′ and for d maximal with od = 0 that
(t′n, . . . , t′d+1) ≤ (tn, . . . , td+1).

If d = 0 or if d ≥ 1 and md = (0, 0) the center equals locally the support of
Kd+1. Hence K ′

d+1 = Kg
d+1 = 1 and k′d+1 = 0 < kd+1 on O′

d+1. If d ≥ 1 and
md 6= (0, 0), a computation in local coordinates using the definition of maximal
tight shortcuts shows that m′

d < md on T ′d+1
<11>. In both cases we get ia′(M′) <

ia(M).

Transversality

Let M = (J , c,D,E) be the mobile obtained at a certain stage of the resolu-
tion process. We show that Di, Ei and |E| are normal crossings divisors in W
transversal to Z, and that |E| coincides with the exceptional locus accumulated
so far. And, if Wn, . . . ,W1 is the local flag of a punctual setup Jn, . . . , J1 of M
at a as constructed in “Commutativity”, Wi is transversal to Di and Ei, . . . , E1,
and not contained in Ei + . . . + E1 for all i <12>.

The divisors Ed, . . . , E1 are irrelevant for the definition of Kd, . . . , K1. But it is necessary to
know that Wd is transversal to Ed, . . . , E1 in order to have Z = top(Nd) ⊂ Wd transversal to
|E|. We have Ti = ∅ locally at a for some i ≥ d by “Decrease of invariant”, hence Od−1 = ∅
if d ≥ 2 and then |E| = En + . . . + Ed−1. Note that Ed−1 may be non empty because Od

need not be empty when Td = ∅. If d = 1, then |E| = En + . . . + E1 by vertical induction
and definition of E1.

Assume by vertical induction that these properties hold at the prior stages
of the process. The definition of Di and Ei in “Transform of mobile” implies,
by the persistence of normal crossings under blowup in transversal centers, that
Di, Ei and |E| are normal crossings divisors. It has been proven in “Decrease of
invariant” that some Tj is always empty. If j ≥ 2 then Oj−1 = ∅. The definition
of Ej−1 if j ≥ 2 and of E1 if j = 1 implies by vertical induction that |E| coincides
with the exceptional locus. We have |E| = En + . . .+Ej and Ej−1 = . . . = E1 = ∅
outside Oj .

We show that Wi is transversal to Di and Ei, . . . , E1 for all i. Let W → W ◦

denote the last blowup. By the induction hypothesis, W ◦
i is transversal to D◦

i and
E◦

i , . . . , E◦
1 , and Z◦ is transversal to D◦

i and |E◦|. Recall that Wi = (W ◦
i )g on

Oi+1, that Di = ∅ outside Ti+1 and Ei = . . . = E1 = ∅ outside Oi+1. This implies
that Wi is transversal to Di and Ei, . . . , E1.

The transversality of Wi with Di need not follow from the transversality of Wi with Ei since
Di could contain other exceptional components than Ei, and because Wi will in general not
be transversal to |E|. The transversality of Wi with Di is needed in order to know that the
Mi are normal crossings divisors in Wi.
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The fact that Wi is transversal to Ei is needed to know that ordaQi equals ordaEi and
is thus independent of Wi. The transversality of Wd with Ed is needed to know that Z is
transversal with |E|, which in turn implies that |E′| and all D′

i are normal crossings divisors.
Observe that Wi will in general not be transversal to Ei+1.

We show that Wi is not contained in Ei + . . . + E1. Assume that this holds
in W ◦. Inside Oi+1 we have Wi = (W ◦

i )g, and Ei + . . . + E1 is either the weak
transform of E◦

i + . . . + E◦
1 or its union with Y . Hence, if Z◦ is strictly contained

in W ◦
i , Wi is not contained in Ei + . . . + E1 inside Oi+1. If Z◦ = W ◦

i we have
J◦i = 1 because Z◦ ⊂ top(J◦i ) by “Top loci”. Therefore K◦

i+1 and hence P ◦i+1 are
bold regular or 1, with Z◦ = W ◦

i the support of P ◦i+1. Then oi+1 = 0 < o◦i+1,
so we are outside Oi+1. As Ei, . . . , E1 are empty there, Wi is not contained in
Ei + . . . + E1 also in this case.

