Chiral low-energy physics from squashed branes in deformed $\mathcal{N}=4$ SYM

Harold Steinacker

Department of Physics, University of Vienna

SUSY 2015, Lake Tahoe

H.S., J. Zahn arXiv:1409.1440, H.S. arXiv:1504.05703

Motivation

• simplicity:

re-consider softly broken $SU(N) \mathcal{N} = 4$ SYM cubic potential \Rightarrow remarkable new vacua, extended SSM chiral low energy physics possible for suitable Higgs VEV

• Higgs mechanism \Rightarrow dynamical generation of extra dimensions $\mathbb{R}^4 \times \mathcal{K}_N$

Madore, Myers, Arkani-Hamed etal, HS-Zoupanos-Chatzistavrakidis, Aschieri, Manousselis, O'Connor etal, Polchinski-Strassler, Andrews-Dorey,...

 aspects of string theory (intersecting branes, KK modes ...) realized in 4-D gauge theory

< ロ > < 同 > < 回 > < 回 > < 回 > <

Motivation	squashed branes	Fluctuation modes	Fermions	stacks of branes & S.M.

outline

- SU(N) $\mathcal{N} = 4$ SYM with cubic (flux) terms
- new vacuum solutions with SU(3) structure
- geometric interpretation:

self-intersecting fuzzy branes in extra dimensions

- zero modes & chiral fermions
- KK modes
- extended SSM from stacks of squashed branes mirror particles

・ 同 ト ・ ヨ ト ・ ヨ

$\mathcal{N} = 4$ SYM and squashed fuzzy branes

starting point: $SU(N) \mathcal{N} = 4$ SUSY

$$S = \int d^4x \frac{1}{4g^2} tr \Big(-F^{\mu\nu}F_{\mu\nu} - 2D^{\mu}\Phi^a D_{\mu}\Phi_a + [\Phi^a, \Phi^b][\Phi_a, \Phi_b] \Big) \\ + tr \Big(\bar{\Psi}\gamma^{\mu} (i\partial_{\mu} + [A_{\mu}, .])\Psi + \bar{\Psi}\Gamma^a[\Phi_a, \Psi] \Big)$$

- *N* = 1 SYM in 10 D dim. red. to 4D
- 6 scalar fields Φ^a , global $SO(6)_R$
- (γ^μ, Γ^a) = Γ^A ... 10D Clifford generators, Ψ → 4 Weyl fermions
- most symmetric 4D gauge theory, UV finite

< ロ > < 同 > < 回 > < 回 > .

Motivation

$\mathcal{N} = 4$ SYM beautiful but too "round" for physics

more structure:

- spontaneous symmetry breaking (SSB): still no "interesting" (chiral) low-energy physics
- add soft susy breaking terms to potential

scalar potential: $\mathcal{V}[\Phi] = (V_4[\Phi] + V_{\text{soft}}[\Phi]),$

 $V_4[\Phi] = -\frac{1}{4} \operatorname{tr}[\Phi_a, \Phi_b][\Phi^a, \Phi^b],$ $V_{\text{soft}}[\Phi] = \operatorname{tr}(im f_{abc} \Phi^a \Phi^b \Phi^c + M_{ab}^2 \Phi^a \Phi^b)$

fabc ... tot. antisymm., soft SUSY breaking

Motivation

$\mathcal{N}=4$ SYM beautiful but too "round" for physics

more structure:

- spontaneous symmetry breaking (SSB): still no "interesting" (chiral) low-energy physics
- add soft susy breaking terms to potential

scalar potential: $\mathcal{V}[\Phi] = (V_4[\Phi] + V_{\text{soft}}[\Phi]),$

$$\begin{split} V_4[\Phi] &= -\frac{1}{4} \mathrm{tr}[\Phi_a, \Phi_b][\Phi^a, \Phi^b], \\ V_{\mathrm{soft}}[\Phi] &= \mathrm{tr}(im f_{abc} \Phi^a \Phi^b \Phi^c + M_{ab}^2 \Phi^a \Phi^b) \end{split}$$

fabc ... tot. antisymm., soft SUSY breaking

- <u>known</u>: $f_{abc} \sim \epsilon_{abc}$: \rightarrow fuzzy sphere solutions $\Phi^a \sim J^a$
- <u>new</u>: *f_{abc}* ~ truncated *su*(3) structure constants
 → squashed coadjoint *SU*(3) orbits

