From Matrices to Quantum Geometry

Harold Steinacker

University of Vienna

Wien, june 25, 2013

Geometry and physics without space-time continuum

aim: (toy-?) model for

- quantum theory of all fund. interactions (gravity!)
- pre-geometric
\rightarrow geometry, gravity "emerge" at low energies
- quantum structure of space-time at L_{P}
candidates
- string theory
- Vast'andscape of possible vacua
- here:
- related to string theory, more predictive
- dynamical NC space-time,
- accessible novel tools!

Geometry and physics without space-time continuum

aim: (toy-?) model for

- quantum theory of all fund. interactions (gravity!)
- pre-geometric
\rightarrow geometry, gravity "emerge" at low energies
- quantum structure of space-time at L_{P}
candidates:
- string theory:
- vast landscape of possible vacua... (??)
- here: Matrix Models
- related to string theory, more predictive
- dynamical NC space-time, matrix geometry
- accessible, novel tools!

Quantized phase space in quantum mechanics

classical mechanics
phase space \mathbb{R}^{2}
functions $f(q, p) \in \mathcal{A}$,
$\mathcal{A}=\mathcal{C}\left(\mathbb{R}^{2}\right)$...commutative algebra
Poisson bracket $\{q, p\}=1$
quantization map: $\mathcal{Q}: \mathcal{A} \quad \rightarrow \quad \mathcal{A}_{\hbar}$

$$
\begin{aligned}
\mathcal{Q}(f) \mathcal{Q}(g) & =\mathcal{Q}(f g)+O(\hbar) \\
{[\mathcal{Q}(f), \mathcal{Q}(g)] } & =\mathcal{Q}(i\{f, g\})+O\left(\hbar^{2}\right)
\end{aligned}
$$

Quantization of Poisson (symplectic) manifolds

$(\mathcal{M},\{.,\}.) \ldots 2 n$-dimensional manifold with Poisson structure

$$
\{f, g\}=i \theta^{\mu \nu}(x) \partial_{\mu} f \partial_{\nu} g
$$

quantization map:

$$
\mathcal{Q}: \mathcal{C}(\mathcal{M}) \rightarrow L(\mathcal{H})
$$

such that

$$
\begin{aligned}
\mathcal{Q}(f) \mathcal{Q}(g) & =\mathcal{Q}(f g)+O(\theta) \\
{[\mathcal{Q}(f), \mathcal{Q}(g)] } & =\mathcal{Q}(i\{f, g\})+O\left(\theta^{2}\right)
\end{aligned}
$$

("nice") $\Phi \in L(\mathcal{H}) \cong \operatorname{Mat}(\infty, \mathbb{C}) \quad \leftrightarrow \quad$ quantized function on \mathcal{M}

Quantization of Poisson (symplectic) manifolds

($\mathcal{M},\{.,\}$.$) ... 2 n$-dimensional manifold with Poisson structure

$$
\{f, g\}=i \theta^{\mu \nu}(x) \partial_{\mu} f \partial_{\nu} g
$$

quantization map:

$$
\mathcal{Q}: \mathcal{C}(\mathcal{M}) \rightarrow L(\mathcal{H})
$$

such that

$$
\begin{aligned}
\mathcal{Q}(f) \mathcal{Q}(g) & =\mathcal{Q}(f g)+O(\theta) \\
{[\mathcal{Q}(f), \mathcal{Q}(g)] } & =\mathcal{Q}(i\{f, g\})+O\left(\theta^{2}\right)
\end{aligned}
$$

("nice") $\Phi \in L(\mathcal{H}) \cong \operatorname{Mat}(\infty, \mathbb{C}) \quad \leftrightarrow \quad$ quantized function on \mathcal{M}
here: assume \mathcal{M} compact (torus, sphere, ...)
\rightarrow Hilbert space $\mathcal{H}=\mathbb{C}^{N}$ finite-dimensional, $\mathcal{A}_{\theta}=\operatorname{Mat}(N, \mathbb{C})$

$$
\begin{aligned}
(2 \pi \hbar) \operatorname{Tr} \mathcal{Q}(\phi) & \sim \int_{\mathcal{M}} d^{2} x \phi(x) \quad \text { (Bohr-Sommerfeld) } \\
2 \pi N=2 \pi \operatorname{Tr} \mathbb{1} & \sim \int_{\mathcal{M}} \omega=\operatorname{Vol}(\mathcal{M})
\end{aligned}
$$

ω... sympletic (volume) form on \mathcal{M}

NC (matrix) geometry:

same math as Q.M.,
Poisson (sympletic) manifold \mathcal{M} interpreted as physical space(-time) quantized space(-time) $\mathcal{M}_{\theta} \leftrightarrow$ NC algebra of functions \mathcal{A}_{θ}
beyond Q.M:
need metric structure, dynamical (from M.M.!)

math background, NC geometry:

Gelfand-Naimark theorem:
commutative C^{*} - algebra \mathcal{A} with 1 is isomorphic to C^{*} - algebra of (continuous) functions on compact Haussdorf-space \mathcal{M}.