The fact that Wi is not contained in Ei for i > d is needed to have Qi 6= 0 and hence
top(Ki) = top(Pi) ∩ top(Qi). For i = d it is not needed since Kd = 1.

We show that Z is transversal to Di, Ei and |E|. As |E| equals the exceptional
locus the Di are supported by certain components of |E|. Let d be the largest
index with od = 0 at a, setting d = 0 if all oi > 0. By “Top loci”, Z equals
locally top(od, kd,md) = top(Nd) if d ≥ 1, and {a} otherwise. As Nd is a shortcut
of Md = IWd

(Dd ∩ Wd) and Wd is transversal to Ed, . . . , E1 we see that Z is
transversal to Ed, . . . , E1. For i > d we have Ii 6= 1 and Qi 6= 0 so that top(Ki) =
top(Pi) ∩ top(Qi). As Z ⊂ top(Ki) by “Top loci” we get Z ⊂ top(Pi) ∩ top(Ei).
Therefore Z is contained for i > d in all components of Ei it meets. This proves
that Z is transversal to |E|, hence also to all Di and Ei.

Independence and semicontinuity

Suppose that we are given, locally on W , a truncated tuned setup Jn, . . . ,Ji

of a mobile (J , c,D,E) with truncated invariant (tn, . . . , ti). We prove by de-
scending horizontal induction that (tn, . . . , ti) is upper semicontinuous on W and
independent of the choice of the setup.

In case i = n, the tag tn = (on, kn, mn) is constructed without choices in terms of the
stalk Jn of J , the control cn+1 and the divisors Dn and En. Its first component on is
upper semicontinuous since it is the order of a coherent ideal. The definition of Pn and the
coherence of Dn imply that the order of Pn is upper semicontinuous. As also En is coherent,
the order kn of Kn = Pn · Qn is upper semicontinuous. The maximal tight shortcut Nn of
Mn has by construction a tag mn which is upper semicontinuous. Hence tn = (on, kn, mn)
is upper semicontinuous.

Assume that the assertions have been proven for n, . . . , i + 1. Fix a point b ∈
W . Locally, (tn, . . . , ti+1) attains by semicontinuity at b its maximum. Choose
closed subschemes Wn, . . . ,Wi+1 of a neighborhood U of b where Jn, . . . ,Ji+1

are defined and induce at all points of U ∩ top(tn, . . . , ti+1) a truncated punctual
setup of J .

After shrinking U there exists a closed hypersurface Wi in Wi+1 which has weak
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maximal contact with Ki+1 at all points a of top(Ki+1). By “Top loci” we know
that if oi+1 > 0 then top(tn, . . . , ti+1) = top(Ki+1). By “Order of coefficient
ideals”, orda Ji depends only on the locus top(Ki+1) and its transforms under the
blowups constructed there. It is hence independent of the choice of the local flag.
The same then holds for oi = orda Ji − orda Mi because orda Mi = orda Di by
“Transversality”.

If oi > 0, then Ki = Pi · Qi and ki = oi + orda Qi = oi + orda Ei because Wi

is transversal to Ei. If oi = 0, then ki = 0 and mi only depends on Di and ci+1.
The independence and the upper semicontinuity of ti = (oi, ki,mi) follow in both
cases.

Order of coefficient ideals

Let V ◦ be a closed regular subscheme of a regular scheme W ◦ and let K◦ be a
coherent ideal in W ◦ with coefficient ideal J◦ in V ◦. We prove that the order of
J◦ in V ◦ is determined by the locus top(K◦)∩V ◦ and its transforms under certain
blowups <13>.

Fix a point a◦ in top(K◦) ∩ V ◦ and set c = orda◦K
◦, e = orda◦J

◦. Let K and
J denote the ideals generated by K◦ and J◦ in W = W ◦ ×A1 and V = V ◦ ×A1.
Then J is the coefficient ideal of K in V . We have top(J, c) ⊂ top(K) ∩ V . Set
L = {a◦} × A1 ⊂ V and a = (a◦, 0). Consider the blowup W ′ → W of W
with center a and exceptional locus Y ′. Let K ′ and J ′ be the weak and controlled
transform of K and J with respect to c. From c′ = c at all points of Y ′ follows that
J ′ is the coefficient ideal of K ′ in V ′ = V g, so that top(J ′, c) ⊂ top(K ′, c) ∩ V ′.