H.S., J. Zahn arXiv:1409.1440, H.S. arXiv:1504.05703

dim.less fields $\Phi_a = mY_a$, label by $\mathfrak{su}(3)$ roots

$$\begin{array}{l} Y_{1}^{\pm} &= \frac{1}{\sqrt{2}}(Y_{4}\pm iY_{5}) \equiv Y_{\pm \alpha_{1}}, \\ Y_{2}^{\pm} &= \frac{1}{\sqrt{2}}(Y_{6}\mp iY_{7}) \equiv Y_{\pm \alpha_{2}}, \\ Y_{3}^{\pm} &= \frac{1}{\sqrt{2}}(Y_{1}\mp iY_{2}) \equiv Y_{\pm \alpha_{3}} \end{array}$$

let $f_{abc} = c_{abc}|_{a,b,c\neq3,8}$... structure constants of $\mathfrak{su}(3)$ without Cartan observe

$$\operatorname{Tr}(if_{abc}Y^{a}Y^{b}Y^{c}) \sim \operatorname{Tr}(\varepsilon_{ijk}Y_{i}^{+}Y_{j}^{+}Y_{k}^{+} + h.c.)$$

breaks $SO(6)_R$ to $SU(3)_R$

eom:

$$0 = (\Box_4 + m^2 \Box_Y) Y_i^+ + 4m^2 \varepsilon_{ijk} Y_j^- Y_k^-$$
$$\Box_Y \equiv [Y^a, [Y_a, .]]$$

squashed SU(3) brane solutions $C_N[\mu]$

 $Y_{\pm\alpha_i} = r_i \pi_{\mu}(T_{\pm\alpha_i})$

... root generators of $\mathfrak{su}(3)$, for any rep. \mathcal{H}_{μ}

fluctuation & KK modes

determine fluctuation modes & masses on new vacua

all fields (scalar, gauge fields, fermions) take values in

 $\mathfrak{u}(N) = Mat(\mathcal{H}_{\mu}) \cong \mathcal{H}_{\mu} \otimes \mathcal{H}_{\mu}^{*} = \oplus_{\Lambda} \mathcal{H}_{\Lambda} \text{ of } SU(3)_{Y}$

expand into $SU(3)_Y$ harmonics: gauge fields:

$$A_{\mu}(x) = \sum A_{\mu}^{(M,\Lambda)}(x) \underbrace{\hat{Y}_{M}^{\Lambda}}_{SU(3)_{Y} \text{ modes}}$$

scalar fields:

 $\Phi_a = mY^a + \varphi^a(x)$ $\varphi_a(x) = \sum \varphi_a^{(M,\Lambda)}(x) \hat{Y}_M^{\Lambda}$

fermions ... (similar)

= na(~

massive gauge bosons as KK modes

<u>Higgs effect:</u> gauge modes $A_{\mu}(x) = \sum A_{\mu}^{(M,\Lambda)}(x) \hat{Y}_{M}^{\Lambda}$ acquire mass

$$\int \operatorname{tr}(D_{\mu}Y_{a})^{\dagger}D_{\mu}Y_{a} = \int \operatorname{tr}(\partial_{\mu}Y_{a}^{\dagger}\partial_{\mu}Y_{a} + \sum_{\Lambda,M}m_{\Lambda,M}^{2}A_{\mu,(\Lambda M)}^{\dagger}A_{(\Lambda,M)}^{\mu}) + S_{int}$$

given by

$$\Box_{Y} \hat{Y}^{\wedge}_{M} \equiv [Y^{a}, [Y_{a}, \hat{Y}^{\wedge}_{M}]] = m^{2}_{(\wedge M)} \hat{Y}^{\wedge}_{M}$$

 \Rightarrow tower of massive KK modes $A_{\mu,(\Lambda M)}(x)$, mass $m^2_{(\Lambda M)} > 0$

(no massless gauge modes)

geometric interpretation of Higgs effect

massive gauge modes = KK modes on squashed brane $C_N[\mu]$,

$$\rightarrow$$
 effect. gauge theory on $\mathbb{R}^4 \times \mathcal{C}_N[\mu]$

similar for scalar fields & fermions

H. Steinacker

internal geometry: squashed fuzzy coadjoint orbits

<u>claim</u>: $Y_a = \pi_\mu(T_a)$... quantized coadjoint *SU*(3) orbit, projected along Cartan directions

$$\begin{array}{ccc} \mathcal{C}[\mu] \hookrightarrow \mathbb{R}^8 & \stackrel{\mathsf{\Pi}}{\to} \mathbb{R}^6 \\ (y^a)_{a=1,\dots,8} & \mapsto & (y^a)_{a=1,2,4,5,6,7} \end{array}$$

4- or 6-dimensional variety in \mathbb{R}^6 , self-intersecting

H.S., J. Zahn arxiv:1409.1440

<u>4-dim branes</u> = squashed $\mathbb{C}P^2$:

triple self-intersection at origin

 \Rightarrow zero-modes: strings linking sheets at origin, $_{-}$

H. Steinacker

Chiral low-energy physics from squashed branes in deformed $\mathcal{N}=4$ SYM

computer measurement of $Y^a = \pi_{\mu}(T^a)$:

squashed $C_N[\mu]$ for $\mu = (20, 0)$.

