2ex minus . 8 ex

Quantized Gauge Theory on Fuzzy S^{2} and $\mathbb{C} P^{2}$

Harold Steinacker

Workshop on Quantum Gravity and Noncommutative Geometry Universidade Lusofona, Lisbon

20-23 July 2004

$$
\begin{gathered}
\text { hep-th/0307075, Nucl.Phys. B679 (2004) (H. S.) } \\
\text { hep-th/0407089, (H. Grosse, H. S.) }
\end{gathered}
$$

Outline:

- fuzzy spaces, fuzzy S^{2}
- Yang-Mills on fuzzy sphere as matrix model,
monopole sectors,
"path integral" and partition function
- 4 dimensions: gauge theory on fuzzy $\mathbb{C} P^{2}$

Fuzzy spaces:
(Madore...)

- $\mathcal{M}_{N} \ldots$ NC space with finitely many degrees of freedom (N)
- $\mathcal{M}_{N} \rightarrow \mathcal{M}$ (manifold) as $N \rightarrow \infty$.
- (NC) geometrical structures, symmetries, ...
- typically matrix algebras

Examples: fuzzy $S_{N}^{2}, \mathbb{C} P_{N}^{2}, S_{N}^{2} \times S_{N}^{2}, \ldots$
any (co)adjoint orbit of a Lie group G can be quantized in terms of a finite matrix algebra.

Goal: Study (quantum) field theory on \mathcal{M}_{N}
is regularized (cp. lattice field theory)
existence of limit $N \rightarrow \infty$ is nontrivial (UV/IR mixing, ...)

- coadjoint orbits \Rightarrow can use group theory!!
- can be used to "regularize" other noncommutative spaces, $S_{N}^{2} \rightarrow \mathbb{R}_{\theta}^{2}$, $S_{N}^{2} \times S_{N}^{2} \rightarrow \mathbb{R}_{\theta}^{4}$, $\mathbb{C} P_{N}^{2} \rightarrow \mathbb{R}_{\theta}^{4}$, etc
- occur in string theory:
- D-branes of group manifolds
- solutions of IKKT matrix model, ...
- Gauge theory on fuzzy spaces can be formulated as (multi)-matrix model
- well-defined
- simple: connections, bundles, topology arises automatically
- useful? computable?

Noncommutative gauge theory in a nutshell
assume: there exist elements $\lambda_{i} \in \mathcal{A}$ such that

$$
\partial_{i} f(x)=\left[\lambda_{i}, f(x)\right], \quad f(x) \in \mathcal{A}
$$

(derivatives are INNER)!
assume $\quad\left[\lambda_{i}, \lambda_{j}\right]=\theta_{i j}(\lambda)$
consider "covariant coordinates" (one-forms, ...)

$$
B_{i}=\lambda_{i}+A_{i}, \quad A=A_{i} \ldots \text { gauge field }
$$

consider

$$
\begin{aligned}
{\left[B_{i}, B_{j}\right]-\theta_{i j}\left(B_{i}\right) } & =\left[\lambda_{i}, A_{j}\right]-\left[\lambda_{j}, A_{i}\right]+\left[A_{i}, A_{j}\right] \\
& =F_{i j} \quad \ldots \text { field strength }
\end{aligned}
$$

gauge transformations: $\quad B_{i} \rightarrow U^{-1} B_{i} U, \quad A_{i} \rightarrow U^{-1} \partial_{i} U+U^{-1} A U$

Yang-Mills action on $\mathcal{A}: \quad\left(1^{\text {st }}\right.$ guess)

$$
S=\operatorname{Tr}\left(F_{i j} F^{i j}\right)=\operatorname{Tr}\left(\left(\left[B_{i}, B_{j}\right]-\theta_{i j}(B)\right)\left(\left[B^{i}, B^{j}\right]-\theta^{i j}(B)\right)\right)
$$

obviously gauge invariant under

$$
B_{i} \rightarrow U^{-1} B_{i} U
$$

$U \in U(\mathcal{A}) \quad \Rightarrow U(1)$ gauge theory
$\mathcal{A} \rightarrow \mathcal{A} \otimes \operatorname{Mat}(n) \Rightarrow U(n)$ gauge theory
simpler than on commutative spaces: don't need connection
... essentially Matrix Models: $\quad B_{i} \in \mathcal{A}$ resp. $\operatorname{Gl}(\mathcal{H})$.
trouble: usually $\operatorname{dim}(\mathcal{A})=\infty \quad$ (e.g. for \mathbb{R}_{θ}^{4})
however: on "fuzzy spaces" $\operatorname{dim}(\mathcal{A})=$ finite.

