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Noncommutative Quantum Field The

Motivation and relevance

1. Standard model of high-energy physics, gravity based o
spacetime-continuum

idealization, seems unplausible;

= quantized space? Heisenberg 1938
2. Gravity & Quantum Mechanics =- space should have

3. String theory: strings ending on D-branes

D-branes in B—field background = strings induce
NC field theory (NCFT) on D-brane
=  D-branes = NC space  (independent of [,,!)
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Non-commutative geometry, field theory'

e Manifold M — NC algebra A of functions on M (with
“pointless geometry” (von Neumann 1955)
NC (differential) geometry (Connes)

simplest example Ry A .
[xz-, LEj] — 201-]-

(cp. Quantum Mechanics, phase space)

usually 3 derivatives 0;, integral = trace, some symmet

e Field theory on NC space:
CM) — A — L(H)
o(z) —o(i) —¢

kx k

e.g. plane waves e'*¥ — e""* spherical harmonics (fuzz

Formulation of field theory is possible, many examples
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Example: the quantum plane R;

“coordinate-functions” z;, ¢ = 1, 2 satisty CCR
[i’i, QAEJ] = ’l:(gij,
0;; ... a.s. tensor, “background-field”

generate algebra Ay = Heisenberg-algebra ( (Z1,22) <« (a

representation on Hilbert space H = L?(R) as in Quantum

Scalar field: ¢ = ¢(2) € Ag resp. ¢ € L(H) ... lin. operatc

e.g. localized wave-packets: coherent states ¢z =

differential calculus

a,,¢ = —7:[53‘7;, ¢] fOI’ fz = (9,:71533
note: a priori, NC does not imply existence of UV - cutoft,

UV/IR relation (cp. Quantum mechanics: squeezed st
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NC scalar field theory'

consider some NC space, algebra A  (e.g. RY,T7, 5%, CP3
use representation of algebra A on Hilbert space 'H

Field ¢(z) ~ ¢ € L(H) ... Hermitian operator on H

trace replaces integral

Example:

e (lg g 1 o0 g4
S ="Tr (2(‘9@gb@gb+2m o) +4¢>

can write e.g. ¢(x) = [dk ¢ : e 1 etc.,



Quantization I
formally defined by (Euclidean) path

f[D(I)]e_S §bk1 T gbkl
[[D®]e—~ ’

= Wick’s theorem, however distinction planar < nonplanar

(Pky * k) = [DP] = ]

propagator: as usual, (Ppdr ) = 5kk/m

one-loop planar and non-planar self-energy diagrams:

'Y

—gf(w ke~ gA 2,

(2) ezk@p 1 -
FNP(p) — gf (gﬁ)d 2xmz Y (1/A2+p292)
F%;(p) is finite as long as p # 0, but IR singularity as p —
.. UV/IR mixing (Minwalla, Van Raan
central feature of NC field theories,

serious obstacle to perturbative renormalization!

nontrivial relation UV < IR



momentum dependence of effektive action

' (p)

= modes p — 0 are suppressed (UV/IR)
spontaneous symmetry breaking, phase transition

(p) # 0 ... “striped” phase (Gubser, Sondhi)

verified numerically (Ambjorn, Catterall; Martin; Bietenhc

Nishimura,)



one way to overcome this problem:

The Grosse-Wulkenhaar term'

add “confining” potential to action, consider

S = / (%&;Cb@iﬁbJrQQ TipTip + %ngbz + %&

suppresses IR !