We have J ′ = I ′ · IV ′(Y ′ ∩ V ′)e−c for some ideal I ′ in V ′. Let L′ be the weak
transform of L. Since the order of K along L is c, the order of K ′ along L′ is also
c. Set a′ = L′ ∩ Y ′. We blow up W ′ with center a′. Continuing this procedure
we get, after k steps, a morphism W k → W k−1 with exceptional locus Y k. The
ideals Kk and Jk are the weak and controlled transforms of Kk−1 and Jk−1 and
Jk is the coefficient ideal of Kk. Thus top(Jk, c) ⊂ top(Kk)∩V k. Then the weak
transform Ik of Jk−1 in V k satisfies Jk = Ik · IV k(Y k ∩ V k)k(e−c).

Let Lk be the weak transform of Lk−1. The order of Kk along Lk is c. We set
ak = Lk ∩Y k. Note that Y k ∩V k ⊂ top(Jk, c) if and only if k(e− c) ≥ c. For each
k, let now Y k ∩ V k be the center of the next blowup. The associated morphism
W k+1 → W k induces an isomorphism V k+1 → V k and Jk+1 = Jk · I(Y k ∩V k)−c.
These blowups with center Y k ∩ V k can be repeated pk times where pk is the
integral part of k(e−c)

c . Note that pk depends only on the locus top(K◦) ∩ V ◦

together with its transforms under the previous blowups and on the control c.
The assertion then follows from orda(J◦) = (1 + lim

k 7→∞
pk

k ) · c.

Resolution of mobiles

Let M = (J , c,D,E) be any mobile in W with ideal J and control c in V which
admits locally on W tuned setups with local flags given by hypersurfaces Wi−1
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in Wi which are osculating for Pi. Such setups exist e.g. when the combinatorial
handicap D is empty, independently of the transversal handicap. We show that
M has a strong resolution. For this we may assume that c ≤ the supremum of
the order of J in V . Blow up W in Z = top(i(M)) with transformed mobile
M′ = (J ′, c′, D′, E′) in W ′. Then M′ admits by “Commutativity” locally tuned
setups as before. We have seen in “Decrease of invariant” that ia′(M′) < ia(M)
for J 6= 1 and for all points a ∈ Z and a′ ∈ Y ′. As the invariant takes values in
a well ordered set vertical induction applies. Hence finitely many blowups make
the order of the transform of J drop below c. By transversality, all centers are
transversal to the exceptional loci. Equivariance follows from property (a) of the
invariant. This establishes the strong resolution of mobiles.

Resolution of schemes

The resolution of mobiles is used to construct a strong resolution of reduced sin-
gular subschemes X of W <14>. We may assume that X is different from W , and
that W is equidimensional. Let J be the ideal of X in W . Associate to it the
mobile M = (J , c,D,E) with control c = 1 and empty handicaps. At any stage
W ′ of the resolution of M the controlled transform J ′ of J defines a subscheme
of W ′ formed by the strict transform X ′ of X and some components inside the
exceptional locus.

As the final controlled transform of J equals 1, there corresponds to each
component of X a stage where the strict transform of the component has become
regular and has been taken locally as the center of the next blowup. Let X1

be those components of X which reach this stage first. The corresponding strict
transform X ′

1 of X1 is regular and, by “Transversality” and property (d) of the
invariant, transversal to the exceptional locus.

Write X ′ = X ′
1∪X ′

2 with X ′
2 the strict transform of the remaining components

of X. Stop here the resolution process of the mobile (J , c,D,E) and define a new
mobile whose resolution implies the separation of X ′

2 from X ′
1. Omitting primes,

let K be the ideal of X2 in W . Let J be the coefficient ideal of K in X1 with
control c the maximum on X1 of the order of K in W . Set all Di and Ei empty
with the exception of En, where n is the dimension of X1, for which we take the
exceptional locus produced so far.

