Quantized cosmological spacetimes and higher spin in the IKKT model

Harold Steinacker

Department of Physics, University of Vienna

UBC Vancouver, september 2018

Quantized cosmological spacetimes and higher spin in the IKKT model

Motivation

Matrix Models for quantum theory of space-time & matter:

- simple!
- keep power of string theory, different starting point

(might allow to avoid "landscape"?)

- IKKT model: allows to describe "beginning of time"
 - \rightarrow dynamical "quantum" (NC) spaces, gauge theory
- pre-geometric, constructive

< ロ > < 同 > < 三 > < 三

outline:

- matrix models & matrix geometry
- 4D covariant quantum spaces: fuzzy S_N^4 , H_n^4
- cosmological space-times: M^{3,1} & BB!
- fluctuations \rightarrow higher spin gauge theory
- metric, vielbein; towards gravity

HS, arXiv:1606.00769 M. Sperling, HS arXiv:1707.00885 HS, arXiv:1709.10480, arXiv:1710.11495 M. Sperling, HS arXiv:1806.05907

The IKKT model

IKKT or IIB model Ishibashi, Kawai, Kitazawa, Tsuchiya 1996 $S[X, \Psi] = -Tr\left([X^{a}, X^{b}][X^{a'}, X^{b'}]\eta_{aa'}\eta_{bb'} + \bar{\Psi}\gamma_{a}[X^{a}, \Psi]\right)$ $X^{a} = X^{a^{\dagger}} \in Mat(N, \mathbb{C}), \quad a = 0, ..., 9, \quad N \text{ large}$ gauge symmetry $X^{a} \rightarrow UX^{a}U^{-1}, SO(9, 1), \text{ SUSY}$

proposed as non-perturbative definition of IIB string theory

- quantized Schild action for IIB superstring
- reduction of 10D SYM to point, N large
- quantization: $Z = \int dX d\Psi e^{iS[X]}$ add $m^2 X^a X_a$ to set scale, IR regularization

イロト イポト イラト イラト

Kim, Nishimura, Tsuchiya arXiv:1108.1540 ff

different points of view:

• <u>classical solutions</u> = "branes" $[X^b, [X_b, X^a]] = m^2 X^a$

justified by max. SUSY (cf. critical string thy)

generically NC geometry, "matrix geometry"

fluctuations \rightarrow field theory on 3+1D brane, dynamical geometry

hypothesis

space-time = (near-) classical solution of IIB model

10D bulk physics:

sugra arises from quantum effects (loops)

Kabat-Taylor, van Raamsdonk, IKKT,...

"string states" $|x\rangle\langle y|$ in loops

Iso, Kawai, Kitazawa hep-th/0001027, HS arXiv:1606.00646 🔊 🤈 💎

Quantized cosmological spacetimes and higher spin in the IKKT model

"matrix geometry" (\approx NC geometry):

- $S_E \sim Tr[X^a, X^b]^2 \Rightarrow$ config's with small $[X^a, X^b] \neq 0$ dominate
 - i.e. "almost-commutative" configurations
- \exists quasi-coherent states $|x\rangle$, minimize $\sum_{a} \langle x | \Delta X_{a}^{2} | x \rangle$
 - $X^a \approx \text{diag.}, \text{ spectrum} =: \mathcal{M} \subset \mathbb{R}^{10}$

 $\langle x|X^a|x'\rangle \approx \delta(x-x')x^a, \qquad x\in\mathcal{M}$

 <u>hypothesis</u>: classical solutions dominate "condensation" of matrices, geometry

NC branes embedded in target space \mathbb{R}^{10}

 $X^a \sim x^a$: $\mathcal{M} \hookrightarrow \mathbb{R}^{10}$

cf. Q.M: replace functions $x^a \rightsquigarrow$ matrices / observables X^a

typical examples: quantized Poisson manifolds

• Moyal-Weyl quantum plane \mathbb{R}^4_{θ} :

 $[X^a, X^b] = i\theta^{ab} \mathbf{1}$ (Heisenberg algebra) quantized symplectic space (\mathbb{R}^4, ω)

admits translations $X^a \rightarrow X^a + c^a \mathbf{1}$, no rotation invariance

fuzzy 2-sphere S²_N

 $X_1^2 + X_2^2 + X_3^2 = R_N^2, \qquad [X_i, X_j] = i\epsilon_{ijk}X_k$

fully covariant under SO(3)