NC geometry: $\mathcal{A}=$ NC (operator-) algebra
$\hat{=}$ "functions on quantum space"

+ additional structure (metric, ...)
many possibilities (A. Connes; matrix models; ...)
guideline:
physically relevant models of QFT, gauge theory
$\xrightarrow{\text { here }}$ matrix-models

Example: the fuzzy torus T_{N}^{2}

The embedded 2D torus

$$
x^{a}: T^{2} \hookrightarrow \mathbb{R}^{4}, \quad a=1,2,3,4
$$

via

$$
\begin{aligned}
x^{1}+i x^{2} & =e^{i \varphi} \\
x^{3}+i x^{4} & =e^{i \psi}
\end{aligned}
$$

so that $x^{a}=x^{a}(\varphi, \psi)$... functions on T^{2},

$$
\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}=1, \quad\left(x^{3}\right)^{2}+\left(x^{4}\right)^{2}=1
$$

Example: the fuzzy torus T_{N}^{2}

The embedded 2D torus

$$
x^{a}: T^{2} \hookrightarrow \mathbb{R}^{4}, \quad a=1,2,3,4
$$

via

$$
\begin{aligned}
x^{1}+i x^{2} & =e^{i \varphi}, \\
x^{3}+i x^{4} & =e^{i \psi}
\end{aligned}
$$

so that $x^{a}=x^{2}(\varphi, \psi)$... functions on T^{2},

$$
\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}=1, \quad\left(x^{3}\right)^{2}+\left(x^{4}\right)^{2}=1
$$

$U(1)_{L} \times U(1)_{R}$ symmetry $\varphi \rightarrow \varphi+\alpha, \quad \psi \rightarrow \psi+\beta$
invariant Poisson structure

$$
\{\varphi, \psi\}=\theta, \quad \Leftrightarrow \quad\left\{e^{i \varphi}, e^{i \psi}\right\}=-\theta e^{i \varphi} e^{i \psi}
$$

symplectic form $\omega=\theta^{-1} d \varphi \wedge d \psi$

The fuzzy torus T_{N}^{2} : unitary matrices

$$
\begin{gathered}
U=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
& & \ddots & & \\
0 & & \ldots & 0 & 1 \\
1 & 0 & \ldots & & 0
\end{array}\right), \quad V=\left(\begin{array}{llll}
1 & & \\
& e^{2 \pi i \frac{1}{N}} & & \\
& & e^{2 \pi i \frac{2}{N}} & \\
& & \ddots & \\
& \\
& =q V U, \quad e^{2 \pi i \frac{N-1}{N}}
\end{array}\right) \text { satisfy } \\
\end{gathered}
$$

generate $\mathcal{A}=\operatorname{Mat}(\mathrm{N}, \mathbb{C}) \ldots$ quantiz. algebra of functions on T_{N}^{2}
$\underline{\mathbb{Z}_{N} \times \mathbb{Z}_{N} \text { action: }}$

$$
\begin{array}{rlr}
\mathbb{Z}_{N} \times \mathcal{A} & \rightarrow \mathcal{A} & \text { similar other } \mathbb{Z}_{N} \\
\left(\omega^{k}, \phi\right) & \mapsto U^{k} \phi U^{-k} &
\end{array}
$$

$\mathcal{A}=\oplus_{n, m=0}^{N-1} U^{n} V^{m} \quad \ldots$ harmonics

quantization map:

$$
\begin{aligned}
\mathcal{Q}: \mathcal{C}\left(T^{2}\right) & \rightarrow \mathcal{A}=\operatorname{Mat}(\mathrm{N}, \mathbb{C}) \\
e^{i n \varphi} e^{i m \psi} & \mapsto\left\{\begin{aligned}
U^{n} V^{m}, & |n|,|m|<N / 2 \\
0, & \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

satisfies

$$
\begin{aligned}
\mathcal{Q}(f g) & =\mathcal{Q}(f) \mathcal{Q}(g)+O\left(\frac{1}{N}\right), \\
\mathcal{Q}(i\{f, g\}) & =[\mathcal{Q}(f), \mathcal{Q}(g)]+O\left(\frac{1}{N^{2}}\right)
\end{aligned}
$$

in particular

$$
[U, V]=(q-1) U V \sim \frac{2 \pi i}{N} U V
$$

\rightarrow Poisson structure $\left\{e^{i \varphi}, e^{i \psi}\right\}=\frac{2 \pi}{N} e^{i \varphi} e^{i \psi}$ on T^{2}

$$
\{\varphi, \psi\}=-\frac{2 \pi}{N} \equiv \theta
$$

$T_{N}^{2} \ldots$ quantization of $\left(T^{2}, N \omega\right)$
need something like a metric on T_{N}^{2}
several possibilities:

- metric encoded in Laplacian $\Delta_{g} \phi=\frac{1}{\sqrt{|g|}} \partial_{\mu}\left(\sqrt{|g|} g^{\mu \nu} \partial_{\nu} \phi\right)$
\rightarrow define Laplace operator (or Dirac operator ... (Connes)) on \mathcal{A}_{θ} can recover (almost ...) metric $g_{\mu \nu}$ from spectrum of Δ_{g} ("can you hear the shape of a drum"?)
- induced by embedding (\rightarrow matrix models!)

$$
X^{a} \sim x^{a}: \quad \mathcal{M} \hookrightarrow \mathbb{R}^{10}
$$

more transparent, work with Poisson manifolds $\left(\mathcal{M}, \theta^{\mu \nu}, g_{\mu \nu}\right)$

- differential calculus (Madore), ...
metric on $T_{N}^{2}: \quad$ encoded in embedding $X^{a}=\mathcal{Q}\left(x^{a}\right): T^{2} \hookrightarrow \mathbb{R}^{4}$

$$
\begin{aligned}
U & =X^{1}+i X^{2}=\mathcal{Q}\left(x^{1}+i x^{2}\right)=\mathcal{Q}\left(e^{i \varphi}\right) \\
V & =X^{3}+i X^{4}=\mathcal{Q}\left(x^{3}+i x^{4}\right)=\mathcal{Q}\left(e^{i \psi}\right)
\end{aligned}
$$

... quantization of embedding maps
Laplace operator:

$$
\begin{aligned}
\Delta \phi & =\left[X^{a},\left[X^{b}, \phi\right]\right] \delta_{a b} \\
& =\left[U,\left[U^{\dagger}, \phi\right]\right]+\left[V,\left[V^{\dagger}, \phi\right]\right]=2 \phi-U \phi U^{\dagger}-U^{\dagger} \phi U-(\% V) \\
\Delta\left(U^{n} V^{m}\right) & \sim\left([n]_{q}^{2}+[m]_{q}^{2}\right) U^{n} V^{m} \sim\left(n^{2}+m^{2}\right) U^{n} V^{m}
\end{aligned}
$$

where

$$
[n]_{q}=\frac{q^{n / 2}-q^{-n / 2}}{q^{1 / 2}-q^{-1 / 2}}=\frac{\sin (n \pi / N)}{\sin (\pi / N)} \sim n \quad(\text { "q-number") }
$$

$\operatorname{spec} \Delta \approx \operatorname{spec} \Delta_{T^{2}} \quad$ below cutoff \Rightarrow geometry = flat torus UV cutoff $|n| \leq N / 2$

The fuzzy sphere

classical S^{2} :

$$
\left.\begin{array}{rl}
x^{a}: S^{2} & \hookrightarrow \\
\mathbb{R}^{3} \\
x^{a} x^{a} & =1
\end{array}\right\} \Rightarrow \mathcal{A}=\mathcal{C}^{\infty}\left(S^{2}\right)
$$

fuzzy sphere S_{N}^{2} :
let $X^{a} \in \operatorname{Mat}(\mathrm{~N}, \mathbb{C}) \ldots 3$ hermitian matrices

$$
\begin{aligned}
{\left[X^{a}, X^{b}\right] } & =\frac{i}{\sqrt{C_{N}}} \varepsilon^{a b c} X^{c}, \quad C_{N}=\frac{1}{4}\left(N^{2}-1\right) \\
X^{a} X^{a} & =\mathbf{1},
\end{aligned}
$$

realized as $X^{a}=\frac{1}{\sqrt{C_{N}}} J^{a} \quad \ldots \quad N$ - dim irrep of $\mathfrak{s u}(2)$ on \mathbb{C}^{N}, generate $\mathcal{A} \cong \operatorname{Mat}(\mathrm{N}, \mathbb{C}) \ldots$ alg. of functions on S_{N}^{2}
$S O(3)$ action:

$$
\begin{aligned}
\mathfrak{s u}(2) \times \mathcal{A} & \rightarrow \mathcal{A} \\
\left(J^{a}, \phi\right) & \mapsto\left[X^{a}, \phi\right]
\end{aligned}
$$

decompose $\mathcal{A}=\operatorname{Mat}(\mathrm{N}, \mathbb{C})$ into irreps of $S O(3)$:

$$
\begin{aligned}
\mathcal{A}=\operatorname{Mat}(\mathrm{N}, \mathbb{C}) \cong(\mathrm{N}) \otimes(\overline{\mathrm{N}}) & =(1) \oplus(3) \oplus \ldots \oplus(2 N-1) \\
& =\left\{\hat{Y}_{0}^{0}\right\} \oplus\left\{\hat{Y}_{m}^{1}\right\} \oplus \ldots \oplus\left\{\hat{Y}_{m}^{N-1}\right\} .
\end{aligned}
$$