L. Schneiderbauer, H.S. (unpublished)

Image: A math

Fermions

stacks of branes & S.M.

scalar fluctuation modes

<u>scalar fluctuations</u>: $\phi_{\alpha} = mY_{\alpha} + \varphi_{\alpha}$ quadratic potential for φ_{α} :

$$\begin{split} V_2[\varphi] &= \mathrm{tr} \varphi^{\alpha} \big(\Box_Y + 2 \not\!\!\!\! D_{\mathrm{diag}} - 2 \not\!\!\!\! D_{\mathrm{mix}} \big) \varphi_{\alpha}, \\ (\not\!\!\!\! D_{\mathrm{mix}} \varphi)_i^+ &= -\varepsilon_{ikj} [Y_k^-, \varphi_j^-], \qquad \tau \not\!\!\!\! D_{\mathrm{mix}} = - \not\!\!\!\! D_{\mathrm{mix}} \tau \end{split}$$

can show:

- no negative modes (!!)
- ∃ zero modes: regular & exceptional H.S., J. Zahn arxiv:1409.1440

- 4 同 ト 4 ヨ ト

• regular zero modes: corresponding to $D_{mix} \phi_{\alpha}^{(0)} = 0$

6 zero modes for each $\mathcal{H}_{\Lambda} \subset Mat(\mathcal{H}_{\mu})$

(corresp. to 6 extremal charges of $U(1)_{K_i}$ in $\mathcal{H}_{\Lambda} \otimes (8)$)

geometric interpretation:

string between coincident sheets of $C[\mu]$ at origin e.g. $\varphi_{\Lambda} = |\Omega \mu \rangle \langle \mu|$, $|\mu \rangle$... coherent states

exceptional zero modes:

in particular: 6 Goldstone bosons (from $SU(3)/U(1) \times U(1)$)

(verified numerically)

H. Steinacker

Chiral low-energy physics from squashed branes in deformed $\mathcal{N}=4$ SYM

< ロ > < 同 > < 回 > < 回 >

Motivation	squashed branes	Fluctuation modes	Fermions	stacks of branes & S.M.
fermions				

Dirac operator on squashed $C_{\mathcal{N}}[\mu]$:

$$\begin{split} \not{\!\!D}_{(int)}\Psi &= 2\sum_{i=1}^{3} \left(\gamma_{i}[Y_{i}^{+},.] + \gamma_{i}^{\dagger}[Y_{1}^{-},.] \right) \\ &\{\gamma_{i},\gamma_{j}^{\dagger}\} = \delta_{ij} \dots SO(6) \text{ Clifford algebra} \end{split}$$

zero modes:

 $D (int) \Psi_{\Lambda} = 0$

- have distinct chirality determined by quantum numbers A (!)
- in one-to-one correspondence to regular zero modes

(fermionic strings connecting branes)

イロト イポト イラト イラ

except for exceptional zero modes (SUSY broken)

3 generations of Weyl/ Majorana spinors on \mathbb{R}^4 (Weyl rotations $\frac{2\pi}{3}$) chirality $\gamma_5 \Psi_{\Lambda'} = (+-)\Psi_{\Lambda'}$ determined by $U(1)_{K_i}$ charges $\Psi_{-\Lambda'} = C\Psi_{\Lambda'}$

< ロ > < 同 > < 回 > < 回 >

э.

towards interesting physics:

stacks of squashed $D_i = C[\mu_i]$ branes (=reducible rep.'s of $\mathfrak{su}(3)$)

$$Y^{a} = \begin{pmatrix} Y^{a}_{\mu_{1}} & \\ & Y^{a}_{\mu_{2}} \end{pmatrix} \quad \cong \begin{pmatrix} \mathcal{D}_{1} & \\ & \mathcal{D}_{2} \end{pmatrix}$$

off-diagonal fermions

$$\Psi = \begin{pmatrix} 0 & \psi_{12} \\ \psi_{21} & 0 \end{pmatrix}$$

zero-modes in bi-fundamental $\mathcal{H}_1 \otimes \mathcal{H}_2^*$ of $U(N_1) \times U(N_2)$

e.g. quarks = links $C[\mu]$ with 3 "baryonic" point-branes:

quarks: $\Psi_{12} = |\mu_i\rangle_1 \langle 0_j|_2 \in \mathcal{H}_\mu \otimes \mathbb{C}^3$

3+3 chiral zero-modes attached to $C[\mu]$

Fermions

stacks of branes & S.M.

