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DESINGULARIZATION OF IDEALS AND VARIETIES

HERWIG HAUSER

University of Innsbruck, Austria

Singular mobiles were introduced by Encinas and Hauser in order to conceptu-
alize the information which is necessary to prove strong resolution of singulari-
ties in characteristic zero. It turns out that after Hironaka’s Annals paper from
1964 essentially all proofs rely – either implicitly or explicitly – on the data
collected in a mobile, often with only small technical variations. The present
text explains why mobiles are the appropriate resolution datum and how they
are used to build up the induction argument of the proof.
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CLASS 1: Examples etc.

The Cylinder X1 : x2 + y2 = 1 in A3 contracts under (x, y, z) → (xz, yz, z)
to the Cone X2 : x2 + y2 = z2. The linear change (x, y, z) → (x, 2y, z + y)
transforms this equation into X2 : x2 + (y − z)z = 0. This Cone contracts
under (x, y, z) → (xy, y, yz) to the Calypso X3 : x2 +y2z = z2. From there,
we get via (x, y, z) → (xz, y, z) the Calyx of equation X4 : x2 + y2z3 = z4.
In this way, the Calyx is represented as the image of a smooth scheme under
a rational map. We have parametrized a singular surface by a regular one
(see fig. 1-4).

Figures 1-4: Resolution of Calyx by three successive blowups.



September 27, 2006 11:59 WSPC - Proceedings Trim Size: 9in x 6in herwig-marseille˙fertig

2

Start now with Calyx. We propose in this course to describe methods which
allow to reconstruct from its equation the above or some other paramatriza-
tion.

Setting: X reduced singular scheme of finite type over a field K, mostly
affine, X = Spec A, with A a nilpotent-free finitely generated K-algebra.
Choose a presentation K[x1, . . . , xn] → A = K[x1, . . . , xn]/I for some ideal
I of K[x] = K[x1, . . . , xn]. This corresponds to an embedding X ⊂ An =
An

K with X = V (I). We may also choose generators I = (g1, . . . , gk). The
singular locus Sing X of X is a closed reduced subscheme of X.

Example: The Spitz of equation (z3−x2−y2)3 = x2y2z3 in A3 (fig. 7). The
singular locus consists of two cusps (one in xz-plane, one in yz-plane) with
the same tangent at 0. Isomorphic to the cartesian product of plain cusp
with itself.

Resolution of singularities: Surjective morphism X̃ → X with X̃ regular.
Also: Desingularization, parametrization, projection, shadow.

Embedded resolution: Given X in a regular W , a proper birational morphism
Π : W̃ → W and a regular X̃ ⊂ W̃ which maps under Π onto X and is
transversal to exceptional divisor E = π−1Z, where Z ⊂ W is the locus
above which π is not an isomorphism (usually: Z = Sing X).

Strong resolution of X ⊂ W : Embedded resolution π : X̃ → X induced by
Π : W̃ → W such that:

• π isomorphism outside SingX (economy);
• π independent of embedding X ⊂ W (excision);
• π commutes with smooth morphisms (equivariance), in particular

with open immersions, localization, completion,
with taking cartesian product with regular scheme, field extensions,
group actions on X lift to action on X̃;

• π is composition of blowups in regular centers (explicitness);
• centers of blowup are the top locus of a local upper semicontinuous

invariant (effectiveness).

Exercises: (1) Prove that the maps given at the very beginning yield indeed
a resolution of the Calyx. Show that all properties of an embedded resolu-
tion are fulfilled. Determine the centers of blowup as well as all exceptional
components.
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(2) Find for the Kolibri of equation x2 = y2z2 + z3 a resolution (fig. 5).
Determine first the geometry and the singular locus. Try as first centers
both the origin and the singular locus.

(3) Show that the map A2 → A3 given by (s, t) → (st, s, t2) parametrizes
the Whitney-umbrella X : x2 = y2z (fig. 6). Is it a resolution? Check if all
required properties hold.

(4) Show that the blowup of the Whitney-umbrella with center the origin
yields a surface which has one cone-like isolated singularity and at another
point the singularity of the Whitney-umbrella (fig. 6’). Conclude from this
that the singularities need not improve if the centers are too small.

(5) Determine all finite symmetries of the Spitz (fig. 7). Then show that it
is isomorphic to the cartesian product of the cusp x2 = y3 in the plane A2

with itself. Find other embeddings of this product into A3.

Figures 5, 6, 6’ and 7.
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CLASS 2: Blowups

For convenience, we restrict to blowups of affine space An whose centers
are regular closed subschemes Z of An. All constructions extend naturally
to arbitrary regular ambient schemes and centers therein.
The center Z is defined in An by an ideal IZ of K[x1, . . . , xn], for which we
may choose generators g1, . . . , gk ∈ K[x]. Consider then the map

γ : An \ Z → Pk−1 : a → (g1(a) : . . . : gk(a))

where (u1 : . . . : uk) denote projective coordinates in Pk−1. The graph Γ of
γ lives in (An \ Z) × Pk−1. We define Ãn, the blowup of An in Z, as the
Zariski closure of this graph

Ãn = Γ ⊂ An × Pk−1.

It comes with a natural projection Π : Ãn → An, the blowup map, induced
from the projection An × Pk−1 → An on the first n components (cf. fig.
8) . Different choices of the generators of IZ yield isomorphic blowups.
The preimage Y ′ = Π−1(Z) is a hypersurface in W̃ called the exceptional
divisor. Letting (u1 : . . . : uk) denote projective coordinates in Pk−1, the
equations of Ãn in An × Pk−1 are

uigj(g)− ujgi(x) = 0 for all i and j.

We may cover projective space Pk−1 by k affine charts isomorphic to Ak−1

and given by uj 6= 0 for j = 1, . . . , k. This, in turn, yields a covering of
Ãn by k affine charts isomorphic to An, so that the chart expressions of Π
can be read off as polynomial maps from An to An. It will always be this
description we use to carry out computations and proofs.
If Z is a coordinate subspace, defined by, say, xj , j ∈ J , for some subset J of
{1, . . . , n} (this can always be achieved locally after passing to completions),
the chart expression in the j-th chart is

Πj : An → An : xi → xi for i 6∈ J \ j,

xi → xixj for i ∈ J \ j.

There are several other ways to define blowups, e.g. by a universal property
or as the Proj of the Rees algebra associated to the ideal of Z. See the
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Figure 8: The blowup of A2 in the origin.

lectures [65] or the book of Eisenbud and Harris [54] for more details.

Properties of blowups:

• They are proper birational maps.
• They induce an isomorphism over the complement of the center.
• Blowups commute with localization, completion, restriction to

(open or closed) subschemes containing the center (make precise
what is meant here – you will have to take the strict transform of
the subscheme).

• If W1 = W × L with L regular, the blowup of W1 in Z1 = Z × L

is the cartesian product of the blowup of W in Z with the identity
on L.

• Compositions of blowups are again blowups. There is a procedure
by G. Bodnár to determine an appropriate center whose blowup
yields the composition; it is defined by a non-reduced ideal.

• Local blowups (W̃ , a′) → (W,a) (specify what shall mean “local”)



September 27, 2006 11:59 WSPC - Proceedings Trim Size: 9in x 6in herwig-marseille˙fertig

6

admit coordinates in W at a which make the map monomial. (What
happens if a′ moves along Y ′, how must the coordinates change?)

• If Z is regular and transversal to X ⊂ W regular or normal cross-
ings (in the sense of the exercises below) then the total transform
X∗ is a scheme with at most normal crossings. If X is regular, the
strict transform Xs is again regular (and transversal to Y ′).

