(Spinning) squashed extra dimensions, chiral fermions \& hierarchy in $\mathcal{N}=4$ SYM

Harold Steinacker

Department of Physics, University of Vienna

FШF

H.S., J. Zahn arXiv:1409.1440,
H.S. arXiv:1411.3139
(Spinning) squashed extra dimensions, chiral fermions \& hierarchy in $\mathcal{N}=4$ SYM

Outline

- $\operatorname{SU}(N) \mathcal{N}=4$ SYM with cubic (flux) terms
- vacuum structure, Higgs effect \& emergence of fuzzy sphere
- emergence of squashed (fuzzy) coadjoint orbits of $\operatorname{SU}(3)$
- zero modes and chiral fermions
- spinning squashed branes
- would-be zero modes and heavy sector
- stacks of branes
towards standard model ?

Motivation

- guide towards fundamental physics: simplicity established: relativity, electroweak unification, ... speculative: GUT models, string theory on $\mathbb{R}^{4} \times \mathcal{K}, \ldots$
- both ideas realized within 4D Yang-Mills gauge theory: dynamically develops extra dimensions $\mathbb{R}^{4} \times \mathcal{K}_{N}$
(Higgs mechanism!)

Madore, Myers, Arkani-Hamed etal, Aschieri-HS-Zoupanos, ...

- aspects of string theory (Kaluza-Klein, intersecting branes ...) realized in controlled 4-D framework
- here: simplest of all 4D gauge theories: $\mathcal{N}=4$ SYM

$\mathcal{N}=4$ SYM and squashed fuzzy branes

$\mathcal{N}=4$ SYM obtained by dimensional reduction from 10D SYM:

$$
S_{10}=\int d^{10} x \operatorname{tr}_{N}\left(-\frac{1}{4 g^{2}} F^{A B} F_{A B}+\bar{\Psi} \Gamma^{A}\left(i \partial_{A}+\left[A_{A}, .\right]\right) \Psi\right)
$$

$F_{A B}=\partial_{a} A_{B}-\partial_{B} A_{A}+i\left[A_{A}, A_{B}\right]$, Majorana-Weyl fermion ψ

$\mathcal{N}=4$ SYM and squashed fuzzy branes

$\mathcal{N}=4$ SYM obtained by dimensional reduction from 10D SYM:

$$
S_{10}=\int d^{10} x \operatorname{tr}_{N}\left(-\frac{1}{4 g^{2}} F^{A B} F_{A B}+\bar{\Psi} \Gamma^{A}\left(i \partial_{A}+\left[A_{A}, .\right]\right) \psi\right)
$$

$$
F_{A B}=\partial_{A} A_{B}-\partial_{B} A_{A}+i\left[A_{A}, A_{B}\right], \text { Majorana-Weyl fermion } \psi
$$

reduce to $D=4$, separate $A_{A}=\left(A_{\mu}, \phi_{\text {a }}\right)$

$$
\begin{gathered}
S_{\mathcal{N}=4}=\int d^{4} x \frac{1}{4 g^{2}} \operatorname{tr}\left(-F^{\mu \nu} F_{\mu \nu}-2 D^{\mu} \Phi^{a} D_{\mu} \Phi_{a}+\left[\Phi^{a}, \Phi^{b}\right]\left[\Phi_{a}, \Phi_{b}\right]\right) \\
+\operatorname{tr}\left(\bar{\Psi} \gamma^{\mu}\left(i \partial_{\mu}+\left[A_{\mu}, .\right]\right) \Psi+\bar{\Psi} \Gamma^{a}\left[\Phi_{a}, \Psi\right]\right)
\end{gathered}
$$

- 6 scalar fields $\phi^{a}, a \in \mathcal{I}=\{1,2,4,5,6,7\}$
- $D_{\mu} \phi^{a}=\left(\partial_{\mu}+i\left[A_{\mu},\right]\right) \phi^{a}$
- $\left(\gamma^{\mu}, \Gamma^{a}\right)=\Gamma^{A}$... 10D Clifford generators, $\Psi \rightarrow 4$ Weyl fermions

symmetries: global $\operatorname{SO}(6), \operatorname{SU}(N)$ gauge symmetry, $\mathcal{N}=4$ SUSY

simplest, most symmetric 4D gauge theory, UV finite
$\mathcal{N}=4$ SYM beautiful but too "round" for physics
possibilities to obtain structure:

