Quantization of the NC ϕ^{3} model in 2 and

Harold Steinacker
University of Vienna

Saclay, march 2006

Outline:

- Noncommutative Quantum Field Theory

UV/ IR mixing and renormalization the Grosse-Wulkenhaar term

Matrix model formulation of the ϕ^{3} model

- The Kontsevich model
review of relevant facts
- Quantization, renormalization and "solution" of the N(

2 dimensions
4 dimensions

- Outlook

Motivation and relevance

1. Standard model of high-energy physics, gravity based o spacetime-continuum
idealization, seems unplausible;
\Rightarrow quantized space?
Heisenberg 1938
2. Gravity \& Quantum Mechanics \Rightarrow space should have
3. String theory: strings ending on D-branes

D-branes in B-field background $\quad \Rightarrow \quad$ strings induce NC field theory (NCFT) on D-brane
$\Rightarrow \quad$ D-branes $=$ NC space $\quad\left(\right.$ independent of $\left.l_{p}!\right)$

Non-commutative geometry, field theory

- Manifold $\mathcal{M} \rightarrow \mathrm{NC}$ algebra \mathcal{A} of functions on \mathcal{M} (with "pointless geometry" (von Neumann 1955) NC (differential) geometry (Connes) simplest example \mathbb{R}_{θ}^{n} :

$$
\left[\hat{x}_{i}, \hat{x}_{j}\right]=i \theta_{i j}
$$

(cp. Quantum Mechanics, phase space)

usually \exists derivatives ∂_{i}, integral $=$ trace, some symmet

- Field theory on NC space:

$$
\begin{array}{rll}
\mathcal{C}(\mathcal{M}) & \rightarrow \mathcal{A} & \rightarrow L(\mathcal{H}) \\
\phi(x) & \rightarrow \hat{\phi}(\hat{x}) & \rightarrow \phi
\end{array}
$$

e.g. plane waves $e^{i k x} \rightarrow e^{i k \hat{x}}$, spherical harmonics (fuzz) Formulation of field theory is possible, many examples

Example: the quantum plane \mathbb{R}_{θ}^{2}

"coordinate-functions" $\hat{x}_{i}, i=1,2$ satisfy CCR

$$
\left[\hat{x}_{i}, \hat{x}_{j}\right]=i \theta_{i j},
$$

$\theta_{i j}$... a.s. tensor, "background-field"
generate algebra $\mathcal{A}_{\theta} \cong$ Heisenberg-algebra $\quad\left(\left(\hat{x}_{1}, \hat{x}_{2}\right) \leftrightarrow(x\right.$ representation on Hilbert space $\mathcal{H} \cong L^{2}(\mathbb{R})$ as in Quantum

Scalar field: $\phi=\phi(\hat{x}) \in \mathcal{A}_{\theta}$ resp. $\phi \in L(\mathcal{H})$... lin. operatc
e.g. localized wave-packets: coherent states $\phi_{\vec{a}}=$ differential calculus

$$
\hat{\partial}_{i} \phi=-i\left[\tilde{x}_{i}, \phi\right] \quad \text { for } \quad \tilde{x}_{i}:=\theta_{i j}^{-1} \hat{x}_{j}
$$

note: a priori, NC does not imply existence of UV - cutoff,
$\mathrm{UV} / \mathrm{IR}$ relation (cp. Quantum mechanics: squeezed st

NC scalar field theory

consider some NC space, algebra \mathcal{A} (e.g. $\mathbb{R}_{\theta}^{d}, T_{\theta}^{2}, S_{N}^{2}, \mathbb{C} P_{N}^{2}$ use representation of algebra \mathcal{A} on Hilbert space \mathcal{H} Field $\phi(x) \rightsquigarrow \phi \in L(\mathcal{H})$... Hermitian operator on \mathcal{H} trace replaces integral

Example:

$$
S=\operatorname{Tr}\left(\frac{1}{2} \partial_{i} \phi \partial_{i} \phi+\frac{1}{2} m^{2} \phi^{2}+\frac{g}{4} \phi^{4}\right)
$$

can write e.g. $\phi(x)=\int d k \phi_{k}: e^{i k x}:$ etc.,

Quantization

formally defined by (Euclidean) path

$$
\left.\left\langle\phi_{k_{1}} \cdots \phi_{k_{l}}\right\rangle=\frac{\int[\mathcal{D} \Phi] e^{-S} \phi_{k_{1}} \cdots \phi_{k_{l}}}{\int[\mathcal{D} \Phi] e^{-S}}, \quad[\mathcal{D} \Phi]=\right]
$$

