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ON THE PROBLEM OF RESOLUTION OF SINGULARITIES
IN POSITIVE CHARACTERISTIC

(Or: A proof that we are still waiting for)

HERWIG HAUSER

Introduction. The embedded resolution of singular algebraic varieties of dimensiGn
defined over fields of characterisgic> 0 is still an open problem. The inductive argument
which works in characteristic zero fails for positive characteristic. The main obstruction is the
failure of maxzimal contact, which, in turn, manifests in the occurencewald singularities
andkangaroo points at certain stages of a sequence of blowups. At these points the standard
characteristic zero resolution invariantreases instead of decreasing. The induction breaks
down. No remedy has been found yet.

In this article, which is mostly expository, we will give a detailed discussion of the obstructions
to resolution in positive characteristic. The description of wild singularities is based on the
notion of oblique polynomials. These are homogeneous polynomials showing a specific
behaviour under linear coordinate changes, which, in turn, determines them completely.
Blowing up a wild singularity may cause the appearance of kangaroo points on the exceptional
divisor. They represent one of the main problems for establishing the induction in positive
characteristic.

The proofs and the technical details can be found in the original preprint [Hal], which is
currently being revised and updated, cf. [Ha7]. While addressing us mainly to algebraic
geometers with some experience in resolution matters, we will add in footnotes explanations
and references for readers that are curious about the recent developments but less familiar
with the topic.

Sections A and B develop the overall outset of the resolution of singularities, sections C and
D then exhibit the specific problems related to fields of positive characteristic. These sections
are written for a general audience. Starting with section E, the reader will find more detailed
information and precise statements.

A. Prelude for the non-expert reader. Before getting into the actual material, let me tell you
what is resolution about and why it is important (and, also, why it is so fascinating). Readers
acquainted with the subject may proceed directly to the next but one section. A system of
polynomial equations im variables has a zeroset — the associatldbraic variety X —
whose structure can be quite complicated and mysterious. You may think of the real or

MSC-2000: 14B05, 14E15, 12D10.

Supported within the project P-18992 of the Austrian Science Fund FWF. The author thanks the members of the Clay
Institute for Mathematics at Cambridge and the Research Institute for Mathematical Science at Kyoto for their kind
hospitality.



complex solutions of an equation like1(z%y? + 3?22 + 2222) = (1 — 22 —y? — 22)3. The
geometry of varieties shows all kind of local and global patterns which are difficult to guess
from the equation. In particular, there will Béngularities. These are the points whepé

fails to be smooth (i.e., wher& is not a manifold). At those points the Implicit Function
Theorem (IFT) cannot be used to compute the nearby solutions. As a consequence, it is hard
(also for computers) to describe correctly the local shape of the variety at its singular points.

Resolution of singularities is a method to understand where singularities come from, what
they look like, and what their internal structure is. The idea is quite simple: When you take
a submanifoldX of a high dimensional ambient spagé and then consider the imagé’

of X under the projection of the ambient space onto a smaller shE¢e/ou most often
create singularities oA’. The Klein bottle is smooth as a submanifoldr¥, but there is no
smooth realisation of it ilR?. You necessarily have to accept self-intersections. Similarly, if
you project a smooth space curve onto a plane in the direction of a tangent line at one of its
points, the image curve will have singularities.

Which singular varieties can we obtain by such “projections™? The answer is sivhfile:

Theorem. (Hironaka 1964)Every algebraic variety over C is the image of a manifold
under a suitable projection. Such a manifold and map can be explicitly constructed
(at least theoretically).

For a geometer, this is quite amazing. For an algebraist, this is even more striking, since it
means that it is possible to solve polynomial equations up to the Implicit Function Theorem.
The applications of this result are numerous (it would be worth to list all theorems whose
proofs rely on resolution). The reason is that, for smooth varieties, a lot of machinery is
available to construct invariants and associated objects (zeta-functions, cohomology groups,
characteristic classes, extensions of functions and differential forms, ...). As the projection
map consists of a sequence of relatively simple maps (so called blowups), there is a good
chance to carry these computations over to singular varieties. Which, in turn, is very helpful
to understand them better.

Resolution is well established over fields of characteristic zero (with nowadays quite accessible
proofs), but still unknown in positive characteristic (except for dimensions &).taVhy
bothering about this? First, because (almost) everybody expects resolution to be true also in
characteristigpp. As the characteristic zero case was already a great piece of work (built on
a truly beautiful concatenation of arguments), it is an intriguing challenge for the algebraic
geometry community to find a proof that does not use the assumption of characteristic zero.
But there is more to it: Many virtual results in number theory and arithmetic are just waiting
to become true by having at hand resolution in positive characteristigain, it would be
interesting to produce a list.

Another important feature of such a proof is our understanding of solving equations in
characteristigp. If we agree not to aim at one stroke solutions but to simplify the equation
step by step (using for instance blowups) until we can see the solution (again, modulo IFT)
there appears this delicate matter of understanding local coordinate changes in the presence
of the Frobenius homomorphism. Phrased in very down to earth terms this nféemnsio

you measure whether a polynomial is, up to coordinate changes and up to adding p-th

De Jong’s theory ofalterations, valid in arbitrary characteristic but slighty weaker than resolution, already

produced a swarm of such results, cf. the next section.
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power polynomials, close or far from being a monomial. This is less naive than it may
sound: Itis an extremely tough question (it has resisted over 50 years), and it lies at the very
heart of the resolution of singularities in characterigticA meaningful proposal for such a
measure (which should be compatible with blowups in a well defined sense) could break open
the wall behind which we suspect to see a proof of resolution in positive characteristic. The
rest would be mainly technicalities.

In the present article, we will see some of these “elementary” characteriftatures, and

we will make them very explicit. Of course it would be nice to have in parallel the conceptual
counterparts of these constructions and phenomena, but this would require much more space
and effort (for both the reader and the writer). As a consolation, the problems will be so
concrete that everybody with a minimum talent in algebra will be tempted to attack them. The
more geometrically oriented reader is referred to the survey [FH] for various visualizations
of the resolution of surface singularities.

At the end of this paper, we briefly describe the present state of research in resolution of
singularities in positive characteristic and arbitrary dimension (work of Hironaka, Villamayor,
Kawanoue-Matsuki, Wiodarczyk).

B. Resune of techniques and resultsThis section will explain the main resolution devices
that work independently of the characteristic. The material has become classical, with many
excellent references. After this survey section we will return to the failure of maximal contact
and the description of wild singularities and kangaroo points in positive characteristic.

By far the most important modification of a variety is given by the concept of blowup. Every
blowup comes with a center (a carefully chosen subvariety of our variety), which is the locus
of points where the variety is actually modified. Outside the center, the variety remains
untouched. The center itself is replaced by a larger subvariety, which affects the way how the
variety approaches this locus. The hope is that blowups gradually improve the singularities
of the varieties until, after possibly many steps, all singularities are eliminated. Whereas this
elimination is granted in characteristic zero if one chooses the correct sequence of blowups,
the situation is much more delicate in positive characteristic. The main difficulty is to measure
the complexity of a singularity by an invariant (usually a lexicographically ordered vector of
integers) in a way such that after each blowup (chosen suitably) the invariant has decreased.
This is precisely the theme of this article: The invariant that works well in zero characteristic
tends to behave erratically in positive characteristic.

Apart from blowups, the main two other characteristic-free techniques are normalizations and
alterations. They will be described at the end of this section.

Blowups. We will start with a short introduction to blowups. There are many equivalent
ways to define them (see e.g. [EiH, Ha5]). We shall choose the most geometric and intuitive
description. By an affine variety we shall always understand a subset of affineispamer

a field K that is the zeroseX of a bunch of polynomials im variables. We do not assume
that X is irreducible. The coordinate rinj[ X ] is the quotient of[x, . .., z,,] by the ideal

Ix generated by these polynomials

All what follows can be defined for arbitary schemes, the center being a closed subscheme. See the paragraphs after

the examples below for a more conceptual definition of blowups.
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A blowup of X is a new varietyX’, the blowup or transform ok, together with a morphism

7 : X' — X, the blowup map. Any blowup is determined by its cerfferThis is a closed,
non-empty subvariety of X, usually smooth and included in the singular loSixsg(X) of

X (the locus of points wher& is not smooth; below we define the blowup with respect to an
arbitrary ideal). The definition ok’ and= does not need the embeddikgc A", but the
explanation is easier if we use it. Moreover we shall assume that we are given a projection
p: X — Z (again, this is not substantial, but makes things simpler). We should thiAk of
being fibered by transversal sections aldhglf Z is just a point, is the constant map. If

Z is aline, thery is typically the restriction toX of a linear orthogonal projection from™

to Z (having chosen some scalar product&t). For any pointa of X notin Z there is a
unique line inA™, call it ¢,, passing througla and its projection poinp(a) in Z. This is
just the secant line throughandp(a), and belongs to the spaééA™) of all lines inA™. In
particular, the notion of limit line makes sense wheapproacheg(a) inside the fiber op.