• The ideal I∗ of the total transform X∗ = Π−1(X) of X in W̃

factors into I∗ = Io
Y ′ · Ig for a certain ideal Ig in W̃ (the weak

transform of I) where o denotes the order of X along Z in W (see
the next section). Here, o is the maximal power with which IY ′ can
be factored from I∗.

Remarks. Blowups with regular centers provide a simple algebraic modifi-
cation of regular schemes W and their singular subschemes X, being just a
monomial substitution of the variables. Heuristically speaking, the blowup
reveals the shape of X along Z up to the first available order of the Taylor
expansion. By this we mean the following:
Example. Consider the line L : y = 0 in A2 and the tangent k-th order
parabola P : y = xk. Both meet at the origin with multiplicity k (i.e.,
the intersection is a k-fold zero). Blowing up the origin, the y-chart with
map (x, y) → (xy, x) is the relevant one (explain why). There, the strict
transforms of L and P have equations y = 0 and y = xk−1, so the order of
tangency has decreased by 1.
This shows that blowups in regular centers are a very rough device to resolve
singularities. They take into account only a small portion of the geometry
of X. There exist other modifications, for instance the Nash modification
or normalization, which are somewhat more sophisticated procedures. How-
ever, they lack some of the basic algebraic features blowups have and which
make them so useful.

Exercises: (1) Show that if Z is a regular hypersurface, the blowup map Π
is an isomorphism.

(2) Show that for regular centers Z in An, the blowup Ãn is again regular
and of dimension n.

(3) Determine explicitly the covering of Ãn by affine charts and the corre-
sponding chart expressions of the blowup map. Then express it in terms of
the respective coordinate rings as a certain ring extension.
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(4) Show that if W is a cartesian product W1 × Z and a a point in Z, the
blowup W̃ → W of W in Z is the cartesian product of the blowup W̃1 → W1

of W1 in Z1 = {a} with the identity on Z. Then make the explicit local
computations of the blowup of a circle in A3.

(5) Two (or several) schemes are called transversal at a point a if the
product of their ideals is a monomial ideal (locally at a, with respect to
suitable formal coordinates). Take three regular surfaces in A3 so that each
two meet transversally. Show that all three need not meet transversally.
What happens if you require in addition that all possible intersections of
two of the schemes meet transversally?

(6) Consider the blowups W̃ and Ũ of W = U = A3 in the two centers Z and
Z1 of ideals (xy, z), respectively (xy, z)(x, z)(y, z). What do you observe?
Then apply a second blowup (with center a point of your choice) to W̃ and
show that the composition equals the blowup Ũ → U (provided that you
have chosen the correct point on W̃ ).

(7) Define and compute the strict transform of a plane vector field under
the blowup of A2 in a point. Do you always get a vector field on Ã2?

(8) Blow up the Fanfare x2 + y2 = z3 in A3 once with center the origin
and once with center the z-axis. Compute the orders of the respective strict
transforms.

(9) Show that the blowup of A2 with center the non-reduced origin of ideal
(x, yk)(x, yk−1) · · · (x, y) gives a regular scheme Ã2 and separates the two
components of x(x − yk) = 0. Interpret this blowup as a composition of
blowups in regular (reduced) centers.

(10) What are the total and strict transforms of a regular hypersurface X

in W if the center equals X?
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CLASS 3: Transforms

Throughout, π : W ′ → W denotes the blowup of a scheme W in a regular
center Z with exceptional divisor Y ′ = π−1(Z) ⊂ W ′. We shall describe
various ways how to lift schemes and ideals in W to schemes and ideals
in W ′. Again, we shall stick to an affine scheme W = An with coordinate
ring K[x] = K[x1, . . . , xn] and even work locally at a chosen point a of W

– taken to be the origin of An, so that we may argue in the formal power
series ring K[[x]] = K[[x1, . . . , xn]]. By a′ we shall always denote a point
in Y ′ mapping under π to a. Choosing the local coordinates x1, . . . , xn

suitably at a we may assume that a′ is the origin of one of the affine charts
on W ′ = Ãn and the respective chart expression of the blowup map is given
by an algebra-homomorphism ϕ : K[x] → K[x] sending xi to either xi or
xixj as specified earlier (and certainly proven by you in the exercises).
Let X be closed in W and given by the ideal J of K[x] (X need not be
reduced, but we assume that X is rare in W , i.e., not equal to one or several
components of W ). The total transform X∗ of X is the pullback π−1(X) of
X in W ′ under π. Thus, locally at a′, its ideal equals J∗ = ϕ(J) = (f◦π, f ∈
J). If Z ⊂ X then X∗ contains Y ′ as a component (because X (W locally
at all points). As Y ′ is a hypersurface, we get a factorization J∗ = M ′ · I ′,
where M ′ is a suitable power of the principal ideal IY ′ defining Y ′ in W ′,
say M ′ = Io

Y ′ for some o > 0. The maximal power o of IY ′ which can be
factored from J∗ is given by the behavior of X along Z. More precisely:
The order ordZX of X along Z is defined as the maximal integer k so
that J ⊂ Ik

Z . In particular, if Z = {a} is a (reduced) point and X is a
hypersurface f = 0, say J = (f), then ordaX is just the order of vanishing
of f at a, i.e., the order of the Taylor expansion of f at a. If X is not a
hypersurface, the order equals the minimum of the orders at a of a generator
system of the defining ideal of X. Of course, it depends only on the stalk
of J at a, and the order remains the same when passing to completions.
Note that the order depends on the embedding of X in W at a. If X is
not minimally embedded locally at a, (i.e., the dimension of W at a is
not minimal among all local embeddings of X at a in a regular ambient
scheme) the order of X at a is 1. In this case, the order is not significant
for describing the complexity of the singularity of X at a.
For c ∈ N, we let top(X, c) be the locus of points where the order of X in
W is at least c. By the upper semicontinuity of the order, the top locus is a
closed (reduced) subscheme. We let top(X) be the locus of points where the
order of X in W is maximal. Of course, we can also define top(X) locally
at a point a, as the local subscheme where the order of X equals ordaX.



September 27, 2006 11:59 WSPC - Proceedings Trim Size: 9in x 6in herwig-marseille˙fertig

9

With these definitions we get the factorization of the total transform J∗ =
M ′ · I ′, where M ′ = Io

Y ′ for o = ordZX = ordZI. This order is the maximal
power with which IY ′ can be factored from J∗. We call Xg and Jg =
I−o
Y ′ · J∗ the weak transform of X and J under the blowup π : W ′ → W . If

X is a hypersurface, it coincides with the strict transform Xs of X.
One of the basic facts for allowing resolution in the spirit of Hironaka is
the following: If the center Z is contained in the top locus of X, the order
of the weak transform Xg at points of Y ′ is less or equal the order of X

along Z,

orda′X
g ≤ ordaX.

This holds also for the strict transform (as a consequence of the inequality),
and for the Hilbert-Samuel function of X at points a, requiring that it is
constant along Z and taking a natural ordering among all Hilbert-Samuel
functions (see Bennett’s paper [22] or [80], [71]).

