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ON THE PROBLEM OF RESOLUTION OF SINGULARITIES

IN POSITIVE CHARACTERISTIC

(Or: A proof that we are still waiting for)

HERWIG HAUSER

Introduction. The embedded resolution of singular algebraic varieties of dimension> 3
defined over fields of characteristicp > 0 is still an open problem. The inductive argument

which works in characteristic zero fails for positive characteristic. The main obstruction is the

failure ofmaximal contact, which, in turn, manifests in the occurence ofwild singularities
andkangaroo points at certain stages of a sequence of blowups. At these points the standard

characteristic zero resolution invariantincreases instead of decreasing. The induction breaks

down. No remedy has been found yet.

In this article, which is mostly expository, we will give a detailed discussion of the obstructions

to resolution in positive characteristic. The description of wild singularities is based on the

notion of oblique polynomials. These are homogeneous polynomials showing a specific

behaviour under linear coordinate changes, which, in turn, determines them completely.

Blowing up a wild singularity may cause the appearance of kangaroo points on the exceptional

divisor. They represent one of the main problems for establishing the induction in positive

characteristic.

The proofs and the technical details can be found in the original preprint [Ha1], which is

currently being revised and updated, cf. [Ha7]. While addressing us mainly to algebraic

geometers with some experience in resolution matters, we will add in footnotes explanations

and references for readers that are curious about the recent developments but less familiar

with the topic.

Sections A and B develop the overall outset of the resolution of singularities, sections C and

D then exhibit the specific problems related to fields of positive characteristic. These sections

are written for a general audience. Starting with section E, the reader will find more detailed

information and precise statements.

A. Prelude for the non-expert reader.Before getting into the actual material, let me tell you

what is resolution about and why it is important (and, also, why it is so fascinating). Readers

acquainted with the subject may proceed directly to the next but one section. A system of

polynomial equations inn variables has a zeroset – the associatedalgebraic variety X –

whose structure can be quite complicated and mysterious. You may think of the real or
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complex solutions of an equation like441(x2y2 + y2z2 +x2z2) = (1−x2− y2− z2)3. The

geometry of varieties shows all kind of local and global patterns which are difficult to guess

from the equation. In particular, there will besingularities. These are the points whereX

fails to be smooth (i.e., whereX is not a manifold). At those points the Implicit Function

Theorem (IFT) cannot be used to compute the nearby solutions. As a consequence, it is hard

(also for computers) to describe correctly the local shape of the variety at its singular points.

Resolution of singularities is a method to understand where singularities come from, what

they look like, and what their internal structure is. The idea is quite simple: When you take

a submanifoldX of a high dimensional ambient spaceM and then consider the imageX ′

of X under the projection of the ambient space onto a smaller spaceM ′, you most often

create singularities onX ′. The Klein bottle is smooth as a submanifold ofR4, but there is no

smooth realisation of it inR3. You necessarily have to accept self-intersections. Similarly, if

you project a smooth space curve onto a plane in the direction of a tangent line at one of its

points, the image curve will have singularities.

Which singular varieties can we obtain by such “projections”? The answer is simple:All!

Theorem. (Hironaka 1964)Every algebraic variety over C is the image of a manifold
under a suitable projection. Such a manifold and map can be explicitly constructed
(at least theoretically).

For a geometer, this is quite amazing. For an algebraist, this is even more striking, since it

means that it is possible to solve polynomial equations up to the Implicit Function Theorem.

The applications of this result are numerous (it would be worth to list all theorems whose

proofs rely on resolution). The reason is that, for smooth varieties, a lot of machinery is

available to construct invariants and associated objects (zeta-functions, cohomology groups,

characteristic classes, extensions of functions and differential forms, ...). As the projection

map consists of a sequence of relatively simple maps (so called blowups), there is a good

chance to carry these computations over to singular varieties. Which, in turn, is very helpful

to understand them better.

Resolution is well established over fields of characteristic zero (with nowadays quite accessible

proofs), but still unknown in positive characteristic (except for dimensions up to3). Why

bothering about this? First, because (almost) everybody expects resolution to be true also in

characteristicp. As the characteristic zero case was already a great piece of work (built on

a truly beautiful concatenation of arguments), it is an intriguing challenge for the algebraic

geometry community to find a proof that does not use the assumption of characteristic zero.

But there is more to it: Many virtual results in number theory and arithmetic are just waiting

to become true by having at hand resolution in positive characteristic.1 Again, it would be

interesting to produce a list.

Another important feature of such a proof is our understanding of solving equations in

characteristicp. If we agree not to aim at one stroke solutions but to simplify the equation

step by step (using for instance blowups) until we can see the solution (again, modulo IFT)

there appears this delicate matter of understanding local coordinate changes in the presence

of the Frobenius homomorphism. Phrased in very down to earth terms this means:How do
you measure whether a polynomial is, up to coordinate changes and up to adding p-th

1 De Jong’s theory ofalterations, valid in arbitrary characteristic but slighty weaker than resolution, already

produced a swarm of such results, cf. the next section.
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power polynomials, close or far from being a monomial. This is less naive than it may

sound: It is an extremely tough question (it has resisted over 50 years), and it lies at the very

heart of the resolution of singularities in characteristicp. A meaningful proposal for such a

measure (which should be compatible with blowups in a well defined sense) could break open

the wall behind which we suspect to see a proof of resolution in positive characteristic. The

rest would be mainly technicalities.

In the present article, we will see some of these “elementary” characteristicp features, and

we will make them very explicit. Of course it would be nice to have in parallel the conceptual

counterparts of these constructions and phenomena, but this would require much more space

and effort (for both the reader and the writer). As a consolation, the problems will be so

concrete that everybody with a minimum talent in algebra will be tempted to attack them. The

more geometrically oriented reader is referred to the survey [FH] for various visualizations

of the resolution of surface singularities.

At the end of this paper, we briefly describe the present state of research in resolution of

singularities in positive characteristic and arbitrary dimension (work of Hironaka, Villamayor,

Kawanoue-Matsuki, Włodarczyk).

B. Resuḿe of techniques and results.This section will explain the main resolution devices

that work independently of the characteristic. The material has become classical, with many

excellent references. After this survey section we will return to the failure of maximal contact

and the description of wild singularities and kangaroo points in positive characteristic.

By far the most important modification of a variety is given by the concept of blowup. Every

blowup comes with a center (a carefully chosen subvariety of our variety), which is the locus

of points where the variety is actually modified. Outside the center, the variety remains

untouched. The center itself is replaced by a larger subvariety, which affects the way how the

variety approaches this locus. The hope is that blowups gradually improve the singularities

of the varieties until, after possibly many steps, all singularities are eliminated. Whereas this

elimination is granted in characteristic zero if one chooses the correct sequence of blowups,

the situation is much more delicate in positive characteristic. The main difficulty is to measure

the complexity of a singularity by an invariant (usually a lexicographically ordered vector of

integers) in a way such that after each blowup (chosen suitably) the invariant has decreased.

This is precisely the theme of this article: The invariant that works well in zero characteristic

tends to behave erratically in positive characteristic.

Apart from blowups, the main two other characteristic-free techniques are normalizations and

alterations. They will be described at the end of this section.

Blowups. We will start with a short introduction to blowups. There are many equivalent

ways to define them (see e.g. [EiH, Ha5]). We shall choose the most geometric and intuitive

description. By an affine variety we shall always understand a subset of affine spaceAn
K over

a fieldK that is the zerosetX of a bunch of polynomials inn variables. We do not assume

thatX is irreducible. The coordinate ringK[X] is the quotient ofK[x1, . . . , xn] by the ideal

IX generated by these polynomials2.

2 All what follows can be defined for arbitary schemes, the center being a closed subscheme. See the paragraphs after

the examples below for a more conceptual definition of blowups.
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A blowup ofX is a new varietyX ′, the blowup or transform ofX, together with a morphism

π : X ′ → X, the blowup map. Any blowup is determined by its centerZ. This is a closed,

non-empty subvarietyZ of X, usually smooth and included in the singular locusSing(X) of

X (the locus of points whereX is not smooth; below we define the blowup with respect to an

arbitrary ideal). The definition ofX ′ andπ does not need the embeddingX ⊂ An, but the

explanation is easier if we use it. Moreover we shall assume that we are given a projection

ρ : X → Z (again, this is not substantial, but makes things simpler). We should think ofX

being fibered by transversal sections alongZ. If Z is just a point,ρ is the constant map. If

Z is a line, thenρ is typically the restriction toX of a linear orthogonal projection fromAn

to Z (having chosen some scalar product onAn). For any pointa of X not in Z there is a

unique line inAn, call it `a, passing througha and its projection pointρ(a) in Z. This is

just the secant line througha andρ(a), and belongs to the spaceL(An) of all lines inAn. In

particular, the notion of limit line makes sense whena approachesρ(a) inside the fiber ofρ.

The idea of blowups consists in pulling apartX inside a larger ambient space. As` is defined

on X \ Z and takes values inL(An), the graphΓ(`) of ` will be an algebraic subset of

(X \Z)×L(An). It allows to seeX \Z embedded into(X \Z)×L(An) via a → (a, `a).
We now extend this embedding to the whole ofX. The result will no longer be an embedding,

but rather a subvarietyX ′ of X × L(An) which projects ontoX. Above pointsa of Z, there

will in general be several points inX ′, namely all the limiting positions of secants through

a. Taking the limit of the secants̀a asa ∈ X \ Z approachesZ corresponds to adding the

boundary points ofΓ(`) ⊂ (X \ Z) × L(An) when considered as a subset ofX × L(An).
More precisely, letX ′ be the Zariski-closure ofΓ(`) in X×L(An), i.e., the smallest algebraic

subset containingΓ(`). ThenX ′ will be the blowup ofX alongZ, andπ : X ′ → X is the

restriction of the projectionX × L(An) → X.

Intuitively, we can interpret̀(a) as the “height” of the point onX ′ projecting toa ∈ X \ Z.