- spontaneous symmetry breaking (SSB): still no "interesting" (chiral) low-energy physics
- consider rotating background
- add soft susy breaking terms to potential
H.S., J. Zahn arXiv:1409.1440
scalar potential:

$$
V[\phi]=-\frac{1}{4 g^{2}} \operatorname{tr}_{N}\left(\left[\Phi^{a}, \Phi^{b}\right]\left[\Phi_{a}, \Phi_{b}\right]+2 i f_{a b c} \Phi^{a} \Phi^{b} \Phi^{c}\right)
$$

$f_{a b c} . .$. tot. antisymm., extra flux term added by hand (soft SUSY breaking)
$V[\phi]$ bounded from below
dimensionless fields $\Phi_{a}=m Y_{a}$
saddle points $\frac{\delta V}{\delta \phi}=0$:

$$
\square_{Y} Y^{a}=\frac{3}{4} i f_{a b c}\left[Y^{b}, Y^{c}\right], \quad \square_{Y}=\left[Y_{a},\left[Y^{a}, .\right]\right]
$$

fluctuations around background solution \bar{Y}_{a}

$$
Y^{a}=\bar{Y}^{a}+\varphi^{a}
$$

expand potential up to quadratic terms in fluctuations:

$$
V[Y]=V[\bar{Y}]+\frac{1}{2} \operatorname{Tr}\left(\varphi_{a} \square \varphi^{a}+2\left[\varphi_{a}, \varphi_{b}\right]\left(\left[\bar{Y}^{a}, \bar{Y}^{b}\right]+\frac{3}{4} i f_{a b c} \bar{Y}^{c}\right)+f^{2}+O\left(Y^{3}\right)\right)
$$

(here $f=i\left[Y^{a}, \varphi_{\mathrm{a}}\right] \ldots$ cf. gauge-fixing function)
eom for fluctuations φ_{a} :

$$
\left(\square \delta_{b}^{a}+2\left[\left(\left[Y^{a}, Y^{b}\right]+\frac{3}{4} i f_{a b c} Y^{c}\right), .\right]-\left[Y^{a},\left[Y^{b}, .\right]\right]\right) \varphi_{b}=0 .
$$

warm-up: the fuzzy sphere solution
$f_{a b c}=\epsilon_{a b c}^{123} \ldots S U(2)$ structure constants
\rightarrow fuzzy sphere solution S_{N}^{2}

$$
Y_{a}=c J_{a}^{(N)}, \quad a=1,2,3 \quad \ldots N-\text { dim. generators of } S U(2)
$$

$$
\text { (note: } \square y=c^{2}\left[J_{a},\left[J_{a}, .\right]\right] \ldots \text { Casimir!) }
$$

flux term $\operatorname{tr}(f Y Y Y)$ preserves $S O(3)_{123} \times S O(3)_{456} \subset S O(6)_{R}$
S_{N}^{2} breaks gauge inv. and global $S O(3)_{123}$ spontaneously
$S O(3)_{123}$ acts on fluctuations φ_{a}

$$
\begin{aligned}
\mathfrak{s u}(2) \times \varphi & \rightarrow \varphi \\
\left(J_{a}, \phi\right) & \mapsto\left[J_{a}^{(N)}, \phi\right]
\end{aligned}
$$

expand φ_{a} into harmonics

$$
\begin{aligned}
\varphi_{a} \in \operatorname{Mat}(N, \mathbb{C}) \cong(N) \otimes(\bar{N}) & =(1) \oplus(3) \oplus \ldots \oplus(2 N-1) \\
& =\left\{\hat{Y}_{0}^{0}\right\} \oplus\left\{\hat{Y}_{m}^{1}\right\} \oplus \ldots \oplus\left\{\hat{Y}_{m}^{N-1}\right\} .
\end{aligned}
$$