Resolve the mobile (J , c,D,E). The controlled transforms of J are the coeffi-
cient ideals of the weak transforms of K as long as the maximum of the order of K
in W along X1 remains constant. Therefore the resolution of (J , c,D,E) will make
this maximum drop. Hence also the maximum of the order of the strict transform
of K in W along X1 drops. Iterating this process the final strict transform X ′

2 of
X2 will be separated from the weak transform X ′

1 of X1. Now induction on the
number of components applies to construct a sequence of blowups which makes X ′

2
regular and transversal to the transversality locus. Thus X has become regular.

Embeddedness and equivariance follow from the resolution of mobiles. The
resolution of X does not depend on the embedding of X since, under embeddings
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of W into some W+, the restriction of i(M+) to W equals i(M). This proves
excision. The construction of a strong resolution of X is completed.

Appendix

We indicate some references where concepts and arguments of this paper have
their origins or analogues.

(1) Maximal tight shortcut: Standard construction to prove combinatorial res-
olution, cf. [EV1] 2, p. 114, [BM3] 6.16(b), p. 260.

(2) Mobile: Including handicaps extends and refines [H2] 1.1, p. 54, [A1] 3, p.
90, 13, p. 208, [EV1] 1.2, p. 112, [BM3] 4.1, p. 241, [BS], p. 407. For the
combinatorial handicap cf. [EV1] 3.1, p. 116, and 4.20, p. 127, [BM3] 4.23,
p. 247, for the transversal handicap cf. [A1] 2, p. 89, 5, p. 98, [EV1] 6.17,
p. 149, [BM3] 6.8, p. 256.

(3) Controlled transform: Suitable transform to have coefficient ideals commute
with blowup, cf. [H2] 1.10, p. 57, [EV1] 1.4, p. 113, [BM3] 4.4, p. 242.

(4) Composition ideal: Cf. [EV1] 6.20.1, p. 153, 6.21.1, p. 154, 6.21.2, p. 155,
[BM3] 4.23, p. 247.

(5) Coefficient ideal: Transfers the resolution problem to smaller dimension, cf.
[H2] 8.5.4, p. 112, [A2] 7.1, p. 19, [EV1] 4.14, p. 122, [BM3] 4.18, p. 246.

(6) Weak maximal contact: Characteristic free notion to make the order of the
coefficient ideal coordinate independent, cf. [A2] 1.6, p. 6, [H2], 2.4, p. 63,
[AHV] p. 6. Osculating hypersurfaces are a characteristic zero construction
to guarantee weak maximal contact persistent under blowup, cf. [A1] 13.5,
p. 211, [H2] 8.2, p. 106, 8.4, p. 108, [AHV] 1.2.5.7, p. 34, [EV1] 4.4, p. 118,
4.11, p. 121, [BM3] 4.12, p. 244.

(7) Setup: References as for composition and coefficient ideal. In contrast to
[H2], 1.1, p. 54, 2.3, p. 62, 2.6. and 2.7, p. 67, [EV1] 5.1, p. 129, 5.11, p. 131,
[BM3] 4.19, p. 246, patchings and equivalence relations are not needed.

(8) Invariant: Cf. [EV1] 4.16, p. 124, 4.20, p. 127, 6.11, p. 140, 6.13, p. 143
[BM3] 4.20, p. 246, 6.15, p. 259.

(9) Transform of mobile: Distinguishes old and new exceptional components,
cf. [A1] 2, p. 89, 5, p. 98, [EV1] 1.4, p. 113, 6.17, p. 149, [BM3] 4.4, p. 242,
6.8, p. 256.

(10) Commutativity: Needed to construct setups of the transformed mobile, cf.
[G] 3.11, p. 309, [H2] 8.5.6, p. 113, [EV1] 4.6, p. 119, 4.15, p. 123, [BM3]
4.19, p. 246, 4.24, p. 248.

(11) Decrease of invariant: Cf. [A1], 16.5, p. 225, 17.4, p. 233, [H1], p. 312, [EV1]
6.13, p. 143, [BM3], p. 260.

(12) Transversality: Cf. [EV1] step 6.2, p. 154, [BM3] 4.12, p. 244.
(13) Order of coefficient ideals: The argument is from [H2] 2.8, p. 68, cf. also

[A1] 7.4, p. 141.
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(14) Resolution of schemes: Cf. [EV2] 1.5.
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