\Rightarrow Wick's theorem, however distinction planar \leftrightarrow nonplanar propagator: as usual, $\quad\left\langle\phi_{k} \phi_{k^{\prime}}\right\rangle=\delta_{k k^{\prime}} \frac{1}{k^{2}+m^{2}}$ one-loop planar and non-planar self-energy diagrams:

$$
\begin{aligned}
\Gamma_{P}^{(2)} & :=g \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{k^{2}+m^{2}} \sim g \Lambda^{d-2} \\
\Gamma_{N P}^{(2)}(p) & :=g \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{e^{i k \theta p}}{k^{2}+m^{2}} \sim g\left(\frac{1}{1 / \Lambda^{2}+p^{2} \theta^{2}}\right)
\end{aligned}
$$

$\Gamma_{N P}^{(2)}(p)$ is finite as long as $p \neq 0$, but IR singularity as $p \rightarrow$... UV/IR mixing
(Minwalla, Van Raam central feature of NC field theories, serious obstacle to perturbative renormalization! nontrivial relation UV \leftrightarrow IR
momentum dependence of effektive action

$$
\Gamma^{(2)}(p)
$$

\Rightarrow modes $p \rightarrow 0$ are suppressed (UV/IR)
spontaneous symmetry breaking, phase transition

$$
\langle p\rangle \neq 0 \text {... "striped" phase } \quad(G u b s e r, \text { Sondhi) }
$$

verified numerically (Ambjorn, Catterall; Martin; Bietenho Nishimura)
one way to overcome this problem:

The Grosse-Wulkenhaar term

add "confining" potential to action, consider

$$
S=\int\left(\frac{1}{2} \partial_{i} \phi \partial_{i} \phi+\Omega^{2} \tilde{x}_{i} \phi \tilde{x}_{i} \phi+\frac{1}{2} m^{2} \phi^{2}+\frac{g}{4} \phi^{4}\right.
$$

suppresses IR
Observation: there is a duality $x \leftrightarrow p$ at $\Omega=1$
Result (Grosse - Wulkenhaar): perturbatively renormalizab in 2 and 4 dimensions (RG techniques)
technically difficult, uses matrix formulation:
scalar field \equiv hermitian matrix $\phi_{i j}=\langle i| \phi|j\rangle$
recall: $\partial_{i} \phi=-i\left[\tilde{x}_{i}, \phi\right] \quad \Rightarrow$

$$
S=\int-\left(\tilde{x}_{i} \phi \tilde{x}_{i} \phi-\tilde{x}_{i} \tilde{x}_{i} \phi \phi\right)+\Omega^{2} \tilde{x}_{i} \phi \tilde{x}_{i} \phi+\frac{\mu^{2}}{2} \phi^{2}+
$$

simplifies for $\Omega=1$ to

$$
S=\int\left(\tilde{x}_{i} \tilde{x}_{i}+\frac{\mu^{2}}{2}\right) \phi^{2}+\frac{i \tilde{\lambda}}{3!} \phi^{3}=\operatorname{Tr}\left(\frac{1}{2} J \phi^{2}+\right.
$$

where

$$
J=2(2 \pi \theta)^{2}\left(\sum_{i} \tilde{x}_{i} \tilde{x}_{i}+\frac{\mu^{2}}{2}\right) \quad \ldots \quad \text { harmonic oscill }
$$

choose basis of eigenstates:
in $\underline{d=2}: \quad J|n\rangle=4 \pi\left(n+\frac{1}{2}+\frac{\mu^{2} \theta}{2}\right)|n\rangle, \quad n \in\{0,1,2, \ldots\}$
$\underline{d=4}: J\left|n_{1}, n_{2}\right\rangle=8 \pi^{2} \theta\left(n_{1}+n_{2}+1+\frac{\mu^{2} \theta}{2}\right)\left|n_{1}, n_{2}\right\rangle, n_{i} \in$