Observation: there is a duality x <= p at 1 =1 (Langm,

Result (Grosse - Wulkenhaar): perturbatively renormalizab
in 2 and 4 dimensions (RG techniques)

technically difficult, uses matrix formulation:

scalar field = hermitian matrix ¢;; = (i|¢|7)



Matrix model formulation: '
scalar field ¢ € L(H)

recall: 0;¢0 = —i|T;, 0] =

2
S = / (Zi0Ti0 — TiT500) + V2 T;0%:0 + 7¢2 +

simplifies for 2 =1 to

S = J(@Fi+ 5)0° + 5 6 = Tr(3Je* +

where

2
J =202m0)*() Z;%; + %) ... harmonic oscill:

choose basis of eigenstates:
ind=2: Jn)=dr(n+L1+L%n), ne{0,1,2,..}
d=4: J\nl,n2>—87r2t9(n1—|—n2—|—1—|—“’ )\nl,n2> n; €
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The regularized (Euclidean) NC ¢® model for Q =

regularization (cutoff): H = C¥ such that
d=2: Jn)=4r(n+i+29n), ne{0,1,2,..N}
d=4: J]nl,n2>—87r 9(n1+n2+1—|—“ )\nl,n@) n; €

introduce counterterms [ A¢ + %5 pu?¢?  (+ one more in a

can eliminate either linear or quadratic term:

S =Tr( — gy M2$+ 5 ¢°) = Tr(IMX?+ 5 X3 -

using shift
1
b= ¢+ J—X+ZM

I\ A

where

M = +/J2 +2(i\)A
= Kontsevich model !
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Quantization I

- /DQE eXP(—T"“( - iM% A ng))

Kontsevich model, for fixed given (diagonal) matrix M as a

Correlators or “n-point functions”

<¢i131 ¢zn]n /D¢ eXp ¢le1 ¢in;

(recall: ¢;; ~ (i|¢|j) ... evaluation of field, cp. ~ (z|¢|y))

Renormalization condition (as for free case A = 0):

1 1
21 pHl + 17

(Po0P00) = ($00) =0

Nontrivial task: show that all n-point functions have a

well-defined limit N — oo (with nontrivial dependence on i
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Computation of correlators'

obtained simply by taking derivatives of F'(M):

(bir) = (Pir) —

L m% | Dé exp(~Tr ( — g5 M
sy, (M)

etc. (this is particular for the ¢* model!)

= only need to show: Z(M) = ef'M) depends smoothly o

well-defined limit N — oc.

however: nontrivial, requires renormalization.

first: perform perturbative computations to get better fe
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Perturbative computations:

rewrite action

S :Tr(i(qu? +¢2T) + 2 ¢ — A¢)
= Tr(3¢) (Gr)li oF + % ¢ — Ap+ 1(6J6 +

finite (renormalized) kinetic term (G R) = 15@5k(=] 4 JJB
propagator:

Z 2 ik 1/(4m26

<¢¢l> ]JR JgR_ lji+i+(ﬂ%%‘9

where n = n in 2D, n = ny + ny in 4D.

JEny,ng) = 8n20(n+ 1+ “R )|m1,n2) (¢

JRIn) = dn(n + W)m (

0J ~ du? = (u? — p%) ... part of the counter-term
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1-point function

one-loop contribution to the 1-point function:

1 A 1 ‘
i) = =i — = =5 A
(Pii) 7R ZJRZJR+JR +0(

1

.. divergent, unless canceled by counterterm A.
2D: A~ (i)\)log(N)
4D: A; ~ (iA)Nlog(N)1 + (iX) log(N)J;.
= need further counterterm: either A = al + c¢J or e
¢»— p+c, c~irlog(N).

can be absorbed by redefinition of Kontsevich-mode

= \/ J2 4+ 2(iX)a — (i\)2c2
J =J+(iNe
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2-point function

(Ppridir) for I # k: has one-loop planar contribution

gives

(udw) = gpise — 2N G

44 3 (N2 1 8Ji+8Ji
(TR+IF)? \ &~ JR+TF JE+JF 2

implies mass renormalization in 4D
> (A7
256 7604

(no mass renormalization in 2D)

oL log N
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(Ppudrr) for | # k: vanishes at tree level,

one-loop nonplanar contribution

which gives

1 (i)\)? 2
(Pudrr) = (Prk)(Pu) + ZJ(;R <)]zR <J§ n JlR>

is finite.