... fuzzy spherical harmonics (polynomials in X^{a}); UV cutoff ! quantization map:

$$
\begin{aligned}
\mathcal{Q}: \mathcal{C}\left(S^{2}\right) & \rightarrow \mathcal{A}=\operatorname{Mat}(\mathrm{N}, \mathbb{C}) \\
Y_{m}^{\prime} & \mapsto\left\{\begin{array}{cc}
\hat{Y}_{m}^{\prime}, & I<N \\
0, & I \geq N
\end{array}\right.
\end{aligned}
$$

satisfies

$S O(3)$-inv. Poisson structure
decompose $\mathcal{A}=\operatorname{Mat}(\mathrm{N}, \mathbb{C})$ into irreps of $S O(3)$:

$$
\begin{aligned}
\mathcal{A}=\operatorname{Mat}(\mathrm{N}, \mathbb{C}) \cong(\mathrm{N}) \otimes(\overline{\mathrm{N}}) & =(1) \oplus(3) \oplus \ldots \oplus(2 N-1) \\
& =\left\{\hat{Y}_{0}^{0}\right\} \oplus\left\{\hat{Y}_{m}^{1}\right\} \oplus \ldots \oplus\left\{\hat{Y}_{m}^{N-1}\right\} .
\end{aligned}
$$

... fuzzy spherical harmonics (polynomials in X^{a}); UV cutoff !

quantization map:

$$
\begin{aligned}
\mathcal{Q}: \mathcal{C}\left(S^{2}\right) & \rightarrow \mathcal{A}=\operatorname{Mat}(\mathrm{N}, \mathbb{C}) \\
Y_{m}^{\prime} & \mapsto\left\{\begin{array}{cc}
\hat{Y}_{m}^{\prime}, & I<N \\
0, & I \geq N
\end{array}\right.
\end{aligned}
$$

satisfies

$$
\begin{aligned}
\mathcal{Q}(f g) & =\mathcal{Q}(f) \mathcal{Q}(g)+O\left(\frac{1}{N}\right), \\
\mathcal{Q}(i\{f, g\}) & =[\mathcal{Q}(f), \mathcal{Q}(g)]+O\left(\frac{1}{N^{2}}\right)
\end{aligned}
$$

$S O(3)$-inv. Poisson structure $\left\{x^{a}, x^{b}\right\}=\frac{2}{N} \varepsilon^{a b c} x^{c}$ on S^{2}
decompose $\mathcal{A}=\operatorname{Mat}(\mathrm{N}, \mathbb{C})$ into irreps of $S O(3)$:

$$
\begin{aligned}
\mathcal{A}=\operatorname{Mat}(\mathrm{N}, \mathbb{C}) \cong(\mathrm{N}) \otimes(\overline{\mathrm{N}}) & =(1) \oplus(3) \oplus \ldots \oplus(2 N-1) \\
& =\left\{\hat{Y}_{0}^{0}\right\} \oplus\left\{\hat{Y}_{m}^{1}\right\} \oplus \ldots \oplus\left\{\hat{Y}_{m}^{N-1}\right\} .
\end{aligned}
$$

... fuzzy spherical harmonics (polynomials in X^{a}); UV cutoff !

quantization map:

$$
\begin{aligned}
\mathcal{Q}: \mathcal{C}\left(S^{2}\right) & \rightarrow \mathcal{A}=\operatorname{Mat}(\mathrm{N}, \mathbb{C}) \\
Y_{m}^{\prime} & \mapsto\left\{\begin{array}{cc}
\hat{Y}_{m}^{\prime}, & I<N \\
0, & I \geq N
\end{array}\right.
\end{aligned}
$$

satisfies

$$
\begin{aligned}
\mathcal{Q}(f g) & =\mathcal{Q}(f) \mathcal{Q}(g)+O\left(\frac{1}{N}\right) \\
\mathcal{Q}(i\{f, g\}) & =[\mathcal{Q}(f), \mathcal{Q}(g)]+O\left(\frac{1}{N^{2}}\right)
\end{aligned}
$$

$S O(3)$-inv. Poisson structure $\left\{x^{a}, x^{b}\right\}=\frac{2}{N} \varepsilon^{a b c} x^{c}$ on S^{2}
$S_{N}^{2} \ldots$ quantization of $\left(S^{2}, N \omega\right)$

metric structure of fuzzy sphere

metric encoded in NC Laplace operator

$$
\begin{aligned}
& \Delta: \mathcal{A} \rightarrow \mathcal{A}, \quad \Delta \phi=\left[X^{a},\left[X^{b}, \phi\right]\right] \delta_{a b} \\
\Rightarrow & \Delta \hat{Y}_{m}^{\prime}=\frac{1}{C_{N}} /(I+1) \hat{Y}_{m}^{\prime}
\end{aligned}
$$