The fuzzy sphere S_{N}^{2} :
quantization parameter: $\theta=\frac{1}{N}, \quad N \in \mathbb{N}$.
algebra of functions: $\mathcal{A}=\operatorname{Fun}_{N}\left(S^{2}\right)=\operatorname{Mat}(N, \mathbb{C})$
rotations: let $\lambda_{i} \ldots N$-dim. rep. of $s u(2)$.

$$
f \in \mathcal{A} \rightarrow J_{i} \triangleright f:=\left[\lambda_{i}, f\right]
$$

\hookrightarrow space of functions decomposes into

$$
\begin{aligned}
f \in(N) \otimes(N) & =(1) \oplus(3) \oplus \ldots \oplus(2 N-1) \\
& =\left(\hat{Y}^{0}\right)+\left(\hat{Y}_{m}^{1}\right)+\ldots+\left(\hat{Y}_{m}^{N-1}\right)
\end{aligned}
$$

hence: \exists map

$$
\begin{aligned}
S_{N}^{2} & \rightarrow S^{2} \\
\hat{Y}_{m}^{l} & \rightarrow Y_{m}^{l}
\end{aligned}
$$

dimensionless coordinates $\lambda_{i}=x_{i} / \Lambda_{N}$ satisfy

$$
\begin{aligned}
& \begin{aligned}
\varepsilon_{k}^{i j} \lambda_{i} \lambda_{j}=i \lambda_{k}, \quad \lambda_{i} \lambda^{i}=\frac{N^{2}-1}{4} \\
{\left[\begin{array}{rl}
\left.x_{i}, x_{j}\right] & =i \Lambda_{N} \varepsilon_{i j k} x_{k}, \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2} & =R^{2} .
\end{array}\right.} \\
\Lambda_{N} \approx \frac{R}{N} \quad \ldots \quad \text { NC parameter [length] }
\end{aligned}
\end{aligned}
$$

integral:

$$
\int f(x):=\frac{4 \pi}{N} \operatorname{Tr}[f(x)]
$$

action for scalar fields:

$$
S_{0}=\int \frac{1}{2} \Phi\left(\Delta+m^{2}\right) \Phi+\frac{g}{4!} \Phi^{4}
$$

$\Phi \in \mathcal{A} \ldots$ hermitian matrix, $\quad \Delta=\sum J_{i}^{2}=\left[\lambda_{i},\left[\lambda_{i},.\right]\right]$

Gauge theory on S_{N}^{2} as Matrix Model

(Grosse, Klimcik, Watamuras, H.S. ...)
consider "covariant coordinates"

$$
B_{i}=\lambda_{i}+A_{i} \quad \in \operatorname{Fun}\left(S_{N}^{2}\right)=\operatorname{Mat}(N, \mathbb{C})
$$

note $\left[\lambda_{j}, \lambda_{k}\right]=i \varepsilon_{i j k} \lambda_{i}$, define

$$
\begin{aligned}
F_{j k} & =\left[B_{j}, B_{k}\right]-i \varepsilon_{i j k} B_{i} \\
& =\left[\lambda_{j}, A_{k}\right]-\left[\lambda_{k}, A_{j}\right]-i \varepsilon_{i j k} A_{i} \\
& \cong d A+A A
\end{aligned}
$$