Properties: As blowups did, passing to the weak transform commutes with
restriction to open subschemes, localization and completion. Also, if X and
Z are invariant under a group action, the group action lifts to Xg. There
are three algebraic properties of weak transforms which we will use repeat-
edly.
If P and Q are ideals in W , we have (P · Q)g = Pg · Qg. However,
(P + Q)g 6= Pg + Qg in general, it suffices to take two principal ideals
of different order along Z. If ordZP = ordZQ, the the weak transform is
distributive, say (P + Q)g = Pg + Qg. There is a nice trick to achieve
this equality also in case p = ordZP 6= ordZQ = q. Replace P + Q by the
weighted sum P q + Qp and get (P q + Qp)g = (P q)g + (Qp)g. As we have
ordaP q = q · ordaP , we do not lose information on the order when passing
to powers of ideals.
The third commutation property of weak transforms is with respect to co-
efficient ideals. These play a decisive role in the induction on the dimension
as they allow to pass to ideals in less variables. Their definition is some-
what cumbersome. Let W = An with local coordinates (xn, . . . , x1) at a.
For simplicity, we take a = 0. Let V be the hypersurface in W defined
by xn = 0. Let I be an ideal in W at a of order o = ordaI. The coeffi-
cient ideal of I at a in V is defined as the ideal in V generated by certain
powers of the coefficients of the elements of I when expanding these with
respect to xn. More precisely, write f =

∑
i≥0 ai,f (x′)xi

n for f ∈ I and



September 27, 2006 11:59 WSPC - Proceedings Trim Size: 9in x 6in herwig-marseille˙fertig

10

with x′ = (xn−1, . . . , x1). Then

coeffV (I) = ((ai,f , f ∈ I)
o

o−i , i < o).

For example, if f(x) = xo
n + g(x′) has no mixed terms, we get coeffV (f) =

(g). You will object that, in general, the exponents o
o−i are rational num-

bers. This can be remedied by taking instead as exponents o!
o−i , producing

for f(x) = xo
n + g(x′) the ideal (g(o−1)!). Taking factorials loadens the

notation without improving the understanding, so we will allow rational
exponents and leave it to the reader to define the correct equivalence rela-
tion on rational powers of ideals in order to circumvent any traps. As the
order of ideals is just multiplied with a constant when passing to powers of
ideal, there is no harm in having rational exponents (once you got used to
it).
Let Z ⊂ top(I) be the center of the blowup π : W ′ → W , with weak trans-
form Ig. Let a ∈ Z be a point, V ⊂ W a local hypersurface of W at a (i.e.,
defined in a neighborhood of a), let a′ ∈ Y ′ be a point in Y ′ so that a′ lies
above a and in the strict (= weak) transform V ′ of V . We already know
that orda′I

g ≤ ordaI. If orda′I
g < ordaI we are happy because something

has improved. If equality holds (we then say that a′ is an equiconstant point
for I), we have at least the following commutativity relation

The coefficient ideal of Ig at a′ in V ′ is the transform of the coefficient
ideal of I at a in V ,

coeffV ′I
g = (coeffV I)!.

This equality does not hold if the order has dropped, and it neither holds if
we take on the right hand side the weak transform (coeffV I)g of coeffV I.
Instead, we have to take a new transform, the so called controlled transform.
Let c = ordZI and define (coeffV I)! = I−c

Y ′∩V ′ · (coeffV I)∗ (the number c is
called the control). This is not hard to prove after passing to local coordi-
nates, using that we always have ordacoeffV I ≥ ordaI. The magic formula
with the controlled transform of the coefficient ideal allows to compare ide-
als in smaller dimension precisely in the case where the order of the original
ideal I could not tell us that the singularities improved under blowup. This
output recompenses by far the lack of elegance we had to accept in the
definition of coefficient ideals.
Be careful: The coefficient ideal nor its order are intrinsic objects. We will
have to make an effort to extract coordinate independent information from
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them.

Exercises: (1) Show that ordZX = mina∈ZordaX and that ordaX defines an
upper semicontinuous function on W . Look up in Hironaka’s or Bennett’s
Annals papers [77], [22] why it does not increase under localization. (This
holds also for the Hilbert-Samuel function of X at a.)

(2) Compute for several schemes X in W the order of X along a subscheme
Z of W . Then determine for each X the stratification of X by the strata
of constant order (with respect to points).

(3) If X is not locally minimally embedded in W at a point a ∈ X, the
order of X at a equals 1.

(4) Try to find (natural) equations for the top locus top(X, c), first in char-
acteristic 0 (easy), then in arbitrary characteristic. In the first case, show
that top(X) lies locally in a regular hypersurface of W .

(5) In J∗ = M ′ · I ′ the order o = ordZX = ordZI is the maximal power
with which IY ′ can be factored from J∗.

(6) Let X be a subscheme of W of codimension at least 2, with strict and
weak transforms Xs and Xg under the blowup π : W ′ → W . Figure out in
three examples which components of Xg do not show up in Xs.

(7) (Mandatory) Show that the order of an ideal I in W does not increase
when passing to its weak transform, provided the center is included in
top(I). Hint: You may work locally in the completion, rectifying thus the
center to a coordinate subspace, and then choose coordinates for which the
local blowup (W ′, a′) → (W,a) is monomial. (In exceptional cases you are
allowed to consult [70] to convince you that it would have been easy.)

(8) Determine in three examples the equiconstant points of an ideal I under
blowup, i.e., the points a′ ∈ Y ′ where the order of Ig has remained constant.

(9) Compute the coefficient ideals of f = x3 + yz2 and f = x(y7 − z8) at 0
with respect to the three coordinate hypersurfaces. Compare the respective
orders of the resulting ideals.

(10) Compute the coefficient ideals of the polynomials of (9) after blow-
ing up the origin and compare them with the controlled transforms of the
coefficient ideals below. Then prove the commutativity of the passage to
coefficient ideals with blowups at equiconstant points.
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CLASS 4: Construction of Mobiles

In this section we wish to guide you towards the correct definition of mo-
biles. They shall be intrinsic, globally defined objects at a certain stage of
the resolution process containing all information we need in order to define
the local resolution invariant and to choose the center of the next blowup.
In the last section we shall give the precise definition of mobiles and show
how they transform under the blowup with the chosen center. This, in turn,
will be used to compute the local invariant after blowup and to show that
it decreases at each point of the new exceptional component.
So let us start with an ideal sheaf J on our regular ambient scheme W .
We choose a point a ∈ W and let J denote the stalk of J at a. Taking an
affine neighborhood of a in W we may simply assume that J is an ideal of
polynomials in n variables with coefficients in the ground field K.
Mobiles control two features of the resolution process: The factorization of
ideals into a monomial and a singular part (the exceptional and the not
yet resolved portion of the ideal), and the transversality of the chosen cen-
ters with the respective exceptional locus. The first task is accomplished by
the combinatorial handicap D of the mobile, the second by the transversal
handicap E. It is appropriate to introduce them in separate sections.

The combinatorial handicap

We have already seen that after blowup powers of the exceptional compo-
nents will be factored from the total transform of the ideals, so in order
to keep things systematic (which is not very original but helpful) we write
J = M · I with M = 1 the trivial ideal (the whole local ring) and I = J .
Here is a nice idea: We proceed as we would know what the center of the
first blowup is (you remember: often uniqueness is proven before existence,
because then you already know how your object has to look like when you
try to construct it). So let Z be a closed regular subscheme of W with in-
duced blowup π : W ′ → W of W along Z and exceptional divisor Y ′ ⊂ W ′.
We denote by IY ′ = IW ′(Y ′) the ideal defining Y ′ in W ′. We let J ′ = J∗

be the total transform (inverse image) of J under π. Its order will have
increased, so that’s not a good number to look at. Much more interesting is
the weak transform, and, to keep things straight, we denote it by I ′ = Ig.
Thus J ′ = M ′ ·I ′ with M ′ = IordZI

Y ′ a normal crossings divisor (even regular
for we have blown up only once). Locally, M ′ is just a power of a variable
(the variable defining Y ′ in W ′).
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Set now o = ordZI, let a be a point in Z (outside of Z nothing will happen
since π is an isomorphism there), and let a′ be any point in Y ′ above a,
say π(a′) = a. Set o′ = orda′I

