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ANALYTIC VARIETIES VERSUS INTEGRAL VARIETIES
OF LIE ALGEBRAS OF VECTOR FIELDS

HERWIG HAUSER AND GERD MÜLLER

Abstract. We associate to any germ of an analytic variety a Lie algebra of

tangent vector fields, the tangent algebra. Conversely, to any Lie algebra of

vector fields an analytic germ can be associated, the integral variety. The paper

investigates properties of this correspondence: The set of all tangent algebras

is characterized in purely Lie algebra theoretic terms. And it is shown that the

tangent algebra determines the analytic type of the variety.

Local analytic varieties, defined as zero sets of complex analytic functions,

can equally be considered as integral varieties associated to certain Lie algebras

of vector fields. This is the theme of the present note. As a consequence one

obtains a new way of studying singularities of varieties by looking at their Lie

algebra. It turns out that the Lie algebra determines completely the variety up

to isomorphism. Thus one may replace, to a certain extent, the local ring of

functions on the variety by the Lie algebra of vector fields tangent to the variety.

We shall give a brief account of these observations. Details will appear else-

where, see [HM1, HM2]. The paper of Omori [O], which treats the same topic

in a special case, served us as a valuable source of inspiration. Various ideas

are already apparent there.

Consider a germ X of a complex analytic variety embedded in some smooth

ambient space, X c (C" , 0). In this note, germ of variety shall always mean

reduced but possibly reducible complex space germ. We associate to X the Lie

algebra Bx of vector fields on (C, 0) tangent to X. To do so let D denote the

Lie algebra of germs of analytic vector fields on (C" , 0). We identify D with

Der cfn , the Lie algebra of derivations of the algebra cfn of germs of analytic

functions (C , 0) -► C. We then set

% = {Ö6»> D(/jr)c/jr},.

where I\ c (9n is the ideal of functions vanishing on X . This is a subalgebra

of D. It will be called the tangent algebra of X. In case X is a nonreduced

germ, simple examples show that the tangent algebra of X and of its reduction

XTe¿ may coincide. This limits our interest to the reduced case. In this context,

two main problems arise:

• Characterize all Lie subalgebras ^cl that are of the form A = Bx for

a suitable X.

Received by the editors April 16, 1991 and, in revised form, August 28, 1991.

1991 Mathematics Subject Classification. Primary 13B10, 14B05, 17B65, 32B10, 57R25, 58A30.
This work was done during a visit of the second author at the University of Innsbruck.   He

thanks the members of the Mathematics Department for their hospitality.

©1992 American Mathematical Society
0273-0979/92 $1.00+ $.25 per page

276



ANALYTIC VARIETIES VERSUS INTEGRAL VARIETIES 277

• Find out to what extent the abstract Lie algebra Bx determines the variety

X.

1. Tangent algebras were characterized by Lie algebra properties

In order to discuss the first problem let us fix some notation. A subalgebra A

of a Lie algebra B will be called balanced (in B ) if A contains no ideal / 0

of B but an element a 4- 0 such that

[a,B]cA    and    [[a,B],B]cA.

A visible subalgebra of B is a subalgebra A that admits a chain of subalgebras

A = AmcAm-l C---CA0 = B

such that Ak is maximal balanced in A^-i for k — 1, ... , m . In case m = 1,

i.e., if A is a maximal balanced subalgebra of B, A is called maximal visible.

Note that these notions are of a purely Lie algebra theoretic nature.

For a finite family X = {X{, ... , X„} of germs X¡ c (C , 0) let Dx = fl, Djt,
be the Lie algebra of vector fields tangent to all X¡ (the X¡ may be contained

in each other). Our first result may be considered as a variation of the classical
Frobenius Theorem in the singular case (see e.g., [N, 2.11]).

Theorem 1. Let A c D be a subalgebra.
(a) There is a set of germs X as above such that A — Dx if and only if A is

a visible subalgebra of D.
(b) There is a smooth germ Ic(C", 0) different from 0 and (C , 0) such

that A = V>x if and only if A is a maximal visible subalgebra of D.

(c) There is an irreducible germ X c (C", 0) with an isolated singularity at

0 such that A = Bx if and only if A is a maximal visible subalgebra of the

algebra Do of vector fields vanishing at 0.

(d) There is an analytic germ X c (C" , 0) such that A = 3X if and only if

A is geometric in D, i.e. by definition, A is visible in every subalgebra B of D
containing A.

Comments, (i) It is easy to see that the family X of germs X¡ is not unique. For

example, if X is the set of irreducible components X¡ of some germ X = \J X¡

one has Dx = Dx. Moreover, D* = BXt Sing x where Sing X denotes the sin-

gular subspace of X. But in case X is an irredundant set of irreducible germs,

i.e., deleting any germ from X alters Dx, the family X is uniquely determined

by Dx. In particular, the variety X of a maximal geometric subalgebra as in
(b) and (c) is unique.

(ii) There is a relative version of Theorem 1 where D is replaced by Dz for

some set of germs Z and where all varieties X associated to visible subalgebras

of Dz are determined. Namely, a subalgebra A of Dz is visible if and only

if there is a set of irreducible germs X with X¡ <f_ Zj for all i, j such that

A — Dz,x • Theorem 1 represents the cases Z = 0 , resp. Z = {0} .