.... field strength
gauge transformations:

$$
\begin{array}{ll}
B_{i} & \rightarrow U^{-1} B_{i} U, \\
A_{i} & \rightarrow U^{-1} A_{i} U+U^{-1}\left[\lambda_{i}, U\right]
\end{array} \quad U \in S U(N)
$$

try action:

$$
\begin{aligned}
S_{Y M} & =\frac{1}{g^{2}} \int\left(\left[B_{j}, B_{k}\right]-i \varepsilon_{i j k} B_{i}\right)\left(\left[B^{j}, B^{k}\right]-i \varepsilon^{i j k} B^{i}\right) \\
& =\frac{1}{g^{2}} \int F_{j k} F^{j k}
\end{aligned}
$$

invariant under rotations $S O(3)$ and gauge trafos
Solutions:

$$
\begin{gathered}
F_{j k}=0 \Leftrightarrow\left[B_{j}, B_{k}\right]=i \varepsilon_{i j k} B_{i} \\
B_{i}=\lambda_{i}
\end{gathered}
$$

hence: fuzzy sphere is solution of $S_{Y M}$.
other solutions: any other rep. of $s u(2)$!
general solution of $F=0$:
direct sum

$$
B_{i}=\left(\begin{array}{cccc}
\lambda_{i}^{\left(M_{1}\right)} & 0 & \ldots & 0 \\
0 & \lambda_{i}^{\left(M_{2}\right)} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{i}^{\left(M_{k}\right)}
\end{array}\right)
$$

"multi-brane configurations" in string theory

geometry is dynamical!
additional terms possible:

- Chern-Simons term (string theory)

$$
S_{C S}=\int A d A+A^{3}=\int \frac{1}{3} B_{i} B_{j} B_{k} \varepsilon^{i j k}+\frac{1}{2} B_{i} B^{i}
$$

... same saddle-points, but different action

$$
S_{4}=\frac{1}{N} \operatorname{Tr}\left(\left(B_{i} B^{i}-\lambda_{i} \lambda^{i}\right)^{2}\right)
$$

prefers solution $B_{i}=\lambda_{i}$, suppresses other (reducible) solutions
$\Rightarrow \quad S_{Y M}+S_{4} \ldots$ YM on single fuzzy sphere
note: NC gauge theory: action determines geometry,
gauge fields $=$ fluctuations of NC geometry

Observation:

$$
C=\frac{1}{2}+B_{i} \sigma^{i} \quad \in \operatorname{Mat}(2 N, \mathbb{C})
$$

for $B_{i}=\lambda_{i}$, satisfies

$$
C^{2}=\left(\frac{N}{2}\right)^{2}, \quad \operatorname{Tr}(C)=N
$$

include gauge fields $B_{i}=\lambda_{i}+A_{i} \quad \hookrightarrow$ consider

$$
\begin{aligned}
& S=\operatorname{Tr} V(C)=\frac{1}{N g^{2}} \operatorname{Tr}\left(\left(C^{2}-\frac{N^{2}}{4}\right)^{2}\right) \\
& =\frac{1}{N g^{2}} \operatorname{Tr}\left(\left(B_{i} B^{i}-\frac{N^{2}-1}{4}\right)^{2}\right. \\
& \left.\quad+\left(B_{i}+i \varepsilon_{i j k} B^{j} B^{k}\right)\left(B^{i}+i \varepsilon^{i r s} B_{r} B_{s}\right)\right)
\end{aligned}
$$

need constraint $C_{0}=\frac{1}{2} \ldots$ gauge theory on fuzzy sphere
Note: $\operatorname{Tr}(V(C))$ invariant under $U(2 N)$
constraint $C_{0}=\frac{1}{2}$ breaks $U(2 N) \rightarrow U(N)$
physical meaning of action:
decompose

$$
A_{i} \approx \frac{2}{N} x_{i} \varphi+A_{i}^{(t)}, \quad x_{i} A_{i}^{(t)}=0
$$