spectrum identical with classical case $\Delta_{g} \phi=\frac{1}{\sqrt{|g|}} \partial_{\mu}\left(\sqrt{|g|} g^{\mu \nu} \partial_{\nu} \phi\right)$
\Rightarrow effective metric of $\Delta=$ round metric on S^{2}

geometry from matrices:

given a suitable set of matrices $X^{a} \in \operatorname{Mat}(\infty, \mathbb{C}) \cong L(\mathcal{H})$

$$
\text { defines } \begin{cases}\text { algebra } & \mathcal{A} \cong\left\langle f\left(X^{a}\right)\right\rangle \subset \operatorname{Mat}(\infty, \mathbb{C}) \\ \text { quantized embedding } & X^{a} \sim x^{a}: \mathcal{M} \hookrightarrow \mathbb{R}^{10}\end{cases}
$$

Lemma:

$$
\Delta f(X):=\left[X_{a},\left[X^{a}, f(X)\right]\right] \sim-e^{\sigma} \Delta_{G} f(x)
$$

... Matrix Laplace- operator, effective metric (H.S. Nucl.Phys. B810 (2009))

$$
\begin{aligned}
G^{\mu \nu}(x) & =e^{-\sigma} \theta^{\mu \mu^{\prime}}(x) \theta^{\nu \nu^{\prime}}(x) g_{\mu^{\prime} \nu^{\prime}}(x) \quad \text { effective metric (cf. open string m.) } \\
g_{\mu \nu}(x) & =\partial_{\mu} x^{a} \partial_{\nu} x^{b} \eta_{a b} \quad \text { induced metric on } \mathcal{M}_{\theta}^{4} \quad \text { (cf. closed string m.) } \\
e^{-2 \sigma} & =\frac{\left|\theta_{\mu \nu}^{-1}\right|}{\left|g_{\mu \nu}\right|}
\end{aligned}
$$

classical geometry \leftrightarrow NC geometry

Poisson-manifolds $(\mathcal{M},\{\}$,	NC space $(\mathcal{A}, \mathcal{H})$
$\begin{aligned} \mathcal{C}^{\infty}(\mathcal{M}) & =\{f: \mathcal{M} \rightarrow \mathbb{C}\} \\ & \left\{x^{\mu}, x^{\nu}\right\}=\theta^{\mu \nu} \end{aligned}$	NC algebra \mathcal{A}, rep. on \mathcal{H} z.B. $\left[X^{\mu}, X^{\nu}\right]=i \theta^{\mu \nu} 1$
additional geom. structures diff. calculus, metric ... embedded manifolds $x^{a}: \mathcal{M} \hookrightarrow \mathbb{R}^{D}$	NC diff. calculus (A. Connes) Dirac operator D, Laplacian Δ_{g} matrices $X^{a}, a=1, \ldots, D$
field theory: e.g. $\Delta_{g} \phi=\lambda \phi$ $\phi \in \mathcal{C}^{\infty}(\mathcal{M})$	NC field theory: $\begin{aligned} \Delta \phi & =\lambda \phi, \\ \phi & \in \mathcal{A} \end{aligned}$
$\begin{aligned} & \text { QFT } \\ & \int_{\mathcal{C}(\mathcal{M})} d \phi e^{-S(\phi)} \end{aligned}$	NC QFT $\int_{\mathcal{A}} d \phi e^{-S(\phi)}$
quantum gravity: e.g. (?) $\int_{\text {geometries }} d g_{\mu \nu} e^{-S_{E H}[g]}$	matrix models $N C$ embedded manif. $\mathcal{M} \subset \mathbb{R}^{D}$ $\int_{\text {matrices }} d X e^{-S_{Y M}[X]}$

classical geometry \leftrightarrow NC geometry

Poisson-manifolds $(\mathcal{M},\{\}$,

$$
\begin{aligned}
& \mathcal{C}^{\infty}(\mathcal{M})=\{f: \mathcal{M} \rightarrow \mathbb{C}\} \\
&\left\{x^{\mu}, x^{\nu}\right\}=\theta^{\mu \nu}
\end{aligned}
$$

additional geom. structures diff. calculus, metric ... embedded manifolds $x^{a}: \mathcal{M} \hookrightarrow \mathbb{R}^{D}$ field theory: e.g. $\Delta_{g} \phi=\lambda \phi$
$\phi \in \mathcal{C}^{\infty}(\mathcal{M})$
QFT

$$
\int_{\mathcal{C}(\mathcal{M})} d \phi e^{-S(\phi)}
$$

quantum gravity: e.g. (?)

$$
\int d g_{\mu \nu} e^{-S_{E H}[g]}
$$

NC space $(\mathcal{A}, \mathcal{H})$
NC algebra \mathcal{A}, \quad rep. on \mathcal{H} z.B. $\left[X^{\mu}, X^{\nu}\right]=i \theta^{\mu \nu} 1$