... fuzzy spherical harmonics (=polynomials in $Y_{\bar{a}}$);

observe:

decomposition of $\operatorname{Mat}(N, \mathbb{C})$ into harmonics is precisely decomposition of $\operatorname{Pol}_{N}\left(S^{2}\right)$ into spherical harmonics, up to cutoff quantization map:

$$
\begin{aligned}
\mathcal{Q}: \mathcal{C}\left(S^{2}\right) & \rightarrow \operatorname{Mat}(N, \mathbb{C}) \cong \operatorname{Fun}_{N}\left(S^{2}\right) \\
Y_{m}^{\prime} & \mapsto\left\{\begin{array}{cc}
\hat{Y}_{m}^{\prime}, & I<N \\
0, & I \geq N
\end{array}\right.
\end{aligned}
$$

gives quantization of S^{2} w.r.t. canonical symplectic form
in particular: Y_{a} is quantization of embedding map

$$
Y_{a} \sim y_{a}: \quad S^{2} \hookrightarrow \mathbb{R}^{3}
$$

observe:

decomposition of $\operatorname{Mat}(N, \mathbb{C})$ into harmonics is precisely decomposition of $\operatorname{Pol}_{N}\left(S^{2}\right)$ into spherical harmonics, up to cutoff quantization map:

$$
\begin{aligned}
\mathcal{Q}: \quad \mathcal{C}\left(S^{2}\right) & \rightarrow \operatorname{Mat}(N, \mathbb{C}) \cong \operatorname{Fun}_{N}\left(S^{2}\right) \\
Y_{m}^{\prime} & \mapsto\left\{\begin{array}{cc}
\hat{Y}! & I<N \\
0, & I \geq N
\end{array}\right.
\end{aligned}
$$

gives quantization of S^{2} w.r.t. canonical symplectic form
in particular: Y_{a} is quantization of embedding map

$$
Y_{a} \sim y_{a}: \quad S^{2} \hookrightarrow \mathbb{R}^{3}
$$

note

$$
\begin{aligned}
{\left[y_{a}, y_{b}\right] } & =i \Lambda_{N} \varepsilon_{a b c} y_{c}, \\
y_{1}^{2}+y_{2}^{2}+y_{3}^{2} & =1 .
\end{aligned}
$$

$$
\ldots \quad S_{N}^{2}
$$

$$
\Lambda_{N}=\frac{2}{\sqrt{N^{2}-1}} \sim \frac{2}{N} \ldots \text { NC parameter, analog of } \hbar
$$

back to $\mathcal{N}=4$ SYM:

S_{N}^{2} - vacuum, SSB \rightarrow Higgs effect \rightarrow massive gauge bosons

$$
D_{\mu} Y_{a}=\left(\partial_{\mu}+i\left[A_{\mu}, .\right]\right) Y_{a}
$$

decompose

$$
A_{\mu}(x)=\sum_{l, m} A_{\mu}^{(l m)}(x) \hat{Y}_{m}^{l} \equiv A_{\mu}(x, y)
$$

kinetic term $\operatorname{tr}\left(D_{\mu} \phi_{a} D^{\mu} \phi^{a}\right)$ gives mass term,

$$
\int \operatorname{tr}\left(D_{\mu} \phi_{a}\right)^{\dagger} D_{\mu} \phi_{a}=\int \operatorname{tr}\left(\partial_{\mu} \phi_{a}^{\dagger} \partial_{\mu} \phi_{a}+\sum_{l, m} m_{l}^{2} A_{\mu,(l m)}^{\dagger} A_{(l m)}^{\mu}\right)+S_{\text {int }} .
$$

\Rightarrow tower of massive KK modes $A_{\mu(I m)}(x)$, mass $m_{(I)}^{2} \sim I(I+1)$
$\mathfrak{s u}(N)$-valued fields \rightarrow functions on $\mathbb{R}^{4} \times S_{N}^{2}$ \rightarrow Yang-Mills on $\mathbb{R}^{4} \times S_{N}^{2}$!
mechanism at classical level (weak coupling), not holographic Andrews, Dorey hep-th/0505107,
Aschieri, Grammatikopoulos,HS,Zoupanos hep-th/0606021

squashed fuzzy extra dimensions

problem: above backgrounds don't give chiral low-energy theory (S^{2} is not "space-filling" in transverse \mathbb{R}^{6}) \exists higher-dim fuzzy spaces, require higher-dim embedding solution: squashed embedding !! projected 4- and 6-dimensional coadjoint orbits of $S U(3)$