The regularized (Euclidean) NC ϕ^{3} model for $\Omega=$

regularization (cutoff): $\mathcal{H}=\mathbb{C}^{N}$ such that
$\underline{d=2}: \quad J|n\rangle=4 \pi\left(n+\frac{1}{2}+\frac{\mu^{2} \theta}{2}\right)|n\rangle, \quad n \in\{0,1,2, \ldots N\}$
$\underline{d=4}: J\left|n_{1}, n_{2}\right\rangle=8 \pi^{2} \theta\left(n_{1}+n_{2}+1+\frac{\mu^{2} \theta}{2}\right)\left|n_{1}, n_{2}\right\rangle, n_{i} \in$
introduce counterterms $\int A \phi+\frac{1}{2} \delta \mu^{2} \phi^{2} \quad(+$ one more in α
can eliminate either linear or quadratic term:

$$
S=\operatorname{Tr}\left(-\frac{1}{2 i \lambda} M^{2} \tilde{\phi}+\frac{i \lambda}{3!} \tilde{\phi}^{3}\right)=\operatorname{Tr}\left(\frac{1}{2} M X^{2}+\frac{i \lambda}{3!} X^{3}-\right.
$$

using shift

$$
\tilde{\phi}=\phi+\frac{1}{i \lambda} J=X+\frac{1}{i \lambda} M
$$

where

$$
M=\sqrt{J^{2}+2(i \lambda) A}
$$

$=$ Kontsevich model !

Quantization

$$
Z(M)=\int D \tilde{\phi} \exp \left(-\operatorname{Tr}\left(-\frac{1}{2 i \lambda} M^{2} \tilde{\phi}+\frac{i \lambda}{3!} \tilde{\phi}^{3}\right)\right)=
$$

Kontsevich model, for fixed given (diagonal) matrix M as a
Correlators or " n-point functions"

$$
\left\langle\phi_{i_{1} j_{1} \ldots} \phi_{i_{n} j_{n}}\right\rangle=\frac{1}{Z} \int D \phi \exp (-S) \phi_{i_{1} j_{1}} \ldots \phi_{i_{n}} .
$$

(recall: $\phi_{i j} \sim\langle i| \phi|j\rangle \ldots$ evaluation of field, $\mathrm{cp} . \sim\langle x| \phi|y\rangle$)
Renormalization condition (as for free case $\lambda=0$):

$$
\left\langle\phi_{00} \phi_{00}\right\rangle=\frac{1}{2 \pi} \frac{1}{\mu_{R}^{2} \theta+1}, \quad\left\langle\phi_{00}\right\rangle=0
$$

Nontrivial task: show that all n-point functions have a well-defined limit $N \rightarrow \infty$ (with nontrivial dependence on i

Computation of correlators

obtained simply by taking derivatives of $F(M)$:

$$
\begin{aligned}
\left\langle\phi_{i k}\right\rangle & =\left\langle\tilde{\phi}_{i k}\right\rangle-\frac{J_{i k}}{i \lambda} \\
& =-\frac{J_{i k}}{i \lambda}+\frac{1}{Z} 2 i \lambda \frac{\partial}{\partial\left(M^{2}\right)_{i k}} \int D \tilde{\phi} \exp \left(-\operatorname{Tr}\left(-\frac{1}{2 i \lambda} M^{2}\right.\right. \\
& =-\frac{J_{i k}}{i \lambda}+2 i \lambda \frac{\partial}{\partial\left(M^{2}\right)_{i k}} F(M)
\end{aligned}
$$

etc. (this is particular for the ϕ^{3} model!)
$\Rightarrow \underline{\text { only need to show: }} Z(M)=e^{F(M)}$ depends smoothly or well-defined limit $N \rightarrow \infty$.
however: nontrivial, requires renormalization.
first: perform perturbative computations to get better fe

Perturbative computations:

rewrite action

$$
\begin{aligned}
S & =\operatorname{Tr}\left(\frac{1}{4}\left(J \phi^{2}+\phi^{2} J\right)+\frac{i \lambda}{3!} \phi^{3}-A \phi\right) \\
& =\operatorname{Tr}\left(\frac{1}{2} \phi_{j}^{i}\left(G_{R}\right)_{i ; k}^{j ; l} \phi_{l}^{k}+\frac{i \lambda}{3!} \phi^{3}-A \phi+\frac{1}{4}\left(\delta J \phi^{2}+\right.\right.
\end{aligned}
$$