The idea of blowups consists in pulling apartinside a larger ambient space. As defined
on X \ Z and takes values if(A"™), the graphl'(¢) of ¢ will be an algebraic subset of
(X\ Z) x L(A™). It allows to seeX \ Z embedded intdX \ Z) x L(A™) viaa — (a,{,).
We now extend this embedding to the wholeXof The result will no longer be an embedding,
but rather a subvariet){’ of X x L(A™) which projects ontdX. Above points: of Z, there
will in general be several points iX’, namely all the limiting positions of secants through
a. Taking the limit of the secants, asa € X \ Z approaches’ corresponds to adding the
boundary points of'(¢) C (X \ Z) x L(A™) when considered as a subset®fx L(A™).
More precisely, leX’ be the Zariski-closure df(¢) in X x L(A™), i.e., the smallest algebraic
subset containing'(¢). ThenX' will be the blowup ofX alongZ, andr : X’ — X is the
restriction of the projectioX x L(A™) — X.

Intuitively, we can interpref(a) as the “height” of the point oiX’ projecting toa € X \ Z.

Above pointsa in Z, this height will in general be multi-valued. All this can be made very
precise, and has both algebraic and axiomatic interpretations (see the definition after the next
examples and the references). For the moment, we apply this technique to specific geometric
situations. As the blowup map will be an isomorphism o¥e¥k Z (by definition), and since

we have no need to modify the smooth points\gfwe shall always choose the centgras
mentioned earlier, inside the singular lodisg(X) of X.

Ezample 1: Let X be the cone in the three-dimensional real affine spatef equation
22 +y? = 22, and let the cente¥ be its unique singular point, the origin We claim that
the blowupX’ of X in 0 is the cylinderz? + y2 = 1. This can be checked algebraically, but
it is nicer to convince ourselves by a geometric argument. See the lingstirougho as
elements of projective spaé. Our height-functiorf : X \ 0 — P2 is defined by associating
to any pointa € X \ 0 the line throughe and0 (which is just a generating line of the cone).
As a moves on the cone straight towaftghe line/, will always be the same, so the mép
is constant on the lines of . Clearly, the limiting positions form a circle, and we conclude
that X’ is indeed the cylinder.

Ezample 1: Take for X the plane curve of equatior? = 32 + 2, the node. The natural
center to choose is the singular point The same reasoning as before shows fhats a
smooth curve. Also, taking the cartesian prodiicof X with a perpendicular axis if3
(seeingA? as the plané\? x 0 in A%) will pose no problems: the cent&ris now thez-axis,
we fiberA? by the planes\? x {t} with ¢ varying inA!, and get a blowup” of Y which is
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the cartesian product of the blowu§ of X with the z-axis.

Ezample 2: The cuspX of equationz? = 32 is slightly more complicated to treat. The
blowup of X with center the origirD will be a space curveX’ in the three-dimensional
ambient spac&? x P, As X has just one limit of secants @&{they-axis), there is precisely
one point onX" sitting aboved € X. Call it «’. We have to check whethéf’ is smooth or
singular a’. Unfortunately, this can no longer be done by purely geometric methods, and we
have to resort to algebra. Point®on X are of the form(t3, #2), the respective secant, taken
as an element i?!, has projective coordinatés® : t2) = (¢ : 1), so that the points ok’ are
parametrized by — (3,2, ). HenceX’ is smooth at’ = 0. The same computation applied
to the “sharper” cuspy” defined byz? = ¢° yields for Y’ the parametrizatiorit®, t2, ).
This shows that”’ is still a singular curve. Projedt’ to the planeA? by forgetting the first
component. The image curve is the ordinary ci&pBY construction,X is isomorphic to
Y. Therefore another point blowup suffices to resdlife

There is an algebraic and slightly more general notion of blowup which is related to an
arbitrary idealV in K[z, ...,z,] (now K can be any field). The geometric version above is
recovered by taking folV the radical ideal ; definingZ in A™. Letgy,..., g, be a system

of generators ofV, and letZ C A™ be the common zeroset of tlge (which coincides with

the subvariety o™ defined byN). Then the map

g: A"\ Z =P a—(gi(a): ...k gi(a))

is well defined. The Zariski closu™ of its graph inA” x Pk—1 is defined as the blowup
of A™ with centerN. Itis easy to see that” is a variety of dimensiom, and isomorphic to
the blowup defined geometrically above in caéeés the radical ideal of the subvarief of
A™. In particular,&” is smooth ifZ is smooth. The restriction ta™ of the first projection
A™ x PF=1 — A" yields the blowup map : A" — A™.

Embedded resolution. We will have to distinguish between embedded and non-embedded
resolution. To explain the difference, let our singular varigte embedded in some smooth
ambient spacél/, say, for simplicity,iW’ = A™. Let Z be a subvariety oX (our chosen
center of blowup). It is a general fact that the blowkip of X alongZ can be constructed
from the blowup ofi¥ along Z. To this end, denote by : W’ — W the blowup map,
and consider the inverse imageé’ = 7~ 1(X) of X underr. The varietyX* is called the
total transform of X. It turns out thatX* has two components. The first is theceptional
divisor E = n=1(Z) c W' given by the pull-back of the center. It is a hypersurfacéih
which contracts under to Z, whereas outsid& the mapr is an isomorphism ont& \ Z.
The second component, s&¥, is the geometrically interesting object. It coincides with the
blowup of X alongZ and is called thatrict transform of X underr. Taking the inverse
imager—1(X \ Z) of X \ Z in W', the Zariski-closure of ~1(X \ Z) in W’ gives X".

An embedded resolution ofX C W is a birational proper morphism: W — W so that the
total transformX* is a variety with at most normal crossirigsThis signifies that the strict
transformX’ of X underr is smooth and transversal to the components of the exceptional
divisor E in .

Birational morphism: A map given locally by quotients of polynomials inducing an isomorphism of a dense open
subset onto a dense open subset. Proper: The preimage of compact sets is compact. Normal crossings: Locally, the

variety is up to isomorphism a union of coordinate subspaces, or, equivalently, can be defined by a monomial ideal.

5



In contrast, anon-embedded resolution ofX is just a birational proper morphisim XX

with X smooth. It does not take into account the embedding dfut considersX as an
abstract variety. We should think efas a parametrization of the singular variéfyby the
smooth varietyff . A basic result in birational geometry says that any projective birational
morphism is given as a single blowup &f along a centetZ defined by a possibly very
complicated ideal. In particular, this holds for any resolution, where now the center should
be supported oBing(X). Even in the first non-trivial examples it is not clear how to define
such a centetib initio in order to get via the induced blowup the required resolution.

For many applications one needs embedded resolution. The concept has a variant known as
log-resolution Of varieties, respectivelyrincipalization or monomialization of ideals —the

ideal will be the one defining in W*. If a non-embedded resolutien X > Xis given by

a sequence of blowups in certain centers and if we have an embedding? of X into a

smooth variety¥’, one may take the successive blowup$iofiefined by these centers. This
yields a birational morphism : W — W of smooth varieties together with an embedding

X C W. Atthis stageX need not meet the exceptional dividorof 7 transversally (here,

Eis defined as the subvarietyﬁ? wherer is not an isomorphism). But then one can apply
further blowups td¥’ until all components of the transform af andE do meet transversally,

which then provides an embedded resolutiotkoin 1.

Small dimensions. Let us now turn to resolution of curves, surfaces and three-folds in
arbitrary characteristic.

The resolution of curves is governed by the fact that all singular points are isolated, so that
only point blowups have to be considered. One can choose any of the singular point as center.
The order in which these are taken does not matter. So the only problem is to show that after
finitely many such blowups the resulting curve is smooth (and, for the embedded resolution,
transversal to the exceptional divisor). This is done by defining a local invariant at each of the
singular points of the curve and showing that, after one blowup, this invariant has dropped at
all singular points sitting above the center. Various invariants for this task have been proposed
and work, see the first chapter of Kails book describing thirteen ways how to resolve curve
singularities [Ko]. The most frequent invariant for plane curves consists of two nuifaheis
(considered lexicographically), wheses the order of the Taylor expansion of the defining
equation at the point, andis the first characteristic number (which we do not define here).
For a detailed discussion of this invariant in arbitrary characteristic and the proof that it drops
under blowup you may consult the survey [HR].

Let us next consider singular surfaces that are embedded as hypersurfaces in a smooth three-
dimensional ambient space. The singular locus consists now of isolated points and (possibly)
curves, which themselves can be singuldFhe isolated points can be taken as the center of

a blowup as before, with the task to exhibit numerically the improvement of the singularities
after the blowup. The first complication is due to the fact that an isolated singularity may
produce under blowup on the transformed surface a whole curve of singular points. The
second complication stems from the curves along which the surface is singular. If the curve

For a log-resolution one requires that the total transform is in addition a divisor, say a hypersurface of the smooth
ambient space. This can be achieved from an embedded resolution by an extra blowup with center the entire strict

transform of the variety.
In practice, one considers instead of the singular locus the usually smaller top locus defined earlier as the set of points

where the local order of the defining equation is maximal; the same reasoning applies with slight modifications.
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is smooth, it can be taken as center, with the hope of getting an improvement. Ifitis singular,
its singular points are the only reasonable centers, because blowups whose center is a singular
curve are very difficult to control. So we start with point blowups. By resolution of curves,
finitely many blowups resolve these curves (i.e., make them smooth). On the way, new curves
may appear in the singular locus of the surface. Zariski has shown that they are always
smooth. This allows to conclude that after finitely many blowups the singular locus of the
surface consists of isolated points amdooth curves that, moreover, intersect transversally.
From that point on we take also curves as centers: Any component of the singular locus of
the surface may be chosen (again, the order does not matter, as Zariski showed).