squashed fuzzy $\mathcal{C}[\mu]$ solutions

add flux term $\operatorname{tr}\left(f^{a b c} Y_{a} Y_{b} Y_{c}\right)$ with
$f_{a b c}=-\frac{8}{3} c_{a b c} \quad \ldots$ structure constants of $\mathfrak{s u}(3)$ without Cartan generators
\rightarrow solutions

$$
Y_{a}=T_{a}^{(\Lambda)}, \quad a=1,2,4,5,6,7
$$

... generators of $\mathfrak{s u}(3)$ (without Cartan generators T_{3}, T_{8}) on irrep \mathcal{H}_{μ}
flux term $\operatorname{tr}\left(f^{a b c} Y_{a} Y_{b} Y_{c}\right)$, breaks $S O(6) \rightarrow U(1)_{3} \times U(1)_{8} \subset S U(3)$
commutation relations of $\mathfrak{s u}(3)$:

$$
\left[T_{a}, T_{b}\right]=i f_{a b c} T_{c}
$$

Cartan generators $H_{3} \equiv T_{3}, H_{8} \equiv T_{8}$ commute $\left[H_{3}, H_{8}\right]=0$ ladder operators

$$
\begin{aligned}
Y_{1}^{ \pm} & =\frac{1}{2}\left(T_{4} \pm i T_{5}\right), \\
Y_{2}^{ \pm} & =\frac{1}{2}\left(T_{6} \mp i T_{7}\right), \\
Y_{3}^{ \pm} & =\frac{1}{2}\left(T_{1} \pm i T_{2}\right)
\end{aligned}
$$

corresponding to 3 roots $\alpha_{1}^{ \pm}, \alpha_{2}^{ \pm}, \alpha_{3}^{ \pm}$
satisfy

$$
\left[H_{\beta}, Y_{i}^{ \pm}\right]= \pm \alpha_{i}\left(H_{\beta}\right) \stackrel{Y_{i}^{ \pm}}{Y^{\mathrm{R}}}
$$

and

$$
\begin{aligned}
{\left[Y_{i}^{+}, Y_{i}^{-}\right] } & =H_{\alpha_{i}}, \quad i=1,2,3 \\
{\left[Y_{1}^{+}, Y_{2}^{+}\right] } & =Y_{3}^{+} \\
{\left[Y_{1}^{+}, Y_{3}^{-}\right] } & =-Y_{2}^{-} \\
{\left[Y_{2}^{+}, Y_{3}^{-}\right] } & =Y_{1}^{-} \\
{\left[Y_{1}^{+}, Y_{2}^{-}\right] } & =\left[Y_{2}^{+}, Y_{3}^{+}\right]=\left[Y_{1}^{+}, Y_{3}^{+}\right]=0
\end{aligned}
$$

eom: $\square_{y} Y_{a}=\frac{3}{4} i f_{a b c}\left[Y_{b}, Y_{c}\right]$ follows from

$$
\square Y Y_{a}=8 Y_{a}, \quad i c_{a c b}\left[Y_{a}, Y_{c}\right]=-4 Y_{b}
$$

include fluctuations:

$$
\phi_{a}=Y_{a}+\varphi_{a}
$$

fluctuation modes $\varphi_{a} \in \operatorname{End}\left(\mathcal{H}_{\mu}\right)$ governed by

$$
\left(\square \delta_{b}^{a}+2\left[\left(\left[Y_{a}, Y_{b}\right]+\frac{3}{4} i f_{a b c} Y_{c}\right), .\right]-\left[Y_{a},\left[Y_{b}, .\right]\right]\right) \varphi_{b}=0
$$

background $Y_{a}=T_{a}^{(\Lambda)}$ breaks gauge invariance,
$\rightarrow \operatorname{dim} \mathcal{H}^{2}-1$ trivial zero modes (gauge trafos), eaten by massive gauge field modes $A_{\mu}(x)$: Higgs effect

massive gauge bosons \& KK modes

kinetic term $\operatorname{tr}\left(D_{\mu} Y_{a} D^{\mu} Y^{a}\right)$ gives mass term,