finite (renormalized) kinetic term $\left(G_{R}\right)_{i ; k}^{j ; l}=\frac{1}{2} \delta_{l}^{i} \delta_{j}^{k}\left(J_{i}^{R}+J_{j}^{R}\right.$ propagator:

$$
\Delta_{j ; l}^{i ; k}=\left\langle\phi_{j}^{i} \phi_{l}^{k}\right\rangle=\delta_{l}^{i} \delta_{j}^{k} \frac{2}{J_{i}^{R}+J_{j}^{R}}=\delta_{l}^{i} \delta_{j}^{k} \frac{1 /\left(4 \pi^{2} \theta\right.}{\underline{i}+\underline{j}+\left(\mu_{R}^{2} \theta\right.}
$$

where $\underline{n}=n$ in $2 \mathrm{D}, \underline{n}=n_{1}+n_{2}$ in 4 D .

$$
\begin{aligned}
J^{R}\left|n_{1}, n_{2}\right\rangle & =8 \pi^{2} \theta\left(\underline{n}+1+\frac{\mu_{R}^{2} \theta}{2}\right)\left|n_{1}, n_{2}\right\rangle \\
J^{R}|n\rangle & =4 \pi\left(n+\frac{1+\mu_{R}^{2} \theta}{2}\right)|n\rangle,
\end{aligned}
$$

$\delta J \sim \delta \mu^{2}=\left(\mu^{2}-\mu_{R}^{2}\right) \ldots$ part of the counter-term

1-point function

one-loop contribution to the 1-point function:

$$
\left\langle\phi_{i i}\right\rangle=\frac{1}{J_{i}^{R}} A_{i}-\frac{i \lambda}{2} \frac{1}{J_{i}^{R}} \sum_{k} \frac{2}{J_{i}^{R}+J_{k}^{R}}+O\left(\lambda^{2}\right.
$$

... divergent, unless canceled by counterterm A.
2D: $\quad A \sim(i \lambda) \log (N)$
4D: $\quad A_{i} \sim(i \lambda) N \log (N) \mathbf{1}+(i \lambda) \log (N) J_{i}$.
\Rightarrow need further counterterm: either $A=a \mathbf{1}+c J$ or e

$$
\phi \rightarrow \phi+c, \quad c \sim i \lambda \log (N) .
$$

can be absorbed by redefinition of Kontsevich-mode

$$
\begin{aligned}
M & =\sqrt{\tilde{J}^{2}+2(i \lambda) a-(i \lambda)^{2} c^{2}} \\
\tilde{J} & =J+(i \lambda) c
\end{aligned}
$$

2-point function

$\left\langle\phi_{k l} \phi_{l k}\right\rangle$ for $l \neq k$: has one-loop planar contribution
gives

$$
\begin{aligned}
\left\langle\phi_{k l} \phi_{l k}\right\rangle & =\frac{2}{J_{k}^{R}+J_{l}^{R}}-2(i \lambda) \frac{\left\langle\phi_{k k}+\phi_{l l}\right\rangle}{\left(J_{k}^{R}+J_{l}^{R}\right)^{2}} \\
& +\frac{4}{\left(J_{k}^{R}+J_{l}^{R}\right)^{2}}\left(\sum_{j} \frac{(i \lambda)^{2}}{J_{k}^{R}+J_{j}^{R}} \frac{1}{J_{l}^{R}+J_{j}^{R}}-\frac{\delta J_{l}+\delta J_{k}}{2}\right)
\end{aligned}
$$

implies mass renormalization in 4D

$$
\delta \mu^{2} \sim \frac{(i \lambda)^{2}}{256 \pi^{6} \theta^{4}} \log N
$$

(no mass renormalization in 2D)
$\left\langle\phi_{l l} \phi_{k k}\right\rangle$ for $l \neq k$: vanishes at tree level, one-loop nonplanar contribution
which gives

$$
\left\langle\phi_{l l} \phi_{k k}\right\rangle=\left\langle\phi_{k k}\right\rangle\left\langle\phi_{l l}\right\rangle+\frac{1}{4} \frac{(i \lambda)^{2}}{J_{k}^{R} J_{l}^{R}}\left(\frac{2}{J_{k}^{R}+J_{l}^{R}}\right)
$$

is finite.