Above pointsa in Z, this height will in general be multi-valued. All this can be made very

precise, and has both algebraic and axiomatic interpretations (see the definition after the next

examples and the references). For the moment, we apply this technique to specific geometric

situations. As the blowup map will be an isomorphism overX \ Z (by definition), and since

we have no need to modify the smooth points ofX, we shall always choose the centerZ, as

mentioned earlier, inside the singular locusSing(X) of X.

Example 1: Let X be the cone in the three-dimensional real affine spaceA3
R of equation

x2 + y2 = z2, and let the centerZ be its unique singular point, the origin0. We claim that

the blowupX ′ of X in 0 is the cylinderx2 + y2 = 1. This can be checked algebraically, but

it is nicer to convince ourselves by a geometric argument. See the lines inA3 through0 as

elements of projective spaceP2. Our height-functioǹ : X \0 → P2 is defined by associating

to any pointa ∈ X \ 0 the line througha and0 (which is just a generating line of the cone).

As a moves on the cone straight towards0, the line`a will always be the same, so the map`

is constant on the lines ofX. Clearly, the limiting positions form a circle, and we conclude

thatX ′ is indeed the cylinder.

Example 1’: Take forX the plane curve of equationx2 = y2 + y3, the node. The natural

center to choose is the singular point0. The same reasoning as before shows thatX ′ is a

smooth curve. Also, taking the cartesian productY of X with a perpendicular axis inA3

(seeingA2 as the planeA2 × 0 in A3) will pose no problems: the centerZ is now thez-axis,

we fiberA3 by the planesA2 × {t} with t varying inA1, and get a blowupY ′ of Y which is
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the cartesian product of the blowupX ′ of X with thez-axis.

Example 2: The cuspX of equationx2 = y3 is slightly more complicated to treat. The

blowup of X with center the origin0 will be a space curveX ′ in the three-dimensional

ambient spaceA2×P1. AsX has just one limit of secants at0 (they-axis), there is precisely

one point onX ′ sitting above0 ∈ X. Call it a′. We have to check whetherX ′ is smooth or

singular ata′. Unfortunately, this can no longer be done by purely geometric methods, and we

have to resort to algebra. Pointsa on X are of the form(t3, t2), the respective secant, taken

as an element inP1, has projective coordinates(t3 : t2) = (t : 1), so that the points ofX ′ are

parametrized byt → (t3, t2, t). HenceX ′ is smooth ata′ = 0. The same computation applied

to the “sharper” cuspY defined byx2 = y5 yields for Y ′ the parametrization(t5, t2, t3).
This shows thatY ′ is still a singular curve. ProjectY ′ to the planeA2 by forgetting the first

component. The image curve is the ordinary cuspX. By construction,X is isomorphic to

Y ′. Therefore another point blowup suffices to resolveY ′.

There is an algebraic and slightly more general notion of blowup which is related to an

arbitrary idealN in K[x1, . . . , xn] (nowK can be any field). The geometric version above is

recovered by taking forN the radical idealIZ definingZ in An. Let g1, . . . , gk be a system

of generators ofN , and letZ ⊂ An be the common zeroset of thegi (which coincides with

the subvariety ofAn defined byN ). Then the map

g : An \ Z → Pk−1, a → (g1(a) : . . . : gk(a))

is well defined. The Zariski closurẽAn of its graph inAn × Pk−1 is defined as the blowup

of An with centerN . It is easy to see that̃An is a variety of dimensionn, and isomorphic to

the blowup defined geometrically above in caseN is the radical ideal of the subvarietyZ of

An. In particular,Ãn is smooth ifZ is smooth. The restriction tõAn of the first projection

An × Pk−1 → An yields the blowup mapπ : Ãn → An.

Embedded resolution. We will have to distinguish between embedded and non-embedded

resolution. To explain the difference, let our singular varietyX be embedded in some smooth

ambient spaceW , say, for simplicity,W = An. Let Z be a subvariety ofX (our chosen

center of blowup). It is a general fact that the blowupX ′ of X alongZ can be constructed

from the blowup ofW alongZ. To this end, denote byπ : W ′ → W the blowup map,

and consider the inverse imageX∗ = π−1(X) of X underπ. The varietyX∗ is called the

total transform of X. It turns out thatX∗ has two components. The first is theexceptional
divisor E = π−1(Z) ⊂ W ′ given by the pull-back of the center. It is a hypersurface inW ′

which contracts underπ to Z, whereas outsideE the mapπ is an isomorphism ontoX \ Z.

The second component, sayX ′, is the geometrically interesting object. It coincides with the

blowup ofX alongZ and is called thestrict transform of X underπ. Taking the inverse

imageπ−1(X \ Z) of X \ Z in W ′, the Zariski-closure ofπ−1(X \ Z) in W ′ givesX ′.

An embedded resolution ofX ⊂ W is a birational proper morphismπ : W̃ → W so that the

total transformX∗ is a variety with at most normal crossings3. This signifies that the strict

transformX ′ of X underπ is smooth and transversal to the components of the exceptional

divisorE in W̃ .

3 Birational morphism: A map given locally by quotients of polynomials inducing an isomorphism of a dense open

subset onto a dense open subset. Proper: The preimage of compact sets is compact. Normal crossings: Locally, the

variety is up to isomorphism a union of coordinate subspaces, or, equivalently, can be defined by a monomial ideal.
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In contrast, anon-embedded resolution ofX is just a birational proper morphismε : X̃ → X

with X̃ smooth. It does not take into account the embedding ofX but considersX as an

abstract variety. We should think ofε as a parametrization of the singular varietyX by the

smooth varietyX̃. A basic result in birational geometry says that any projective birational

morphism is given as a single blowup ofX along a centerZ defined by a possibly very

complicated ideal. In particular, this holds for any resolution, where now the center should

be supported onSing(X). Even in the first non-trivial examples it is not clear how to define

such a centerab initio in order to get via the induced blowup the required resolution.

For many applications one needs embedded resolution. The concept has a variant known as

log-resolution of varieties, respectivelyprincipalization or monomialization of ideals – the

ideal will be the one definingX in W 4. If a non-embedded resolutionε : X̃ → X is given by

a sequence of blowups in certain centers and if we have an embeddingX ⊂ W of X into a

smooth varietyW , one may take the successive blowups ofW defined by these centers. This

yields a birational morphismπ : W̃ → W of smooth varieties together with an embedding

X̃ ⊂ W̃ . At this stage,X̃ need not meet the exceptional divisorE of π transversally (here,

E is defined as the subvariety of̃W whereπ is not an isomorphism). But then one can apply

further blowups tõW until all components of the transform of̃X andE do meet transversally,

which then provides an embedded resolution ofX in W .

Small dimensions. Let us now turn to resolution of curves, surfaces and three-folds in

arbitrary characteristic.

The resolution of curves is governed by the fact that all singular points are isolated, so that

only point blowups have to be considered. One can choose any of the singular point as center.

The order in which these are taken does not matter. So the only problem is to show that after

finitely many such blowups the resulting curve is smooth (and, for the embedded resolution,

transversal to the exceptional divisor). This is done by defining a local invariant at each of the

singular points of the curve and showing that, after one blowup, this invariant has dropped at

all singular points sitting above the center. Various invariants for this task have been proposed

and work, see the first chapter of Kollár’s book describing thirteen ways how to resolve curve

singularities [Ko]. The most frequent invariant for plane curves consists of two numbers(o, s)
(considered lexicographically), whereo is the order of the Taylor expansion of the defining

equation at the point, ands is the first characteristic number (which we do not define here).

For a detailed discussion of this invariant in arbitrary characteristic and the proof that it drops

under blowup you may consult the survey [HR].

Let us next consider singular surfaces that are embedded as hypersurfaces in a smooth three-

dimensional ambient space. The singular locus consists now of isolated points and (possibly)

curves, which themselves can be singular5. The isolated points can be taken as the center of

a blowup as before, with the task to exhibit numerically the improvement of the singularities

after the blowup. The first complication is due to the fact that an isolated singularity may

produce under blowup on the transformed surface a whole curve of singular points. The

second complication stems from the curves along which the surface is singular. If the curve

4 For a log-resolution one requires that the total transform is in addition a divisor, say a hypersurface of the smooth

ambient space. This can be achieved from an embedded resolution by an extra blowup with center the entire strict

transform of the variety.
5 In practice, one considers instead of the singular locus the usually smaller top locus defined earlier as the set of points

where the local order of the defining equation is maximal; the same reasoning applies with slight modifications.
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is smooth, it can be taken as center, with the hope of getting an improvement. If it is singular,

its singular points are the only reasonable centers, because blowups whose center is a singular

curve are very difficult to control. So we start with point blowups. By resolution of curves,

finitely many blowups resolve these curves (i.e., make them smooth). On the way, new curves

may appear in the singular locus of the surface. Zariski has shown that they are always

smooth. This allows to conclude that after finitely many blowups the singular locus of the

surface consists of isolated points andsmooth curves that, moreover, intersect transversally.

From that point on we take also curves as centers: Any component of the singular locus of

the surface may be chosen (again, the order does not matter, as Zariski showed).

It remains to show that the sequence of blowups (which is geometrically motivated) does

indeed resolve all singularities. To this end it suffices to show that the order of the defining

equation must drop after finitely many blowups. This problem and the solution to it are

known as the theorem of Beppo Levi. Again an invariant that drops after each blowup has to

be defined. There are several proposals. Zariski was able to construct one for characteristic

zero, and Abhyankar was the first to give a proof of termination in positive characteristic

[Za, Ab1]. Hironaka later defined a different and characteristic free invariant based on the

Newton polyhedron of the defining equation [Hi4, Ha3]. The construction is quite special

and does not seem to apply to higher dimensions. Hauser and Wagner showed, relying on a

proposal of Zeillinger, that the nowadays standard characteristic zero invariant of Villamayor,

Bierstone-Milman and successors that works in arbitrary dimension (but may increase for

blowups in positive characteristic) can be modified suitably in case of surfaces by subtracting

abonus from it. This bonus is a small correction term which takes values between0 and1+ δ

according to the internal structure of the defining equation, see the section on the resolution

of surfaces. The modified invariant then decreases after each blowup and thus provides an

induction argument [HW]. Quite recently, Cossart, Jannsen and Saito established resolution

for surfaces that are not necessarily hypersurfaces over a field by extending Hironaka’s

construction to arbitrary excellent two-dimensional schemes [CJS]. It turns out that all these

techniques actually allow to produce an embedded resolution (since we are working with the

defining equations of the surface). In contrast, Lipman’s proof of resolution of surfaces via

normalization plus blowups yields a non-embedded resolution [Lp1, At]6.