It remains to show that the sequence of blowups (which is geometrically motivated) does
indeed resolve all singularities. To this end it suffices to show that the order of the defining
equation must drop after finitely many blowups. This problem and the solution to it are
known as the theorem of Beppo Levi. Again an invariant that drops after each blowup has to
be defined. There are several proposals. Zariski was able to construct one for characteristic
zero, and Abhyankar was the first to give a proof of termination in positive characteristic
[Za, Abl]. Hironaka later defined a different and characteristic free invariant based on the
Newton polyhedron of the defining equation [Hi4, Ha3]. The construction is quite special
and does not seem to apply to higher dimensions. Hauser and Wagner showed, relying on a
proposal of Zeillinger, that the nowadays standard characteristic zero invariant of Villamayor,
Bierstone-Milman and successors that works in arbitrary dimension (but may increase for
blowups in positive characteristic) can be modified suitably in case of surfaces by subtracting
abonusfromit. This bonus is a small correction term which takes values betwaad1 + ¢
according to the internal structure of the defining equation, see the section on the resolution
of surfaces. The modified invariant then decreases after each blowup and thus provides an
induction argument [HW]. Quite recently, Cossart, Jannsen and Saito established resolution
for surfaces that are not necessarily hypersurfaces over a field by extending Hironaka'’s
construction to arbitrary excellent two-dimensional schemes [CJS]. It turns out that all these
techniques actually allow to produce an embedded resolution (since we are working with the
defining equations of the surface). In contrast, Lipman’s proof of resolution of surfaces via
normalization plus blowups yields a non-embedded resolution [Lp¥, At]

The situation for three-folds is much more involved. At the moment anly-embedded
resolution is established (in arbitrary characteristic). The proof relies vitally ootthedded
resolution ofsurfaces. Abhyankar gave a long proof (more than five hundred pages) that is
scattered over several papers and requires that the characteristic of the algebraically closed
ground field is> 5. Cutkosky was then able to make this proof much more transparent and to
reduce it to less than forty pages [Cu]. In Cutkosky’s paper, Abhyankar’s work is described
in great detail, giving all necessary references. Cossart and Piltant succeeded to remove the
restriction on the characteristic and the algebraic closedness of the ground field. The resulting
proof is rather long and challenging [CP1, CP2], based on ideas of [Co].

Normalization. All the above approaches use in some way or other the modification of a
variety by blowups. Let us now describe two alternatives.

An important way to improve the singularities of a variety is by means of its normalization.
This is an extremely elegant, characteristic independent method to get rid of all components

The proof selects among all normal varieties proper over the ground field and biratioAaldoe of minimal

arithmetic genus, shows that all its singularities are pseudo-rational, and then resolves these by point blowups.
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of the singular locus of codimension one in the variety (e.g., curves in the singular locus of a
surface). One says that the variety becom@slar in codimension one. The construction
does not look at the embedding.

The normalization is defined through the integral closure of rings. AssumeXthatan
irreducible algebraic subset of affine spat® over the ground field<, and letR be the
coordinate ring ofX whose elements are the polynomial functionsXn The ring R is

a finitely generatedy-algebra and an integral domain. L@tbe its field of fractions (the
function field of X). Now recall that any morphisnfi : X’ — X of varieties induces a dual
ring homomorphisny* : R — R’ between the coordinate rings given by composition with
f. If the morphismf is birational, the magf* is injective and induces an isomorphism of
function fieldsQ = @'. Identifying Q' with @, the morphismf can then be read as a ring
extensionR C R’ C Q. This observation suggests to look at overringsRahside () that
are again finitely generatdgd-algebras (in order to be the coordinate ring of a variety) and so
that the corresponding variety is “closer” to a smooth variety than

One answer to this approach is the integral clodaref R in Q. It can be shown thak is

a finitely generateds-algebra, and that the extensighC R is finite. ThereforeR is the
coordinate ring of a variety, and the inclusio? C R defines a finite morphis’Y — X,

the normalization map. The variefy is normal (its coordinate ring is integrally closed), in
particular, it is regular in codimension one. For curves, this signifies to be smooth (giving
a non-embedded resolution), for surfaces we will only have isolated singularities (which is
good for many purposes, but not yet a resolution). It can be shown that iterated compositions
of normalizations and point blowups allow to resolve surfaces.

Alterations. The last method that we shall mention in this introductory part is the notion of
alterations introduced by de Jong [dJ]. It works in all characteristics, but yields a resolution
only up to a finite map. This, however, is sufficient for many applications [Be].

Let us briefly describe the idea. Whereasnadification of a variety X is a birational
proper morphismr : X’ — X yielding an isomorphism of function fields, aiteration is a
proper, surjective morphism that induces a finite extension of function fields. Geometrically
speakingyr is an isomorphism, respectively a finite morphism over a (dense) open $lbset
of X (generic isomorphism, respectively generically finite morphism). A modification is a
birational alteration, and an alteration factors into a modification followed by a finite map.

De Jong shows that any variety (say, over an algebraically closed field) admits an alteration
e: X' — X with X’ smooth (and quasi-projective) [dJ, Be, AO]. For the proof by induction
one needs a stronger and more precise statement: idfa closed subvariety ok, the
alterations can be chosen together with an open immersioX’ C Y into a projective and
smoothY” so that the unior(¢~*(S)) U (Y \ X’) forms a normal crossings divisor In.

The method of proof is opposite to the resolution proofs via blowups: After a preliminary
alteration which allows to assume to be projective and normal, the variely is fibered

in curves by constructing a suitable morphism to a variétyf dimension one less than the
dimension ofX. This may create singularities in the fibres which lie outside the singular
locus of X. Using then the theory of semi-stable reduction a further alteration together with
induction on the dimension of the base space reduces to the case where the fibres have at most
nodal singularities (i.e., are defined locally by = 0), and the singular fibres sit only over

the points of a normal crossings divisor Bf The situation has then become so explicit that

8



it can be treated by toric methods, yielding finally an alterationX’ — X of X with the
required properties.

This concludes our summary on resolution. We now turn to the main theme of the article, the
obstructions to the resolution of singularities in positive characteristic and arbitrary dimension.

C. Failure of maximal contact. There is a concrete reason why resolution is more difficult in
positive characteristic: The behaviour of the singularities under blowup is much more erratic
than in characteristic zero. Therefore it is harder to pinpoint and then measure a continuous
improvement of the singularities yielding eventually to a resolution. In this section we explain
this phenomenon. Some preliminary material is necessary.

For the ease of the exposition, we restrict to hypersurfacegfined by one equatiofi= 0

in a smooth ambient spad¥ (e.g. affine spacAd™). Fix a pointa of X. ThenX is smooth
at ¢ if and only if the order of the Taylor expansion ¢fat a is 1, i.e., if the expansion
starts with a linear term. I& is a singular point ofX, the order is at least. Denote by
Sing(X) the set of all singular points of. This is an algebraic subset, called thiegular
locus of X; it is defined by the vanishing of the partial derivativesfof The complexity
of the singularity ofX at a pointa € Sing(X) is related to the order of vanishing ¢fat

a. Denote this number byrd, X, and byord(X) the maximal value obrd,X on X. As
ord, X is an upper semicontinuous functiondrand X is a noetherian space with respect to
the Zariski topologyprd(X) is finite and the setfop(X) of points of X whereord, X attains

its maximumord(X) is an algebraic subset. Thisp locus collects the “worst” singularities
of X. Zariski calls it theequimultiple locus [Za]. The objective of the resolution process is
to makeord(X) drop by a sequence of blowups in well chosen centers until it becames
ThenX will have become everywhere smobth

As blowups are isomorphisms outside the center, they will not change the local orfer of
there. Since we are only concerned in a first instance to impkoatngtop(X) the natural
choice of center is therefotg = top(X). The problem is that in general the top locus may
itself be singular. Blowing up the smooth ambient spEEé a singular center creates a new
ambient spac®”’ which now may be singular, and whose singularities can be hard to control.
It is then unknown how to measure a possible improvement of the transtéroh X in .
Therefore we are confined to choose alwaysoth centers”Z. Something nice happens.

Fact. Let Z C top(X) be a smooth center, let : W — W be the induced blowup
with (strict) transformX’ of X in W’. Leta be a point inZ, and leta’ be a point in
E = 7=1(Z) ¢ W’ mapping undefr to a. Then

ord, X' < ord,X.

In particular, we getrd(X’) < ord(X) for the maximum value of the local orders. This says
that the complexity of the singularities &f does at least not get worse olfd(X’) < ord(X)

we can apply induction. 1brd(X’) = ord(X) there will be at least one point € E with
imagea € Z and such thabrd, X’ = ord,X. We call such pointgquiconstant points
(classically, they are also callédfinitely near points). They are the points where induction
cannot be directly applied. Some refined argument is necessary.

For an embedded resolution, one has to consider the total transfonafd try to make it into a
normal crossings variety. It is not known how to measure properly the “distance” of a singularity from
being normal crossings.



One might hope thaird(X) always drops. This is immediately seen to be too optimistic,
equality may indeed occur. One situation where equalityt occur is the case whenp(X)

is singular. As the centef is required to be smootl¥, is then strictly included inop(X).
Thereforeprd, X’ remains constant equal éod, X for all pointsa’ aboves € top(X) \ Z.
Henceord(X’) = ord(X). Moreover, by the above fact and the upper semicontinuity of the
order, it follows thabrd,. X’ = ord, X also holds for all pointa’ abovea € Z. So there is

no obvious improvement.