Goal: nonperturbative proof of renormalizability:

need renormalized Kontsevich model Z (M),

with eigenvalues m; appropriately rescaled as N — oo
17



The Kontsevich model'

defined by

Kont 2
ZEomt () = FEHM) = f Xexp{ (_ M2X

=1 fdgbexp{Tr( _M2§— i g — 1]

where N' = [ dX exp {—Tr (M2X2)}
depends only on eigenvalues m; of M ... hermitian N x N
introduced by Kontsevich 1991

suitable variables:

ty=—(2r — I Y my G,

i
Remarkable fact (Kontsevich): FEO™ (M) = FRont(t,) is g
function of intersection numbers (topological characteristics

spaces of punctured Riemann surfaces (=-rational coefficien
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more precisely: (Kontsevich, Itzykson-Zuber)

consider perturbative expansion

ZKont (N) — / dpn (X) exp( TrX3 ZZKO““

k>0
—l)k TrX3\?
ZKont(N) M) — ( /d X
then
o Z M N)(M) is polynomial in the ¢, of degree 3k, for ¢

o Z M ™) (t,) is independent of N for N > 3k,

depends only on t,, 2r +1 < 3k.

= ZROM(t,) = Y50 Zi O™ (tr) well-defined for N — oo

as asymptotic expansion.
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Further facts: (Kontsevich)

o Z&ont(t ) is a 7-function for the Korteweg-de Vries equ

j.e. u= g—; In ZKont satisfies
0
ou s, ( 1 0%u 1 2) 9, 0
— = 5 T Zu” |, — U=
oty O0tg \12 0t 2 Ot Ot
e Virasoro constraints: Lp,Z =0, m > —1

for suitable operators L,, (differential operators in the

e genus expansion: (generally for matrix models...)

Kont Kont Kont
In / = F = E Fg
g=>0

by drawing the Feynman diagrams on a Riemann surfa
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. allows to obtain explicit solution:

genus 0: (Makeenko and Semenoff, ... )
Fyremt =3 32,mi — 32( = 2u0)*/? —ug 32, (m7
ud 1 (Tn ——2u )1/2+{Tn —2ug )1/2
FO 2 Z { m;+mg }
higher genus: (Itzykson-Zuber)
Ffont = Lip 1
Kon _ 1 I3
Fyto™ = o2 {5(1 mE T 29T 31r2)4+28(1 1)f
etc. where
I, =—2k-1DN>, .

1
(m?—2ug)*tz’

— 1 _
UQ _ Z’L /m?—Zuo o IO.

generally: all F Kont wwith ¢ > 2 are given by finite sums of

I /(1 —1)"s

2k+1
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explicitly (just for illustration ...) (Itzykson-Zu

FKont

24FKont

3 3 3 5 4

+ [t46—0! + (62—2! + 4t1t3) 5—(; + 24@—(;}, + 1265 %]
+ ...

3
=11 + (2, +t0t2) —+ (Qtl +t3 2, —|— 2t0t1t2)

2 42
+ (6% +ta3d o+ 1hals 4 6t0t22—1, +3tits %)
5
n (24t b5+ 2toty S+ (4tyty + Thots) 0

+ ...

C"°|c>c,o

_|_
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Application to the NC ¢° model'

set m; = \/jf + const ~

d=2
(i1 +1i2), d=4 (degenera

as given by the ¢ model with harmonic oscillator poten

note:

o to,(t1) and up = — ) _, \/m and correlation

divergent a priori

e only the combination

\/m% — 2up = )\_2/3\/,]2 + 2b

enters, where b = (i\)a — A\*3ug+A2c2/2  (a,c.

will show: J and b are finite after renormalization,

for suitable a=ay, c=cn, U= pi

func

.. ba

(dive

rendering correlation functions well-defined in the limit
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Renormalization and finiteness

1-point function at genus O:

<¢kk>g:o = QiAaijg Fo(jz) B i_’i

=L/ +20—J . ()
ZA( Ji + i) +C+ZJ W\/j;ww

0 , d=2
= c= : and .