′. The next thing to do is to compare o′ with
o. Here we remember the key inequality from earlier sections: If the order
of I along Z is constant, in particular if Z ⊂ top(I), and hence o′ = ordaI

for all a ∈ Z, we have o′ ≤ o, because I ′ is the weak transform of I. In
view of this pleasant event (“the order does not increase”) we immediately
agree to allow only centers inside top(I). “Ah”, you respond, “maybe we
even have o′ < o for all a′ above a.” Then we would be done. – Sorry, this
is too optimistic, the equlity o′ = o may occur and the points where this
happens form a closed subscheme of Y ′ (but prove that o′ < o if n = 1 and
o > 0). These are the equiconstant points of I in Y ′.
Before confronting this situation, we do some book-keeping. We will call
Dn and D′

n the (non-reduced) divisors defined by M and M ′ in W and W ′

(of course, Dn = ∅). They are globally defined and tell us how to factorize
the ideals J and J ′. That is information we will need later on. As we shall
soon perform the descent in dimension, we write Jn = Mn ·In for J = M ·I
and similarly J ′n = J ′.
So what shall we do at an equiconstant point a′ above a where the order
of I ′n has remained constant? Now, generically along Y ′, the order drops.
Only a few points admit constant order. We suspect that at an equiconstant
point a′ the ideal I ′ must have a special shape. Possibly we can profit of it.
Let us therefore observe what happens in two variables, say plane curves. It
is immediately seen that xp + yq with q ≥ p has weak transform xp + yq−p

(in the relevant chart). If q < 2p, the order drops and we are done. If q ≥ 2p,
the order remains constant. However, the degree of the monomial yq has
dropped to q − p.
This strongly suggests to associate to In an ideal in one variable less and
to look at its order. This is done via coefficient ideals. Choose locally at a

a regular hypersurface V . You harshly protest because we agreed to choose
never an object ad hoc, everything has to be natural. I respond that we are
not interested in V , neither in the resulting coefficient ideal, but only in its
order. It suffices to make this order independent of the choice of V . There
are two options: either the minimum of all possible orders, over all choices
of V , or the maximum.
You will have to convince yourself that the minimum is not significant, it
just equals o. Therefore we take V so that the order of the coefficient ideal
is maximized. Such V ’s are called hypersurfaces of weak maximal contact
with In at a. They exist, and only in case that I is bold regular, i.e., a
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power of a variable, the resulting order is infinite. In this case we redefine
the coefficient ideal to be the trivial ideal 1.
We stop briefly for book-keeping, setting Wn−1 = V and Jn−1 =
coeffWn−1In. The letter J is taken instead of I because, as we saw in class
II, coefficient ideals do not pass to the weak transform under blowup (the
letter I is reserved for ideals which pass to weak transforms). For accurate-
ness, we factorize Jn−1 = Mn−1 · In−1 with Mn−1 = 1 and In−1 = Jn−1,
and set on−1 = ordaIn−1.
Let’s go to W ′ at a′ and J ′n = M ′

n · I ′n. Denote by J ′n−1 the coefficient ideal
of I ′n with respect to a local hypersurface W ′

n−1 which maximizes its order.
The curve case suggests that J ′n−1 has something to do with Jn−1. We are
now curious to explore this connection between the coefficient ideals of In

and I ′n (we have seen portion of it in class II). Remember that J ′n−1 equals
the controlled transform of Jn−1 if W ′

n−1 is the strict transform of Wn−1

(in particular, a′ must be included in W ′
n−1).

At this point, where things seem to become more and more involved, there
pop up a few very favorable coincidences. They will make everything work
marvellously – provided we are in characteristic 0. Such lucky strokes are
rare in mathematics, and I see no substantial reason why they occur pre-
cisely here and now. Once Abhyankar and Hironaka discovered them in
the fifties (stories tell that the latter was visiting the former and insisted
for four days until he had completely clarified the former’s vision of us-
ing Tschirnhaus’ transformation for resolution purposes), the rest was only
technique (as other stories tell).
In positive characteristic these coincidences do not occur – and nobody has
found a working substitute for them. At least for the arguments and con-
structions to follow, the characteristic p case is much less accessible, if at
all.

Stroke 1: If Wn−1 maximizes the order of Jn−1 = coeffWn−1In at a (ev-
erything is local), it contains locally the top locus top(In) of In. False in
characteristic p > 0, see [104], [103] or [67].

Stroke 2: There is a simple procedure to construct such hypersurfaces
of weak maximal contact (not all), via osculating hypersurfaces, see [55]
or [70]. Look up the definition there or see the exercises. This construction
appears in various forms in most of the resolution papers. Hypersurfaces
of weak maximal contact can also be constructed (by different means) in
positive characteristic, but do not enjoy the same nice properties.
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Stroke 3: If Wn−1 maximizes the order of Jn−1 = coeffWn−1In at a, its
strict transform W ′

n−1 contains all equiconstant points of In in Y ′. First
observed by Zariski. Proof: Computation in local coordinates. Also ok in
positive characteristic.

Stroke 4: If Wn−1 is osculating for In, in particular, maximizes the order of
Jn−1 = coeffWn−1In at a, and if the order has remained constant, o′n = on

at a′, its strict transform W ′
n−1 is osculating for I ′n, in particular, maxi-

mizes the order of J ′n−1 = coeffW ′
n−1

I ′n at a′. Proof: Computation in local
coordinates. False in positive characteristic, see [66].

With this gambling things become easy. Fix a ∈ Z and a′ ∈ Y ′ above a.
Choose Wn−1 osculating at a for In, let Jn−1 be the corresponding coef-
ficient ideal of In in Wn−1. Then, at each equiconstant point a′ above a,
W ′

n−1 = W s
n−1 is osculating for the weak transform I ′n = Ig

n . This ideal has
as coefficient ideal J ′n−1 the controlled transform (Jn−1)! = I−ordaIn

Y ′n−1
·J∗n−1 of

Jn−1 in W ′
n−1, where IY ′n−1

= IW ′
n−1

(Y ′ ∩W ′
n−1) denotes the ideal defining

in W ′
n−1 the exceptional divisor Y ′ ∩W ′

n−1 of the blowup W ′
n−1 → Wn−1.

Recall here that, locally at a, Z is contained in Wn−1, so that Y ′ ∩W ′
n−1

is regular.
In particular, we may factorize J ′n−1 = M ′

n−1 · I ′n−1 with I ′n−1 = Ig
n−1

the weak transform of In−1 and M ′
n−1 a normal crossings divisor in W ′

n−1

supported by the exceptional component Y ′ ∩ W ′
n−1. Hence the divisor

D′
n−1 = (ordaIn−1 − ordaIn) · Y ′ of W ′ has normal crossings at a′ and

defines the principal monomial ideal IW ′
n−1

(D′
n−1 ∩W ′

n−1) = M ′
n−1 locally

at a′.
This looks a little bit complicated. And indeed, it is complicated, espe-
cially, if you are not yet used to this type of constructions. But always keep
in mind the corresponding commutative diagram, with vertical arrows the
blowups in Wn and Wn−1, and horizontal arrows the descent in dimension.
If you draw it for yourself on a sheet of paper things will clarify immediately
(after having done one explicit computation for, say, a surface singularity).
And you will realize that, again, everything is absolutely systematic.
Let us collect our data at the point a and at the equiconstant point a′ above
a:

Jn = Mn · In in Wn,

J ′n = M ′
n · I ′n in W ′

n,
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Jn−1 = Mn−1 · In−1 in Wn−1,

J ′n−1 = M ′
n−1 · I ′n−1 in W ′

n−1, and

I ′n and I ′n−1 are the weak transforms of In and In−1.

Moreover,

D′
n = ordaIn · Y ′ and D′

n−1 = (ordaIn−1 − ordaIn) · Y ′.