(Hoppe; Madore)

= nar

fluctuations \rightarrow NC gauge theory on brane, & dynamical geometry

• choose background solution ("brane")

 $X^a \sim x^a : \mathcal{M} \hookrightarrow \mathbb{R}^{10}$

• add fluctuations $Y^a = X^a + A^a$

→ YM gauge theory & dynamical geometry ("emergent gravity") review: H.S. arXiv:1003.4134

● loop effects → UV/IR mixing Minwalla van Raamsdonk Seiberg 1999 (=long-range, pathological nonlocality)

only avoided in max SUSY IKKT model,

 $\rightarrow \mathcal{N} = 4$ SYM on $\mathbb{R}^{3,1}_{\theta}$ + IIB sugra

< ロ > < 同 > < 回 > < 回 > .

= nar

Lorentz / SO(4) covariance in 4D ?

• <u>obstacle</u>: NC spaces: $[X^{\mu}, X^{\nu}] =: i\theta^{\mu\nu} \neq 0$

breaks Lorentz invariance

< ロ > < 同 > < 回 > < 回 > < 回 > <

• \exists fully covariant fuzzy four-sphere S_N^4

Grosse-Klimcik-Presnajder 1996; Castelino-Lee-Taylor; Ramgoolam; Kimura; Abe; Hasebe; Medina-O'Connor; Karabali-Nair; Zhang-Hu 2001 (QHE!) ...

price to pay: "internal structure" \rightarrow higher spin theory

covariant fuzzy four-sphere S_N^4

5 hermitian matrices X_a , a = 1, ..., 5 acting on \mathcal{H}_N

$$\sum_{a} X_{a}^{2} = R^{2}$$

$$\begin{bmatrix} \mathcal{M}_{ab}, X_c \end{bmatrix} = i(\delta_{ac}X_b - \delta_{bc}X_a), \\ \begin{bmatrix} \mathcal{M}_{ab}, \mathcal{M}_{cd} \end{bmatrix} = i(\delta_{ac}\mathcal{M}_{bd} - \delta_{ad}\mathcal{M}_{bc} - \delta_{bc}\mathcal{M}_{ad} + \delta_{bd}\mathcal{M}_{ac}).$$

 \mathcal{M}_{ab} ... so(5) generators acting on \mathcal{H}_N

covariant fuzzy four-sphere S_N^4

5 hermitian matrices X_a , a = 1, ..., 5 acting on \mathcal{H}_N

$$\sum_{a} X_{a}^{2} = R^{2}$$

$$\begin{bmatrix} \mathcal{M}_{ab}, X_c \end{bmatrix} = i(\delta_{ac}X_b - \delta_{bc}X_a), \\ \begin{bmatrix} \mathcal{M}_{ab}, \mathcal{M}_{cd} \end{bmatrix} = i(\delta_{ac}\mathcal{M}_{bd} - \delta_{ad}\mathcal{M}_{bc} - \delta_{bc}\mathcal{M}_{ad} + \delta_{bd}\mathcal{M}_{ac}).$$

 \mathcal{M}_{ab} ... so(5) generators acting on \mathcal{H}_N

oscillator construction:

Grosse-Klimcik-Presnajder 1996; ...

$$\begin{array}{ll} X_{a} &= \psi^{\dagger} \gamma_{a} \psi, \\ \mathcal{M}^{ab} &= \psi^{\dagger} \Sigma^{ab} \psi \end{array} \left[\psi^{\beta}, \psi^{\dagger}_{\alpha} \right] = \delta^{\beta}_{\alpha} \end{array}$$

acting on $\mathcal{H}_{N} = \psi_{\alpha_{1}}^{\dagger} ... \psi_{\alpha_{N}}^{\dagger} |0\rangle \cong (\mathbb{C}^{4})^{\otimes_{S} N} \cong (\underbrace{0, N}_{\mathbb{C}})_{\mathbb{S}, \underline{0}(5)} \otimes_{\mathbb{C}} \mathbb{S}^{1}$

relations:

 $\begin{aligned} X_a X_a &= R^2 \sim \frac{1}{4} r^2 N^2 \\ [X^a, X^b] &= i r^2 \mathcal{M}^{ab} =: i \Theta^{ab} \\ \epsilon^{abcde} X_a X_b X_c X_d X_e &= (N+2) R^2 r^3 \end{aligned} (volume quantiz.)$

geometry from coherent states $|p\rangle$:

$$\{ p_a = \langle p | X_a | p \rangle \} = S^4$$

closer inspection:

Karczmarek-Yeh, ...