Goal: nonperturbative proof of renormalizability: need renormalized Kontsevich model $Z(M)$, with eigenvalues m_{i} appropriately rescaled as $N \rightarrow \infty$

The Kontsevich model

defined by

$$
\begin{aligned}
Z^{K o n t}(M) & =e^{F^{K o n t}(M)}=\frac{1}{\mathcal{N}} \int d X \exp \left\{\operatorname { T r } \left(-\frac{M X^{2}}{2}\right.\right. \\
& =\frac{1}{\mathcal{N}} \int d \tilde{\phi} \exp \left\{\operatorname { T r } \left(\frac{1}{2 i \lambda} M^{2} \tilde{\phi}-\frac{i}{3!} \tilde{\phi}^{3}-\frac{1}{3} 1\right.\right.
\end{aligned}
$$

where $\mathcal{N}=\int d X \exp \left\{-\operatorname{Tr}\left(\frac{M X^{2}}{2}\right)\right\}$.
depends only on eigenvalues m_{i} of $M \ldots$ hermitian $N \times N$ introduced by Kontsevich 1991
suitable variables:

$$
t_{r}=-(2 r-1)!!\sum_{i} m_{i}^{-(2 r+1)}
$$

Remarkable fact (Kontsevich): $F^{\text {Kont }}(M)=F^{\text {Kont }}\left(t_{r}\right)$ is g function of intersection numbers (topological characteristics spaces of punctured Riemann surfaces $(\Rightarrow$ rational coefficien
more precisely: (Kontsevich, Itzykson-Zuber)
consider perturbative expansion

$$
\begin{gathered}
Z^{\text {Kont }(N)}=\int d \mu_{M}(X) \exp \left(\frac{i}{6} \operatorname{Tr} X^{3}\right)=\sum_{k \geq 0} Z_{k}^{\text {Kont }(} \\
Z_{k}^{\text {Kont }(N)}(M)=\frac{(-1)^{k}}{(2 k)!} \int d \mu_{M}(X)\left(\frac{\operatorname{Tr} X^{3}}{6}\right)^{2}
\end{gathered}
$$

then

- $Z_{k}^{\text {Kont }(N)}(M)$ is polynomial in the t_{r} of degree $3 k$, for
 depends only on $t_{r}, 2 r+1 \leq 3 k$.
$\Rightarrow Z^{\text {Kont }}\left(t_{r}\right)=\sum_{k \geq 0} Z_{k}^{\text {Kont }}\left(t_{r}\right)$ well-defined for $N \rightarrow \infty$ as asymptotic expansion.

Further facts: (Kontsevich)

- $Z^{\text {Kont }}\left(t_{r}\right)$ is a τ-function for the Korteweg-de Vries equ i.e. $u=\frac{\partial^{2}}{\partial t_{0}^{2}} \ln Z^{\text {Kont }}$ satisfies

$$
\frac{\partial u}{\partial t_{1}}=\frac{\partial}{\partial t_{0}}\left(\frac{1}{12} \frac{\partial^{2} u}{\partial t_{0}^{2}}+\frac{1}{2} u^{2}\right), \quad \frac{\partial}{\partial t_{n}} u=\frac{\partial}{\partial t_{0}}
$$

- Virasoro constraints: $\quad L_{m} Z=0, \quad m \geq-1$
for suitable operators L_{m} (differential operators in the
- genus expansion: (generally for matrix models...)

$$
\ln Z^{\text {Kont }}=F^{K o n t}=\sum_{g \geq 0} F_{g}^{K o n t}
$$

by drawing the Feynman diagrams on a Riemann surfa
... allows to obtain explicit solution:

genus 0:

(Makeenko and Semenoff, ...)

$$
\begin{aligned}
F_{0}^{K o n t} & =\frac{1}{3} \sum_{i} m_{i}^{3}-\frac{1}{3} \sum_{i}\left(m_{i}^{2}-2 u_{0}\right)^{3 / 2}-u_{0} \sum_{i}\left(m_{i}^{2}\right. \\
& +\frac{u_{0}^{3}}{6}-\frac{1}{2} \sum_{i, k} \ln \left\{\frac{\left(m_{i}^{2}-2 u_{0}\right)^{1 / 2}+\left(m_{k}^{2}-2 u_{0}\right)^{1 / 2}}{m_{i}+m_{k}}\right\}
\end{aligned}
$$

higher genus:
(Itzykson-Zuber)