By the way, what are these data at a point a′ where the order of I ′n has
dropped? Either we refuse to define them, since our induction on the or-
der already works, or, as we shall do, we choose any (new) osculating hy-
persurface W ′

n−1 for I ′n at a′, set J ′n−1 = coeffW ′
n−1

(I ′n) with trivial fac-
torization J ′n−1 = 1 · I ′n−1 (no other factorization need hold). Of course,
I ′n−1 is no longer the weak transform of In−1, so that its order may be
quite arbitrary, but we don’t care, since – lexicographically – the pair
(o′n, o′n−1) < (on, on−1) has dropped at a′. You may notice that D′

n−1,
though globally defined on W ′, is only a stratified divisor, since the mul-
tiplicity of Y ′ depends on the point a′. Specify what are the strata along
which D′

n−1 is coherent?
At this point, you may wish to see a concrete example. Here it is: Let J = J2

be the principal ideal in W = W2 = A2 generated by f = xp + yq with
0 < p ≤ q. We place ourselves at the origin a = 0 of A2, which is the only
singular point of the plane curve X defined by f . As no blowup has oc-
cured so far, J2 = M2 · I2 with M2 = 1 and I2 = J2. The order o2 = ordaI2

equals 2. In characteristic 0, the hypersurface W1 defined by x = 0 in W2

maximizes the order of the coefficient ideal J1 = coeffW1(I2) = (yq). (If
the characteristic equals p, this is not true if q is a multiple of p.) We get
J1 = M1 · I1 with M1 = 1 and I1 = J1. Clearly, o1 = ordaI1 = q ≥ p.
The invariant is the pair (o2, o1) = (ordaI2, ordaI1) and attains at a = 0
its maximal value (p, q). This will therefore be our first center of blowup,
Z = {0} in A2 with blowup π : W ′

2 → W2 and exceptional divisor Y ′ ⊂ W ′
2.

Let a′ be a point of Y ′. If a′ is the origin of the x-chart, the order of
I ′2 = Ig

2 = (1 + xqpq) has dropped to 0, so that there J ′2 = Ip
Y ′ · 1 and

W ′
1 can be chosen arbitrarily, with J ′1 = 1 (by definition of the coeffi-

cient ideal of the trivial ideal). Hence M ′
1 = I ′1 = 1 and the orders are

(o′2, o
′
1) = (0, 0) < (o2, o1) = (p, q). The same phenomenon occurs at all

point a′ of Y ′ outside the origin of the y-chart.
So let us look at this origin. It is the most interesting point. There, the
order o′2 of I ′2 = is q − p if q < 2p and p if q ≥ 2p. In the first case, the
order has dropped, I ′2 = (yq−p + xp) and our local hypersurface W ′

1 will
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now be chosen as y = 0 with coefficient ideal J ′1 = (xp). The factorization
is J ′1 = M ′

1 · I ′1 with M ′
1 = 1 and I ′1 = J ′1. You see that I ′1 is not the weak

transform of I ′1, which does not matter because o′2 has dropped so that the
pair of orders (o′2, o

′
1) = (q − p, p) has dropped lexicographically.

We are left with the case q ≥ 2p. The order of I ′2 = (xp + yq−p) at a′ (the
origin of the y-chart) has remained constant equal to p. Therefore we will
really need the descent in dimension here. The local hypersurface W ′

1 can
be chosen equal to the strict transform W s

1 of W1. It has equation x = 0 in
this chart. The coefficient ideal J ′1 is generated by yq−p and factorizes into
J ′1 = M ′

1 · I ′1 with I ′1 = 1 the weak transform of I1 = (yq) under the blowup
of W1 in Z = {0}. Hence M ′

1 = J ′1 = (yq−p). As for the orders at a′, we
get (o′2, o

′
1) = (p, 0) which is lexicogaphically smaller than (o2, o1) = (p, q).

Our induction is thus completed at all points a′ of Y ′.
To make things more explicit, we write down the two combinatorial hand-
icaps before and after blowup. In W = W2 we have D = (D2, D1) = (∅, ∅)
everywhere. If q < 2p, the combinatorial handicap D′ in W ′ = W ′

2

equals everywhere (D′
2, D

′
1) = (p · Y ′, ∅). If q ≥ 2p, we stratify W ′

2 into
S = W ′

2 \ {0y−chart} and T = {0y−chart}. At all points of S we have
D′

2 = p · Y ′ and D′
1 = ∅. In contrast, at the origin of the y-chart we

have D′
2 = p ·Y ′ and D′

1 = (q−p) ·Y ′, so that indeed M ′
2 = (yp) in W ′

2 and
M ′

1 = (yq−p) in W ′
1. Notice here that W ′

1 defined by x = 0 is transversal to
Y ′.

Exercises: (1) Prove that o′ < o if n = 1 and o > 0, for o = ordaI and
o′ = orda′I

′, taking I ′ = Ig the weak transform. Hint: Determine first the
center Z.

(2) Figure out why the four lucky strokes hold in characteristic 0? Look up
the counterexamples in positive characteristic.

(3) Show that in characteristic 0, the local top locus of an ideal is contained
in a regular hypersurface whose weak transform contains all equiconstant
points (this hypersurface will be defined by a suitable derivative of the gen-
erators of the ideal). Then look up the example of Narasimhan in positive
characteristic (see [70]).

(4) Assume that q ≥ 3p and compute the combinatorial handicap for the
plane curve xp + yq = 0 after the second blowup. What would happen in
characteristic p for q = 3p?

(5) Resolve the Whitney-umbrella x2 + yz2 = 0 by taking as center the top
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locus of the triple of orders (o3, o2, o1). If you got tired of the computations,
write a program which computes all data.

(6) Do the same for the surface x2 + y3 + z4 = 0. Then find out why we
really need the combinatorial handicap D at all stages of the resolution
process and what its transformation rule is.

The transversal handicap

Assume that we are at a certain stage of our resolution process and wish
to make the next blowup. In this section we address the question how to
ensure that our chosen center is transversal to the already existing excep-
tional components which were produced by the preceding blowups. Recall
that this transversality is necessary to get after the blowup a new excep-
tional locus having again normal crossings.
Let us denote W our present ambient scheme, J the ideal sheaf we wish to
resolve, a a point of W and J the stalk of J at a. Let F be the exceptional
locus in W produced by the prior blowups. By induction on the number of
blowups we may assume that F has normal crossings. As transversality of
two schemes is a local property compatible with completion, we may stick
to a neighborhood of a in W and pass, if necessary, to the completion of the
local rings. Thus we may suppose that W = An and that J is a polynomial
ideal.
In order to know how to factorize J and the subsequent local coefficient ide-
als at a into a product of a principal monomial ideal and a remaining factor,
we have introduced and constructed in the last section the combinatorial
handicap D in W . It consists of normal crossings divisors Dn, . . . , D1 in W

so that Ji = Mi ·Ii for all n ≥ i ≥ 1, where Mi = IWi(Di∩Wi) are the ideals
associated to a local flag of regular schemes W = Wn ⊃ Wn−1 ⊃ . . . ⊃ W1

at a.
Neglecting transversality problems, the center of blowup would be, locally
at a, the scheme Wd−1 with d minimal so that Id 6= 1 (then Wd−1 = top(Id)
is just the support of Id). Despite the fact that the flag Wn ⊃ . . . ⊃ W1