= nar

degeneracy of coherent states, "internal" S² fiber

semi-classical picture: hidden bundle structure

$$CP^{3} \ni \psi \\
 \downarrow \\
 S^{4} \ni x^{a} = \psi^{+} \Gamma^{a} \psi$$

Ho-Ramgoolam, Medina-O'Connor, Abe, ...

S²

fuzzy case:

oscillator construction $[\Psi, \Psi^{\dagger}] = \delta \rightarrow$ functions on fuzzy $\mathbb{C}P_{N}^{3}$

fuzzy S_N^4 is really fuzzy $\mathbb{C}P_N^3$, hidden extra dimensions S^2 !

 $End(\mathcal{H}_N) \cong L^2(\mathbb{C}P^3)$

Poisson tensor $\theta^{\mu\nu}(x,\xi) \sim -i[X^{\mu},X^{\nu}]$ local $SO(4)_x$ rotates fiber $\xi \in S^2$

averaging over fiber $\rightarrow [\theta^{\mu\nu}(x,\xi)]_0 = 0$, local *SO*(4) preserved!

... 4D "covariant" quantum space

H. Steinacker

Quantized cosmological spacetimes and higher spin in the IKKT model

fields and harmonics on S_{N}^{4}

algebra of "functions":

$$\boxed{\mathsf{End}(\mathcal{H}_N) \cong \bigoplus_{s=0}^N \ \mathcal{C}^s} \qquad \qquad \mathcal{C}^s = \bigoplus_{n=0}^N (n, 2s) \ \ni \boxed{\qquad}$$

(n, 0) modes = scalar functions on S^4 :

$$\phi(X) = \phi_{a_1 \dots a_n} X^{a_1} \dots X^{a_n} = \Box \Box \Box$$

(n, 2) modes = selfdual 2-forms on S^4

$$\phi_{bc}(X)\theta^{bc} = \phi_{a_1\dots a_n b;c} X^{a_1} \dots X^{a_n} \theta^{bc} = \Box$$

 $End(\mathcal{H}) \cong$ fields on S^4 taking values in $\mathfrak{hs} = \oplus$

higher spin modes = would-be KK modes on S^2

(local SO(4) acts on S^2 fiber)

Quantized cosmological spacetimes and higher spin in the IKKT model

s4

relation with spin s fields: one-to-one map

 $End(\mathcal{H}_N) \cong \bigoplus_{s=0}^{N} \mathcal{C}^s \cong \{\text{symmetric tensor field on } S^4\}$ $\phi^{(s)} = \phi^{(s)}_{b_1 \dots b_s; c_1 \dots c_s}(x) \theta^{b_1 c_1} \dots \theta^{b_s c_s} \mapsto \phi^{(s)}_{c_1 \dots c_s}(x) = \phi^{(s)}_{b_1 \dots b_s; c_1 \dots c_s} x^{b_1} \dots x^{b_s}$ $\{x^{c_1}, \dots, \{x^{c_s}, \phi^{(s)}_{c_1 \dots c_s}(x)\} \dots\} \leftarrow \phi^{(s)}_{c_1 \dots c_s}(x)$

... "symbol" of $\phi \in \mathcal{C}^s$

= nar

M. Sperling & HS, arXiv:1707.00885

 $\mathcal{C}^{s} \cong$ symm., traceless, tang., div.-free rank s tensor field on S^{4}

$$\begin{split} \phi_{c_1...c_s}(x) x^{c_i} &= 0 \,, \\ \phi_{c_1...c_s}(x) g^{c_1 c_2} &= 0 \,, \\ \partial^{c_i} \phi_{c_1...c_s}(x) &= 0 \,. \end{split}$$