$$
\begin{aligned}
F_{1}^{\text {Kont }} & =\frac{1}{24} \ln \frac{1}{1-I_{1}}, \\
F_{2}^{\text {Kont }} & =\frac{1}{5760}\left[5 \frac{I_{4}}{\left(1-I_{1}\right)^{3}}+29 \frac{I_{3} I_{2}}{\left(1-I_{1}\right)^{4}}+28 \frac{I_{2}^{3}}{\left(1-I_{1}\right)^{3}}\right.
\end{aligned}
$$

etc. where

$$
\begin{aligned}
I_{k} & =-(2 k-1)!!\sum_{i} \frac{1}{\left(m_{i}^{2}-2 u_{0}\right)^{k+\frac{1}{2}}} \\
u_{0} & =-\sum_{i} \frac{1}{\sqrt{m_{i}^{2}-2 u_{0}}}=I_{0}
\end{aligned}
$$

generally: all $F_{g}^{\text {Kont }}$ with $g \geq 2$ are given by finite sums of

$$
I_{k} /\left(1-I_{1}\right)^{\frac{2 k+1}{3}}
$$

$$
\begin{aligned}
& F_{0}^{\text {Kont }}=\frac{t_{0}^{3}}{3!}+t_{1} \frac{t_{0}^{3}}{3!}+\left(t_{2} \frac{t_{0}^{4}}{4!}+2 \frac{t_{1}^{2}}{2!} \frac{t_{0}^{3}}{3!}\right)+\left(t_{3} \frac{t_{0}^{5}}{5!}+3 t_{1} t_{2} \frac{t_{0}^{4}}{4!}\right. \\
& +\left[t_{4} \frac{t_{0}^{6}}{6!}+\left(6 \frac{t_{2}^{2}}{2!}+4 t_{1} t_{3}\right) \frac{t_{0}^{5}}{5!}+24 \frac{t_{0}^{3}}{3!} \frac{t_{1}^{4}}{4!}+12 t_{2} \frac{t_{1}^{2}}{2!} \frac{t_{0}^{4}}{4!}\right] \\
& +\ldots
\end{aligned}
$$

$24 F_{1}^{\text {Kont }}=t_{1}+\left(\frac{t_{1}^{2}}{2!}+t_{0} t_{2}\right)+\left(2 \frac{t_{1}^{3}}{3!}+t_{3} \frac{t_{0}^{2}}{2!}+2 t_{0} t_{1} t_{2}\right)$
$+\left(6 \frac{t_{1}^{4}}{4!}+t_{4} \frac{t_{0}^{3}}{3!}+4 \frac{t_{0}^{2}}{2!} \frac{t_{2}^{2}}{2!}+6 t_{0} t_{2} \frac{t_{1}^{2}}{2!}+3 t_{1} t_{3} \frac{t_{0}^{2}}{2!}\right)$
$+\left(24 \frac{t_{1}^{5}}{5!}+t_{5} \frac{t_{0}^{4}}{4!}+24 t_{0} t_{2} \frac{t_{1}^{3}}{3!}+\left(4 t_{1} t_{4}+7 t_{2} t_{3}\right) \frac{t_{0}^{3}}{3!}+\right.$ $+\ldots$

Application to the NC ϕ^{3} model

set $m_{i}=\sqrt{\tilde{J}_{i}^{2}+\text { const }} \approx\left\{\begin{aligned} i, & d=2 \\ \left(i_{1}+i_{2}\right), & d=4\end{aligned} \quad\right.$ (degenera as given by the ϕ^{3} model with harmonic oscillator poten note:

- $t_{0},\left(t_{1}\right)$ and $u_{0}=-\sum_{i} \frac{1}{\sqrt{m_{i}^{2}-2 u_{0}}} \quad$ and correlation func divergent a priori
- only the combination

$$
\sqrt{m_{i}^{2}-2 u_{0}}=\lambda^{-2 / 3} \sqrt{\tilde{J}_{k}^{2}+2 b}
$$

enters, where $b=(i \lambda) a-\lambda^{4 / 3} u_{0}+\lambda^{2} c^{2} / 2 \quad(a, c \ldots$ ba will show: \tilde{J} and b are finite after renormalization, for suitable $\quad a=a_{N}, c=c_{N}, \mu^{2}=\mu_{N}^{2} \quad$ (dive rendering correlation functions well-defined in the limit