2. Singularities are determined by their tangent algebra

We now turn to the second problem, the characterization of the isomorphism

type of germs via their Lie algebra. If X, Y c (C", 0) are isomorphic then

the associated Lie algebras D^- and Dy are isomorphic. In fact, every isomor-

phism X —» Y can be extended to an automorphism (j> of (C , 0) with algebra
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automorphism </>*: cfn -» <fn . Then O(D) := <f>* o D o (<f)*)~l defines an auto-

morphism O of D with O(Dy) = Bx. By abuse of notation we write again
í> = <j>*. This map is continuous if D is provided with the topology induced

from the coefficientwise topology on cfn . Conversely we have

Theorem 2. Let X and Y be germs of analytic varieties in (C, 0) different

from 0. Assume that n > 3. For every isomorphism O: Dy —» Bx oftopologi-

cal Lie algebras there is a unique automorphism 4> of (C" , 0) sending X onto

Y and such that <E> = (f>*.

Thus the analytic isomorphism type of X is entirely given by the abstract

topological Lie algebra V>x. Omori [O] proved this in the special case of
weighted homogeneous varieties.

We indicate some ideas appearing in the proofs of Theorems 1 and 2.

3. Proof of Theorem 1

In order to study visible subalgebras of D we associate to any A c D the

germ X(A) in (C", 0) defined by the ideal y/I{A) of cfn where

I(A) = {ge<?„,  g-Be A}.

Here the ¿f„-module structure of D is used. The germ X(A) will be called the

integral variety of X. Note that every germ X c (C", 0) different from 0 and

(C , 0) can be recovered from Bx as X = X(BX) : The inclusion X(BX) c X

is obvious from the definition. For the converse, assume that some g e I(BX)

does not belong to Ix. Consider the vector fields gdXl, ... , gdXn. In every

point outside the zero set of g in X they are linearly independent. As they

are tangent to X by definition of I(BX) a Theorem of Rossi [R, Theorem 3.2]

implies that the germ of X taken in such a point is isomorphic to (C" , 0). But

these points are dense in X and we get a contradiction.

Let us now consider assertion (b) of Theorem 1. The proof that Bx is a

balanced subalgebra of D is a bit involved and will be left out. Concerning

maximality, assume that Bx is contained in a balanced subalgebra A c D.

Then in fact Bx c A c BX(A) ■ One shows that A balanced implies X{A) ^ 0
and (C", 0). Moreover X{A) = X{BX(A)) c X(BX) = X. Now if X is smooth

one deduces from D* C BX(a) iriat X{A) — X. This shows Bx = A and proves

necessity in (b).

For sufficiency, start with a maximal visible subalgebra ^cD. Similarly

as above A C BX(a) with X{A) ¿ 0 and (C", 0). As O*^) is balanced,
maximality of A gives A = BX(A) ■ Write X = X(A). If Sing X ¿ 0 then

Dsing x is balanced. Again by maximality, the inclusion Bx C Dsing x is actually

an equality. This implies X = Sing X, which is impossible. Therefore X is
smooth.

Part (a) of Theorem 1 is proved by induction. Here one proves and uses

at once the relative version of the theorem mentioned earlier. To illustrate,

let X = {X} consist of one singular germ X. Choose k e N maximal with

Z = Sing* X := Sing(- • • (Sing(X)) ^ 0. The inclusion Bx C D is split into
Bx = Bz, x C Dz and Dz C D. The first is visible by induction and the second
is maximal visible by (b) since Z is smooth.
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Conversely, if A is a visible subalgebra of D use induction on the length of

the chain and the relative version of part (b) to find X.

4. Proof of Theorem 2

We conclude with some remarks on the proof of Theorem 2. For / e <?„

consider the C-linear map Xf. Bx —► Bx defined by

A/(Z)) = <D(/-<D-1(Z>)).

If <I>: By —> Da- is induced from an automorphism <j> of (C", 0), say O = <p*,

one checks by computation that the equality X/(D) = <p*(f) • D holds for all

D in Bx. If O is an arbitrary continuous Lie algebra isomorphism, we are

led to establish the same equality in order to recover a map <j> that could be an

appropriate candidate to induce 4> and to define an isomorphism between X

and Y.
Thus the first thing to do is to check whether any vector field D is mapped

by Xf into the ¿f„-module (D) generated by D. This can be seen for all D

of a certain dense subset U of Ix • B by writing (D) as an intersection of

subalgebras of Bx of form Djr, z • This is the key step in the proof and it

is here that we need the assumption n > 3. Once this is accomplished, the

relative version of Theorem 1 and the fact that O is a Lie algebra isomorphism

guarantee that Xf maps Bx, z into D^, z • Hence the module (D) is mapped
into itself. This implies

Xf(D) = P(f,D)-D
with suitable factor <f>*(f, D) e cfn. Then the continuity of <S> is used to

show that 4>*(f,D) is actually independent of D, say <j)*(f,D) = <f>*(f).
Therefore, again by continuity,

Xf(D) = P(f).D

will hold for all D e Ix • D. Finally we deduce from this equality that the
map 4> thus obtained is an automorphism of (C", 0) mapping X to Y and

inducing G>.
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