<u>Poisson calculus:</u> (semi-classical limit) M. Sperling & HS, 1806.05907 $\mathbb{C}P^3$ = symplectic manifold, { x^a, x^b } = θ^{ab}

$$\eth^{a}\phi := -\frac{1}{r^{2}R^{2}}\theta^{ab}\{x_{b},\phi\}, \qquad \{x^{a},\cdot\} = \theta^{ab}\eth_{b}$$

satisfy

$$\eth^a x^c = P_T^{ac} = g^{ac} - \frac{1}{R^2} x^a x^c$$

matrix Laplacian:

$$\Box = [\mathbf{X}^{\mathbf{a}}, [\mathbf{X}_{\mathbf{a}}, .]] \sim -\{\mathbf{X}^{\mathbf{a}}, \{\mathbf{X}_{\mathbf{a}}, .\}\} = -\mathbf{r}^{2}\mathbf{R}^{2}\,\eth^{\mathbf{a}}\eth_{\mathbf{a}}$$

covariant derivative:

$$abla = \mathbf{P}_T \circ \eth, \qquad
abla \theta^{\mathbf{ab}} = \mathbf{0}$$

curvature

$$\mathcal{R}_{ab} \coloneqq \mathcal{R}[\eth_a, \eth_b] = [\nabla_a, \nabla_b] - \nabla_{[\eth_a, \eth_b]}$$

э.

local description: pick north pole $p \in S^4$

 \rightarrow tangential & radial generators

$$X^{a} = \begin{pmatrix} X^{\mu} \\ X^{5} \end{pmatrix}, \qquad \mu = 1, ..., 4... \text{tangential coords at } p$$

separate *SO*(5) into *SO*(4) & translations
$$\mathcal{M}^{ab} = \begin{pmatrix} \mathcal{M}^{\mu\nu} & \mathcal{P}^{\mu} \\ -\mathcal{P}^{\mu} & 0 \end{pmatrix} \qquad \text{where} \quad \mathcal{P}^{\mu} = \mathcal{M}^{\mu 5}$$

Poisson algebra $\{P_{\mu}, X^{\nu}\} \approx \delta^{\nu}_{\mu}$ locally

< ロ > < 同 > < 回 > < 回 > < 回 > <

local form of spin 2 harmonics:

 $\phi^{(2)} = \phi_{\mu\nu}(x)P^{\mu}P^{\nu} + \omega_{\mu:\alpha\beta}(x)P^{\mu}\mathcal{M}^{\alpha\beta} + \Omega_{\alpha\beta;\mu\nu}(x)\mathcal{M}^{\alpha\beta}\mathcal{M}^{\mu\nu}$ recall $End(\mathcal{H}) = \oplus \mathcal{C}^{s}, \ \mathcal{C}^{s} \cong \text{rank } s \text{ tensor fields } \phi_{a_{1}...a_{s}}(x) \cong (n, 2s)$ unique irrep $(n, 2s) \Rightarrow \text{ constraints}!$

 $egin{array}{lll} \omega_{\mu;lphaeta}&\propto&\partial_{lpha}\phi_{\mueta}-\partial_{eta}\phi_{\mulpha}\ \Omega_{lphaeta;\mu
u}&\propto&\mathcal{R}_{lphaeta\mu
u}[\phi] \end{array}$

... linearized spin connection and curvature determined by $\phi_{\mu
u}$

イロト イポト イヨト イヨト

= nar

similarly:

cosmological quantum space-times $\mathcal{M}_n^{3,1}$:

- exactly homogeneous & isotropic
- finite density of microstates
- mechanism for Big Bang
- starting point: fuzzy hyperboloid H⁴_n

| 4 同 🕨 🖌 🖉 🕨 🖌 🗐

Euclidean fuzzy hyperboloid H_n^4 (=*EAdS*_n⁴)

Hasebe arXiv:1207.1968

 \mathcal{M}^{ab} ... hermitian generators of $\mathfrak{so}(4,2)$,

$$[\mathcal{M}_{ab}, \mathcal{M}_{cd}] = i(\eta_{ac}\mathcal{M}_{bd} - \eta_{ad}\mathcal{M}_{bc} - \eta_{bc}\mathcal{M}_{ad} + \eta_{bd}\mathcal{M}_{ac}) \;.$$

choose "short" discrete unitary irreps $\mathcal{H}_n^{ab} = \text{diag}(-1, 1, 1, 1, 1, -1)$ special properties:

- irreps under $\mathfrak{so}(4, 1)$, multiplicities one, minimal oscillator rep.
- positive discrete spectrum

$$\operatorname{spec}(\mathcal{M}^{05}) = \{E_0, E_0 + 1, ...\}, \qquad E_0 = 1 + \frac{n}{2}$$

lowest eigenspace is n + 1-dim. irrep of $SU(2)_L$: fuzzy S_n^2

fuzzy hyperboloid H_n^4

def.