Renormalization and finiteness

1-point function at genus 0 :

$$
\begin{aligned}
&\left\langle\phi_{k k}\right\rangle_{g=0}=2 i \lambda \frac{\partial}{\partial \tilde{J}_{k}^{2}} F_{0}\left(\tilde{J}^{2}\right)-\frac{J_{k}}{i \lambda} \\
&=\frac{1}{i \lambda}\left(\sqrt{\tilde{J}_{k}^{2}+2 b}-\tilde{J}_{k}\right)+c+\sum_{j} \frac{(i \lambda)}{\sqrt{\tilde{J}_{k}^{2}+2 b} \sqrt{\tilde{J}_{j}^{2}+2 b}}+ \\
& \Rightarrow \quad c=\left\{\begin{array}{rr}
0 \quad, & d=2 \\
-\frac{i \lambda}{\left(8 \pi^{2} \theta\right)^{2}} \ln (N)+c^{\prime}, & d=4
\end{array}, \quad \text { and } .\right.
\end{aligned}
$$

b determined by renormalization condition $\left\langle\phi_{00}\right\rangle=0$, solu in 4D: $\quad \tilde{J}=J+(i \lambda) c$ finite \Rightarrow mass renormalization

$$
\mu^{2}=\frac{(i \lambda)^{2}}{256 \pi^{6} \theta^{4}} \ln (N)+\mu_{R}^{2}
$$

complete agreement with 1-loop result
counterterm a : \quad (recall $\left.\int a \phi\right)$ determined through implic

$$
\begin{aligned}
& \frac{b}{i \lambda}-a+(i \lambda)^{2} c^{2} / 2=-\sum_{i} \frac{(i \lambda)}{\sqrt{\tilde{J}_{i}^{2}+2 b}} \\
\Rightarrow & \quad a=\left\{\begin{array}{r}
\frac{(i \lambda)}{4 \pi} \ln N+(\text { finite }), \\
\frac{(i \lambda)}{8 \pi^{2} \theta} N \ln N-\frac{\lambda^{2}}{\left(8 \pi^{2} \theta\right)^{4}} \ln (N)^{2}+(\text { finite }),
\end{array}\right.
\end{aligned}
$$

renormalized 1-point function in 4D:

$$
\left\langle\phi_{k k}\right\rangle_{g=0}=\frac{1}{i \lambda}\left(\sqrt{\tilde{J}_{k}^{2}+2 b}-\tilde{J}_{k}\right)+c^{\prime}+(i \lambda) f
$$

finite and well-defined as $N \rightarrow \infty$
For certain point in moduli space $\left(b=c^{\prime}=0\right)$:

$$
\left\langle\phi_{k k}\right\rangle_{g=0}=(i \lambda) \sum_{j} \frac{1}{\tilde{J}_{j}}\left(\frac{1}{\tilde{J}_{k}+\tilde{J}_{j}}-\frac{1}{\tilde{J}_{0}+\tilde{J}_{j}}\right)
$$

coincides with one-loop result

Finiteness of general n-point function for an

1) diagonal case:

$$
\left\langle\phi_{i_{1} i_{1}} \ldots \phi_{i_{n} i_{n}}\right\rangle_{c} \sim \frac{\partial}{\partial m_{i_{1} i_{1}}^{2}} \ldots \frac{\partial}{\partial m_{i_{n} i_{n}}^{2}} F(M)
$$

easy to show using explicit form of F_{g} (polynomial in $\frac{I_{k}}{\left(1-I_{1}\right)}$
above renormalization $\quad a=a_{N}, c=c_{N}, \mu^{2}=\mu_{N}^{2}$ guarantees that all derivatives of $F_{g}(M)$ w.r.t. m_{i}^{2} are well-defined as $N \rightarrow \infty$, as long as $I_{1}=-\lambda^{2} \sum_{i} \frac{1}{\left(\bar{J}_{i}^{2}+2 t\right.}$
2) can be extended to general n-point functions

$$
\left\langle\phi_{i_{1} j_{1}} \ldots . \phi_{i_{n} j_{n}}\right\rangle_{c} \sim \frac{\partial}{\partial m_{i_{1} j_{1}}^{2}} \ldots \frac{\partial}{\partial m_{i_{n} j_{n}}^{2}} F(M)
$$

also well-defined for each genus g, using $F\left(M^{2}\right)=F\left(U^{-1} d i\right.$
(slight complication due to degeneracy in 4D, but no essent