$\varphi \ldots$ auxiliary scalar field

$$
\begin{aligned}
& B_{i} B^{i}-\left(\frac{N}{2}\right)^{2}=2 \varphi-\left[\lambda^{i}, A_{i}^{(t)}\right]+\left(A_{i}^{(t)}\right)^{2}+o\left(\frac{1}{N}\right) \\
& F_{k l}= {\left[B_{k}, B_{l}\right]-i \varepsilon_{k l m} B^{m} } \\
& \approx\left[\lambda_{k}, A_{l}^{(t)}\right]-\left[\lambda_{l}, A_{k}^{(t)}\right]+\left[A_{k}^{(t)}, A_{l}^{(t)}\right]-i \varepsilon_{k l m} A_{m}^{(t)}+O(\varphi / N) \\
& \begin{array}{c}
S=\frac{1}{g^{2}} \int F_{k l} F^{k l}+\left(2 \varphi-\left[\lambda^{i}, A_{i}\right]+A_{i}^{2}\right)^{2} \\
\cong \frac{1}{g^{2}} \int F_{k l} F^{k l}
\end{array}
\end{aligned}
$$

... YM action on sphere.
φ decouples, $F_{k l} \ldots$ usual (tangential) field strength

Monopole sectors:

new saddle-points for $S=\operatorname{Tr} V(C)$:

$$
C=\frac{1}{2}+\left(\begin{array}{ccc}
\alpha_{m} \lambda_{i}^{(M)} & \sigma^{i} & 0 \\
0 & 0
\end{array}\right)=\frac{1}{2}+\lambda_{i}^{(N)} \sigma^{i}+A_{i} \sigma^{i}
$$

where

$$
\begin{aligned}
M & =N-m \\
\lambda_{i}^{(M)} & \ldots M-\operatorname{dim} . \text { rep. of } s u(2) \\
\alpha_{m} & \sim 1+\frac{m}{N}
\end{aligned}
$$

written as fluctuation over previous "vacuum" $\lambda_{i}^{(N)}$:

Result (for $N \rightarrow \infty$, fixed m):

$$
\vec{A}=\frac{m}{2} \frac{1}{1+x_{3}}\left(\begin{array}{c}
x_{2} \\
-x_{1} \\
0
\end{array}\right)
$$

... usual monopole field with charge $m \in \mathbb{Z}$
action:

$$
S\left(C^{(M)}\right)=\frac{m^{2}}{2 g^{2}}
$$

note: no need to introduce connections on fiber bundles etc., just matrices of different size
simpler than classical!

Nonabelian $U(n)$ Yang-Mills

same action $S=\operatorname{Tr} V(C)$, but with matrices of size

$$
M=n N-m \quad m \in \mathbb{Z}
$$

write again

$$
\begin{aligned}
& \quad C=\frac{1}{2}+B_{i} \sigma^{i}, \quad B_{i}=\lambda_{i}^{(N)}+A_{i, 0}+A_{i, a} t^{a} \\
& t^{a} \ldots \\
& \text { su }(n) \text { Gell-Mann matrices }
\end{aligned}
$$

Action:

$$
S=\operatorname{Tr} V(C)=\frac{1}{g^{2}} \int\left(F_{k l, 0} F^{k l, 0}+F_{k l, a} F^{k l, a}\right) \quad \ldots U(n) \text { YM theory }
$$

saddle points: Block-matrices parametrized by integers m_{1}, \ldots, m_{n}. Action:

$$
S\left(C^{\left(m_{1}, \ldots, m_{n}\right)}\right)=\frac{1}{2 g^{2}} \sum m_{i}^{2} \quad(\text { for large } N)
$$

Quantization

$$
Z[J]=\int d B_{i} e^{-S\left(B_{i}\right)+B_{i} J^{i}}, \quad B_{i} \in \operatorname{Mat}(N, \mathbb{C})
$$

nice properties:

- well-defined (finite!)
- invariant under gauge-trafos and $S O(3)$ rotation
- no gauge fixing (Faddeev-Popov) necessary
goal: evaluate path integral using matrix model techniques known: Z can be calculated for gauge theory on S^{2}
(Migdal, Rusakov)

Recall single-matrix models:

$$
Z=\int d C e^{-T r V(C)}=\int \prod_{i=1}^{N} d c_{i} \Delta^{2}(c) e^{-\sum_{i} V\left(c_{i}\right)}
$$