$$
\int \operatorname{tr}\left(D_{\mu} Y_{a}\right)^{\dagger} D_{\mu} Y_{a}=\int \operatorname{tr}\left(\partial_{\mu} Y_{a}^{\dagger} \partial_{\mu} Y_{a}+\sum_{\Lambda, M} m_{\Lambda, M}^{2} A_{\mu,(\wedge M)}^{\dagger} A_{(\Lambda, M)}^{\mu}\right)+S_{i n t}
$$

using $D_{\mu} \phi_{a}=\left(\partial_{\mu}+i\left[A_{\mu},.\right]\right) \phi_{a}$ and decomposition

$$
A_{\mu}(x)=\sum A_{\mu}^{(M, \wedge)}(x) \hat{Y}_{M}^{\wedge}
$$

into eigenmodes of

$$
\square_{Y} \hat{Y}_{M}^{\wedge}=m_{(\Lambda M)}^{2} \hat{Y}_{M}^{\wedge}
$$

\Rightarrow tower of massive KK modes $A_{\mu,(\Lambda M)}(x)$, mass given by

$$
m_{(\Lambda M)}^{2} \sim(\langle\Lambda+\rho, \Lambda+\rho\rangle-\langle\rho, \rho\rangle-\langle M, M\rangle)>0
$$

(no massless gauge modes)

internal geometry: squashed fuzzy coadjoint orbits

claim: $Y_{a}=T_{a}^{(\Lambda)} \ldots$ coadjoint $S U(3)$ orbits projected along Cartans

$$
\begin{aligned}
\mathcal{C}[\mu] \hookrightarrow \mathbb{R}^{8} & \xrightarrow{\square} \mathbb{R}^{6} \\
\left(y^{a}\right)_{a=1, \ldots, 8} & \mapsto\left(y^{a}\right)_{a=1,2,4,5,6,7}
\end{aligned}
$$

4- or 6-dimensional variety, self-intersecting embedding in \mathbb{R}^{6} multiple covering at origin, spanning all 6 directions
H.S., J. Zahn arxiv:1409.1440
e.g:
$\overline{3-d i m e n s i o n a l ~ s e c t i o n ~ o f ~ s q u a s h e d ~} \mathbb{C} P^{2}$ through $y_{2}=y_{5}=y_{7}=0$:

triple self-intersection at origin

fuzzy $\operatorname{SU}(3)$ branes

classical coadjoint orbits of $\operatorname{SU}(3)$

$$
\mathcal{C}[\mu]=\left\{p=g^{-1} H_{\mu} g ; g \in S U(3)\right\} \cong S U(3) / \mathcal{K} \subset \mathfrak{s u}(3) \cong \mathbb{R}^{8}
$$

$\mathcal{K} \ldots$ stabilizer group of $H_{\mu} \in \mathfrak{g}_{0} \subset \mathfrak{g}=\mathfrak{s u}(3) \quad\left(\mu \in \mathfrak{g}_{0}^{*} \ldots\right.$ weight)

- $H_{\mu} 3 \mathrm{EV} \rightarrow \mathcal{C}[\mu] \cong S U(3) / U(1) \times U(1) \ldots 6$-dim.
- $H_{\mu} 2 \mathrm{EV} \rightarrow \mathcal{C}[\mu] \cong S U(3) / S U(2) \times U(1) \cong \mathbb{C} P^{2} \ldots 4$-dim. parametrize $\mathcal{C}[\mu]$:

$$
\begin{gathered}
p=y^{a} \lambda_{a} \quad \in \mathcal{C}[\mu], \quad a=1, \ldots, 8 \\
y^{a}: \quad \mathcal{C}[\mu] \hookrightarrow \mathbb{R}^{8} \cong \mathfrak{s u}(3)
\end{gathered}
$$

quantized (fuzzy) coadjoint orbits:

$\mathcal{C}[\mu]$ is symplectic space (Kirillov-Kostant) \rightarrow quantize it:
$\mu=n_{1} \Lambda_{1}+n_{2} \Lambda_{2} \ldots$ dominant integral weight
$\mathcal{H}_{\mu} \ldots$ corresp. highest weight irrep
fuzzy $\mathcal{C}_{N}[\mu]$:

$$
Y^{a}=\pi_{\mu}\left(T^{a}\right)
$$

generate matrix algebra

$$
\mathcal{A}_{N}=\operatorname{End}\left(\mathcal{H}_{\mu}\right)
$$

can show (in general):
decomposition into harmonics of $S U(3)$ agrees with classical harmonic analysis,

$$
\operatorname{Pol}(\mathcal{C}[\mu]) \cong \oplus_{\wedge} m_{\wedge} \mathcal{H}_{\Lambda} \cong \mathcal{H}_{\mu} \otimes \mathcal{H}_{\mu}^{*}=\operatorname{End}\left(\mathcal{H}_{\mu}\right)=\mathcal{A}_{N}
$$

up to cutoff $\Lambda_{\text {max }}$

quantization map

$$
\begin{aligned}
\mathcal{Q}: \quad \operatorname{Pol}(\mathcal{C}[\mu]) & \rightarrow \mathcal{A}_{N} \\
Y_{M}^{\wedge} & \mapsto \hat{Y}_{M}^{\wedge}
\end{aligned}
$$

respects $S U(3)$, truncated at cutoff $\Lambda_{\max }$.
$Y^{a}=\mathcal{Q}\left(y^{a}\right)=\pi_{\mu}\left(T^{a}\right)$ interpreted as quantized embedding functions

$$
Y^{a} \sim y^{a}: \quad \mathcal{C}[\mu] \hookrightarrow \mathbb{R}^{8} .
$$

commutation relations:

$$
\left[Y^{a}, Y^{b}\right]=i c_{c}^{a b} Y^{c}
$$

... quantizes $\mathfrak{s u}(3)$ - invariant Poisson structure (Kirillov-Kostant)

$$
\left\{y^{a}, y^{b}\right\}=c_{c}^{a b} y^{c}
$$

Fluctuation modes in $\mathcal{N}=4$ SYM

all fluctuations (scalar, gauge fields) take values in

$$
\mathfrak{s u}(N) \subset \mathfrak{u}(N)=\operatorname{End}\left(\mathcal{H}_{\mu}\right) \cong \text { functions on } \mathbb{R}^{4} \times \mathcal{C}_{N}[\mu]
$$

behaves like 8 - or 10 -dim gauge theory below $\Lambda_{u v}$
scalar fluctuations: $\quad \phi_{a}=Y_{a}+\varphi_{a}$ governed by

$$
\left(\square \delta_{b}^{a}+2\left[\left(\left[Y_{a}, Y_{b}\right]+\frac{3}{4} i f_{a b c} Y_{c}\right), .\right]-\left[Y_{a},\left[Y_{b}, .\right]\right]\right) \varphi_{b}=0
$$

can show:

- respects decomposition into $S U(3)$ multiplets

$$
\operatorname{End}\left(\mathcal{H}_{\mu}\right)=\bigoplus_{\Lambda} m_{\Lambda} \mathcal{H}_{\Lambda}
$$

- no negative modes (!!)
- \exists zero modes (= flat deformations)
regular zero modes:

$$
\begin{aligned}
\varphi^{(\Lambda+\rho)}=\lambda_{\rho} \otimes \varphi_{\Lambda} \quad \in(8) \otimes \mathcal{H}_{\Lambda}, & \varphi_{\Lambda} \ldots \text { highest weight vector in } \mathcal{H}_{\Lambda} \\
& \rho=\alpha_{1}+\alpha_{2}=\alpha_{3} \ldots \text { Weyl vector }
\end{aligned}
$$

include images under Weyl group \mathcal{W}

6 zero modes for each \mathcal{H}_{\wedge}
e.g. $\varphi_{\Lambda}=|\Omega \mu\rangle\langle\mu| \quad,|\mu\rangle \ldots$ coherent states, string between coincident sheets of $\mathcal{C}[\mu]$ at/near origin
exceptional zero modes:
$3+3$ additional zero modes for $\varphi \in \mathcal{H}_{\wedge}$ with $\Lambda=(n, 1)$ and $\Lambda=(1, n)$

fermions

Dirac operator on squashed $\mathcal{C}_{\mathcal{N}}[\mu]$:

$$
D_{(6)} \Psi=\sum_{a \in \mathcal{I}} \Delta_{a}\left[Y_{a}, \Psi\right]=2 \sum_{i=1}^{3}\left(\gamma_{i}\left[Y_{i}^{+}, .\right]+\gamma_{i}^{\dagger}\left[Y_{1}^{-}, .\right]\right)
$$