To respond to this quandary, one may try to make Tirst top(X ) smooth by some auxiliary
blowups, in order to take it afterwards as the center of the next blowup. This fails in two
directions: First, the blowup™ of Y need not coincide with the top locus of the transform
X’ of X. New and even singular components may pop up, see [Ha6] for an explicit example.
So resolvingY (for instance by induction on the dimension) does not really help to make
top(X') smooth (except for surfaces). Secondly, evetjf( X ) were smooth and would be
taken as center, it can be shown thai(X) may not drop under the respective blowup.

From this analysis we learn that the main problem sits in the appearance of equiconstant
points on the transfornX’ after a blowup. There, the order &f has not dropped, and some
refined measure for the improvement of the singularities has to be designed (provided that
an improvement — as we hope — has occurred; this also depends on the correct choice of the
center, a question which we will not address here).

The next step is to study in more detail the equiconstant points, especially their location on
X'’. This may help us to understand better how the singularities transform under blowup
when the order remains the same. So fix a peiat Z in the centetZ C top(X) of a given
blowupw : W/ — W, and leta’ € E be an equiconstant point &f’ abovea. Zariski already
observed that there exists, locally in a neighborhood of W, a smooth hypersurface
containinga whose transform’ underr containsall equiconstant points’ abovea [Za].

This restricts considerably the location of these points. Zariski describes quite explicitly all
such hypersurfaces.

Now comes the distinction between zero and positive characteristic. In zero characteristic
Abhyankar and Hironaka obsenethat V' can be chosen even so that its transfdffmot

only contains all equiconstant points but moreover has itself a transfdtrmontaining all
equiconstant pointa” sitting abovea’. And this continues like this until the order of

drops. It is thus possible to capture the whole sequence of equiconstant pointsaabove
by one hypersurface together with its transforms. Such local smooth hypersurfaces, which
accompany the resolution process, are callggersurfaces of mazximal contact (and are
known asTschirnhausen transformationsin the terminology of Abhyankar). They play the
crucial role for the proof of resolution in characteristic zero by allowing now a local descent
in dimension considering there a new resolution problem, callit in V and its successive
transformsV”’, V" ..., see [Ha2]. Formulating this descent properly is not easy but can be
done. The resolution oX _ in V' exists by induction on the dimension (this induction tells us
also how to choose the centers). Having resol¥edit can be proven that the singularities

of X in the original ambient spadé must also have improved (in a precisely defined way).
This is the key argument in characteristic zero.

According to rumors, one breakthrough happened at the end of the fifties on the occasion of a four day visit of

Hironaka at Abhyankar’s house.
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In positive characteristic, this argument fails drastically: Hypersurfaces of maximal contact
need not exist. There are examples of (e.g. two-dimensional) hypersurfaces with isolated
singularities together with a sequence of (point) blowups whegtocal smooth hypersurface

V' passing through the singularity eventually loses the sequence of equiconstant points sitting
above the initial point [Na, Ha2]. This prohibits to apply the same descent in dimension as in
characteristic zero.

Still, for a single blowup, one can choose, by Zariski's observation, locally attop(X) a

smooth hypersurfacé in W whose transforn¥” contains the equiconstant poiafsof X’ in

W'. The defectis just that this transfofii can possibly not be taken again for the subsequent
blowups. In this situation, Abhyankar proposed, at least for plane curves, to change after each
blowup if necessary the hypersurface. Again one gets a sequence of hypersurfaces, but they
will no longer be related as transforms of each other under blowup. The descent becomes
more complicated. Moreover, there is a priori no canonical choice for those hypersurfaces.

In the next section we shall describe this descent in more detail and explain how one can still
formulate a resolution problem in smaller dimension. However, its solution is much harder
and has only be achieved up to now for curves and surfaces.

D. Kangaroo phenomenon Recall that the now classical resolution invariant in characteristic
zero consists of a vector of integers whose components are orders of ideals in decreasing
dimensions. The ideals are the consecutive coefficient ideals in hypersurfaces of maximal
contact, and the vector is considered with respect to the lexicographic ordering. Two things
are then shown: That the locus of pointsX6fwvhere the invariant attains its maximal value is
closed, smooth and transversal to the possibly already existing exceptional divisor (stemming
from earlier blowups). And, that the invariant drops under blowup when taking as center
this locus of maximal values, as long as the ideals in lower dimension are not resolved yet
(in a precise sense). The decrease allows to apply induction (the lexicographic order is a
well-ordering) and to reduce by a finite sequence of blowups to the case where the invariant
attains its minimal possible value. We arrive in this way in the so called monomial case, for
which an instant combinatorial description of the resolution is known. This program appears
in different disguises in many places, see e.g. [Hi5, Vil, BM, EV1, EH, W4, Ko].

In section E we will review the characteristic free version of the characteristic zero invariant
of an ideal at a point as it was developed in [Hal, EH]. For this definition, hypersurfaces
of maximal contact (which need not exist in arbitrary characteristic) have to be replaced by
hypersurfaces ofveak mazimal contact. These are defined as local smooth hypersurfaces
thatmazimize the order of the coefficientideal of the given ideal (as hypersurfaces of maximal
contact do), but whose transforms, in contrast, are not required to contain along a sequence
of blowups the points where the order of the original ideal remains constant.

Take then as resolution invariant the lexicographic vector consisting of the order of the ideal
and of the orders of the iterated coefficient ideals with respect to such hypersurfaces. It turns
out that the resulting vector (more precisely, its second component given by the order of
the first coefficient ideal) may increase in positive characteristic under certain (permissible)
blowups. The first examples of this phenomenon were observed by Abhyankar, Cossart, Moh
and Seidenberg [Co, Mo, Se]. The increase destroys at first glance any kind of induction.

9 For the basics on resolution in characteristic zero, you may consult [Ha2, Lp2, Ko].
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Moh succeeded in bounding the maximal increase, but it was not yet possible to profit from
this bound so as to save the induction argument (except for surfaces).

We shall describe accurately the situations where an increase of the invariant occurs. To
make the increase happen, the variety which is blown up must havie aingularity. It is

located at a so calledntelope point of the current stage of the sequence of blowups we are
considering. On the transform of the variety, the increase of the invariant can then only occur
at akangaroo point.'® The location of these points and the structure of the singularities is
meanwhile well understood and can be explained quite explicitly (cf. section G). Kangaroo
points always lie on the new exceptional component of the last blowup but never on the
transforms of the (old) exceptional components passing through the preceding antelope point
(see Figure 1). This phenomenon is also known as the occurence of a “a translational blowup”.

\ new kangaroo
a2

si
oasis new old

0 0 antelope

Figure 1: The configuration of kangaroo, antelope and oasis points.

To have a wild singularity at an antelope point preceding a kangaroo point, three condi-
tions must hold: The residues modyl@f the multiplicities of the exceptional components
appearing in the defining equation must satisfy a ceraithmetic inequality, the order

of the coefficient ideal of the equation must Baisible by the order of the equation, and
strong restrictions on the (weighted) initial form of the defining equation are imposed (cf.
the theorem in section G on kangaroo points). It turns out that the initial form of a wild
singularity must be equal (up to multiplication pyth powers) to amblique polynomial.
Oblique polynomials are characterized by a very peculiar behaviour under linear coordinate
changes when considered up to additiop-oifi powers. Fixing the exceptional multiplicities
and the degree, both subject to the arithmetic and divisibility condition, it can be shown that
there is preciselyne oblique polynomial with these parameters (cf. section I).

For surfaces, itis possible to show that the characteristic zero resolution invaiasntses in

the long runalso in positive characteristic, i.e., that the occasional increases are compensated
by decreases in the blowups before and after them. A first method for proving this is developed
in [Hal] and will be sketched in section J below. A second, more systematic approach
introducing thebonus of a singularity will appear in [HW]. It “adjusts” the characteristic zero
invariant in the critical situations by a small correction value — the bonus — so as to ensure a
permanent decrease of the invariant. We emphasize that there are earlier proofs of resolution
of surfaces in arbitrary characteristic by Abhyankar, Lipman and Hironaka using different
invariants and arguments [Abl, Lp1, Hi4]. For three-folds and higher dimensional varities,
no complete induction argument for the embedded resolution seems to be known.

With these remarks we conlude the general introduction. From the next section on, more
detailed informations will be given.

Acknowledgements. The author is indebted to many people for sharing their ideas and in-
sights with him, among them Heisuke Hironaka, Shreeram Abhyankar, Orlando Villamayor,

10 n [Hi1], kangaroo points run under the name of metastatic points.
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E. The invariant. We define only the first two components of the classical resolution invariant
as these suffice for the phenomena to be described here. For an ideal/sbea smooth
ambient spac®” and a pointz: € W denote byJ = J, the stalk of 7 ata. For convenience,

we denote — if appropriate — by the same charaétére ideal generated in the completion
@W@ of the local ringOy,.!! For a local smooth hypersurfadé in W througha, the
coefficient ideal of J in V is defined as the ideal

o—1

coeffy J = Z (aps, f € J)ooTl
1=0
whereo = ord, J is the order of/ ata, x = 0 is a local equation foV andf = > afﬂ;xi is
the expansion of with respect tar, with coefficientsi; ; € Oy,,. Among the many variants
of this definition in the literature, the given one suits best our purposes. More specifications
appear in [EH].