$c_{i} \ldots$ eigenvalues of $C, \quad \Delta(c)=\prod_{i<j}\left(c_{i}-c_{j}\right) \ldots$ Vandermonde det.
here: more complicated: 3 matrices B_{i}
Trick: one $2 M \times 2 M$ matrix $C=\frac{1}{2}+B_{i} \sigma^{i}=C_{\alpha} \sigma^{\alpha}$, constraint $C_{0}=\frac{1}{2}$.

$$
\begin{aligned}
Z & \left.=\int d B_{i} \exp (-S(B))\right) \\
& =\int d C \delta\left(C_{0}-\frac{1}{2}\right) \exp (-\operatorname{Tr} V(C)) \\
& =\int d K Z_{0}[J] e^{-\frac{i}{2} T r J}
\end{aligned}
$$

where

$$
Z_{0}[J]=\int d C \exp (-\operatorname{Tr} V(C)+i \operatorname{Tr}(C J)), \quad J=\left(\begin{array}{cc}
K & 0 \\
0 & K
\end{array}\right)=K \sigma^{0}
$$

use Itzykson-Zuber-Harish-Chandra formula:

$$
\begin{gathered}
\int d U \exp \left(i \operatorname{Tr}\left(U^{-1} C U J\right)\right)=\text { const } \frac{\operatorname{det}\left(e^{i \Lambda_{i} J_{j}}\right)}{\Delta\left(\Lambda_{i}\right) \Delta\left(J_{j}\right)} \\
Z=\int d k_{i} \Delta^{2}(k) \int d \Lambda_{i} \Delta^{2}\left(\Lambda_{i}\right) \exp (-\operatorname{Tr} V(\Lambda)) \frac{\operatorname{det}\left(e^{i\left(\Lambda_{i} J_{j}\right)}\right.}{\Delta\left(\Lambda_{i}\right) \Delta\left(J_{j}\right)}
\end{gathered}
$$

in large N limit (n fixed): (considerable effort) ...

$$
Z=\sum_{p_{1}, \ldots, p_{n} \in \mathbb{Z}} \Delta^{2}(p) \exp \left(-2 \pi^{2} g^{2} \sum_{i} p_{i}^{2}\right)
$$

equivalent to result of Migdal, Rusakov on S^{2} :

$$
Z=\sum_{R}\left(d_{R}\right)^{2} \exp \left(-4 \pi^{2} g^{2} C_{2 R}\right)
$$

$R \ldots$ irrep of $s u(n), C_{2 R} \ldots$ quadratic casimir
Hence:
YM on fuzzy sphere \rightarrow YM on classical sphere, is calculable

Gauge theory on fuzzy $\mathbb{C} P^{2}$

1.) Classical $\mathbb{C} P^{2}$

$$
\mathbb{C} P^{2}=S U(3) / \operatorname{SU}(2) \times U(1) \quad \subset \operatorname{Lie}(s u(3)) \cong \mathbb{R}^{8}
$$

4-dim. (co)adjoint orbit, compactification of \mathbb{R}^{4} with S^{2}
8-dimensional isometry group $S U(3)$ (cp. Poincare/Euclidean group)
classical coordinate form: $x_{a} \ldots$ coords of $\mathbb{R}^{8} \cong s u(3)$

$$
\begin{aligned}
g^{a b} x_{a} x_{b} & =1 \\
d_{c}^{a b} x_{a} x_{b} & =\frac{2}{\sqrt{3}} x_{c}
\end{aligned}
$$

$d_{a b c} \ldots$ d-tensor of $s u(3)$
2.) Fuzzy $\mathbb{C} P_{N}^{2}$

$$
\begin{aligned}
\mathbb{C} P_{N}^{2} & =\operatorname{Mat}\left(D_{N}, \mathbb{C}\right)=\operatorname{Hom}\left(V_{N}\right) \\
D_{N}: & =\operatorname{dim}\left(V_{N}\right)=(N+1)(N+2) / 2
\end{aligned}
$$

$V_{N} \ldots$ irrep of $s u(3)$ with highest weight $N \Lambda_{2}$.