spinorial ladder operators

$$
\begin{array}{ll}
2 \gamma_{1}=\Delta_{4}-i \Delta_{5}, & 2 \gamma_{1}^{\dagger}=\Delta_{4}+i \Delta_{5}, \\
2 \gamma_{2}=\Delta_{6}+i \Delta_{7}, & 2 \gamma_{2}^{\dagger}=\Delta_{6}-i \Delta_{7}, \\
2 \gamma_{3}=\Delta_{1}-i \Delta_{2}, & 2 \gamma_{3}^{\dagger}=\Delta_{1}+i \Delta_{2},
\end{array}
$$

satisfy $\left\{\gamma_{i}, \gamma_{j}^{\dagger}\right\}=\delta_{i j} \quad\left(\Delta_{a} \ldots\right.$ internal 6D Clifford alg.)
zero modes:

$$
D_{(6)} \Psi_{\Lambda}=0, \quad \Psi_{\Lambda}=|\uparrow \uparrow \uparrow\rangle \otimes v_{\Lambda}
$$

analogous zero modes $\Psi_{\Lambda^{\prime}}$ by Weyl group:

$$
\Psi_{w \Lambda}=\left|s_{1}, s_{2}, s_{3}\right\rangle w \cdot v_{\Lambda}, \quad\left|s_{1}, s_{2}, s_{3}\right\rangle=\omega_{1} \ldots \omega_{k}|\uparrow \uparrow \uparrow\rangle
$$

for each extremal weight Λ^{\prime} in \mathcal{H}_{Λ}
(strings connecting branes!)

chiral fermions

well-defined chirality

$$
\Gamma^{(6)} \Psi_{w \Lambda}=(-1)^{|w|} \Psi_{w \Lambda} .
$$

impose 10 Majorana-Weyl condition \rightarrow four-dimensional spinors $\psi_{ \pm}$

$$
\begin{gathered}
\psi=\psi_{+} \otimes \chi_{+}+\psi_{-} \otimes \chi_{-}, \\
D_{(4)} \psi_{ \pm}=0, \quad \gamma_{5} \psi_{ \pm}= \pm \psi_{ \pm}, \quad \psi_{ \pm}^{C}=\psi_{\mp} .
\end{gathered}
$$

Weyl or Majorana spinor on $\mathbb{R}^{4}, 3$ generations (Weyl rotations $\frac{2 \pi}{3}$)

spinning squashed branes

$\mathcal{C}_{N}[\mu]$ branes can be stabilized by rotation in $\mathcal{N}=4$ SYM, no flux!
complex scalar fields \leftrightarrow roots $\alpha_{i}^{ \pm}$of $\mathfrak{s u}(3)$

$$
\begin{aligned}
Y_{1}^{ \pm} & =\frac{1}{2}\left(Y_{4} \pm i Y_{5}\right) \equiv Y_{ \pm \alpha_{1}}, \\
Y_{2}^{ \pm} & =\frac{1}{2}\left(Y_{6} \mp i Y_{7}\right) \equiv Y_{ \pm \alpha_{2}}, \\
Y_{3}^{ \pm} & =\frac{1}{2}\left(Y_{1} \pm i Y_{2}\right) \equiv Y_{ \pm \alpha_{3}} .
\end{aligned}
$$

ansatz:

$$
Y_{i}^{ \pm}=r_{i} e^{ \pm i \omega_{i} X} \pi_{\mu}\left(T_{i}^{ \pm}\right)
$$

$\omega_{i}=\omega_{i, \mu} \quad . .3$ time-like vectors ("frequencies")
(cf. circularly polarized plane wave solutions)
have

$$
\begin{aligned}
& \square y Y_{1}^{ \pm}=2\left(2 r_{1}^{2}+r_{2}^{2}+r_{3}^{2}\right) Y_{1}^{ \pm}, \\
& \square y Y_{2}^{ \pm}=2\left(r_{1}^{2}+2 r_{2}^{2}+r_{3}^{2}\right) Y_{2}^{ \pm}, \\
& \square Y Y_{3}^{ \pm}=2\left(r_{1}^{2}+r_{2}^{2}+2 r_{3}^{2}\right) Y_{3}^{ \pm}
\end{aligned}
$$