5 hermitian generators $X^a = (X^a)^{\dagger}$ satisfy

 $\eta_{ab}X^aX^b = X^iX^i - X^0X^0 = -R^2\mathbf{1}, \qquad R^2 = r^2(n^2 - 4)$

one-sided hyperboloid in $\mathbb{R}^{1,4}$, covariant under *SO*(4, 1)

<u>note</u>: induced metric = Euclidean AdS⁴

H. Steinacker

Quantized cosmological spacetimes and higher spin in the IKKT model

oscillator construction: 4 bosonic oscillators $[\psi_{\alpha}, \bar{\psi}^{\beta}] = \delta^{\beta}_{\alpha}$ \mathcal{H}_{n} = suitable irrep in Fock space Then $\mathcal{M}_{ab} = \bar{\psi}\Sigma_{ab}\psi, \quad \gamma_{0} = diag(1, 1, -1, -1)$ $X^{a} = r\bar{\psi}\gamma^{a}\psi$

 H_n^4 = quantized $\mathbb{C}P^{1,2} = S^2$ bundle over H^4 , selfdual $\theta^{\mu\nu}$

analogous to S_N^4 , finite density of microstates

< ロ > < 同 > < 回 > < 回 > .

fuzzy "functions" on H_n^4 :

$$End(\mathcal{H}_n) \cong \bigoplus_{s=0}^n \mathcal{C}^s = \int_{\mathbb{C}P^{1,2}} d\mu f(m) |m\rangle \langle m|$$

= fields on H^4 taking values in $\mathfrak{hs} = \oplus_s \longrightarrow \mathcal{M}^{a_1 b_1} \dots \mathcal{M}^{a_s b_s}$

spin s sectors C^s selected by spin Casimir

$$\mathcal{S}^2 = \sum_{a < b \leq 4} [\mathcal{M}^{ab}, [\mathcal{M}_{ab}, \cdot]] + r^{-2} [X_a, [X^a, \cdot]] ,$$

commutes with \Box , can show:

$$S^2|_{C^s} = 2s(s+1), \qquad s = 0, 1, ..., n$$

M. Sperling & H.S. 1806.05907

(a)

-

open FRW universe from H_n^4

$$Y^{\mu} := X^{\mu}$$
, for $\mu = 0, 1, 2, 3$ (drop X^4 !)

 $\mathcal{M}_n^{3,1}$ = projected H_n^4 embedded in $\mathbb{R}^{1,3}$ via projection

 $Y^{\mu} \sim y^{\mu}: \mathbb{C}P^{1,2} \to H^4 \xrightarrow{\Pi} \mathbb{R}^{1,3}.$

satisfies

$$\begin{array}{ll} Y^{\mu}, [Y^{\mu}, Y^{\nu}]] &= ir^2 [Y^{\mu}, \mathcal{M}^{\mu\nu}] & (\text{no sum}) \\ &= r^2 \left\{ \begin{array}{ll} Y^{\nu}, & \nu \neq \mu \neq 0 \\ -Y^{\nu}, & \nu \neq \mu = 0 \\ 0, & \nu = \mu \end{array} \right. \end{array}$$

hence

$$\Box_Y Y^{\mu} = [Y^{\nu}, [Y_{\nu}, Y^{\mu}]] = 3r^2 Y^{\mu} .$$

.... solution of IKKT with $m^2 = 3r^2$.