The situation for three-folds is much more involved. At the moment onlynon-embedded
resolution is established (in arbitrary characteristic). The proof relies vitally on theembedded
resolution ofsurfaces. Abhyankar gave a long proof (more than five hundred pages) that is

scattered over several papers and requires that the characteristic of the algebraically closed

ground field is> 5. Cutkosky was then able to make this proof much more transparent and to

reduce it to less than forty pages [Cu]. In Cutkosky’s paper, Abhyankar’s work is described

in great detail, giving all necessary references. Cossart and Piltant succeeded to remove the

restriction on the characteristic and the algebraic closedness of the ground field. The resulting

proof is rather long and challenging [CP1, CP2], based on ideas of [Co].

Normalization. All the above approaches use in some way or other the modification of a

variety by blowups. Let us now describe two alternatives.

An important way to improve the singularities of a variety is by means of its normalization.

This is an extremely elegant, characteristic independent method to get rid of all components

6 The proof selects among all normal varieties proper over the ground field and birational toX one of minimal

arithmetic genus, shows that all its singularities are pseudo-rational, and then resolves these by point blowups.
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of the singular locus of codimension one in the variety (e.g., curves in the singular locus of a

surface). One says that the variety becomesregular in codimension one. The construction

does not look at the embedding.

The normalization is defined through the integral closure of rings. Assume thatX is an

irreducible algebraic subset of affine spaceAn over the ground fieldK, and letR be the

coordinate ring ofX whose elements are the polynomial functions onX. The ringR is

a finitely generatedK-algebra and an integral domain. LetQ be its field of fractions (the

function field ofX). Now recall that any morphismf : X ′ → X of varieties induces a dual

ring homomorphismf∗ : R → R′ between the coordinate rings given by composition with

f . If the morphismf is birational, the mapf∗ is injective and induces an isomorphism of

function fieldsQ ∼= Q′. Identifying Q′ with Q, the morphismf can then be read as a ring

extensionR ⊂ R′ ⊂ Q. This observation suggests to look at overrings ofR insideQ that

are again finitely generatedK-algebras (in order to be the coordinate ring of a variety) and so

that the corresponding variety is “closer” to a smooth variety thanX.

One answer to this approach is the integral closureR of R in Q. It can be shown thatR is

a finitely generatedK-algebra, and that the extensionR ⊂ R is finite. ThereforeR is the

coordinate ring of a varietyX, and the inclusionR ⊂ R defines a finite morphismX → X,

the normalization map. The varietyX is normal (its coordinate ring is integrally closed), in

particular, it is regular in codimension one. For curves, this signifies to be smooth (giving

a non-embedded resolution), for surfaces we will only have isolated singularities (which is

good for many purposes, but not yet a resolution). It can be shown that iterated compositions

of normalizations and point blowups allow to resolve surfaces.

Alterations. The last method that we shall mention in this introductory part is the notion of

alterations introduced by de Jong [dJ]. It works in all characteristics, but yields a resolution

only up to a finite map. This, however, is sufficient for many applications [Be].

Let us briefly describe the idea. Whereas amodification of a varietyX is a birational

proper morphismπ : X ′ → X yielding an isomorphism of function fields, analteration is a

proper, surjective morphism that induces a finite extension of function fields. Geometrically

speaking,π is an isomorphism, respectively a finite morphism over a (dense) open subsetU

of X (generic isomorphism, respectively generically finite morphism). A modification is a

birational alteration, and an alteration factors into a modification followed by a finite map.

De Jong shows that any variety (say, over an algebraically closed field) admits an alteration

ε : X ′ → X with X ′ smooth (and quasi-projective) [dJ, Be, AO]. For the proof by induction

one needs a stronger and more precise statement: IfS is a closed subvariety ofX, the

alterationε can be chosen together with an open immersioni : X ′ ⊂ Y into a projective and

smoothY so that the unioni(ε−1(S)) ∪ (Y \X ′) forms a normal crossings divisor inY .

The method of proof is opposite to the resolution proofs via blowups: After a preliminary

alteration which allows to assumeX to be projective and normal, the varietyX is fibered

in curves by constructing a suitable morphism to a varietyP of dimension one less than the

dimension ofX. This may create singularities in the fibres which lie outside the singular

locus ofX. Using then the theory of semi-stable reduction a further alteration together with

induction on the dimension of the base space reduces to the case where the fibres have at most

nodal singularities (i.e., are defined locally byxy = 0), and the singular fibres sit only over

the points of a normal crossings divisor ofP . The situation has then become so explicit that
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it can be treated by toric methods, yielding finally an alterationε : X ′ → X of X with the

required properties.

This concludes our summary on resolution. We now turn to the main theme of the article, the

obstructions to the resolution of singularities in positive characteristic and arbitrary dimension.

C. Failure of maximal contact. There is a concrete reason why resolution is more difficult in

positive characteristic: The behaviour of the singularities under blowup is much more erratic

than in characteristic zero. Therefore it is harder to pinpoint and then measure a continuous

improvement of the singularities yielding eventually to a resolution. In this section we explain

this phenomenon. Some preliminary material is necessary.

For the ease of the exposition, we restrict to hypersurfacesX defined by one equationf = 0
in a smooth ambient spaceW (e.g. affine spaceAn). Fix a pointa of X. ThenX is smooth

at a if and only if the order of the Taylor expansion off at a is 1, i.e., if the expansion

starts with a linear term. Ifa is a singular point ofX, the order is at least2. Denote by

Sing(X) the set of all singular points ofX. This is an algebraic subset, called thesingular
locus of X; it is defined by the vanishing of the partial derivatives off . The complexity

of the singularity ofX at a pointa ∈ Sing(X) is related to the order of vanishing off at

a. Denote this number byordaX, and byord(X) the maximal value ofordaX on X. As

ordaX is an upper semicontinuous function ina andX is a noetherian space with respect to

the Zariski topology,ord(X) is finite and the settop(X) of points ofX whereordaX attains

its maximumord(X) is an algebraic subset. Thistop locus collects the “worst” singularities

of X. Zariski calls it theequimultiple locus [Za]. The objective of the resolution process is

to makeord(X) drop by a sequence of blowups in well chosen centers until it becomes1.

ThenX will have become everywhere smooth7.

As blowups are isomorphisms outside the center, they will not change the local order ofX

there. Since we are only concerned in a first instance to improveX alongtop(X) the natural

choice of center is thereforeZ = top(X). The problem is that in general the top locus may

itself be singular. Blowing up the smooth ambient spaceW in a singular center creates a new

ambient spaceW ′ which now may be singular, and whose singularities can be hard to control.

It is then unknown how to measure a possible improvement of the transformX ′ of X in W .

Therefore we are confined to choose alwayssmooth centersZ. Something nice happens.

Fact. Let Z ⊂ top(X) be a smooth center, letπ : W ′ → W be the induced blowup

with (strict) transformX ′ of X in W ′. Let a be a point inZ, and leta′ be a point in

E = π−1(Z) ⊂ W ′ mapping underπ to a. Then

orda′X
′ ≤ ordaX.

In particular, we getord(X ′) ≤ ord(X) for the maximum value of the local orders. This says

that the complexity of the singularities ofX does at least not get worse. Iford(X ′) < ord(X)
we can apply induction. Iford(X ′) = ord(X) there will be at least one pointa′ ∈ E with

imagea ∈ Z and such thatorda′X
′ = ordaX. We call such pointsequiconstant points

(classically, they are also calledinfinitely near points). They are the points where induction

cannot be directly applied. Some refined argument is necessary.

7 For an embedded resolution, one has to consider the total transform ofX and try to make it into a

normal crossings variety. It is not known how to measure properly the “distance” of a singularity from

being normal crossings.
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One might hope thatord(X) always drops. This is immediately seen to be too optimistic,

equality may indeed occur. One situation where equalitymust occur is the case whentop(X)
is singular. As the centerZ is required to be smooth,Z is then strictly included intop(X).
Therefore,orda′X

′ remains constant equal toordaX for all pointsa′ abovea ∈ top(X) \Z.

Henceord(X ′) = ord(X). Moreover, by the above fact and the upper semicontinuity of the

order, it follows thatorda′X
′ = ordaX also holds for all pointsa′ abovea ∈ Z. So there is

no obvious improvement.

To respond to this quandary, one may try to make firstY = top(X) smooth by some auxiliary

blowups, in order to take it afterwards as the center of the next blowup. This fails in two

directions: First, the blowupY ′ of Y need not coincide with the top locus of the transform

X ′ of X. New and even singular components may pop up, see [Ha6] for an explicit example.

So resolvingY (for instance by induction on the dimension) does not really help to make

top(X) smooth (except for surfaces). Secondly, even iftop(X) were smooth and would be

taken as center, it can be shown thatord(X) may not drop under the respective blowup.

From this analysis we learn that the main problem sits in the appearance of equiconstant

points on the transformX ′ after a blowup. There, the order ofX has not dropped, and some

refined measure for the improvement of the singularities has to be designed (provided that

an improvement – as we hope – has occurred; this also depends on the correct choice of the

center, a question which we will not address here).