is not intrinsic (there are many possible choices), we saw that the so de-
fined center does not depend on these choices and gives a global closed and
regular subscheme of W . Let us call it the virtual center Zvirt. Virtual,
because, in practice, the actual center Z = Zactu of the next blowup will
mostly be different from Zvirt (it will be contained in Zvirt), precisely for
transversality reasons with the exceptional locus F .
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So let us investigate the precise constellation of Zvirt and F . Again, the
question is local. We may assume that the point a lies in the intersection of
both, otherwise Zvirt and F are trivially transversal at a. At an intersec-
tion point a, several things may happen. Recall here that we consider two
schemes to be transversal at a if the product of their ideals in W defines a
normal crossings scheme (i.e., if the ideal generated by the product in the
completion of the local ring of W at a can be generated by monomials).
If Zvirt is contained in all components of F passing through a (the intersec-
tion of these components is just the local top locus of F at a), it is certainly
transversal to F . If it is not contained, it may be transversal to some com-
ponents of F and not transversal to others. In this case, we will have to
choose a smaller center Z inside Zvirt. But which one? Taking simply for
Z the intersection of Zvirt with all components of F to which it fails to
be transversal does not work because this intersection will in general be
singular scheme-theoretically.
Sticking to our philosophy from earlier sections, we proceed again upside
down and assume that we already know how to choose the actual center
Zactu transversal to F . This is not a bad idea, but once in a while we will
have to stop waving hands and to start making Nägel mit Köpfen. In any
case, let’s see what happens.
If Zactu = Zvirt, everything is fine, our invariant introduced (vaguely) in the
section on the combinatorial handicap will drop (this will be explicited more
carefully in the last section) and (vertical) induction applies. By transver-
sality of Z with F , the new exceptional divisor F ′ in W ′ will have again
normal crossings. Fine!
So let us look at the case Zactu ( Zvirt. Something surprising is happening
(in retrospection, it won’t be such a surprise): The resolution invariant re-
mains constant, the situation seems not to improve. Why is this the case?
The clue is the upper semicontinuity of the invariant: By construction, it
is constant along Zvirt and attains its maximal value there (Zvirt is the
top locus of the invariant). Along the open subscheme U = Zvirt \Zactu of
Zvirt the blowup is a local isomorphism, so at points of the strict transform
Us the invariant will remain constant. By upper semicontinuity, it has the
same value on the closure U in W ′. As this closure meets the new excep-
tional component Y ′ = π−1(Zactu), there will be points of Y ′ where the
invariant has not dropped. We are stuck.
We suggest that you digest briefly this last paragraph by taking for X in
A3 the cartesian product of the plane cusp z3 = y2 with the x-axis and for
F the the cartesian product of the parabola y = x2 with the z-axis. The
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virtual center Zvirt will be the x-axis (make sure that no other choice makes
sense), which is tangent to F and hence not allowed as center. Instead, we
have to take Zactu = {0} the origin, and the transform X ′ of X in W ′ = Ã3

looks quite the same.

Doing mathematics is – aside genuine Geistesblitze – a Wechselspiel of com-
puting examples; observing; pointing out obstructions; finding the reasons
for the obstructions; observing again; trying to isolate the obstruction so as
to see clearly its Ursprung; computing once more, etc. Looking carefully at
phenomena and complicated configurations is one of the most delicate jobs
for mathematicians. Often we just do not see what is there, and of what
we could profit of. And only afterwards the solution to the problem seems
so natural, so evident. If we had just seen it earlier.
In view of these “profound” philosophical and pedagogical contemplations,
we look once again at our situation.
By transversality, we are forced to choose a center smaller than the one
we would like to take and which would make the invariant drop. Being too
small, the invariant remains the same (at least at some points of the new
exceptional component) and our induction breaks down. The invariant is
not able to detect any improvement of the singularities.
At this point we will ask ourselves why we blow up at all if it does not help
to advance the induction. We could as well do nothing and resignate. This
question is precisely the correct one, so we repeat it: Why blowing up at
all if the virtual center is not transversal to the exceptional locus.
The question contains, at least in this case, also the answer. We blow up be-
cause we wish to improve our resolution problem, which consists in making
an ideal a monomial ideal. But our non-transversality problem we encounter
on the way is precisely of the same nature as our original problem: An ideal
(in this case the product of the ideal of Zvirt and of F ) is not a monomial
ideal.
After all this much-talking-and-little-saying it should have become clear
what to do: We interpret the non-transversality problem as a separate res-
olution problem and try to resolve it first in order to be able afterwards –
once it is solved – to choose indeed the virtual center as the actual center.
Therefore our present blowup with center Zactu ( Zvirt has the intention to
help to make Zvirt transversal to F . This is the true purpose of the blowup,
and obviously the invariant associated to the ideal J won’t recognize that.
Looking back at the example from before, we see that the blowup does
improve the transversality problem, after the blowup the virtual center is
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again the x-axis, but the transform F ′ of F is now transversal to the x-
axis.
This is encouraging and we immediately start to build up the data for
our secondary (= transversality) resolution problem. The approach indeed
works, though it burdens considerably the whole setting and constructions.
Just imagine that along the solution of the subproblem new exceptional
components will pop up, and while solving the transversality issue we may
confront another transversality problem, which we have to solve first before
we are allowed to attack the original one. And so on. This is technically
(very) frightening.
There is an elegant solution to this annoying superposition of subordinate
resolution problems suggested by Villamayor in [121]. In each step of the
descent in dimension via local flags Wn ⊃ . . . ⊃ W1 take care in advance
of the transversality problem by modifying the ideals Ii so that the re-
sulting center is already contained in all exceptional components to which
the virtual center may not be transversal. Just multiply Ii by the ideal Qi

of dangerous components, i.e., those to which the next local hypersurface
Wi−1 may not be transversal. Then the top locus of Ki = Ii ·Qi is contained
in Wi−1 locally at a.
The dangerous exceptional components are collected in the transversal
handicap E = (En, . . . , E1). Here, Ei is the normal crossings divisor formed
by those exceptional components to which Wi−1 may not be transversal.
Even though Wi−1 is not intrinsic, Ei will not depend on any choices and
will obey a precise law of transformation under blowup. We will specify this
law in the next section.
Meanwhile, let us see the impact of the construction. First, the compo-
nents oi = ordaIi of the invariant will be replaced by pairs (oi, qi) where
qi = ordaQi measures the advance of the transversality problem in di-
mension i − 1 (the shift by 1 has notational reasons). If the components
(on, qn, on−1, . . . , oi) have remained constant under blowup, the transfor-
mation law for E says that Qi passes to its weak transform Qg

i . As the
center will lie in top(Ki) = top(Ii) ∩ top(Qi) (here, the top loci have to be
considered locally at a), the order of Qi won’t increase. This immediately
implies the fabulous inequality

(o′n, q′n, o′n−1, . . . , o
′
i, q

′
i) ≤ (on, qn, on−1, . . . , oi, qi),

where the two vectors are compared lexicographically. And by exhaustion of
the dimensions, when looking at the whole new invariant (on, qn, . . . , o1, q1),
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it must have decreased.
There are some technical details which still have to be filled in. For instance,
the local hypersurface Wi−1 at a will be chosen to be osculating for Ii (and
not, as one may think, for Ki). Also, one has to take care for establishing
the necessary inclusions of the various top loci, for expliciting the trans-
formation laws for all the ideals Ji, Mi, Ii, Qi, Ki, and for ensuring that
the resulting center is indeed transversal to the current exceptional locus
F . All this can be done. Due to the systematic approach, it is even not
as breathtaking as one might expect. We will see portion of it in the next
section.
The determination of the dangerous exceptional components has a compu-
tational drawback. For each i, we have to take all possibly non-transversal
components of F with respect to Wi−1, and many of these could already
be transversal, but we just don’t see it, because our invariant is unable to
check it out. This inconvenience increases considerably the complexity of
the algorithm. However, concerning the theoretical part of the construction
of the resolution, it is quite useful because it follows in each dimension the
same pattern and uses only information prescribed by the local invariant.
Thus it is automatically intrinsic (i.e., independent of the local choices of
hypersurfaces, hence global), and allows a systematic treatment via induc-
tions on the dimensions.
If you look up the paper [55] you will realize that the hardest part is to
become familiar with all the constructions and definitions collected in the
section Concepts. The purpose of these lecture notes and [70] and [65] is
precisely to motivate these constructions and to give you some feeling for
them. But then, the actual proofs are rather short and almost routine. See
the sections Transversality or Top loci in [55].