H. Steinacker

Quantized cosmological spacetimes and higher spin in the IKKT model

properties:

- SO(3, 1) manifest \Rightarrow foliation into SO(3, 1)-invariant space-like 3-hyperboloids H_t^3
- double-covered FRW space-time with hyperbolic (k = -1) spatial geometries

$$ds^2 = dt^2 - a(t)^2 d\Sigma^2,$$

 $d\Sigma^2$... SO(3, 1)-invariant metric on space-like H^3

metric properties

reference point $p \in H^4 \subset \mathbb{R}^{1,4}$

 $p^a = R(\cosh(\eta), \sinh(\eta), 0, 0, 0)$

induced metric on $\mathcal{M}^{3,1}$:

 $g_{\mu
u} = (-1, 1, 1, 1) = \eta_{\mu
u}, \qquad \mu,
u = 0, 1, 2, 3$ (Minkowski!)

= FRW metric

 $ds_q^2 = -dt^2 + t^2 d\Sigma^2$ (Milne metric)

<u>however</u>: induced metric \neq effective ("open string") metric

<u>effective metric</u> (for scalar fields)

H.S. arXiv:1003.4134

encoded in Laplacian $\Box_Y = [Y_{\mu}, [Y^{\mu}, .]] \sim \frac{1}{\sqrt{|G|}} \partial_{\mu}(\sqrt{|G|} G^{\mu\nu} \partial_{\nu}.)$:

$$\begin{aligned} \boldsymbol{G}^{\mu\nu} &= \alpha \, \gamma^{\mu\nu} \,, \qquad \alpha = \sqrt{\frac{|\boldsymbol{\theta}^{\mu\nu}|}{|\gamma^{\mu\nu}|}} \,, \\ \gamma^{\mu\nu} &= \boldsymbol{g}_{\mu'\nu'} [\boldsymbol{\theta}^{\mu'\mu} \boldsymbol{\theta}^{\nu'\nu}]_{S^2} \end{aligned}$$

where $[.]_{S^2}$... averaging over the internal S^2 .

$$\gamma^{\mu
u} = rac{\Delta^4}{4} ext{diag}(\textbf{c}_0(\eta), \textbf{c}(\eta), \textbf{c}(\eta), \textbf{c}(\eta))$$

at p, where

signature change at $c(\eta) = 0$

 $\cosh^2(\eta_0) = 3$...Big Bang!

Euclidean for $\eta < \eta_0$, Minkowski (+ - - -) for $\eta > \eta_0$

H. Steinacker

Quantized cosmological spacetimes and higher spin in the IKKT model

conformal factor
$$\alpha = \sqrt{\frac{|\theta^{\mu\nu}|}{|\gamma^{\mu\nu}|}} = \frac{4}{\Delta^4} |c(\eta)|^{-\frac{3}{2}}$$

from SO(4, 2)-inv. (Kirillov-Kostant) symplectic ω on $\mathbb{C}P^{1,2}$

 \rightarrow effective metric at p

$$G_{\mu
u} = ext{diag} \Big(rac{|c(\eta)|^{rac{3}{2}}}{c_0(\eta)}, -|c(\eta)|^{rac{1}{2}}, -|c(\eta)|^{rac{1}{2}}, -|c(\eta)|^{rac{1}{2}} \Big)$$

FRW metric and scale factor (after BB)

 $ds_G^2 = dt^2 - a^2(t)d\Sigma^2$

= nar

beginning of time:

rapid expansion shortly after $\eta \ge \eta_0$: "Big Bang"

 $a(t) \propto c(t)^{\frac{1}{4}} \propto t^{1/7}$

conformal factor & 4-volume form $|\theta^{\mu\nu}|$ responsible for singular expansion!

H. Steinacker

Quantized cosmological spacetimes and higher spin in the IKKT model

late times: linear coasting cosmology

 $a(t) \propto t$.

... remarkably close to observation:

• age of univ. $13.9 \times 10^9 y$ from present Hubble parameter

artificial within GR,

natural in M.M., provided gravity emerges below cosm. scales

- no fine-tuning (no matter!)
- can reasonably reproduce SN1a (without acceleration)
- cf. Nielsen, Guffanti, Sarkar Sci.Rep. 6 (2016)

H. Steinacker

Quantized cosmological spacetimes and higher spin in the IKKT model

other features:

- ∃ Euclidean pre-BB era
- 2 sheets with opposite intrinsic "chirality"

(i.e. $\theta^{\mu\nu}$ (A)SD)

● ∃ higher-spin fluctuation modes

 \rightarrow higher-spin gauge theory

• small *n* possible (even n = 0)