The next step is to study in more detail the equiconstant points, especially their location on

X ′. This may help us to understand better how the singularities transform under blowup

when the order remains the same. So fix a pointa ∈ Z in the centerZ ⊂ top(X) of a given

blowupπ : W ′ → W , and leta′ ∈ E be an equiconstant point ofX ′ abovea. Zariski already

observed that there exists, locally in a neighborhood ofa in W , a smooth hypersurfaceV

containinga whose transformV ′ underπ containsall equiconstant pointsa′ abovea [Za].

This restricts considerably the location of these points. Zariski describes quite explicitly all

such hypersurfaces.

Now comes the distinction between zero and positive characteristic. In zero characteristic

Abhyankar and Hironaka observed8 thatV can be chosen even so that its transformV ′ not

only contains all equiconstant points but moreover has itself a transformV ′′ containing all

equiconstant pointsa′′ sitting abovea′. And this continues like this until the order ofX

drops. It is thus possible to capture the whole sequence of equiconstant points abovea

by one hypersurface together with its transforms. Such local smooth hypersurfaces, which

accompany the resolution process, are calledhypersurfaces of maximal contact (and are

known asTschirnhausen transformations in the terminology of Abhyankar). They play the

crucial role for the proof of resolution in characteristic zero by allowing now a local descent

in dimension considering there a new resolution problem, call itX−, in V and its successive

transformsV ′, V ′′ ..., see [Ha2]. Formulating this descent properly is not easy but can be

done. The resolution ofX− in V exists by induction on the dimension (this induction tells us

also how to choose the centers). Having resolvedX− it can be proven that the singularities

of X in the original ambient spaceW must also have improved (in a precisely defined way).

This is the key argument in characteristic zero.

8 According to rumors, one breakthrough happened at the end of the fifties on the occasion of a four day visit of

Hironaka at Abhyankar’s house.

10



In positive characteristic, this argument fails drastically: Hypersurfaces of maximal contact

need not exist. There are examples of (e.g. two-dimensional) hypersurfaces with isolated

singularities together with a sequence of (point) blowups whereany local smooth hypersurface

V passing through the singularity eventually loses the sequence of equiconstant points sitting

above the initial point [Na, Ha2]. This prohibits to apply the same descent in dimension as in

characteristic zero.

Still, for a single blowup, one can choose, by Zariski’s observation, locally ata ∈ top(X) a

smooth hypersurfaceV in W whose transformV ′ contains the equiconstant pointsa′ of X ′ in

W ′. The defect is just that this transformV ′ can possibly not be taken again for the subsequent

blowups. In this situation, Abhyankar proposed, at least for plane curves, to change after each

blowup if necessary the hypersurface. Again one gets a sequence of hypersurfaces, but they

will no longer be related as transforms of each other under blowup. The descent becomes

more complicated. Moreover, there is a priori no canonical choice for those hypersurfaces.

In the next section we shall describe this descent in more detail and explain how one can still

formulate a resolution problem in smaller dimension. However, its solution is much harder

and has only be achieved up to now for curves and surfaces.

D. Kangaroo phenomenon.Recall that the now classical resolution invariant in characteristic

zero consists of a vector of integers whose components are orders of ideals in decreasing

dimensions.9 The ideals are the consecutive coefficient ideals in hypersurfaces of maximal

contact, and the vector is considered with respect to the lexicographic ordering. Two things

are then shown: That the locus of points ofX where the invariant attains its maximal value is

closed, smooth and transversal to the possibly already existing exceptional divisor (stemming

from earlier blowups). And, that the invariant drops under blowup when taking as center

this locus of maximal values, as long as the ideals in lower dimension are not resolved yet

(in a precise sense). The decrease allows to apply induction (the lexicographic order is a

well-ordering) and to reduce by a finite sequence of blowups to the case where the invariant

attains its minimal possible value. We arrive in this way in the so called monomial case, for

which an instant combinatorial description of the resolution is known. This program appears

in different disguises in many places, see e.g. [Hi5, Vi1, BM, EV1, EH, Wł, Ko].

In section E we will review the characteristic free version of the characteristic zero invariant

of an ideal at a point as it was developed in [Ha1, EH]. For this definition, hypersurfaces

of maximal contact (which need not exist in arbitrary characteristic) have to be replaced by

hypersurfaces ofweak maximal contact. These are defined as local smooth hypersurfaces

thatmaximize the order of the coefficient ideal of the given ideal (as hypersurfaces of maximal

contact do), but whose transforms, in contrast, are not required to contain along a sequence

of blowups the points where the order of the original ideal remains constant.

Take then as resolution invariant the lexicographic vector consisting of the order of the ideal

and of the orders of the iterated coefficient ideals with respect to such hypersurfaces. It turns

out that the resulting vector (more precisely, its second component given by the order of

the first coefficient ideal) may increase in positive characteristic under certain (permissible)

blowups. The first examples of this phenomenon were observed by Abhyankar, Cossart, Moh

and Seidenberg [Co, Mo, Se]. The increase destroys at first glance any kind of induction.

9 For the basics on resolution in characteristic zero, you may consult [Ha2, Lp2, Ko].
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Moh succeeded in bounding the maximal increase, but it was not yet possible to profit from

this bound so as to save the induction argument (except for surfaces).

We shall describe accurately the situations where an increase of the invariant occurs. To

make the increase happen, the variety which is blown up must have awild singularity. It is

located at a so calledantelope point of the current stage of the sequence of blowups we are

considering. On the transform of the variety, the increase of the invariant can then only occur

at akangaroo point.10 The location of these points and the structure of the singularities is

meanwhile well understood and can be explained quite explicitly (cf. section G). Kangaroo

points always lie on the new exceptional component of the last blowup but never on the

transforms of the (old) exceptional components passing through the preceding antelope point

(see Figure 1). This phenomenon is also known as the occurence of a “a translational blowup”.

oldold old

new

new new
a a

a
a0 1 2

3

oasis

antelope

kangaroo

Figure 1: The configuration of kangaroo, antelope and oasis points.

To have a wild singularity at an antelope point preceding a kangaroo point, three condi-

tions must hold: The residues modulop of the multiplicities of the exceptional components

appearing in the defining equation must satisfy a certainarithmetic inequality, the order

of the coefficient ideal of the equation must bedivisible by the order of the equation, and

strong restrictions on the (weighted) initial form of the defining equation are imposed (cf.

the theorem in section G on kangaroo points). It turns out that the initial form of a wild

singularity must be equal (up to multiplication byp-th powers) to anoblique polynomial.
Oblique polynomials are characterized by a very peculiar behaviour under linear coordinate

changes when considered up to addition ofp-th powers. Fixing the exceptional multiplicities

and the degree, both subject to the arithmetic and divisibility condition, it can be shown that

there is preciselyone oblique polynomial with these parameters (cf. section I).

For surfaces, it is possible to show that the characteristic zero resolution invariantdecreases in
the long run also in positive characteristic, i.e., that the occasional increases are compensated

by decreases in the blowups before and after them. A first method for proving this is developed

in [Ha1] and will be sketched in section J below. A second, more systematic approach

introducing thebonus of a singularity will appear in [HW]. It “adjusts” the characteristic zero

invariant in the critical situations by a small correction value – the bonus – so as to ensure a

permanent decrease of the invariant. We emphasize that there are earlier proofs of resolution

of surfaces in arbitrary characteristic by Abhyankar, Lipman and Hironaka using different

invariants and arguments [Ab1, Lp1, Hi4]. For three-folds and higher dimensional varities,

no complete induction argument for the embedded resolution seems to be known.

With these remarks we conlude the general introduction. From the next section on, more

detailed informations will be given.
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E. The invariant. We define only the first two components of the classical resolution invariant

as these suffice for the phenomena to be described here. For an ideal sheafJ on a smooth

ambient spaceW and a pointa ∈ W denote byJ = Ja the stalk ofJ ata. For convenience,

we denote – if appropriate – by the same characterJ the ideal generated in the completion

ÔW,a of the local ringOW,a.11 For a local smooth hypersurfaceV in W througha, the

coefficient ideal of J in V is defined as the ideal

coeffV J =
o−1∑
i=0

(af,i, f ∈ J)
o!

o−i ,

whereo = ordaJ is the order ofJ ata, x = 0 is a local equation forV andf =
∑

af,ix
i is

the expansion off with respect tox, with coefficientsaf,i ∈ OV,a. Among the many variants

of this definition in the literature, the given one suits best our purposes. More specifications

appear in [EH].

In caseJ is a principal ideal generated by one polynomialf(x, y) = xo + g(y) in A1+m with

variablesx andy = (ym, . . . , y1), the coefficient ideal ofJ with respect to the hypersurface

x = 0 is simply the ideal inAm generated byg(o−1)!. The factorial is only needed to ensure

integer exponents whenf has otherx-terms.

The order of the coefficient ideal ata depends on the choice of the hypersurfaceV , but remains

unchanged under passing to the completions of the local rings. The supremum of these orders

over all choices of local smooth hypersurfacesV througha is a local invariant ofJ ata (i.e.,

by definition, only depends on the isomorphism class of the complete local ringÔW,a/J).

This supremum is∞ if and only if J is bold regular at a, viz generated by a power of a

parameter of̂OW,a [EH]. If the supremum is< ∞ and hence a maximum, any hypersurface

V realizing this value is said to haveweak maximal contact with J at a. In characteristic

zero, hypersurfaces of maximal contact have weak maximal contact [EH]. Moreover, their

strict transforms under a permissible blowupW ′ → W contain allequiconstant points (=

infinitely near points inW ′), i.e., those points of the exceptional divisor where the order of

the weak transformJ ′ of J has remained constant (recall that this order cannot increase ifJ

has constant order along the center).