NC diff. calculus (A. Connes)
Dirac operator D , Laplacian Δ_{g} matrices $X^{a}, a=1, \ldots, D$
NC field theory: $\Delta \phi=\lambda \phi$,
$\phi \in \mathcal{A}$
NC QFT

$$
\int_{\mathcal{A}} d \phi e^{-S(\phi)}
$$

matrix models
NC embedded manif. $\mathcal{M} \subset \mathbb{R}^{D}$, $\int d X e^{-S_{Y M}[X]}$

IKKT (IIB) matrix model

Ishibashi, Kawai, Kitazawa, Tsuchiya 1996

$$
\begin{gathered}
S[X]=-\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X^{a^{\prime}}, X^{b^{\prime}}\right] \eta_{a a^{\prime}} \eta_{b b^{\prime}}+\bar{\Psi} \gamma_{a}\left[X^{a}, \Psi\right]\right) \\
X^{a}=X^{a \dagger} \in \operatorname{Mat}(N, \mathbb{C}), \quad a=0, \ldots, 9 \\
N \rightarrow \infty
\end{gathered}
$$

gauge symmetry $X^{a} \rightarrow U X^{a} U^{-1}, S O(9,1)$, SUSY
$\left\{\begin{array}{l}\left.\text { 1) nonpert. def. of IIB string theory (on } \mathbb{R}^{10}\right) \quad(I K K T) \\ \text { 2) } \mathcal{N}=4 \text { SUSY Yang-Mills gauge thy. on "noncommutative" } \mathbb{R}_{\theta}^{4}\end{array}\right.$
dynamical $N C$ branes $\mathcal{M} \subset \mathbb{R}^{10}$
\rightarrow brane-world scenarios
$(\rightarrow$ 4D gravity ? H.S. 2007 ff)

Space-time from matrix models:

$$
\text { e.o.m.: } \quad \delta S=0 \Rightarrow\left[X^{a},\left[X^{a^{\prime}}, X^{b^{\prime}}\right]\right] \eta_{a a^{\prime}}=0
$$ solutions:

- $\left[X^{a}, X^{b}\right]=i \theta^{a b} \mathbf{1}$,
- $\left[X^{a}, X^{b}\right] \sim i\left\{x^{a}, x^{b}\right\}=i \theta^{a b}(x)$,
\rightarrow space-time as 3+1-dim. brane solution

$$
X^{a} \sim x^{a}: \mathcal{M}^{4} \hookrightarrow \mathbb{R}^{10}
$$

- intersecting branes, stacks (as in string theory)
- compact extra $\operatorname{dim} \mathcal{M}^{4} \times T^{2}$, etc.
$\underline{\text { basic solution of }\left[X_{a},\left[X^{a}, X^{b}\right]\right]=0:} \quad X^{a}=\binom{X^{\mu}}{\bar{X}^{i} \equiv 0}$

$$
\left[\bar{X}^{\mu}, \bar{X}^{\nu}\right]=i \bar{\theta}^{\mu \nu} \mathbf{1}, \quad \mu, \nu=0, \ldots, 3
$$

... Heisenberg algebra $\mathcal{A}=\operatorname{Mat}(\infty, \mathbb{C})=$ functions on $\left(\mathbb{R}_{\theta}^{4}, \theta^{\mu \nu}\right)$ $\bar{X}^{\mu} \in \operatorname{Mat}(\infty, \mathbb{C}) \ldots$ coordinate functions on quantum plane \mathbb{R}_{θ}^{4}

$$
\Delta \bar{X}^{\mu} \Delta \bar{X}^{\nu} \geq\left|\bar{\theta}^{\mu \nu}\right|
$$

quantization map (Weyl):

$$
\begin{aligned}
\mathcal{Q}: \mathcal{C}\left(\mathbb{R}^{4}\right) & \rightarrow \mathcal{A} \\
f(x)=\int d^{4} k \tilde{f}(k) e^{i k_{\mu} x^{\mu}} & \mapsto \int d^{4} k \tilde{f}(k) e^{i k_{\mu} \bar{x}^{\mu}}=: F(\bar{X})
\end{aligned}
$$

derivatives:

$$
\left[\bar{X}^{\mu}, F(\bar{X})\right]=: \theta^{\mu \nu} \partial_{\nu} F
$$

tangential deformations: gauge fields

$$
X^{a}=\bar{X}^{a}+A^{a}=\binom{\bar{X}^{\mu}}{0}+\binom{A^{\mu}\left(\bar{X}^{\mu}\right)}{0}
$$

$S=\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X_{a}, X_{b}\right]\right) \quad$ is gauge-invariant: $X^{a} \rightarrow U^{-1} X^{a} U$
\rightarrow fluctuations $X^{\mu}=\bar{X}^{\mu}+\theta^{\mu \nu} A_{\nu} \quad$ transform as $A_{\mu} \rightarrow U^{-1} A_{\mu} U+i U^{-1} \partial_{\mu} U \quad$ gauge fields!