 \exists other cosmological solutions

- expanding closed universe k = 1
- recollapsing universe k = 1 HS arXiv:1709.10480
- "momentum embedding" (same $\mathcal{M}_n^{3,1}$, different metric) k = -1

M. Sperling & H.S. 1806.05907

マロト イラト イラ

alternative (momentum embedding) solution:

similar solution:

$$T^{\mu}:=rac{1}{R}\mathcal{M}^{\mu4}$$

• clean mode expansion $\phi = \phi(X) + \phi_{\mu}(X)T^{\mu} + ...,$ higher-spin modes on $\mathcal{M}^{3,1}$

 $\Box = [T^{\mu}, [T_{\mu}, .]] \rightarrow$ different *SO*(3, 1) -invar. FRW metric

- similar late-time behavior
- BB, initial $a(t) \sim t^{1/5}$, no signature change
- $[T^{\mu}, X^{\nu}] = if(t)\eta^{\mu\nu}$, momentum generator

(Cf. Hanada, Kawai, Kimura hep-th/0508211])

< ロ > < 同 > < 回 > < 回 > .

∃ \0 \0 \0

... work in progress M. Sperling & HS

fluctuations & higher spin gauge theory

$$S[Y] = Tr(-[Y^a, Y^b][Y_a, Y_b] + m^2 Y^a Y_a) = S[U^{-1} YU]$$

background solution:
add fluctuations

$$Y^{a} = X^{a} + \mathcal{A}^{a}$$
expand action to second oder in \mathcal{A}^{a}

$$S[Y] = S[X] + \frac{2}{g^{2}} \operatorname{Tr} \mathcal{A}_{a} \underbrace{\left((\Box + \frac{1}{2}\mu^{2})\delta_{b}^{a} + 2[[X^{a}, X^{b}], .] - [X^{a}, [X^{b}, .]] \right)}_{\mathcal{D}^{2}} \mathcal{A}_{b}$$

$$\Box = [X^{a}, [X_{a}, .]]$$

fluctuations A_a describe gauge theory (NCFT) on M
 ("open strings" ending on M)

• for S_N^4 , H_n^4 : A_a ... hs-valued gauge field, incl. spin 2

on S_N^4 and H_n^4 :

• $\mathcal{A}_a \in End(\mathcal{H}) \otimes (5)$

 \rightarrow 4 indep. tangential fluctuation modes for each spin (+ 1 radial)

• diagonalize \rightarrow eigenmodes of \mathcal{D}^2

(details: M. Sperling & H.S. 1707.00885, 1806.05907)

all tangential modes are stable !

- radial modes are unstable on H⁴_n
 - \rightarrow project to cosmological space-time $\mathcal{M}^{3,1}$

| 4 同 🕨 🖌 🖉 🕨 🖌 🗐

vielbein, metric & dynamical geometry

consider scalar field $\phi = \phi(X)$ (= transversal fluctuation) kinetic term

$$-Tr[X^{a},\phi][X_{a},\phi] \sim \int e^{a}\phi e_{a}\phi = \int \gamma^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$$

vielbein

$$egin{array}{lll} m{ extbf{e}}^a & := \{X^a, .\} = m{ extbf{e}}^{a\mu} \partial_\mu \ m{ extbf{e}}^{a\mu} & = heta^{a\mu} \end{array}$$

metric

$$\gamma^{\mu
u} = \eta_{lphaeta} oldsymbol{e}^{lpha\mu} oldsymbol{e}^{eta
u} = rac{1}{4} \Delta^4 oldsymbol{g}^{\mu
u}$$

dynamical frame bundle, metric

A B > < B</p>

Motivation Matrix geometry Fuzzy S_N^4 fields & kinematics fuzzy H_n^4 Cosmological space-times towards gravity

perturbed vielbein: $Y^a = X^a + A^a$

$$e^{a} := \{Y^{a}, .\} \sim e^{a\mu} [\mathcal{A}] \partial_{\mu} \qquad ... \text{ vielbein}$$