In caseJ is a principal ideal generated by one polynonfiét, y) = z° + g(y) in A+ with
variablesr andy = (ym, - - ., y1), the coefficient ideal off with respect to the hypersurface
x = 0 is simply the ideal iPA"™ generated by(°~ ', The factorial is only needed to ensure
integer exponents whefhas otherc-terms.

The order of the coefficient ideal @adepends on the choice of the hypersurfi¢éut remains
unchanged under passing to the completions of the local rings. The supremum of these orders
over all choices of local smooth hypersurfadéthrougha is a local invariant of/ ata (i.e.,

by definition, only depends on the isomorphism class of the complete IocaﬁMg/J).

This supremum isc if and only if J is bold regular at a, viz generated by a power of a
parameter ot’awﬂ [EH]. If the supremum i< co and hence a maximum, any hypersurface

V realizing this value is said to haveeak mazimal contact with J at a. In characteristic
zero, hypersurfaces of maximal contact have weak maximal contact [EH]. Moreover, their
strict transforms under a permissible blowdg — W contain allequiconstant points (=
infinitely near points inl/’), i.e., those points of the exceptional divisor where the order of
the weak transforny’ of J has remained constant (recall that this order cannot incredse if
has constant order along the center).

In arbitrary characteristic, the supremum of the orders of the coefficient ¢defil .J for
varying V' can be used to define the second component of the candidate resolution invariant
of J ata. If the supremum iso and thus/ is bold regular, a resolution is already achieved
locally ata, so we discard this case. We henceforth assume that the supremunmviand

can thus be realized by the choice of a suitable hypersuifacéfter factoring from the
resulting coefficient ideal a suitable divisor one takes the order of the remaining factor as the
second component of the invariant. More explicitly,Iebe a given normal crossings divisor

You may think here thaf/ is an ideal in a polynomial ring and is the induced ideal in a formal power series ring

generated by the Taylor expansions of the element¥ @it a point.
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in W with defining ideally (D). We shall assume throughout thakffy J factors for any
chosenV transversal td (in the sense of normal crossings) into a product of ideals

coeffy J =Iy(DNV)-I_,

wherel_ is some ideal ir@vﬂ (this assumption is always realized in practice). Then define
the shade of J at a with respect to D as the maximum valughade,J of ord,I_ over all
choices oV transversal t@. In[Hil], a similarly defined invariantis considered by Hironaka
and called there theesidual order of J at a. As usual, questions of well-definedness and
upper-semicontinuity have to be taken caréf.

Along a resolution procesd) will always be supported by the exceptional components
accumulated so far. It coincides with the second entry ofdhebinatorial handicap of

a mobile as defined in [EH]. At the beginning, or whenevetl,J has droppedD will be
empty. If the order of/ has remained constant at a paintaboveq, the transformD’ of D

is defined as

D' =DY + (ord, (D NV) + shade,J — ord,J) - Y,

whereY” denotes the exceptional divisor of the last blowup, @nfl the strict transform

of D.13 The formula signifies thaD’ consists of the transform ab together with the
new exceptional componenf’ (which is taken with a suitable multiplicity). Note that
ord, (D N'V) + shade,J = ord,(coeffy J). It follows from the transformation rule ab
that, under permissible blowup, the weak transfothof .J at an equiconstant poiat above

a has as coefficient ideabeffy/ J in the strict transforn¥’ of V an ideal which factors again
into a productly (D'NV”)-I" , with I’ the weak transforr/_)" of I_. Here, itis assumed
that the centef is contained irl/. This is more delicate to achieve in positive characteristic,
due to the example of Narasimhan where the singular locusisiot contained locally in
any smooth hypersurface [Nal, Na2, Mu]. It can, however, be realized by refining the usual
stratification of the singular locus of through the local embedding dimension of this locus.

We say that thenonomial case occurs when the whole coefficient ideal has become an
exceptional monomial, sayeffy J = Iy, (D N'V) with I_ = 1. The shade has then attained
its minimal valued. This case allows a purely combinatorial resolutiodtf. [EH]).

The commutativity of the passage to coefficient ideals with blowups can be subsumed as
follows, cf. [EH, Ha2]. Given a blowup with centéf contained in the local hypersurfate

of W locally ata and transversal t®, we get for any equiconstaat in W’ abovea and

I' = (I_)" acommutative diagram

J o~ COfoV/J/ZIV/(D/mV/)-IL
1 !
J o~ coeffyJ =Iy(DNV)-I_

Here, the situation splits according to the characteristic: In characteristic zero, choosing for
V' a hypersurface of maximal contact fdrat a, the strict transforni’’ constitutes again a
hypersurface of maximal contact fdf at«’. In particular, both will have weak maximal

Semicontinuity works well if only closed points are considered. For arbitrary (i.e., non-closed) points, there appear

pathologies which are described and studied by Hironaka [Hi1].
We use here implicitly thal/ and Z are transversal td). This is indeed the case in the resolution process of an

ideal or scheme.
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contact so that the shades #fand .J’ are well-defined. In additionshade, J’ can be
computed fromshade, J by looking at the blowug’”” — V with centerZ and the ideald
andI’ (recall thatZ c V locally ata). Asshade,J = ord,I_, shade, J’ = ord, I’ and

I’ is the weak transform of _, it follows automatically thathade, J’ < shade,J (it is
required here that the order bf is constant along’, a property that is achieved through the
insertion ofcompanion ideals as suggested by Villamayor, cf. [EV2, EH]). This makes the
induction and the descent in dimension work.

In positive characteristic, it is in general not possible to choose a local hypersurface of
maximal contact fotJ ata. But a hypersurface of weak maximal contact will always exist,
by definition. So choose one, s& The good news is — as already Zariski observed [Za] —
that the strict transforriy’ of V" will contain all equiconstant points of .J in the exceptional
divisor Y’. The bad news is, as Moh’s and Narasimhan’s examples showl/thated no
longer have weak maximal contact wiftiata’. Said differently,V’ need not maximize the
order of the coefficient ideal of the weak transforthof J ata’. One may have to choose

a new hypersurfacd/’ ata’ to maximize this order. As Moh observed [Mo], there is still
worse news, since the choice @f may produce a shade df ata’ which is strictly larger
than the shade of ata. This destroys the induction over the lexicographically ordered pair
(orde(J),shade,(J)). Atleast at first sight!

F. Moh'’s bound. In his paper on local uniformization, Moh investigates the possible increase
of shade,J at equiconstant points of .J in the purely inseparable case

flay) =2 +y" - g(y),

with ord(y"g) > p® = ord f ande > 1 [Mo]'*. Here,V defined byz = z,, = 0 denotes
a hypersurface of weak maximal contact foata = 0 in W = A™, p is the characteristic
of the (algebraically closed) ground field, ape: (x,,—1,. .., x1) denote further coordinates
so that(z, y) form a complete parameter systemmf= @A",O- Moreover,r € N""!is a
multi-exponent whose entries are the multiplicities of the components of the divisol”
at0, andy; = 0 defines an irreducible componentBfn V in V for all i for whichr; > 0.
All expressions take place in the algebra ofédale neighborhood df in A", so thatf and
possible coordinate changes are considered as formal power series. The shatlé with
respect to the divisab defined byy” = 0 is given byshade, f = ordyg, by the choice of/.

Proposition. (Moh) In the above situation, let (W', a') — (W, a) be a local blowup with
smooth center Z contained in the top locus of f and transversal to D. Assume that
a’ is an equiconstant point for f at a, i.e., ordg f' = ord, f = p¢, where f' denotes
the weak (= strict) transform of f at o’. Then

shade, f' < shade, f + p*~!.

In casee = 1, the inequality readshade, f/ < shade, f + 1, which is not too bad, but still
unpleasant. The short proof of Moh uses a nice trick with derivations, thus eliminating all
p-th powers fromy”g(y). He then briefly investigates the case where an increase of the shade
indeed occurs, showing that in the next blowup the shade has to drop at ldagt by= 1).

This, obviously, does not suffice yet to make induction work.

141t seems that Abhyankar had already observed this increase.

15



G. Kangaroo points and wild singularities. In the following paragraphs we reproduce in
compact form the classification of kangaroo points and wild singularities given in [Hal].
Recall: The shade of a polynomifkt a pointz with respect to a normal crossings dividor

is themazimal value of the order of its coefficient ideal minus the multiplicity/ofat a, the
maximum being taken over all choices of smooth local hypersurfacesatsversal td. A
kangaroo pointin a blowupW’ — W with permissible cente¥ and exceptional divisar”

is an equiconstant poiat abovea € Z where the shade ¢fwith respect td has increased,

ordy, f' =ord,f and shade, f’ > shade,f.
Here,shade,- f’ is taken with respect to the divisor
D' =DY + (orde(DNV) + shade, f — ord, f) - Y,

where D denotes the strict transform @ andord, f = ordz f holds by permissibility
of Z. The pointa prior to a kangaroo point’ is called antelope point. Note here that
if V andV’ are hypersurfaces of weak maximal contact thet,(D NV) = ord,D and

ord, (D' NV') = ord, D’ by transversality oD and D’ with V andV”.

For the ease of the exposition, we restrict to hypersurfaces™in= A'*™ with purely
inseparable equatiofix, y) = 2P + y" - g(y) of orderp at0 equal to the characteristic, with
exceptional multiplicities: = (ry,,...,71) € N and coordinateée, y) = (x, Ym, - - -, Y1).