$$
\begin{aligned}
{\left[X^{\mu}, X^{\nu}\right] } & =i \theta^{\mu \nu}+i \theta^{\mu \mu^{\prime}} \theta^{\nu \nu^{\prime}}\left(\partial_{\mu^{\prime}} A_{\nu^{\prime}}-\partial_{\nu^{\prime}} A_{\mu^{\prime}}+\left[A_{\mu^{\prime}}, A_{\nu^{\prime}}\right]\right) \\
& =i \theta^{\mu \nu}+i \theta^{\mu \mu^{\prime}} \theta^{\nu \nu^{\prime}} F_{\mu^{\prime} \nu^{\prime}} \quad \text { field strength }
\end{aligned}
$$

$$
\Rightarrow \text { eff. action } S=\text { const }+\int d^{4} x \sqrt{G} e^{\sigma} G^{\mu \mu^{\prime}} G^{\nu \nu^{\prime}} F_{\mu \nu} F_{\mu^{\prime} \nu^{\prime}}
$$

tangential perturbations \rightarrow gauge fields on \mathbb{R}_{θ}^{4}, eff. metric $G^{\mu \nu}$
similarly: transversal deformations \rightarrow scalar fields

$$
X^{a}=\bar{X}^{a}+A^{a}=\binom{\bar{X}^{\mu}}{0}+\binom{0}{\phi^{i}\left(\bar{X}^{\mu}\right)}
$$

transversal fluctuations \rightarrow scalar fields on \mathbb{R}_{θ}^{4}, eff. metric $G^{\mu \nu}$

nonabelian gauge theory: stack of coincident branes

tangential fluctuation $\rightarrow s u(n)$ gauge fields background

$$
Y^{a}=\binom{Y^{\mu}}{Y^{i}}=\binom{X^{\mu} \otimes \mathbf{1}_{n}}{\phi^{i} \otimes \mathbf{1}_{n}}
$$

include fluctuations:

$$
Y^{a}=\left(1+\mathcal{A}^{\rho} \partial_{\rho}\right)\binom{X^{\mu} \otimes \mathbf{1}_{n}}{\phi^{i} \otimes \mathbf{1}_{n}+\Phi^{i}}
$$

\Rightarrow effective action:

$$
S_{Y M}=\int d^{4} x \sqrt{G} e^{\sigma} \operatorname{tr}\langle F, F\rangle_{G}+2 \int \eta(x) \operatorname{tr} F \wedge F
$$

(H.S., JHEP 0712:049 (2007), JHEP 0902:044,(2009))

IKKT model on stack of branes $\rightarrow S U(n) \mathcal{N}=4$ SYM coupled to metric $G^{\mu \nu}(x)$

main results:

- universal effective metric $G^{a b}(x)$ on such branes, dynamical
- fluctuations of matrices X^{A} around stack of branes
\rightarrow SU(n) NC Yang-Mills gauge theory coupled to $G^{a b}(x)$
- Poisson structure $\theta^{\mu \nu}$ invisible $(U(1)$ is sterile)
prospects:
- intersecting branes \rightarrow chiral fermions
A. Chatzistavrakidis, H.S., G. Zoupanos (2011)
all ingredients for physics (\rightarrow brane-world picture)
- well suited for quantization, predictive

Quantization

$$
Z=\int d X^{a} d \Psi e^{-S[x]-S[\psi]}
$$

2 interpretations:
(1) on \mathbb{R}_{θ}^{4} : NC gauge theory on \mathbb{R}_{θ}^{4}, UV/IR mixing in $U(1)$ sector almost all models are sick (loops probe UV, too "wild") except IKKT model: $\quad \mathcal{N}=4$ SYM, perturb. finite !(?)
(2) on $\mathcal{M}^{4} \subset \mathbb{R}^{10}: \quad U(1)$ absorbed in $\theta^{\mu \nu}(x), G^{\mu \nu}(x)$
\rightarrow induced E-H. action

$$
S_{e f f} \sim \int d^{4} x \sqrt{|G|}\left(\Lambda^{4}+c \Lambda_{4}^{2} R[G]+\ldots\right)
$$

- IKKT \rightarrow good quantization for theory with gravity! (SUSY)
- 4 noncompact dimensions preferred (higher dim unstable)
can be put on computer (Monte Carlo; Lorentzian) !
can measure effective dimensions Kim, Nishimura, Tsuchiya PRL 108 (2012) result:

3 out of 9 spatial directions expand, 3+1 dims at late times

towards (emergent) gravity

brane gravity (not bulk gravity); propagation on 4D brane complicated dynamics, not well understood Einstein equations not established
several mechanisms:

- tang. modes $\rightarrow \mathrm{NC} U(1)$ gauge fields $\partial^{\mu} F_{\mu \nu}=0 \Rightarrow \delta R_{\mu \nu}=0$ Ricci-flat vacuum perturbations (around \mathbb{R}^{4})
V.Rivelles (2003)
- similar for fluctuations of $M^{4} \times \mathcal{K} \subset \mathbb{R}^{10}$
A.Polychronakos, H.S., J.Zahn (2013)
- $T_{\mu \nu}$ induces perturbation of $R_{\mu \nu}$ in presence of extrinsic curvature
\rightarrow (Newtonian) gravity (without E-H action !)
H.S. $(2009,2012)$
- quantum effects \rightarrow induced gravity (?)

towards particle physics

intersecting brane solutions
chiral fermions at intersection $=4 \mathrm{D}$ space

$$
\left(\begin{array}{ll}
X_{(11)}^{a} & \psi_{(12)} \\
\psi_{(21)} & X_{(22)}^{a}
\end{array}\right)
$$

stacks of intersecting branes \rightarrow close to standard model
A. Chatzistavrakidis, H.S., G. Zoupanos JHEP 1109 (2011)
(cf. string theory)
clear-cut, predictive framework

1-loop \rightarrow intersecting branes can form bound system!

Summary, conclusion

- matrix geometry:
can describe space-time \& geometry with (finite-dim.!) matrices
\rightarrow quantum structure of space(time)
- matrix-models $\operatorname{Tr}\left[X^{a}, X^{b}\right]\left[X^{a^{\prime}}, X^{b^{\prime}}\right] \eta_{a a^{\prime}} \eta_{b b^{\prime}}+$ fermions
dynamical NC branes, emergent gauge theory (\& gravity ?!)
background independent, all ingredients for physics
- not same as general relativity, but might be close enough (?)
- suitable for quantizing gauge theory \& geometry (gravity?) (IKKT model, $\mathcal{N}=4$ SUSY in $D=4$)

references

H. Steinacker, "Non-commutative geometry and matrix models," arXiv:1109.5521 [hep-th].
H. Steinacker, "Emergent Geometry and Gravity from Matrix Models: an Introduction," arXiv:1003.4134 [hep-th]. topical review, Class. Quantum Grav. 27 (2010) 133001.
N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, "A Large N reduced model as superstring," Nucl. Phys. B 498 (1997) 467 [hep-th/9612115].

H. Steinacker, "Emergent Gravity from Noncommutative Gauge Theory". JHEP 12 (2007) 049. [arXiv:0708.2426v1 (hep-th)]
H. Steinacker, "Emergent Gravity and Noncommutative Branes from Yang-Mills Matrix Models," Nucl. Phys. B 810:1-39,2009. arXiv:0806.2032 [hep-th].
A. Polychronakos, H. Steinacker, J. Zahn, "compactified branes and 4-dimensional geometry in the IKKT model" arXiv:1302.3707
B
D. N. Blaschke and H. Steinacker, "Curvature and Gravity Actions for Matrix Models," arXiv:1003.4132 [hep-th]. Class. Quant. Grav. 27:165010,2010.

higher-order terms, curvature

$$
\begin{aligned}
H^{a b} & :=\frac{1}{2}\left[\left[X^{a}, X^{c}\right],\left[X^{b}, X_{c}\right]\right]_{+} \\
T^{a b} & :=H^{a b}-\frac{1}{4} \eta^{a b} H, \quad H:=H^{a b} \eta_{a b}=\left[X^{c}, X^{d}\right]\left[X_{c}, X_{d}\right], \\
\Delta X & :=\left[X^{b},\left[X_{b}, X\right]\right]
\end{aligned}
$$

result:

for 4-dim. $\mathcal{M} \subset \mathbb{R}^{D}$ with $g_{\mu \nu}=G_{\mu \nu}$ (Euclidean!):

$$
\begin{aligned}
& \operatorname{Tr}\left(2 T^{a b} \Delta X_{a} \Delta X_{b}-T^{a b} \Delta H_{a b}\right) \sim \frac{2}{(2 \pi)^{2}} \int d^{4} x \sqrt{g} e^{2 \sigma} R \\
& \operatorname{Tr}\left(\left[\left[X^{a}, X^{c}\right],\left[X_{c}, X^{b}\right]\right]\left[X_{a}, X_{b}\right]-2 \Delta X^{a} \Delta X^{a}\right) \\
& \quad \sim \frac{1}{(2 \pi)^{2}} \int d^{4} x \sqrt{g} e^{\sigma}\left(\frac{1}{2} e^{-\sigma} \theta^{\mu \eta} \theta^{\rho \alpha} R_{\mu \eta \rho \alpha}-2 R+\partial^{\mu} \sigma \partial_{\mu} \sigma\right)
\end{aligned}
$$

(Blaschke, H.S. arXiv:1003.4132)
(cf. Arnlind, Hoppe, Huisken arXiv:1001.2223)
\Rightarrow Einstein-Hilbert- type action for gravity as matrix model pre-geometric version of (quantum?) gravity, background indep.!