Theorem: The (connected) genus g contribution to an function $\left\langle\phi_{i_{1} j_{1}} \ldots . \phi_{i_{n} j_{n}}\right\rangle_{c}$ is finite and has a well-defined for all g, provided the couplings are renormalized as abc all correlation functions can be computed in principle for ar 2D:

$$
a=\frac{(i \lambda)}{4 \pi} \ln N \quad(+ \text { finite })
$$

4D:

$$
\begin{array}{rlr}
c & =-\frac{i \lambda}{\left(8 \pi^{2} \theta\right)^{2}} \ln (N) \quad(+ \text { finite }) \\
\mu^{2} & =\frac{(i \lambda)^{2}}{256 \pi^{6} \theta^{4}} \ln (N) \quad(+ \text { finite }) \\
a & =\frac{(i \lambda)}{8 \pi^{2} \theta} N \ln N+\frac{(i \lambda)}{\left(8 \pi^{2} \theta\right)^{4}} \ln (N)^{2}
\end{array}
$$

note: model originally defined for imaginary coupling $\int i \lambda \phi$
can analytically continue to (sufficiently small) real co
all correlation functions real

Singularity (phase transition, instability) for real coupling simultaneously for all genera $g \geq 1$:

$$
I_{1}=-(i \lambda)^{2} \sum_{i} \frac{1}{\left(\tilde{J}_{i}^{2}+2 b\right)^{3 / 2}}=1
$$

2D:

$$
\frac{1+\mu^{2} \theta}{\lambda} \approx \pm 0.0646989
$$

4D:

$$
\mu_{R}^{2} \theta+2=\frac{\lambda^{2}}{2\left(8 \pi^{2} \theta\right)^{3}} .
$$

Example: 2-point function at genus 0 (in 4D)
using identity

$$
\left\langle\tilde{\phi}_{k l} \tilde{\phi}_{l k}\right\rangle=\frac{2 i \lambda}{m_{k}^{2}-m_{l}^{2}}\left\langle\tilde{\phi}_{k k}-\tilde{\phi}_{l l}\right\rangle
$$ find

$$
\left\langle\phi_{k l} \phi_{l k}\right\rangle_{g=0}=2 \frac{\sqrt{\tilde{J}_{k}^{2}+2 b}-\sqrt{\tilde{J}_{l}^{2}+2 b}+(i \lambda)^{2}\left(f_{R}(\underline{k})-j\right.}{\tilde{J}_{k}^{2}-\tilde{J}_{l}^{2}}
$$

coincides (!) with 1-loop for special point $\left(b=c^{\prime}=0\right)$ in m

$$
\stackrel{\left(b=c^{\prime}=0\right)}{=} \frac{2}{\tilde{J}_{k}+\tilde{J}_{l}}-(i \lambda)^{2} \frac{2}{\tilde{J}_{k}+\tilde{J}_{l}} \sum_{j} \frac{1}{\tilde{J}_{j}\left(\tilde{J}_{k}+\tilde{J}_{j}\right)}
$$

similarly

$$
\left\langle\phi_{l l} \phi_{k k}\right\rangle-\left\langle\phi_{k k}\right\rangle\left\langle\phi_{l l}\right\rangle=(i \lambda)^{2} \frac{1}{\sqrt{\tilde{J}_{k}^{2}+2 b}} \frac{1}{\sqrt{\tilde{J}_{l}^{2}+2 b}}\left(\frac{1}{\sqrt{\tilde{J}_{k}^{2}+2 b}}\right.
$$

in agreement with perturbative computations (recall $b=b$ (

Remarks and outlook:

- nontrivial interacting "solvable" NC 4D field theory
- renormalization determined by genus 0 contribution ald (cp. general NCFT; IR divergences are suppressed here expect to hold generally for (scalar) NCFT with oscilla genus 0 is accessible more generally (matrix model tech
- genus 0 contribution coincides exactly with 1-loop for s moduli space (not for higher genera) (??)
- is \sum_{g} convergent ?
- generalizations:
- $\mathrm{D}=6$? (no longer super-renormalizable)
- extend to $\Omega \neq 1$ (i.e. remove the oscillator potential certainly doable "perturbatively" ... ?

NCFT are accessible through new analytical (matrix) meth