We shall work only at closed points and with formal power series. Moreover, we confine to
point blowups, since these entail the most delicate problems. Most of the concepts and results
go through for more general situations. For an integral vectorN™ and a numbet € N,

let ¢.(r) denote the number of componentsrdhat are not divisible by,

6o(r) = #{i <m, r; £ 0 mode}.

Definem = (7¢,,...,7{) as the vector of the residués< 7{ < ¢ of the components of
moduloc, and let|r| = r,, + ...+ 71.

The next theorem characterizes kangaroo points and wild singularities. We state it here only
in its simplest form for purely inseparable equations of ogdatr0. An appropriate extension

also holds beyond the purely inseparable case for singularities of any order and for blowups
in positive dimensional centers, see section H below, respectively [Hal] and [Ha7].

Kangaroo Theorem. (Hauser)Let (W', a’) — (W, a) be a local point blowup of W =
AY™ o with center Z = {a} = {0} and exceptional divisor Y'. Let X be a hyper-
surface singularity in W at a with equation f = 0. Let be given local coordinates
(T, Ymy -+ y1) at a so that f(x,y) = xP +y" - g(y) has order p and shade ord,g with
respect to the divisor D defined by y" = 0. Then, for a to be a wild singularity of X
with kangaroo point a’, the following conditions must hold at a:

(1) The order |r| + ordag of y"g(y) is a multiple of p.

(2) The exceptional multiplicities r; at a satisfy

Tht o T < (fp(r) = 1) - p

(3) The point a’ lies on none of the strict transforms of the exceptional components
y; = 0 for which r; is not a multiple of p.

(4) The homogeneous initial form of g equals, up to the choice of coordinates, a specific
homogeneous polynomial, called oblique, which is unique for each choice of p, v and
degree.
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Remarks. (&) The above characterization seems to have been a vital step in Hironaka's recent
approach to the resolution of singularities in positive characteristic, cf. [Hil, Prop. 13.1 and
Thm. 13.2].

(b) The necessity of condition (1) is easy to see and already appears in [Mo]. The arithmetic
inequality in condition (2) is related to counting the numbepeahultiples in simplices in

R™ and theirr-translate$’. It implies thatat least two exponents:; must be prime to.

For surfacess/p = 2), condition (2) reads,,r; # 0 modp and7s + 7; < p. Condition

(3) implies that the reference point has to jump off from all exceptional components with
r; Z 0 modp in order to arrive at a kangaroo point. So it has to leave at least two exceptional
components (cf. Figure 1 from the introduction). This, together with the junspafe, f,
justifies the naming of these points. Condition (4) will be discussed in the example below and
in section | on oblique polynomials.

(c) Conditions (1) to (4) are necessary for the occurrence of kangaroo points. They are also
sufficient, up to the higher degree termsgoin the following sense: In the transforg of

g the terms ofy of degree> ord, g (i.e., not in the initial form) may have transformed into
terms of degree smaller than the order of the transfgrof the initial formg of g. This
signifies thabrd, ¢’ < ord, g’. Asord, g’ = shade, f’, ord,g = shade, f by definition,
andord, g’ < shade,f + 1 = shade,f + 1 with f = 2P 4 y"g by Moh’s bound applied

to f, the strict inequalityshade, f’ > shade, f becomes impossible. The influence of the
higher order terms aof can be made quite explicit in concrete examples.

(d) We emphasize that the intricacy of the resolution in positive characteristic lies precisely
in these higher order terms. Without thegis homogeneous (and thus equal to its initial
form). In this case it is easy to make the orderf@frop belowp by suitable further blowups.

But, in the general case, it seems to be tricky how to cogtimyond its initial form.

Example 3. For surfacesr{ = 3 andm = 2), condition (2) read%, + 71 < p, provided
thatry, 71 > 0. In this case, there is an explicit description of the initial fafm= g of g as

indicated by condition (4): I(’;ig) is not a multiple of it has the form

| - ) B
Ply,z) =y 2* - HE(y,tz —y) = y"2* - Sty (57)yi(tz — )

wherer = ry, s = r9, k = ord,g andt is some non-zero constant in the ground field. The

constant determines the location af on the exceptional divisor”’, and vice versa. The

polynomialsHE (y, w) = Zf:o (’;_t:)ylwk_l are calledhybrid polynomials of type (r,k)

in [Hal]. Note that we can writl* as
M (y,w) = Sy () y'wh " =
Sl ()t =
S (T -
=Ly S5 (T oty =

= |_y_T ’ (y + U}) +ijolyy

where| Q|01 denotes those terms of the Laurent expansiaf) tifat involve no monomials
with negative exponents.

The inequality is equivalent tﬁ%l +...+ (%] > (W]

In this case the simpled = {av € N™, |a| = ord,g} contains morg-multiples than its translate + A.

, where[u] is the smallest integer w.
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Rocio Blanco observed that (ﬁr;) is a multiple ofp the above polynomiaP = y"2° -
HF (y, tz — ) is ap-th power and thus does not count. In this case one can use alternatively a
description of the initial form ofy which is independent of the divisibility qu) by p (cf.
section | below):

P(y fyr 1 _ts kdy — 8 Zf:o (_1)19—1‘%“ y”‘i(tz)k_i,
the sum being taken over thoséor which » + i is not divisible byp. Dominique Wagner
showed that the two formulas fdr differ — up to addingy-th powers — by the scalar factor

(—1)k(ﬁq)(k + 1). This explains why the first formula requires thiéﬂ) is prime top.

Let us illustrate the dependence pin the caser = k = 2, » = s = 2, where the binomial

coefficient(’,ji’l") = (3) = 10is not prime top. Indeed,

y 2t - HE(y, tz —y) =
=223 (D) (tz — )2 + G)yltz —y) + D)y =
=323 [10(tz — y)% + By(tz — y) + y?] =
=y’ [y(tz —y) +y° =
=yt
is ap-th power (provided thak is perfect) and thus does not count as oblique, whereas
P(y fyr 1 s kdy —
2 [y (y — t2)%dy =
=25 [(y* + t2y?2%)dy =
=y’2% - (y° +1%2%)

produces an increase of the shade. In section I, we characterize oblique polynomials in
arbitrary dimension.

H. Proof of the Kangaroo Theorem. We indicate the main points of the argument for
arbitrary polynomialsf, i.e., in the case wherg is not necessarily purely inseparable.
This makes things more complicated, but has the advantage to be generally applicable in a
resolution process. The argument should be compared with the (much simpler) computation
of oblique polynomials for the purely inseparable case which is given in section I. Along the
way, one obtains an alternative proof of Moh’s inequality.

Itis convenient to work in the power series ring and to assumefttsain Weierstrass form of
order, say:, with respect to the variable Itthen suffices to consider a weighted homogeneous
f with respect to weightéw, 1,...,1) wherew > 1 is the ratio between the order ¢fand

the order of its coefficient ideal with respectitpsayw = ord f/ord coeff,.(f).

The inequalityrs,, +. . .+7 < (¢.(r)—1)-callows to count the lattice points that lie in certain
integral simplices iR} (calledzwickels in [Hal]) but do not belong to the sublattipe Z".

The key step of the proof of the Kangaroo Theorem is then to establish the invertibility of the
transformation matrix between the vectors of coefficients of polynomials with exponents in
such zwickels under prescribed coordinate changes, the polynomials being always considered
modulop-th powers. For illustration, we reproduce the corresponding passage from section
11 of [Hal].
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Let f(z,y) and f(x,y) = f(z + > hay?,y + tym) be weighted homogeneous polynomials
of weighted degree with respect to weight§w, 1,...,1) on (z,y) = (¢, Ym,-..,y1), Where
the sumznY h,y? ranges overy € N™ with |y| = w, and whereh, and the components of
t =(0,tm—1,-..,t1) belong to the ground field. Let= e/w be the order off. Write

flw,y) = X araa®y™ and f(z,y) = 3 big(t)a'y®

with wk + |a| = wl + |B| = e. We assume that.y # 0, i.e., thatz® appears with non-zero
coefficient, sayi.o = 1. LetV be the hypersurface W = A" defined byr = 0. Let

Le=A{(k,a) e N k< ¢} - Q™: (ko) —» 55 -«

be the map projecting elemer(ts, o) of the layerL.. in N'*™ to elements of)™. The center of the
projection is the poinfc, 0, . . ., 0).

Letq € N™ with |¢| = g + ... + q1 < e be fixed. Define theypper zwickel Z(q) in N*+™ as
the set of pointgk, o) with 0 < & < ¢, wk + |a| = e and projection—<; - o« >, ¢, denoting by
>, the componentwise order. Thiq) is given by

Z(q) : wk+|al =e and @ >¢p [<E - (g, ..., q1)].

Let us fix a decompositioy = r + ¢ € N™ with r = (¢p,...,¢j+1,0,...,0) and?¢ =
0,...,0,q5,...,q1) for some indexj betweenm — 1 and0. Define thelower zwickel Y (r,¢)
in N1T™ as the set of point§k, 3) in N**™ with 0 < k < ¢, wk + |3] = e and projection
—% B >cp (Ir],0,...,0,£). ThusY (r, £) is given by

Y(r,0) : wk+ |8l =e and 8 >, f(c_k -|rl,0,...,0, ek -qj,...,c_k ~q1)].

c C c

Forj = m—1andhence = (¢,0,...,0)and? = (0, ¢m—1,...,q1) wehaveZ(q) = Y (r,{).
In general, the two zwickels are different.