 $\delta_{\mathcal{A}} \gamma^{ab} =: H^{ab} [\mathcal{A}] = \theta^{ca} \{\mathcal{A}_{c}, x^{b}\} + (a \leftrightarrow b)$

linearize & average over fiber $\,\rightarrow\,$

$$G^{ab} = \gamma^{ab} + h^{ab} \ , \qquad h^{ab} \sim [H^{ab}]_0$$

coupling to matter:

$$S[\text{matter}] \sim \int_{\mathcal{M}} d^4 x \, h^{ab} T_{ab}$$

result:

$$h_{ab}[\mathcal{B}^{(4)}] \propto (\Box - 2r^2)\phi_{ab}, \qquad
abla^a h_{ab} = 0$$

all other modes drop out: $h_{ab}[\mathcal{B}^{(i)}] = 0$

・ 同 ト ・ ヨ ト ・ ヨ

spin 2 "graviton" $h_{ab}[\mathcal{B}] = (\Box - 2r^2)\phi_{ab}$

quadratic action:

 $S_2[h_{ab}] \propto \int \mathcal{B}_a \mathcal{D}^2 \mathcal{B}^a \propto \int h_{ab}[\mathcal{B}] h_{ab}[\mathcal{B}]$

 $h_{ab} \sim T_{ab}$ doesn't propagate in classical model

due to field redefinitions via $(\Box - 2r^2)$

HS, arXiv:1606.00769, M. Sperling, HS arXiv:1707.00885

hardly surprising:

YM-like model \neq GR (not renormalizable)

still: should be good quantum theory of geometry \leftrightarrow matter !

イロト イポト イヨト イヨト

= nar

ways out:

- **1** quantum effects \rightarrow induced gravity action $\sim \int h_{\mu\nu} \Box h^{\mu\nu}$
 - \rightarrow (lin.) Einstein equations (+ possibly c.c. and/or mass)

"emergent gravity "

present model should be healthy candidate !

- Inonlinear theory ~> different collective modes, dynamics
- In different action (however: UV/IR mixing)

<u>however</u>: radial modes unstable \rightarrow cosmological space-times $\mathcal{M}^{3,1}$

< ロ > < 同 > < 回 > < 回 > .

towards higher-spin gravity on $\mathcal{M}^{3,1}$

momentum embedding $Y^{\mu} = T^{\mu}$ best suited

- space of modes = tangential modes on H⁴, similar structure clean separation of higher spin modes
- manifest SO(3, 1) on space-like H³, no local Lorentz-invar
 ∃ global foliation ↔ time-like VF (cf. Horawa-Lifshitz?)
- conjecture: no ghosts
- compute mass spectrum (to exclude tachyons, instabilities)

work in progress

M. Sperling, HS

< ロ > < 同 > < 回 > < 回 > < 回 > <

summary

 matrix models: natural framework for quantum theory of space-time & matter

might provide alternative to "landscape" (?)

- ∃ nice cosmological FRW space-time solutions
 - reg. BB, finite density of microstates
 - allows to address origin of time !
- all ingredients for gravity, good UV behavior (SUSY)
 Yang-Mills structure → emergent gravity (?)

(rather than gravity at classical level)

イロト イポト イラト イラト

• ~ regularized higher spin theory, cf. Vasiliev

... intriguing, deserves more work!

gauge transformations:

 $Y^a \rightarrow UY^a U^{-1} = U(X^a + A^a)U^{-1}$ leads to $(U = e^{i\Lambda})$ $\delta A^a = i[\Lambda, X^a] + i[\Lambda, A^a]$

expand

$$\Lambda = \Lambda_0 + \frac{1}{2}\Lambda_{ab}\mathcal{M}^{ab} + \dots$$

... $U(1) \times SO(5) \times ...$ - valued gauge trafos

on H_n^4 : \rightarrow volume-preserving diffeos from $\delta_v := i[v_\rho P^\rho, .]$

$$\delta h_{\mu\nu} = (\partial_{\mu} v_{\nu} + \partial_{\nu} v_{\mu}) - v^{\rho} \partial_{\rho} h_{\mu\nu} + (\Lambda \cdot h)_{\mu\nu}$$

$$\delta A_{\mu\rho\sigma} = \frac{1}{2} \partial_{\mu} \Lambda_{\sigma\rho}(x) - v^{\rho} \partial_{\rho} A_{\mu\rho\sigma} + (\Lambda \cdot A)_{\mu\rho\sigma}$$

on $\mathcal{M}_n^{3,1}$: more complicated through presence of time-like VF

< ロ > < 同 > < 回 > < 回 > < - > <

= 900