In arbitrary characteristic, the supremum of the orders of the coefficient idealcoeffV J for

varyingV can be used to define the second component of the candidate resolution invariant

of J at a. If the supremum is∞ and thusJ is bold regular, a resolution is already achieved

locally ata, so we discard this case. We henceforth assume that the supremum is< ∞ and

can thus be realized by the choice of a suitable hypersurfaceV . After factoring from the

resulting coefficient ideal a suitable divisor one takes the order of the remaining factor as the

second component of the invariant. More explicitly, letD be a given normal crossings divisor

11 You may think here thatJ is an ideal in a polynomial ring andJ is the induced ideal in a formal power series ring

generated by the Taylor expansions of the elements ofJ at a point.
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in W with defining idealIW (D). We shall assume throughout thatcoeffV J factors for any

chosenV transversal toD (in the sense of normal crossings) into a product of ideals

coeffV J = IV (D ∩ V ) · I−,

whereI− is some ideal inÔV,a (this assumption is always realized in practice). Then define

theshade of J at a with respect to D as the maximum valueshadeaJ of ordaI− over all

choices ofV transversal toD. In [Hi1], a similarly defined invariant is considered by Hironaka

and called there theresidual order of J at a. As usual, questions of well-definedness and

upper-semicontinuity have to be taken care of.12

Along a resolution process,D will always be supported by the exceptional components

accumulated so far. It coincides with the second entry of thecombinatorial handicap of
a mobile as defined in [EH]. At the beginning, or wheneverordaJ has dropped,D will be

empty. If the order ofJ has remained constant at a pointa′ abovea, the transformD′ of D

is defined as

D′ = Dg + (orda(D ∩ V ) + shadeaJ − ordaJ) · Y ′,

whereY ′ denotes the exceptional divisor of the last blowup, andDg the strict transform

of D.13 The formula signifies thatD′ consists of the transform ofD together with the

new exceptional componentY ′ (which is taken with a suitable multiplicity). Note that

orda(D ∩ V ) + shadeaJ = orda(coeffV J). It follows from the transformation rule ofD

that, under permissible blowup, the weak transformJ ′ of J at an equiconstant pointa′ above

a has as coefficient idealcoeffV ′J ′ in the strict transformV ′ of V an ideal which factors again

into a productIV ′(D′∩V ′) ·I ′−, with I ′− the weak transform(I−)g of I−. Here, it is assumed

that the centerZ is contained inV . This is more delicate to achieve in positive characteristic,

due to the example of Narasimhan where the singular locus ofJ is not contained locally in

any smooth hypersurface [Na1, Na2, Mu]. It can, however, be realized by refining the usual

stratification of the singular locus ofJ through the local embedding dimension of this locus.

We say that themonomial case occurs when the whole coefficient ideal has become an

exceptional monomial, saycoeffV J = IV (D∩V ) with I− = 1. The shade has then attained

its minimal value0. This case allows a purely combinatorial resolution ofJ (cf. [EH]).

The commutativity of the passage to coefficient ideals with blowups can be subsumed as

follows, cf. [EH, Ha2]. Given a blowup with centerZ contained in the local hypersurfaceV

of W locally at a and transversal toD, we get for any equiconstanta′ in W ′ abovea and

I ′− = (I−)g a commutative diagram

J ′  coeffV ′J ′ = IV ′(D′ ∩ V ′) · I ′−

↓ ↓

J  coeffV J = IV (D ∩ V ) · I−

Here, the situation splits according to the characteristic: In characteristic zero, choosing for

V a hypersurface of maximal contact forJ at a, the strict transformV ′ constitutes again a

hypersurface of maximal contact forJ ′ at a′. In particular, both will have weak maximal

12 Semicontinuity works well if only closed points are considered. For arbitrary (i.e., non-closed) points, there appear

pathologies which are described and studied by Hironaka [Hi1].
13 We use here implicitly thatV andZ are transversal toD. This is indeed the case in the resolution process of an

ideal or scheme.
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contact so that the shades ofJ and J ′ are well-defined. In addition,shadea′J
′ can be

computed fromshadeaJ by looking at the blowupV ′ → V with centerZ and the idealsI−
andI ′− (recall thatZ ⊂ V locally ata). As shadeaJ = ordaI−, shadea′J

′ = orda′I
′
− and

I ′− is the weak transform ofI−, it follows automatically thatshadea′J
′ ≤ shadeaJ (it is

required here that the order ofI− is constant alongZ, a property that is achieved through the

insertion ofcompanion ideals as suggested by Villamayor, cf. [EV2, EH]). This makes the

induction and the descent in dimension work.

In positive characteristic, it is in general not possible to choose a local hypersurface of

maximal contact forJ at a. But a hypersurface of weak maximal contact will always exist,

by definition. So choose one, sayV . The good news is – as already Zariski observed [Za] –

that the strict transformV ′ of V will contain all equiconstant pointsa′ of J in the exceptional

divisor Y ′. The bad news is, as Moh’s and Narasimhan’s examples show, thatV ′ need no

longer have weak maximal contact withJ ′ ata′. Said differently,V ′ need not maximize the

order of the coefficient ideal of the weak transformJ ′ of J at a′. One may have to choose

a new hypersurfaceU ′ at a′ to maximize this order. As Moh observed [Mo], there is still

worse news, since the choice ofU ′ may produce a shade ofJ ′ at a′ which isstrictly larger
than the shade ofJ at a. This destroys the induction over the lexicographically ordered pair

(orda(J), shadea(J)). At least at first sight!

F. Moh’s bound. In his paper on local uniformization, Moh investigates the possible increase

of shadeaJ at equiconstant pointsa′ of J in the purely inseparable case

f(x, y) = xpe

+ yr · g(y),

with ord(yrg) ≥ pe = ord f ande ≥ 1 [Mo]14. Here,V defined byx = xn = 0 denotes

a hypersurface of weak maximal contact forf at a = 0 in W = An, p is the characteristic

of the (algebraically closed) ground field, andy = (xn−1, . . . , x1) denote further coordinates

so that(x, y) form a complete parameter system ofR = ÔAn,0. Moreover,r ∈ Nn−1 is a

multi-exponent whose entries are the multiplicities of the components of the divisorD ∩ V

at 0, andyi = 0 defines an irreducible component ofD ∩ V in V for all i for which ri > 0.

All expressions take place in the algebra of anétale neighborhood of0 in An, so thatf and

possible coordinate changes are considered as formal power series. The shade off at0 with

respect to the divisorD defined byyr = 0 is given byshade0f = ord0g, by the choice ofV .

Proposition. (Moh) In the above situation, let (W ′, a′) → (W,a) be a local blowup with
smooth center Z contained in the top locus of f and transversal to D. Assume that
a′ is an equiconstant point for f at a, i.e., orda′f

′ = ordaf = pe, where f ′ denotes
the weak (= strict) transform of f at a′. Then

shadea′f
′ ≤ shadeaf + pe−1.

In casee = 1, the inequality readsshadea′f
′ ≤ shadeaf + 1, which is not too bad, but still

unpleasant. The short proof of Moh uses a nice trick with derivations, thus eliminating all

p-th powers fromyrg(y). He then briefly investigates the case where an increase of the shade

indeed occurs, showing that in the next blowup the shade has to drop at least by1 (if e = 1).

This, obviously, does not suffice yet to make induction work.

14 It seems that Abhyankar had already observed this increase.
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G. Kangaroo points and wild singularities. In the following paragraphs we reproduce in

compact form the classification of kangaroo points and wild singularities given in [Ha1].

Recall: The shade of a polynomialf at a pointa with respect to a normal crossings divisorD

is themaximal value of the order of its coefficient ideal minus the multiplicity ofD ata, the

maximum being taken over all choices of smooth local hypersurfaces ata transversal toD. A

kangaroo point in a blowupW ′ → W with permissible centerZ and exceptional divisorY ′

is an equiconstant pointa′ abovea ∈ Z where the shade off with respect toD has increased,

orda′f
′ = ordaf and shadea′f

′ > shadeaf .

Here,shadea′f
′ is taken with respect to the divisor

D′ = Dg + (orda(D ∩ V ) + shadeaf − ordaf) · Y ′,

whereDg denotes the strict transform ofD andordaf = ordZf holds by permissibility

of Z. The pointa prior to a kangaroo pointa′ is calledantelope point. Note here that

if V andV ′ are hypersurfaces of weak maximal contact thenorda(D ∩ V ) = ordaD and

orda′(D′ ∩ V ′) = orda′D
′ by transversality ofD andD′ with V andV ′.

For the ease of the exposition, we restrict to hypersurfaces inAn = A1+m with purely

inseparable equationf(x, y) = xp + yr · g(y) of orderp at0 equal to the characteristic, with

exceptional multiplicitiesr = (rm, . . . , r1) ∈ Nm and coordinates(x, y) = (x, ym, . . . , y1).
We shall work only at closed points and with formal power series. Moreover, we confine to

point blowups, since these entail the most delicate problems. Most of the concepts and results

go through for more general situations. For an integral vectorr ∈ Nm and a numberc ∈ N,

let φc(r) denote the number of components ofr that are not divisible byc,

φc(r) = #{i ≤ m, ri 6≡ 0 modc}.

Definerc = (rc
m, . . . , rc

1) as the vector of the residues0 ≤ rc
i < c of the components ofr

moduloc, and let|r| = rm + . . . + r1.

The next theorem characterizes kangaroo points and wild singularities. We state it here only

in its simplest form for purely inseparable equations of orderp at0. An appropriate extension

also holds beyond the purely inseparable case for singularities of any order and for blowups

in positive dimensional centers, see section H below, respectively [Ha1] and [Ha7].

Kangaroo Theorem. (Hauser)Let (W ′, a′) → (W,a) be a local point blowup of W =
A1+m with center Z = {a} = {0} and exceptional divisor Y ′. Let X be a hyper-
surface singularity in W at a with equation f = 0. Let be given local coordinates
(x, ym, . . . , y1) at a so that f(x, y) = xp + yr · g(y) has order p and shade ordag with
respect to the divisor D defined by yr = 0. Then, for a to be a wild singularity of X

with kangaroo point a′, the following conditions must hold at a:
(1) The order |r|+ ordag of yrg(y) is a multiple of p.
(2) The exceptional multiplicities ri at a satisfy

rp
m + . . . + rp

1 ≤ (φp(r)− 1) · p.