A standard-model-like brane configuration

gauge symmetry $U(2)_L \times U(1)_{Ru} \times U(1)_{Rd} \times U(1)_I \times U(3)_c$ assume Higgs $\phi_u, \phi_d, \phi_S \neq 0$ connecting branes (zero modes!) unbroken symm: $SU(3)_c \times U(1)_Q \times U(1)_B$

$$Q = \frac{1}{2} (\mathbf{1}_{Ru} + \mathbf{1}_{Lu} - \mathbf{1}_{Rd} - \mathbf{1}_{Ld} + \mathbf{1}_{l} - \frac{1}{3} \mathbf{1}_{b})$$

mass $O(\phi)$: $SU(2)_L \times U(1)_Y$

"anomalous" at low energy (\rightarrow massive): $U(1)_5$, $U(1)_B$

fermions with SM quantum numbers arise as zero modes linking branes

$$\Psi = \begin{pmatrix} *_{2} & H_{d} & H_{u} & I_{L} & Q_{L} \\ & * & e' & e_{R} & d_{R} \\ & & * & \nu_{R} & u_{R} \\ & & & * & u' \\ & & & * & u' \\ & & & * & 3 \end{pmatrix},$$

$$(Q, Y) = \begin{pmatrix} * & \binom{(1, 1)}{(0, 1)} & \binom{(0, -1)}{(-1, -1)} & \binom{(0, -1)}{(-1, -1)} & \binom{(\frac{2}{3}, \frac{1}{3})}{(-\frac{1}{3}, -\frac{2}{3})} \\ & & * & (-1, -2) & (-1, -2) & (-\frac{1}{3}, -\frac{2}{3}) \\ & & * & (0, 0) & \binom{2}{3}, \frac{4}{3}) \\ & & & * & \binom{2}{3}, \frac{4}{3} \end{pmatrix} \\ Q_{L} = \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix}, \qquad I_{L} = \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix},$$

- 3 generations (Z₃ Weyl rotations!)
- all standard model fermions, 2 Higgs doublets, + superpartners
- extra fermions $\nu_R, u', e', \lambda \sim U(1)_L$ etc., no exotic charges

Motivation	squashed branes	Fluctuation n	nodes Ferr	nions	stacks of branes & S.M.
chirality	: index =0 in J	V = 4 SYM	!		
but:					
ric	h Higgs sector (=	zero mode	s)		
cu	bic potential \rightarrow	SSB		H.S.	arXiv:1504.05703
● ∃ s	uitable Higgs VE	V's such th	at		
	$\Psi = \left\{ egin{array}{c} { m light} { m fe} \ { m mirror} \end{array} ight.$	ermions, fermions,	chirality of S opposite chi	.M. rality	light heavy
pr	otected by unbro	ken $U(1)_{K_i}$			
• mi	rror fermions cou $ ightarrow$ acquire larger	ple to mirro masses	or Higgs,		
• <i>v</i> _R	(light & mirror)				

can obtain extended chiral S.M. at low energy, + heavier mirror sector

separation of Higgs components into light & mirror:

separated by cubic potential

< A >

- \exists rich class of vacuum solutions of deformed SU(N) $\mathcal{N} = 4$ SYM \rightarrow self-intersecting extra dim $\mathbb{R}^4 \times \mathcal{C}[\mu]$
- chiral low-energy physics possible, + mirror sector at high scale
- can be surprisingly similar to standard model in broken phase
- open issues:

elaborate rich Higgs sector (zero modes) sufficient hierarchy for mirror sector? quantum corrections

< ロ > < 同 > < 回 > < 回 > < 回 > <

Motivation	squashed branes	Fluctuation modes	Fermions	stacks of branes & S.M.

(soft) SUSY breaking:

action is almost $\mathcal{N} = 1^*$ deformation of $\mathcal{N} = 4$ SYM: consider superpotential

$$W = \frac{\sqrt{2}}{g} \operatorname{tr}([\Phi_1^+, \Phi_2^+] \Phi_3^- - m \Phi_3^- \Phi_3^-) \qquad \dots \mathcal{N} = 1^*$$

(declare $\Phi_1^+ \Phi_2^+, \Phi_3^-$ as holomorphic coords)

 \rightarrow effective potential

$$\begin{split} V(\Phi) &= -\frac{1}{4g^2} \mathrm{tr}[\Phi^{\alpha}, \Phi^{\beta}][\Phi_{\alpha}, \Phi_{\beta}] \\ &+ 4\frac{1}{g^2} \mathrm{tr}\big(-m[\Phi_1^+, \Phi_2^+]\Phi_3^+ - m[\Phi_2^-, \Phi_1^-]\Phi_3^- + \mathbf{2}m^2\Phi_3^+\Phi_3^- \big). \end{split}$$

 \equiv present potential, however, mass $M_3^2 = 2m^2$ too large for squashed SU(3) brane solutions

< 同 > < 回 > < 回 >