~ @y M(N) +¢, d=4

b determined by renormalization condition (¢gg) = 0, solu

in 4D:  J = J + (i\)c finite = mass renormalization

2 (iN)?
2567664

complete agreement with 1-loop result

In(N) + uf

L4

24



counterterm a: (recall [ a¢ ) determined through implic

b 2,279 N ()
= a+ (tA)°c®/2 Zz\/m

% In N + (finite),
N InN — 2 In(N)? + (finite),

w20

renormalized 1-point function in 4D:

(D) g—0 = 5(\/13 +2b— Ji) + + (INf

finite and well-defined as N — oo
For certain point in moduli space (b = ¢ = 0):

(Dkk)g=0 = (iA) Z J; (jk +J; Jo+ jj)

J

coincides with one-loop result
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Finiteness of general n-point function for an

1) diagonal case:

0 0
Piris - Pinin e omi,;, — omg ;. P

Iy
(1—-11)

above renormalization a = ay, ¢ = cy, p® = p4,

easy to show using explicit form of F,; (polynomial in

guarantees that all derivatives of F,(M) w.r.t. m? are

1

well-defined as N — oo, as long as [; = —\? >

(J2+21
2) can be extended to general n-point functions
0 0
i1d Qi d e ™ F(M
<¢ 1J1 ¢ n3n> amgljl am%njn ( )

also well-defined for each genus g, using F'(M?) = F(U~tdi

(slight complication due to degeneracy in 4D, but no essent
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Theorem: The (connected) genus g contribution to an
function (@i, j,...-Pi, 5. )c 1S finite and has a well-defined

for all g, provided the couplings are renormalized as ab

all correlation functions can be computed in principle for a

2D:

a = (@A) In N (+ finite)
4

)

— m In(N) (4 finite)
u? = 25<é>‘)694 In(N) (4 finite)
o =g NInN + goage In(N)? (+fini

note: model originally defined for imaginary coupling [ iA¢

can analytically continue to (sufficiently small) real co

all correlation functions real
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Singularity (phase transition, instability) for real coupling .

simultaneously for all genera g > 1:

1
_ (s 2§ : _
fi==(A) _ (j2+26)3/2_1

2D:

1 20

K“ ~ +0.0646989
4D:

)\2

2

o19— |

HRY T2 = 53520)3
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Example: 2-point function at genus 0 (in 4D)

using identity <€Ekz€51kz> = mg ikmlz <<5kk - <Z~5u>
find

J212b—/ J242b4+(iN)2 Frk)—.
(Pr1Pik) g=0 = 2 v/ i+2 @_}?) (fr(k)

coincides (!) with 1-loop for special point (b = ¢’ = 0) in mq

2 1
e (A = )
Jr + J; Ji. + J j J](Jk—|—<]])

similarly

(PudKk) — (Okk){(du) = (7;)\)2 1 1 ( 1

VJ242b \/J2+2b J2+2b+

in agreement with perturbative computations (recall b = b(.

29



Remarks and outlook:

nontrivial interacting “solvable” NC 4D field theory

renormalization determined by genus 0 contribution alc
(cp. general NCFT; IR divergences are suppressed here
expect to hold generally for (scalar) NCFT with oscilla
genus 0 is accessible more generally (matrix model tech

genus 0 contribution coincides exactly with 1-loop for s
moduli space (not for higher genera) (77)

is ), convergent ?

generalizations:
— D=6 7 (no longer super-renormalizable)

— extend to 2 # 1 (i.e. remove the oscillator potential

certainly doable “perturbatively” ... 7

NCFT are accessible through new analytical (matrix) meth
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