(3) The point a′ lies on none of the strict transforms of the exceptional components
yi = 0 for which ri is not a multiple of p.
(4)The homogeneous initial form of g equals, up to the choice of coordinates, a specific
homogeneous polynomial, called oblique, which is unique for each choice of p, r and
degree.
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Remarks. (a) The above characterization seems to have been a vital step in Hironaka’s recent

approach to the resolution of singularities in positive characteristic, cf. [Hi1, Prop. 13.1 and

Thm. 13.2].

(b) The necessity of condition (1) is easy to see and already appears in [Mo]. The arithmetic

inequality in condition (2) is related to counting the number ofp-multiples in simplices in

Rm and theirr-translates15. It implies thatat least two exponentsri must be prime top.

For surfaces (m = 2), condition (2) readsr2, r1 6≡ 0 mod p andr2 + r1 ≤ p. Condition

(3) implies that the reference point has to jump off from all exceptional components with

ri 6≡ 0 modp in order to arrive at a kangaroo point. So it has to leave at least two exceptional

components (cf. Figure 1 from the introduction). This, together with the jump ofshadeaf ,

justifies the naming of these points. Condition (4) will be discussed in the example below and

in section I on oblique polynomials.

(c) Conditions (1) to (4) are necessary for the occurrence of kangaroo points. They are also

sufficient, up to the higher degree terms ofg, in the following sense: In the transformg′ of

g the terms ofg of degree> ordag (i.e., not in the initial form) may have transformed into

terms of degree smaller than the order of the transformg′ of the initial form g of g. This

signifies thatorda′g
′ < orda′g

′. As orda′g
′ = shadea′f

′, ordag = shadeaf by definition,

andorda′g
′ ≤ shadeaf + 1 = shadeaf + 1 with f = xp + yrg by Moh’s bound applied

to f , the strict inequalityshadea′f
′ > shadeaf becomes impossible. The influence of the

higher order terms ofg can be made quite explicit in concrete examples.

(d) We emphasize that the intricacy of the resolution in positive characteristic lies precisely

in these higher order terms. Without them,g is homogeneous (and thus equal to its initial

form). In this case it is easy to make the order off drop belowp by suitable further blowups.

But, in the general case, it seems to be tricky how to controlg beyond its initial form.

Example 3. For surfaces (n = 3 andm = 2), condition (2) readsr2 + r1 ≤ p, provided

thatr2, r1 > 0. In this case, there is an explicit description of the initial formP = g of g as

indicated by condition (4): If
(
k+r
k+1

)
is not a multiple ofp it has the form

P (y, z) = yrzs ·Hk
r (y, tz − y) = yrzs ·

∑k
i=0

(
k+r
i+r

)
yi(tz − y)k−i

wherer = r1, s = r2, k = ordag andt is some non-zero constant in the ground field. The

constantt determines the location ofa′ on the exceptional divisorY ′, and vice versa. The

polynomialsHk
r (y, w) =

∑k
i=0

(
k+r
i+r

)
yiwk−i are calledhybrid polynomials of type (r, k)

in [Ha1]. Note that we can writeHk
r as

Hk
r (y, w) =

∑k
i=0

(
k+r
k−i

)
yiwk−i =

=
∑k

i=0

(
k+r

i

)
yk−iwi =

= y−r ·
∑k

i=0

(
k+r

i

)
yk+r−iwi =

= by−r ·
∑k+r

i=0

(
k+r

i

)
yk+r−iwicpoly =

= by−r · (y + w)k+rcpoly,

wherebQcpoly denotes those terms of the Laurent expansion ofQ that involve no monomials

with negative exponents.

15 The inequality is equivalent tod rp
1
p e+ . . . + d rp

m

p e > d rp
1+...+rp

m

p e, wheredue is the smallest integer≥ u.

In this case the simplex∆ = {α ∈ Nm, |α| = ordag} contains morep-multiples than its translater + ∆.
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Rocio Blanco observed that if
(
k+r
k+1

)
is a multiple ofp the above polynomialP = yrzs ·

Hk
r (y, tz− y) is ap-th power and thus does not count. In this case one can use alternatively a

description of the initial form ofg which is independent of the divisibility of
(
k+r
k+1

)
by p (cf.

section I below):

P (y, z) = zs ·
∫

yr−1(y − tz)kdy = zs ·
∑k

i=0 (−1)k−i 1
r+i yr+i(tz)k−i,

the sum being taken over thosei for which r + i is not divisible byp. Dominique Wagner

showed that the two formulas forP differ – up to addingp-th powers – by the scalar factor

(−1)k
(
k+r
k+1

)
(k + 1). This explains why the first formula requires that

(
k+r
k+1

)
is prime top.

Let us illustrate the dependence onp in the casep = k = 2, r = s = 2, where the binomial

coefficient
(
k+r
k+1

)
=

(
5
3

)
= 10 is not prime top. Indeed,

yrzs ·Hk
r (y, tz − y) =

= y3z3 · [
(
5
3

)
(tz − y)2 +

(
5
4

)
y(tz − y) +

(
5
5

)
y2] =

= y3z3 · [10(tz − y)2 + 5y(tz − y) + y2] =

= y3z3 · [y(tz − y) + y2] =

= ty4z4

is ap-th power (provided thatK is perfect) and thus does not count as oblique, whereas

P (y, z) = zs ·
∫

yr−1(y − tz)kdy =

= z3 ·
∫

y2(y − tz)2dy =

= z3 ·
∫

(y4 + t2y2z2)dy =

= y3z3 · (y2 + t2z2)

produces an increase of the shade. In section I, we characterize oblique polynomials in

arbitrary dimension.

H. Proof of the Kangaroo Theorem. We indicate the main points of the argument for

arbitrary polynomialsf , i.e., in the case wheref is not necessarily purely inseparable.

This makes things more complicated, but has the advantage to be generally applicable in a

resolution process. The argument should be compared with the (much simpler) computation

of oblique polynomials for the purely inseparable case which is given in section I. Along the

way, one obtains an alternative proof of Moh’s inequality.

It is convenient to work in the power series ring and to assume thatf is in Weierstrass form of

order, sayc, with respect to the variablex. It then suffices to consider a weighted homogeneous

f with respect to weights(w, 1, . . . , 1) wherew ≥ 1 is the ratio between the order off and

the order of its coefficient ideal with respect tox, sayw = ord f/ord coeffx(f).

The inequalityrc
m+. . .+rc

1 ≤ (φc(r)−1)·c allows to count the lattice points that lie in certain

integral simplices inRn
+ (calledzwickels in [Ha1]) but do not belong to the sublatticep · Zn.

The key step of the proof of the Kangaroo Theorem is then to establish the invertibility of the

transformation matrix between the vectors of coefficients of polynomials with exponents in

such zwickels under prescribed coordinate changes, the polynomials being always considered

modulop-th powers. For illustration, we reproduce the corresponding passage from section

11 of [Ha1].
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Let f(x, y) and f̃(x, y) = f(x +
∑

γ hγyγ , y + tym) be weighted homogeneous polynomials
of weighted degreee with respect to weights(w, 1, . . . , 1) on (x, y) = (x, ym, . . . , y1), where
the sum

∑
γ hγyγ ranges overγ ∈ Nm with |γ| = w, and wherehγ and the components of

t = (0, tm−1, . . . , t1) belong to the ground field. Letc = e/w be the order off . Write

f(x, y) =
∑

akαxkyα and f̃(x, y) =
∑

blβ(t)xlyβ

with wk + |α| = wl + |β| = e. We assume thatac0 6= 0, i.e., thatxc appears with non-zero
coefficient, sayac0 = 1. Let V be the hypersurface inW = An defined byx = 0. Let

Lc = {(k, α) ∈ N1+m, k < c} → Qm : (k, α) → c
c−k · α

be the map projecting elements(k, α) of the layerLc in N1+m to elements ofQm. The center of the
projection is the point(c, 0, . . . , 0).

Let q ∈ Nm with |q| = qm + . . . + q1 ≤ e be fixed. Define theupper zwickel Z(q) in N1+m as
the set of points(k, α) with 0 ≤ k ≤ c, wk + |α| = e and projection c

c−k · α ≥cp q, denoting by
≥cp the componentwise order. ThusZ(q) is given by

Z(q) : wk + |α| = e and α ≥cp d c−k
c · (qm, . . . , q1)e.

Let us fix a decompositionq = r + ` ∈ Nm with r = (qm, . . . , qj+1, 0, . . . , 0) and ` =
(0, . . . , 0, qj , . . . , q1) for some indexj betweenm − 1 and0. Define thelower zwickel Y (r, `)
in N1+m as the set of points(k, β) in N1+m with 0 ≤ k ≤ c, wk + |β| = e and projection

c
c−k · β ≥cp (|r|, 0, . . . , 0, `). ThusY (r, `) is given by

Y (r, `) : wk + |β| = e and β ≥cp d( c−k
c · |r|, 0, . . . , 0, c−k

c · qj , . . . ,
c−k

c · q1)e.

Forj = m−1 and hencer = (qm, 0, . . . , 0) and` = (0, qm−1, . . . , q1) we haveZ(q) = Y (r, `).
In general, the two zwickels are different.

For anyr and` and0 ≤ k ≤ e/w = c the slice

Y (r, `)(k) = {(k, β) ∈ Y (r, `)} = Y (r, `) ∩ ({k} × Nm)

has at least as many elements as the slice

Z(q)(k) = {(k, α) ∈ Z(q)} = Z(q) ∩ ({k} × Nm).