For anyr and/ and0 < k < e/w = cthe slice

Y(r,0)(k) ={(k,8) € Y(r, ()} = Y (r, ) N ({k} x N™)
has at least as many elements as the slice

Z(q)(k) ={(k, o) € Z(q)} = Z(q) N ({k} x N™).

This holds fork = 0, by definition ofZ(g) andY (r, £). For arbitraryk, the inequality <= - r|] <
|[<=% - r]| implies that the condition

wk + 8] = e and 8 >, (I[<E-7][,0,...,0,[<E - g;],. .., [E - aa])
is more restrictive than the condition
wk + ‘ﬂl =€ andﬁ Zcp ([c;k : |71Hvoa~'~701 [% 'Qj~|7"'a (% 'QJ)

definingY (r, £) (k). For eachk, the set of pairé;, 3 satisfying the first condition has as many elements
asZ(q)(k) becausér| + g; + ...+ ¢1 = |¢|. The claim follows.

Itis immediate thay? is a factor ofcoeffy f if and only if f has all exponents in the upper zwickel
Z(q), andcoefty f has order> e — |r|in z = (ym—1,...,y1) if and only if all coefficients of the
monomials off — z¢ with exponent in the lower zwickél (r, £) are zero.

Write elements3 € N™ as(3,,, 3") where” = (Bpn_1,...,31) € N*"~L LetY*(r, () be the
subset ofY (1, £) of elementgk, 3) € N1*™ given by

67 < e—wk—[<E-|r]],
ﬁ- Zcp I’c;k : (07 .. 707%‘; o '7q1)~|'
By definition, for eachk, the sliceY ™ (r, £) (k) has the same cardinality as the sliééq) (k) of the

upper zwickelZ (¢). Foracandd in Z™ set(§) = [, (§) where($) is zero ifa; < 6; or6; < 0.

ForT a subset oN™, define fork € N and\ = (\,),er € N the alternate binomial coefficient
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[(lj\)} = HWGF (k_)\ljlw) with |)‘|’Y = ZSEF,5<161’Y Ae-

LetI' C N™ be the set ofy € N™ with |y| = w and writeh = (h,)yer. SetA-T' =
> er Ay oy € N™and fixt = (0,¢m-1,.. -, tj41,0,...,0). We then have [Hal, Prop. 1, sec.
11]:

Proposition. Let f(z,y) = > akaz®y™ and f(z,y) = f(# + X cp b,y + tym) =
> bis(t)xly” be weighted homogeneous polynomials with respect to wefghts . . ., 1)
as above. Fixy = r + ¢ € N™ with zwickelsZ(q) andY*(r,¢) C Y (r,¢).

(1) The trgnsformation matridl = (Axq,i3) from the coefficientsy,, of f to the coefficients
bia(t) of f is given by

Arags = > (DI, - w0,
AENT |A|=k—1

whered, gy = (am, 3 — (A-T)7) € Nm andh* = thiv.

(2) The quadratic submatri¥® = (Ay,.;5) of Awith (ka, [3) ranginginZ(q) x Y*(r, £) has
determinantt” wherep = p(Z(q), Y *(r,¢)) isavector irfN™~! independent of = (h)er
with p,, =0andp; =--- = p; = 0.

(3) Assume thaf has supportinZ(q). If t,,_1,...,t;4+1 are non zero, the coefficienis; of
f in the lower zwickeY (r, ¢) determine all coefficients g¢f.

This ends the excerpt from [Hal] about the proof of the Kangaroo Theorem. Actually, the
assertions of the theorem are quite direct consequences of the above proposition. As for the
proof of the proposition itself, the formula from (1) is an exercise in binomial expansion,
assertion (2) is tricky and relies on a special numbering of the lattice points in zwickels in
order to make the matrix block-diagonal, and (3) follows rather quickly from (2).

I. Oblique polynomials. We now describe the initial form of the polynomiajsof the
(purely inseparable) equationg + y"g(y) = 0 defining wild singularities. In [Hal], the
uniqueness assertion (4) of the Kangaroo Theorem was established for the (weighted) initial
form of the equation of an arbitrary wild hypersurface singularity, and oblique polynomials
were characterized in various specific situations. In [Hil], a general description of oblique
polynomials is given, and Schicho found independently a similar formula. Below we combine
all viewpoints to a unified presentation.

Fix variablesy = (ym,...,y1). Setl = m — 1, and letp be the characteristic of the
ground fieldK. A non-zero polynomialP = y"¢(y) with » € N™ andg homogeneous of
degreek is calledoblique with parameters p, r andk if P has no non-triviap-th power
polynomial factor and if there is a vectoe (0, ty, ..., t1) € (K*)™ so that the polynomial
Pt (y) = (y + tym)"g(y + tym) has, after deleting ali-th power monomials from it, order
k + 1 with respect to the variableg, . . . , y;. Without loss of generality, the vectbcan and
will be taken equal td0, 1,...,1). We shall writeord? P* to denote the order aP* with
respect to: = (yy, . .., y1) modulop-th powers.

Ezample 4. Takem = 2, p = 2 and P(y) = yoy1(y3 + y3) with k = 2. ThenP*(y) =
P(y2,y1 + y2) = y252(y1 + y2) has modulo squares ordewith respect tqy; .

Itis checked by computation that the conditiod? P™ > k+1 on P* is a prerequisite for the
occurence of a kangaroo point as in the theorem. The result of Moh inoplé®+ < k+1,

so that equality must hold. Condition (4) of the theorem tells us that there is, up to addition
of p-th powers,at most one oblique polynomial for each choice of the parameters and
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k. In order thatP is indeed oblique it is then also necessary that the degr@da& multiple
of p and that- satisfies™, + ... + 7 < (¢,(r) — 1) - p (again by the theorem).

We dehomogenizé with respect toy,,. This clearly preserves-th powers. Moreover,
when applied to monomials of total degree divisiblezbgas is the case for the monomials

of the expansion ofP), the dehomogenization creates no neith powers. It is thus an
“authentic” transformation in our context, i.e., the characterization of oblique polynomials can
be transcribed entirely to the dehomogenized situation. Sefting 1 andz = (ye,...,y1)

we getQ(z) = P(1,2) = 2° - h(z) with s = (ry,...,71) € N andh(z) = g(1,2) a
polynomial of degree< k. The translated polynomial iQ"(z) = Q(z + 1) = (2 +

I)* - h(z + T), wherel = (1,...,1) € N°. The conditionord? P* > k + 1 now reads
ord?’Q* > k + 1 or, equivalently@™ € (z, ..., z1)*1 + K[zP]. Let us write this as

(z+D* - h(z+1) —v(2)P € (zg,...,21)F!

for some polynomiab € K[z]. As h has degree< k, the polynomialv cannot be zero.
In addition, we see that the conditiond?Q* > k + 1 is stable under multiplication with
homogeneous-th power polynomialsu(z), in the sense thatrd? (w? - Q%) > k+1+p-
degw. Using that(z + I)® is invertible in the completiod [[z]] we get

hz+1) = [(z+1)77 - v(2)" |,

where |u(z) |, denotes thek-jet (= expansion up to degrge of a formal power series
u(z). From Moh’s inequality we know that: + I)® - h(z + I) — v(2)? cannot belong to
(2¢,...,21)*T2. Therefore, in case thafz) is a constant, the homogeneous form of degree
k+1in (z+1)~* mustbe non-zero. This form equai$, cive o=k +1 (7.7)z*. We conclude
that if all (7.°) with || = k + 1 are zero inK, thenv was not a constarf. Inverting the
translationr(z) = z + I we get the following formula for the dehomogenized initial form at
antelope points preceding kangaroo points,

25 h(z) =2 - H[(z+ D)7 - 0(2)P ]}
The homogenization of this polynomial with respectytg followed by the multiplication

with "= then yields the actual oblique polynomi(y) = y"g(y).

m

Ezample5. Inthe examplé®(y) = y3y3 (y3 +y7) from the beginning we have characteristic
p = 2, exponents, = r; = 3 and degreé& = 2. Therefore/ = 1 ands = 3, which yields a

binomial coefficient(*) = (%) = —10 equal to0 in K. Indeed,P has as non-monomial
factor g(y) the squardy, + y1)2. In the exampleP(y) = you1(y3 + y?) from above with
ro =11 = s = 1, the polynomialg is again a square, even thougi’) = (3') = —1is

non-zero ink.

J. Resolution of surfacesIn the surface case, there are several ways to overcome (or avoid)
the obstruction produced by the appearance of kangaroo points. The first proof of surface
resolution in positive characteristic is due to Abhyankar, using commutative algebra and field
theory [Abl]. Resolution invariants for surfaces then appear, at least implicitly, in his later
work on resolution of three-folds. In [Hi4], Hironaka proposes an explicit invariant for the
embedded resolution of surfaces in three-space (see [Ha3] for its concise definition). Itis not
clear how to extend this invariant to higher dimensions.

16 The converse need not hold, see the example.
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In [Hal], itis shown for surfaces that during the blowups prior to the jump at a kangaroo point
the shade must have decreased at leagt(lgth one minor exception) and thus makes up for

the later increase at the kangaroo point. To be more precise, given a sequence of point blowups
in a three-dimensional ambient space for which the subsequent centers are equiconstant points
for somef, call antelope point the pointa immediately prior to a kangaroo poiat, and

oasis point the last pointu® below a where none of the exceptional components through

has appeared yet. The following is then a nice exercise:

Fact. The shade of f drops between the oasis point a® and the antelope point a of a
kangaroo point a’ at least to the integer part of its half,

shade, f < |4 - shadeqe f°].