$$
\xi_{a}=\left.T_{a}\right|_{V_{N}}, \quad x_{a}=\Lambda_{N} \xi_{a}, \quad \Lambda_{N} \approx \frac{R}{N}
$$

and satisfy the relations

$$
\begin{aligned}
{\left[x_{a}, x_{b}\right] } & =\frac{i}{2} \Lambda_{N} f_{a b c} x_{c} \\
g^{a b} x_{a} x_{b} & =R^{2} \\
d_{c}^{a b} x_{a} x_{b} & =R \frac{2 N / 3+1}{\sqrt{\frac{1}{3} N^{2}+N}} x_{c}
\end{aligned}
$$

Gauge theory on fuzzy $\mathbb{C} P_{N}^{2}$

8 coordinates \rightarrow (4 gauge fields, 4 auxiliary fields)

$$
B_{a}=\xi_{a}+A_{a}
$$

Yang-Mills action: multi-matrix model

$$
S=\frac{1}{g} \int F_{a b} F_{a b}+\frac{1}{N} D_{a} D_{a}
$$

where

$$
\begin{aligned}
F_{a b} & =i\left[B_{a}, B_{b}\right]+\frac{1}{2} f_{a b c} B_{c} \\
D_{a} & =d_{a b c} B_{b} B_{c}-\left(\frac{2 N}{3}+1\right) B_{a}
\end{aligned}
$$

note: additional term

$$
\frac{1}{N} D_{a} D_{a}=4 N\left(A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+\frac{1}{9} A_{8}^{2}\right)
$$

gives large mass to the transversal fields, 4 gauge fields $A_{4,5,6,7}$ survive

Monopole solutions:

Ansatz

$$
C_{a}=\alpha \xi_{a}^{(N-m)}=\alpha \pi_{(0, N-m)}\left(T_{a}\right), \quad \alpha=1+\frac{m}{N}+o\left(1 / N^{2}\right)
$$

is exact solution of equation of motion.
Gauge field:

$$
C_{a}=\left(\begin{array}{cc}
\alpha \xi_{a}^{(N-m)} & 0 \\
0 & 0
\end{array}\right)=\xi_{a}+A_{i} \sigma^{i}
$$

A_{a} finite, explicit except at "sphere at infinity"
Field strength:

$$
F=-m \eta
$$

η... symplectic form

$$
c_{1}=m \quad \ldots 1^{s t} \text { Chern number }
$$

"Instanton" solutions:

Ansatz

$$
C_{a}^{\prime \prime}=\zeta_{a}^{(m)}=\pi_{(N-m) \Lambda_{2}+\Lambda_{1}}\left(T_{a}\right)
$$

must be projected on tangential space
\hookrightarrow exact solution of equation of motion, gauge field finite, explicit except at "sphere at infinity"

Field strength: $\left|F_{a b}\right|=$ const
first and second Chern number $c_{1}, c_{2} \neq 0$
nontrivial rank 2 bundle: "instanton + monopole"

$$
L^{m} \otimes F
$$

L... basic line bundle (monopole)
F.. nontrivial rank 2 bundle, $F \oplus L=I^{3}$.

Quantization

$$
Z[J]=\int d B_{a} e^{-S\left(B_{a}\right)+B_{a} J^{a}}, \quad B_{a} \in \operatorname{Mat}\left(D_{N}, \mathbb{C}\right)
$$

nice properties:

- well-defined (finite!)
- invariant under gauge-trafos and $S U(3)$ rotation

Conclusions:

- gauge theory on fuzzy spaces $=($ multi-) Matrix Model
- provides nonperturbative definition for finite N
- "smart" lattice gauge theory, preserving symmetries
- \exists higher-dim. analogs: fuzzy $\mathbb{C} P^{2}(4$-dim), ...
- \exists scaling limit $S_{N}^{2} \rightarrow \mathbb{R}_{\theta}^{2}, \mathbb{C P}_{N}^{2} \rightarrow \mathbb{R}_{\theta}^{4}, \ldots$

Questions/Problems:

- does $N \rightarrow \infty$ exist on other spaces? properties?
- calculate observables, develop tools