Exercises. (1) Two regular subschemes U and V of W meet transversally
(in the sense defined above), if and only if their intersection U ∩ V is a
regular scheme. Does this hold also for three regular subschemes, taking all
pairwise intersections? (You may remember an earlier exercise.)

(2) Let F be a normal crossings scheme. Show that all possible intersections
of components of F meet transversally. Does the converse hold?

(3) If, locally at a point a in W , a regular scheme Z is contained in all
components of a normal crossings divisor F passing through a, then Z is
transversal to F at a.
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(4) Assume that a regular scheme Z meets all intersections of the compo-
nents of a normal crossings scheme F in W transversally. Determine the
cases when Z meets F transversally and when not.

(5) In the situation of exercise (4), consider the blowup W ′ → W of W

with center Z, and let F ∗ be the total transform of F in W ′. Is F ∗ again a
normal crossings scheme in W ′?

(6) Start at zero, i.e., with empty exceptional locus, and blow up once W =
A3 at 0. Figure out whether in W ′ there can already occur a transversality
problem, and if yes, determine the dimensions where it becomes virulent.
Then indicate the transversal handicap E′ = (E′

3, E
′
2, E

′
1) in W ′. Hint: E′

will again consist of stratified divisors, the strata being given by the values
of the invariant along the new exceptional component Y ′.

(7) If you have done all the exercises up to now you are allowed to take a
break. Otherwise return to the last exercise you did not do and give it a
new try.
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CLASS 5: Resolution of Mobiles

Here is now the precise definition of mobiles. A singular mobile on a reg-
ular n-dimensional ambient scheme W is a quadruple M = (J , c, D, E)
where J is a coherent ideal sheaf on W (one could also allow J to live on
a regular, locally closed subscheme V of W , cf. [55]), c is a positive integer,
the control, and D = (Dn, . . . , D1) and E = (En, . . . , E1) are strings of
stratified normal crossings divisors Di and Ei on W . Stratified means that
there is a finite stratification of W by locally closed subschemes such that
each Di and Ei is coherent along the strata.
We call D, respectively E, the combinatorial and transversal handicap of
M. The divisors Di are in general not reduced; they carry a small addi-
tional information, their label, which allows to order the components of Di,
but which shall not bother us here (for details, see [55]). The divisors Ei

are reduced, have no components in common, and their union |E| will equal
the exceptional locus in W at the current stage of the resolution process.
You should think of a mobile as follows (cf. the last chapter): The ideal J is
the ideal defining the singular scheme X in W we wish to resolve. It passes
under blowup to its controlled transform J ! = I(Y ′)−c · J∗ with respect to
c. At the beginning, the handicaps are trivial, Di = Ei = ∅. Under blowup,
they obey a precise law of transformation, which we shall describe later on.
This will allow to associate to any mobile M in W and blowup W ′ → W

the transformed mobile M′ in W ′. We say that the mobile M is resolved,
if the order of J at all points of W is less than c. Notice here that for c = 2
and J a principal ideal, this signifies that J defines a regular scheme. How-
ever, as the order is not so significant for non-hypersurfaces (order 1 at a
point just means that the scheme is locally not minimally embedded in the
ambient scheme), it is more convenient to take the control c = 1, in which
case the mobile is resolved if J is the structure sheaf of W . This, in turn,
signifies that the scheme we started with has as total transform a normal
crossings divisor.
Mobiles are not as complicated as one might think. They are globally de-
fined objects which do not depend on any ad hoc or local choices. The
delicate part is to associate to them a local invariant and to define the
transformation law. These two things are strongly related to each other. In
the course of their definition we will have to consider objects which are not
intrinsic and only locally defined. But we don’t care as long as the final
output is intrinsic.
For a mobile M and a point a in W , the local invariant ia(M) of M at a

will be a vector of integers, and these integers are the orders of certain ideals
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defined locally at a. Thus we have perfect control on them under blowup
as long as the ideal in question passes to its weak transform. Namely, in
this case, the order of the ideal won’t increase. As we have already seen in
earlier sections, the respective ideals will indeed pass to their weak trans-
forms provided that the earlier components of our invariant have remained
constant. This suggests to consider ia(M) with respect to the lexicographic
ordering.
Let us now see the details. We shall associate to M and a ideals Jn, . . . , J1,
In, . . . , I1 and Kn, . . . , K1 defined in local flags Wn ⊃ . . . ⊃ W1 at a. The
Wi are regular hypersurfaces in Wi+1 defined in a neighborhood of a, where
Wn = W is the ambient scheme. There will be a certain rule how to choose
them, but in any case they are not unique nor intrinsic. The ideals Ji, Ii

and Ki are defined in Wi, and are neither intrinsic. We denote them by
roman letters, because we think of them as the stalks at a of ideal sheaves.
Our invariant is then simply the vector

ia(M) = (on, kn, on−1, . . . , o1, k1)

where oi = ordaIi and ki = ordaKi. Again, this is not too complicated.
The motivation for doing so was given in the last chapter. The point is
that the components oi and ki do not depend on our choice of the flag
Wn ⊃ . . . ⊃ W1 and of the ideals Ji, Ii and Ki (which, of course, are sub-
ject to certain conditions). So it is justified to call ia(M) an invariant of
the mobile M at a.
We cheat here a little bit, because in reality, ia(M) has some more compo-
nents, the combinatorial components mi which are squeezed in between ki

and oi−1. But all of them are zero except one, and this non-zero component
is only used in a very special case in which the mobile is already almost
resolved (the so called monomial or combinatorial case, see below and [55]).
We do not wish to discuss it in these notes.
We now describe the rules which relate all the local ideals between each
other and with the mobile. The problem here is that everything is moti-
vated only a posteriori when you see how the rules make the induction
argument work. So we ask you a little patience.
The relation between Ji and Ii is simple, and prescribed by the i-th com-
ponent Di of the combinatorial handicap. We have Ji = Mi · Ii where
Mi = IWi(Di ∩Wi) denotes the ideal defining Di ∩Wi in Wi. By the law
of transformation for Di and the restrictions on the choice of Wi, both will
intersect transversally so that the factor IWi(Di ∩Wi) is indeed a princi-
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pal monomial ideal. It is the exceptional portion we wish to factor from
Ji, and Ii is the interesting part of Ji which is not yet resolved. Observe
here that Jn is just the stalk of J at a, and that at the beginning when
all Di are still empty the factorizations trivially exist. After some blowups,
it will have to be proven that the factorizations exist, but this will follow
directly from the definition of the Di. Actually, the transformation law for
Di is precisely chosen so as to allow the factorization of Ji and moreover
so that the factor Ii is the weak transform of the respective factor before
blowup. It also shows that the component oi = ordaIi captures interesting
information, namely how far Ji is from being a principal monomial ideal.
The ideal Ki equals, up to a small technical detail which we omit, the prod-
uct of Ii with the transversality ideal Qi = IWi