In the purely inseparable case of an equation of order equal to the characteristic, this decrease
thus dominates the later increase of the shadedxcept for the caséhade,- f°© = 2 which

is easy to handle separately and will be left to the reader. It seems challenging to establish a
similar statement for singular three-folds in four-space.

In [HW], we proceed somewhat differently by considering also blowups after the occurence
of a kangaroo point. A detailed analysis shows that when taking three blowups together (the
one between the antelope and the kangaroo point, and two more afterwards), the shade always
either decreases in total, or, if it remains constant, an auxiliary secondary shade drops. This
shade can again be interpreted as the order of a suitable coefficient ideal (now in just one
variable), made coordinate independent by maximizing it over all choices of hypersurfaces
inside the chosen hypersurface of weak maximal contact.

The cute thing is that one can subtract, following an idea of Dominik Zeillinger [Ze] which was
made precise and worked out by Wagner, a correction term from the shade which eliminates
the increases without creating new increases at other blowups. This correction term, called the
bonus, is defined in a subtle way according to the internal structure of the defining equation.
Itis mostly zero, and takes in certain well defined situations a value betivaed1 + o.

This bonus allows to define an invariant — a triple consisting of the order, the modified shade
and the secondary shade — which now drops lexicographicallyaftéblowup. The bonus

is defined with respect to &cal flag as defined in [Ha4]. Flags break symmetries and are
stable under blowup (in a precise sense) and thus allow to define the bonus at any stage of
the resolution process. We refer to [HW] for the details, as well as for the definition of an
alternative invariant, théeight, which is even simpler to use for the required induction. It
profits much more from the flag than the shade and allows a simpler definition of the bonus.
The invariant built from the height yields a quite systematic induction argument which may
serve as a testing ground for the embedded resolution of singular three-folds.

K. Example. This is the simplest example for the occurrence of a wild singularity and
a kangaroo point in a resolution process. Consider the following sequence of three point
blowups in characteristi2,

fO=2%+1-(y" +yz*) (oasis poinu’), (z,y,2) = (2y,y, 2y),
fl=22 49 (v + 27, (,y,2) = (22,97, 2),
f2 =22+ y323 - (y? + 2?) (antelope point?), (z,,2) — (22,92 + 2,2),

Pr=a?+25 y+1)%((y+ 1)+ 1),
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=22+ 2% (y° +y* + 9 + y?) (kangaroo point?).

The oblique polynomial appears at the antelope pefnin the formy32z3 - (y? + 22). The
kangaroo point is a uniquely specified pairitof the exceptional divisor of the third blowup.

It is the unique equiconstant point of the exceptional divisor where the shgtimofeases.

It lies off the transforms of the exceptional components produced by the first two blowups
(see Figure 1). The coordinate change: x + yz* ata® eliminatesy?z°, realizes the shade
and produces

f3=:c2+26-(y5+y4+y3).

The order off has remained constant equabtthroughout. But the shade ¢fhas increased
betweern? anda®. Namely, iny®22 - (y? + 22) the monomial/®z? is exceptional and the
remaining factor? + 22 has ordee, whereas in% - (y° + y* +y?) the exceptional factor ig’
and the remaining facta)® + y* + »> has ordeB. Thusshade,s f2 = 3 > 2 = shade,2 f>.
Observe that the shade drops between the oasis and antelope paint by

L. Bibliographic comments. We briefly relate the contents of this note to the existing
literature on resolution in positive characteristic. The arithmetic condifipr- ... + 7 <

(¢p(r) — 1) - p on the exceptional multiplicities at an antelope point appears in a different
perspective also in the work of Abhyankar on good points [Ab2]. Cossart and Moh studied
in detail many phenomena related to the appearance of kangaroo points [Co, MQ].

We already mentioned the paper [CJS] on the embedded resolution of surfaces of arbitrary
codimension. As for dimension three, there are recent results and proofs of Cutkosky and
Cossart-Piltant for the non-embedded resolution of three-folds in positive characteristic [Cu,

CP1, CP2]. Cutkosky reduces Abhyankar’s proof (over 500 pages) of resolution in character-
istic > 5 to some forty pages, Cossart and Piltant establish the result with considerably more

effort for arbitary fields. Both proofs use substantially the embedded resolution of surfaces

(built on the invariant from [Hi4]), but they do not provideibedded resolution of three-folds.

As for dimensiom, Hironaka develops in [Hil, Hi2, Hi3] an elaborate machinery of differen-

tial operators in arbitrary characteristic in order to construct generalizations of hypersurfaces
of maximal contact by allowing primitive elements as defining equations. The main diffi-
culty is thus reduced to the purely inseparable case and metastatic points, which precisely
correspond to our kangaroo points. Hironaka then asserts that this type of singularities can
be resolved directly. There is no written proof of this available yet.

There is a novel approach to resolution by Villamayor and his collaborators Benito, Bravo
and Encinas [Vi2, Vi3, BV, EV3]. It is based on projections instead of restrictions for the
descent in dimension. A substitute for coefficient ideals is constructed via Rees algebras
and differential operators, called elimination algebras. It provides a new resolution invariant
for characteristigp (which coincides with the classical one in zero characteristic). All the
necessary properties are proven. This allows to reduce by blowups to a sorcatledhial

case (which, however, seems to be still unsolved, and could be much more intricate than the
classical monomial case).

In a somewhat different vein, Kawanoue and Matsuki have announced a program for resolution
in arbitrary characteristic and dimension [Ka, MK]. Again, they use differential operators to
define a suitable resolution invariant and then show its upper semicontinuity. The termination
of the resulting algorithm seems not to be ensured yet.
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Wiodarczyk has informed the author that he has recently studied the structure of kangaroo
points and that he sees possibilities to define an invariant which does not increase. Again, one
has to wait until written material becomes available.

M. Retrospective. It is tempting to try the resolution invariant from characteristic zero also in
positive characteristic. After having observed that it may increase in special circumstances, it
is also natural to study the cases where this actually happens. This attempt has been presented
in this paper. The hope then is that the understanding of the obstruction may allow to overcome
the increase either by extra arguments or by modifying the invariant thus yielding finally a
complete resolution. This would be the conservative approach to arbitrary characteristic

But the genuine progress would consist in inventing a new invariant (which never increases).
This would be — in the simplest case — a new measure which describes the “distance” of a
polynomial to be a monomial (up to coordinate changes and multiplication by units in the
formal power seriesring). The classical reciffector from the polynomial the exceptional
monomial and take the order of the remaining factor as invariant” seems to be just too
crude in arbitrary characteristic.

Many important results in mathematics had a hard time to become generally accepted and
understood. The original formulation may have been excessively complicated, with a proof
more like a struggle than a concise argument. For the problem of resolution, we have to admit
that we are still in the stage of struggling. The available proofs are certainly not the final
picture. In such cases it helps to precede virtually some fifty years (assuming that till then the
resolution of singularities has become a well understood fact) and to look back at our present
time. What do we see there?

Inductions! And again inductions!

The main feature of many of the present proofs is indeed a weaving of several intertwined
inductions. Induction on the dimension, the local embedding dimension of a singularity, the
local multiplicity, a local resolution invariant. So resolution is today a many steps procedure,
mostly completely ineffective. And, in fact, already for relatively modest surfaces the resolved
variety is covered by hundreds of affine charts (corresponding to dozens of blowups).

The main challenge for us is to better understand algebraic varieties at their singularities. The
singular locus is described by certain minors of the Jacobian matrix of the defining equations,
but this description is not really convenient here: Taking the singular locus with this ideal

structure, the induced blowup does in generally not yield a resolution. This approachis known
as the Nash-modification of the variety. Hironaka and Spivakovsky have shown that surfaces

The results of the author’s investigations on kangaroo points were written up around 2003 and assembled in
the manuscript [Hal], mostly for personal reference. It was only circulated among the experts working in the
field, because the classification of kangaroo points did not apparently show the way towards resolution in positive
characteristic (even though a new proof for the surface case was found, as well as several other resolution strategies
could be designed). In short, the results were never published.

In fall 2008, Heisuke Hironaka gave several talks at Harvard, the Clay Mathematics Institute and the Research
Institute for Mathematical Sciences at Kyoto. There he presented a program for attacking the chargetasstic

In the course of the argument, Hironaka relied on the author’s classification of kangaroo points. He then claimed that
this classificationdoes indeed pave the way towards resolution in positive characteristic; that it does provide

the missing link. At the moment, no complete written proof for the claim is available.
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can be resolved by combining them with normalizations [Hi6, Sp, GS]. There are attempts
to refine Nash-modifications by considering higher order jet schemes [Ya], without definite
breakthrough yet.

But notice: From Hironaka's theorem it follows (at least in characteristic zero) that there

does exist another ideal structure on the singular locus of a varietety so that the induced
blowup with this center resolves the singularities in one single stroke. Formidable! The mere
existence of this ideal structure is opposed to the (hitherto) failure of describing its structure
in concrete examples. It is there but we don't see it.

Probably we will still have to wait a while for deeply understanding the resolution of singu-
larities — even though a proof for positive characteristic may appear in the near future. We
shall keep in touch!
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