This holds fork = 0, by definition ofZ(q) andY (r, `). For arbitraryk, the inequalityd c−k
c · |r|e ≤

|d c−k
c · re| implies that the condition

wk + |β| = e and β ≥cp (|d c−k
c · re|, 0, . . . , 0, d c−k

c · qje, . . . , d c−k
c · q1e)

is more restrictive than the condition

wk + |β| = e and β ≥cp (d c−k
c · |r|e, 0, . . . , 0, d c−k

c · qje, . . . , d c−k
c · q1e)

definingY (r, `)(k). For eachk, the set of pairsk, β satisfying the first condition has as many elements
asZ(q)(k) because|r|+ qj + . . . + q1 = |q|. The claim follows.

It is immediate thatyq is a factor ofcoeffV f if and only if f has all exponents in the upper zwickel
Z(q), andcoeffV f̃ has order> e− |r| in z = (ym−1, . . . , y1) if and only if all coefficients of the
monomials off̃ − xc with exponent in the lower zwickelY (r, `) are zero.

Write elementsβ ∈ Nm as(βm, β-) whereβ- = (βm−1, . . . , β1) ∈ Nm−1. Let Y ∗(r, `) be the
subset ofY (r, `) of elements(k, β) ∈ N1+m given by

|β-| ≤ e− wk − d c−k
c · |r|e,

β- ≥cp d c−k
c · (0, . . . , 0, qj , . . . , q1)e.

By definition, for eachk, the sliceY ∗(r, `)(k) has the same cardinality as the sliceZ(q)(k) of the
upper zwickelZ(q). Forα andδ in Zm set

(
α
δ

)
=

∏
i

(
αi

δi

)
where

(
αi

δi

)
is zero ifαi < δi or δi < 0.

ForΓ a subset ofNm, define fork ∈ N andλ = (λγ)γ∈Γ ∈ NΓ the alternate binomial coefficient
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[
(

k
λ

)
] =

∏
γ∈Γ

(
k−|λ|γ

λγ

)
with |λ|γ =

∑
ε∈Γ,ε<lexγ λε.

Let Γ ⊂ Nm be the set ofγ ∈ Nm with |γ| = w and writeh = (hγ)γ∈Γ. Set λ · Γ =∑
γ∈Γ λγ · γ ∈ Nm and fixt = (0, tm−1, . . . , tj+1, 0, . . . , 0). We then have [Ha1, Prop. 1, sec.

11]:

Proposition. Let f(x, y) =
∑

akαxkyα and f̃(x, y) = f(x +
∑

γ∈Γ hγyγ , y + tym) =∑
blβ(t)xlyβ be weighted homogeneous polynomials with respect to weights(w, 1, . . . , 1)

as above. Fixq = r + ` ∈ Nm with zwickelsZ(q) andY ∗(r, `) ⊂ Y (r, `).

(1) The transformation matrixA = (Akα,lβ) from the coefficientsakα of f to the coefficients
blβ(t) of f̃ is given by

Akα,lβ =
∑

λ∈NΓ,|λ|=k−l

(
k
l

)
[
(
k−l
λ

)
]
(

α
δαβλ

)
· hλ · tα−δαβλ ,

whereδαβλ = (αm, β- − (λ · Γ)-) ∈ Nm andhλ = Πγh
λγ
γ .

(2)The quadratic submatrixA� = (Akα,lβ) ofA with (kα, lβ) ranging inZ(q)×Y ∗(r, `) has
determinanttρ whereρ = ρ(Z(q), Y ∗(r, `)) is a vector inNm−1 independent ofh = (hγ)γ∈Γ

with ρm = 0 andρj = · · · = ρ1 = 0.

(3) Assume thatf has support inZ(q). If tm−1, . . . , tj+1 are non zero, the coefficientsblβ of
f̃ in the lower zwickelY (r, `) determine all coefficients off .

This ends the excerpt from [Ha1] about the proof of the Kangaroo Theorem. Actually, the

assertions of the theorem are quite direct consequences of the above proposition. As for the

proof of the proposition itself, the formula from (1) is an exercise in binomial expansion,

assertion (2) is tricky and relies on a special numbering of the lattice points in zwickels in

order to make the matrix block-diagonal, and (3) follows rather quickly from (2).

I. Oblique polynomials. We now describe the initial form of the polynomialsg of the

(purely inseparable) equationsxp + yrg(y) = 0 defining wild singularities. In [Ha1], the

uniqueness assertion (4) of the Kangaroo Theorem was established for the (weighted) initial

form of the equation of an arbitrary wild hypersurface singularity, and oblique polynomials

were characterized in various specific situations. In [Hi1], a general description of oblique

polynomials is given, and Schicho found independently a similar formula. Below we combine

all viewpoints to a unified presentation.

Fix variablesy = (ym, . . . , y1). Set ` = m − 1, and letp be the characteristic of the

ground fieldK. A non-zero polynomialP = yrg(y) with r ∈ Nm andg homogeneous of

degreek is calledoblique with parameters p, r andk if P has no non-trivialp-th power

polynomial factor and if there is a vectort = (0, t`, . . . , t1) ∈ (K∗)m so that the polynomial

P+(y) = (y + tym)rg(y + tym) has, after deleting allp-th power monomials from it, order

k + 1 with respect to the variablesy`, . . . , y1. Without loss of generality, the vectort can and

will be taken equal to(0, 1, . . . , 1). We shall writeordp
zP

+ to denote the order ofP+ with

respect toz = (y`, . . . , y1) modulop-th powers.

Example 4. Takem = 2, p = 2 andP (y) = y2y1(y2
2 + y2

1) with k = 2. ThenP+(y) =
P (y2, y1 + y2) = y2y

2
1(y1 + y2) has modulo squares order3 with respect toy1.

It is checked by computation that the conditionordp
zP

+ ≥ k+1 onP+ is a prerequisite for the

occurence of a kangaroo point as in the theorem. The result of Moh impliesordp
zP

+ ≤ k+1,

so that equality must hold. Condition (4) of the theorem tells us that there is, up to addition

of p-th powers,at most one oblique polynomial for each choice of the parametersp, r and
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k. In order thatP is indeed oblique it is then also necessary that the degree ofP is a multiple

of p and thatr satisfiesrp
m + . . . + rp

1 ≤ (φp(r)− 1) · p (again by the theorem).

We dehomogenizeP with respect toym. This clearly preservesp-th powers. Moreover,

when applied to monomials of total degree divisible byp (as is the case for the monomials

of the expansion ofP ), the dehomogenization creates no newp-th powers. It is thus an

“authentic” transformation in our context, i.e., the characterization of oblique polynomials can

be transcribed entirely to the dehomogenized situation. Settingym = 1 andz = (y`, . . . , y1)
we getQ(z) = P (1, z) = zs · h(z) with s = (r`, . . . , r1) ∈ N` and h(z) = g(1, z) a

polynomial of degree≤ k. The translated polynomial isQ+(z) = Q(z + I) = (z +
I)s · h(z + I), whereI = (1, . . . , 1) ∈ N`. The conditionordp

zP
+ ≥ k + 1 now reads

ordp
zQ

+ ≥ k + 1 or, equivalently,Q+ ∈ 〈z`, . . . , z1〉k+1 + K[zp]. Let us write this as

(z + I)s · h(z + I)− v(z)p ∈ 〈z`, . . . , z1〉k+1

for some polynomialv ∈ K[z]. As h has degree≤ k, the polynomialv cannot be zero.

In addition, we see that the conditionordp
zQ

+ ≥ k + 1 is stable under multiplication with

homogeneousp-th power polynomialsw(z), in the sense thatordp
z (wp ·Q+) ≥ k + 1 + p ·

deg w. Using that(z + I)s is invertible in the completionK[[z]] we get

h(z + I) = b(z + I)−s · v(z)pck,

wherebu(z)ck denotes thek-jet (= expansion up to degreek) of a formal power series

u(z). From Moh’s inequality we know that(z + I)s · h(z + I) − v(z)p cannot belong to

〈z`, . . . , z1〉k+2. Therefore, in case thatv(z) is a constant, the homogeneous form of degree

k +1 in (z + I)−s must be non-zero. This form equals
∑

α∈N`,|α|=k+1

(−s
α

)
zα. We conclude

that if all
(−s

α

)
with |α| = k + 1 are zero inK, thenv was not a constant.16 Inverting the

translationτ(z) = z + I we get the following formula for the dehomogenized initial form at

antelope points preceding kangaroo points,

zs · h(z) = zs · τ−1{b(z + I)−s · v(z)pck}.

The homogenization of this polynomial with respect toym followed by the multiplication

with yrm
m then yields the actual oblique polynomialP (y) = yrg(y).

Example 5. In the exampleP (y) = y3
2y3

1(y2
2 +y2

1) from the beginning we have characteristic

p = 2, exponentsr2 = r1 = 3 and degreek = 2. Thereforè = 1 ands = 3, which yields a

binomial coefficient
(−3

α

)
=

(−3
3

)
= −10 equal to0 in K. Indeed,P has as non-monomial

factorg(y) the square(y2 + y1)2. In the exampleP (y) = y2y1(y2
2 + y2

1) from above with

r2 = r1 = s = 1, the polynomialg is again a square, even though
(−s

α

)
=

(−1
3

)
= −1 is

non-zero inK.

J. Resolution of surfaces.In the surface case, there are several ways to overcome (or avoid)

the obstruction produced by the appearance of kangaroo points. The first proof of surface

resolution in positive characteristic is due to Abhyankar, using commutative algebra and field

theory [Ab1]. Resolution invariants for surfaces then appear, at least implicitly, in his later

work on resolution of three-folds. In [Hi4], Hironaka proposes an explicit invariant for the

embedded resolution of surfaces in three-space (see [Ha3] for its concise definition). It is not

clear how to extend this invariant to higher dimensions.

16 The converse need not hold, see the example.
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In [Ha1], it is shown for surfaces that during the blowups prior to the jump at a kangaroo point

the shade must have decreased at least by2 (with one minor exception) and thus makes up for

the later increase at the kangaroo point. To be more precise, given a sequence of point blowups

in a three-dimensional ambient space for which the subsequent centers are equiconstant points

for somef , call antelope point the pointa immediately prior to a kangaroo pointa′, and

oasis point the last pointa◦ belowa where none of the exceptional components througha

has appeared yet. The following is then a nice exercise:

Fact. The shade of f drops between the oasis point a◦ and the antelope point a of a
kangaroo point a′ at least to the integer part of its half,

shadeaf ≤ b 1
2 · shadea◦f

◦c.