(Ei ∩Wi) of the mobile M
in dimension i. Its order ki (or, equivalently, the difference qi = ki − oi)
measures how far Ei and Wi are from being separated at a. In any case, and
this is the important thing, the local top locus of Qi at a will be contained
in all components of Ei which pass through a. This ensures that also the
center of blowup will be contained in these components. Recall here that
Ei collects the dangerous components, i.e., those to which otherwise the
chosen virtual center may fail to be transversal.
To repeat: oi tells us how far we are with the resolution of Ji, and ki how
far we are with our transversality problem.
We are left to indicate how we choose the local flag Wn ⊃ . . . ⊃ W1 and
how the ideals in different dimensions relate. As for the flag, Wi is a local
hypersurface of Wi+1 at a which is chosen so as to maximize the order at a

of the coefficient ideal coeffWiKi+1 of Ki+1 in Wi. There are several ways
how to construct such hypersurfaces, and in characteristic 0 these construc-
tions are particularly nice and behave well. But what is clear and crucial
is that the order of coeffWiKi+1 does not depend on the choice of Wi. We
then impose our last correlation rule among the various local ideals. It is
Ji = coeffWiKi+1. Again, there is a slight technical complication which we
only sketch. It occurs when Ii is already bold regular, i.e., generated by a
power of one variable. In this case, the coefficient ideal would be 0, which
is unpleasant for notational regards. Therefore one then sets Ji = 1.
With these settings, it can be shown that the resulting invariant ia(M)
is well defined, upper semicontinuous and has all the properties required.
In particular, its top locus Z is regular and transversal to the exceptional
locus. So Z can be chosen as the center of the next blowup.
It is time that you perform the construction of the local invariant in a con-
crete example. Only then you will get a feeling for it. Take a principal ideal
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J in three variables where you are still able to compute the coefficient ideal
by hand. You start with trivial handicaps. You get an invariant, and you
let Z be its top locus. Then blow up the ambient three-space in this center
and consider the transformed mobile above, with new local invariants.
Ah, we have not defined the transform of mobiles yet. Right! Here is the
transformation law. Let a′ be a point of W ′ above a ∈ Z. We only define
the transformed mobile M′ locally at a′, and leave it as exercise to show
that this also makes sense globally. And we assume that the center Z is
the top locus of ia(M) in W . This ensures that Z lies in all top loci of the
ideals Ii and Ki.
We already said that J passes to its controlled transform J ′ = J !. The
control c′ remains the same c′ = c, except if the order of J ′ has dropped
everywhere below c, in which case we are done. The formulas for the com-
binatorial and transversal handicaps depend on the behaviour of the invari-
ant under blowup. The definition is recursive and a bit involved. So please
sharpen your pencil.
We set D′

n = D∗
n+(on−c) ·Y ′ so that J ′n = IW ′

n
(D′

n∩W ′
n) ·I ′n with I ′n = Ig

n

the weak transform of In. We thus dispose of o′n = orda′I
′
n. If o′n < on we

set E′
n = ∅, if o′n = on we set E′

n = E∗
n (pullback). Now assume that we

have already defined D′
n, E′

n, . . . , D′
i+1, E

′
i+1 in W ′. We thus dispose of the

truncated invariant

(o′n, k′n, . . . , o′i+1, k
′
i+1)

at a′. If (o′n, k′n, . . . , o′i+1, k
′
i+1) <lex (on, kn, . . . , oi+1, ki+1) we set

D′
i = ∅, if (o′n, k′n, . . . , o′i+1, k

′
i+1) = (on, kn, . . . , oi+1, ki+1) we set D′

i =
D∗

i + (oi − ki+1) · Y ′. We have thus defined also the component o′i of our
invariant. If (o′n, k′n, . . . , k′i+1, o

′
i) <lex (on, kn, . . . , ki+1, oi) we set E′

i = ∅,
if (o′n, k′n, . . . , k′i+1, o

′
i) = (on, kn, . . . , ki+1, oi) we set E′

i = E∗
i . So the def-

inition of D′
i and E′

i depends on whether the earlier components of the
invariant have dropped or not.
The transformation formulas look complicated, but they are precisely cho-
sen so that the ideals J ′i , I ′i, Q′

i and K ′
i satisfy the same rules as their sisters

below. This is a computation in local coordinates which is not too difficult.
Moreover, whenever (o′n, k′n, . . . , o′i+1, k

′
i+1) has not dropped lexicographi-

cally, the ideal I ′i is the weak transform of Ii and hence o′i ≤ oi. Similarly,
whenever (o′n, k′n, . . . , k′i+1, o

′
i) has not dropped lexicographically, the ideal

K ′
i is the weak transform of Ki and hence k′i ≤ ki. This shows that the

invariant never increases.
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To show that it actually decreases, we have to distinguish two circum-
stances. We place ourselves at the point a. Let d be the smallest index so
that od > 0. We have seen earlier that the center Z then equals Wd−1. In
case that the ideal Kd is bold regular (i.e., a power of a variable) and the
truncated invariant (o′n, k′n, . . . , k′d+1, o

′
d) has not dropped, the transform

K ′
d equals the weak transform Kg

d = 1 and hence k′d = 0 < kd. Note here
that in this case Jd−1 = 1 by definition and the further components of the
invariant are all zero.
The second case is when Kd is not bold regular and hence Jd−1 6= 1. By
the choice of d we have Id−1 = 1, so that Jd−1 = IWd−1(Dd−1 ∩ Wd−1)
is a principal monomial ideal. This is the monomial or combinatorial case,
in which the hidden components mi of the invariant come into play. To
give you a feeling, just think of the polynomial z4 + xayb with a + b ≥ 4.
You should have no problems in figuring out how to choose the center Z

(according to the values of a and b) so that after finitely many blowups the
order has dropped below 4. And in the general case, with Jd−1 a principal
monomial ideal the choice of the center and the reasoning are quite the
same.
It looks strange, but we are finished – modulo some breadcrumbs. We have
defined the transform M′ in W ′ of our mobile M and given some hints
why the local ideals J ′i , I ′i, Q′i and K ′

i exist again and satisfy the required
relations. Actually, the members W ′

i of the local flag W ′
n, . . . , W ′

1 at a′ co-
incide with the strict = weak transform of Wi if the truncated invariant
(o′n, k′n, . . . , k′d+1, o

′
d+1) has not dropped at a′, the remaining members have

to be chosen from scratch (which does not matter since the later compo-
nents of the invariant are irrelevant).
The author of these lines is well aware that the above indications cannot
please a critical reader – there is too much hand waving and too little sub-
stance, say proof. But precisely this shortcome may motivate you to look
at the complete argument as given in the paper [55], and you will realize
that there is not so much to add. The constructions are the same (including
one or the other additional detail) and they are so systematic that (all) the
proofs are really short. No one takes more than half a page, or at most one
page.
So how to conclude these notes? One question is whether there is really
a need for the non-expert to understand the proof of resolution of singu-
larities in characteristic zero, aside curiosity. There are two answers: First,
Hironaka’s proposal for the inductive argument – remember that the above
is nothing but a conceptualization of the original proof (with the help of
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the techniques developed by the successors of Hironaka) – is a paradigm
of mathematical organisation. While reading these notes you should have
observed that the clue to everything is the systematic definition of mobiles
and their transforms, the rest are almost routine verifications.
Secondly, the problem of resolution is still wide open in positive character-
istic and in the arithmetic case. Either somebody invents a completely new
approach for these cases (which should not be discarded) or we succeed to
understand the characteristic zero proof so much better that we get an idea
how to tackle the other cases. Along the lines of Hironaka’s proof, when
translated to positive characteristic, funny things tend to happen. The in-
variant may increase, but only in quite special cases which can be pinned
down explicitly. And if it increases, the increase is very small, namely at
most one (at least in the relevant examples). So you immediately think that
if it increases only by one, maybe in the next blowup it drops by two and
we have won again. This is almost the case, but only almost. If you are
curious to know what type of phenomena may happen, you may look at
the article [66]. See you then!
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plicité. Duke Math. J., 63(1):57–64, 1991.
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