In the purely inseparable case of an equation of order equal to the characteristic, this decrease

thus dominates the later increase of the shade by1 except for the caseshadea◦f
◦ = 2 which

is easy to handle separately and will be left to the reader. It seems challenging to establish a

similar statement for singular three-folds in four-space.

In [HW], we proceed somewhat differently by considering also blowups after the occurence

of a kangaroo point. A detailed analysis shows that when taking three blowups together (the

one between the antelope and the kangaroo point, and two more afterwards), the shade always

either decreases in total, or, if it remains constant, an auxiliary secondary shade drops. This

shade can again be interpreted as the order of a suitable coefficient ideal (now in just one

variable), made coordinate independent by maximizing it over all choices of hypersurfaces

inside the chosen hypersurface of weak maximal contact.

The cute thing is that one can subtract, following an idea of Dominik Zeillinger [Ze] which was

made precise and worked out by Wagner, a correction term from the shade which eliminates

the increases without creating new increases at other blowups. This correction term, called the

bonus, is defined in a subtle way according to the internal structure of the defining equation.

It is mostly zero, and takes in certain well defined situations a value between0 and1 + δ.

This bonus allows to define an invariant – a triple consisting of the order, the modified shade

and the secondary shade – which now drops lexicographically aftereach blowup. The bonus

is defined with respect to alocal flag as defined in [Ha4]. Flags break symmetries and are

stable under blowup (in a precise sense) and thus allow to define the bonus at any stage of

the resolution process. We refer to [HW] for the details, as well as for the definition of an

alternative invariant, theheight, which is even simpler to use for the required induction. It

profits much more from the flag than the shade and allows a simpler definition of the bonus.

The invariant built from the height yields a quite systematic induction argument which may

serve as a testing ground for the embedded resolution of singular three-folds.

K. Example. This is the simplest example for the occurrence of a wild singularity and

a kangaroo point in a resolution process. Consider the following sequence of three point

blowups in characteristic2,

f0 = x2 + 1 · (y7 + yz4) (oasis pointa0), (x, y, z) → (xy, y, zy),

f1 = x2 + y3 · (y2 + z4), (x, y, z) → (xz, yz, z),

f2 = x2 + y3z3 · (y2 + z2) (antelope pointa2), (x, y, z) → (xz, yz + z, z),

f3 = x2 + z6 · (y + 1)3((y + 1)2 + 1),
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= x2 + z6 · (y5 + y4 + y3 + y2) (kangaroo pointa3).

The oblique polynomial appears at the antelope pointa2 in the formy3z3 · (y2 + z2). The

kangaroo point is a uniquely specified pointa3 of the exceptional divisor of the third blowup.

It is the unique equiconstant point of the exceptional divisor where the shade off increases.

It lies off the transforms of the exceptional components produced by the first two blowups

(see Figure 1). The coordinate changex → x + yz3 ata3 eliminatesy2z6, realizes the shade

and produces

f3 = x2 + z6 · (y5 + y4 + y3).

The order off has remained constant equal to2 throughout. But the shade off has increased

betweena2 anda3. Namely, iny3z3 · (y2 + z2) the monomialy3z3 is exceptional and the

remaining factory2 +z2 has order2, whereas inz6 ·(y5 +y4 +y3) the exceptional factor isz6

and the remaining factory5 + y4 + y3 has order3. Thusshadea3f3 = 3 > 2 = shadea2f2.

Observe that the shade drops between the oasis and antelope point by3.

L. Bibliographic comments. We briefly relate the contents of this note to the existing

literature on resolution in positive characteristic. The arithmetic conditionrp
m + . . . + rp

1 ≤
(φp(r) − 1) · p on the exceptional multiplicities at an antelope point appears in a different

perspective also in the work of Abhyankar on good points [Ab2]. Cossart and Moh studied

in detail many phenomena related to the appearance of kangaroo points [Co, Mo].

We already mentioned the paper [CJS] on the embedded resolution of surfaces of arbitrary

codimension. As for dimension three, there are recent results and proofs of Cutkosky and

Cossart-Piltant for the non-embedded resolution of three-folds in positive characteristic [Cu,

CP1, CP2]. Cutkosky reduces Abhyankar’s proof (over 500 pages) of resolution in character-

istic > 5 to some forty pages, Cossart and Piltant establish the result with considerably more

effort for arbitary fields. Both proofs use substantially the embedded resolution of surfaces

(built on the invariant from [Hi4]), but they do not provideembedded resolution of three-folds.

As for dimensionn, Hironaka develops in [Hi1, Hi2, Hi3] an elaborate machinery of differen-

tial operators in arbitrary characteristic in order to construct generalizations of hypersurfaces

of maximal contact by allowing primitive elements as defining equations. The main diffi-

culty is thus reduced to the purely inseparable case and metastatic points, which precisely

correspond to our kangaroo points. Hironaka then asserts that this type of singularities can

be resolved directly. There is no written proof of this available yet.

There is a novel approach to resolution by Villamayor and his collaborators Benito, Bravo

and Encinas [Vi2, Vi3, BV, EV3]. It is based on projections instead of restrictions for the

descent in dimension. A substitute for coefficient ideals is constructed via Rees algebras

and differential operators, called elimination algebras. It provides a new resolution invariant

for characteristicp (which coincides with the classical one in zero characteristic). All the

necessary properties are proven. This allows to reduce by blowups to a so calledmonomial
case (which, however, seems to be still unsolved, and could be much more intricate than the

classical monomial case).

In a somewhat different vein, Kawanoue and Matsuki have announced a program for resolution

in arbitrary characteristic and dimension [Ka, MK]. Again, they use differential operators to

define a suitable resolution invariant and then show its upper semicontinuity. The termination

of the resulting algorithm seems not to be ensured yet.
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Włodarczyk has informed the author that he has recently studied the structure of kangaroo

points and that he sees possibilities to define an invariant which does not increase. Again, one

has to wait until written material becomes available.

M. Retrospective. It is tempting to try the resolution invariant from characteristic zero also in

positive characteristic. After having observed that it may increase in special circumstances, it

is also natural to study the cases where this actually happens. This attempt has been presented

in this paper. The hope then is that the understanding of the obstruction may allow to overcome

the increase either by extra arguments or by modifying the invariant thus yielding finally a

complete resolution. This would be the conservative approach to arbitrary characteristic17.

But the genuine progress would consist in inventing a new invariant (which never increases).

This would be – in the simplest case – a new measure which describes the “distance” of a

polynomial to be a monomial (up to coordinate changes and multiplication by units in the

formal power series ring). The classical recipe“factor from the polynomial the exceptional
monomial and take the order of the remaining factor as invariant” seems to be just too

crude in arbitrary characteristic.

Many important results in mathematics had a hard time to become generally accepted and

understood. The original formulation may have been excessively complicated, with a proof

more like a struggle than a concise argument. For the problem of resolution, we have to admit

that we are still in the stage of struggling. The available proofs are certainly not the final

picture. In such cases it helps to precede virtually some fifty years (assuming that till then the

resolution of singularities has become a well understood fact) and to look back at our present

time. What do we see there?

Inductions! And again inductions!

The main feature of many of the present proofs is indeed a weaving of several intertwined

inductions. Induction on the dimension, the local embedding dimension of a singularity, the

local multiplicity, a local resolution invariant. So resolution is today a many steps procedure,

mostly completely ineffective. And, in fact, already for relatively modest surfaces the resolved

variety is covered by hundreds of affine charts (corresponding to dozens of blowups).

The main challenge for us is to better understand algebraic varieties at their singularities. The

singular locus is described by certain minors of the Jacobian matrix of the defining equations,

but this description is not really convenient here: Taking the singular locus with this ideal

structure, the induced blowup does in generally not yield a resolution. This approach is known

as the Nash-modification of the variety. Hironaka and Spivakovsky have shown that surfaces

17 The results of the author’s investigations on kangaroo points were written up around 2003 and assembled in

the manuscript [Ha1], mostly for personal reference. It was only circulated among the experts working in the

field, because the classification of kangaroo points did not apparently show the way towards resolution in positive

characteristic (even though a new proof for the surface case was found, as well as several other resolution strategies

could be designed). In short, the results were never published.

In fall 2008, Heisuke Hironaka gave several talks at Harvard, the Clay Mathematics Institute and the Research

Institute for Mathematical Sciences at Kyoto. There he presented a program for attacking the characteristicp case.

In the course of the argument, Hironaka relied on the author’s classification of kangaroo points. He then claimed that

this classificationdoes indeed pave the way towards resolution in positive characteristic; that it does provide

the missing link. At the moment, no complete written proof for the claim is available.
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can be resolved by combining them with normalizations [Hi6, Sp, GS]. There are attempts

to refine Nash-modifications by considering higher order jet schemes [Ya], without definite

breakthrough yet.

But notice: From Hironaka’s theorem it follows (at least in characteristic zero) that there

does exist another ideal structure on the singular locus of a varietety so that the induced

blowup with this center resolves the singularities in one single stroke. Formidable! The mere

existence of this ideal structure is opposed to the (hitherto) failure of describing its structure

in concrete examples. It is there but we don’t see it.

Probably we will still have to wait a while for deeply understanding the resolution of singu-

larities – even though a proof for positive characteristic may appear in the near future. We

shall keep in touch!
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Birkhäuser 2000, pp. 39-108.

[At] Artin, M.: Lipman’s proof of resolution of singularities. In: Arithmetic Geometry

(eds. G. Cornell, J. H. Silverman), Springer 1986.

[Be] Berthelot, P.: Alt́erations de variét́es alǵebriques (d’apr̀es A.J. de Jong). Śem.
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