... gives solution provided

$$
\begin{aligned}
\omega_{1}^{2} & =-2 m^{2}\left(2 r_{1}^{2}+r_{2}^{2}+r_{3}^{2}\right) \\
\omega_{2}^{2} & =-2 m^{2}\left(r_{1}^{2}+2 r_{2}^{2}+r_{3}^{2}\right) \\
\omega_{3}^{2} & =-2 m^{2}\left(r_{1}^{2}+r_{2}^{2}+2 r_{3}^{2}\right)
\end{aligned}
$$

or

$$
\left(\begin{array}{l}
r_{1}^{2} \\
r_{2}^{2} \\
r_{3}^{2}
\end{array}\right)=\frac{1}{8 m^{2}}\left(\begin{array}{c}
-3 \omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2} \\
\omega_{1}^{2}-3 \omega_{2}^{2}+\omega_{3}^{2} \\
\omega_{1}^{2}+\omega_{2}^{2}-3 \omega_{3}^{2}
\end{array}\right)
$$

typically: spinning BG \rightarrow Lorentz-breaking, bad dispersion relation here: \exists sector of zero modes with Lorentz-invariant kinematics

fermionic zero modes:

Dirac operator on spinning squashed $\mathcal{C}_{\mathcal{N}}[\mu]$:

$$
D_{(6)} \Psi=\sum_{a \in \mathcal{I}} \Delta_{a}\left[Y_{a}, \Psi\right]=2 \sum_{i=1}^{3} r_{i}\left(\Delta_{i}^{-} e^{i \omega_{i} x}\left[T_{i}^{+}, .\right]+\Delta_{i}^{+} e^{-i \omega_{i} x}\left[T_{i}^{-}, .\right]\right)
$$

zero modes as above:

$$
D_{(6)} \Psi_{\Lambda}=0, \quad \Psi_{\Lambda}=|\uparrow \uparrow \uparrow\rangle \otimes v_{\wedge}
$$

rotation $e^{i \omega_{i} X}$ drops out! analogous zero modes $\Psi_{\Lambda^{\prime}}$ via Weyl group:

$$
\Psi_{w \Lambda}=\left|s_{1}, s_{2}, s_{3}\right\rangle w \cdot v_{\Lambda}, \quad\left|s_{1}, s_{2}, s_{3}\right\rangle=\omega_{1} \ldots \omega_{k}|\uparrow \uparrow \uparrow\rangle
$$

for each extremal weight Λ^{\prime} in \mathcal{H}_{Λ}
(strings connecting branes)
remaining "massive" modes feel rotation,

chiral fermions

well-defined chirality

$$
\Gamma^{(6)} \Psi_{w \Lambda}=(-1)^{|w|} \Psi_{w \Lambda} .
$$

impose 10 Majorana-Weyl condition \rightarrow four-dimensional spinors $\psi_{ \pm}$

$$
\begin{gathered}
\psi=\psi_{+} \otimes \chi_{+}+\psi_{-} \otimes \chi_{-}, \\
D_{(4)} \psi_{ \pm}=0, \quad \gamma_{5} \psi_{ \pm}= \pm \psi_{ \pm}, \quad \psi_{ \pm}^{C}=\psi_{\mp} .
\end{gathered}
$$

Weyl or Majorana spinor on $\mathbb{R}^{4}, 3$ generations (Weyl rotations $\frac{2 \pi}{3}$)

gauge bosons

KK modes determined by

$$
\square Y=\left[Y_{\alpha},\left[Y^{\alpha}, .\right]\right]
$$

rotation drops out, same KK tower of massive gauge modes Lorentz-invariant dispersion relation
particularly interesting "chiral" modes:

$$
A_{\mu}^{L / R} \sim \chi^{L / R}
$$

... act as ± 1 on weight states $C_{L / R}$ of fermionic zero modes, according to their chirality

\rightarrow signature of a "chiral gauge theory"

fermions with different chirality transform differently under (spont. broken) gauge fields (cf. standard model in broken phase) total index $=0$

scalar modes

$$
\begin{aligned}
Y_{i}^{ \pm}=r_{i} e^{ \pm i \omega_{i} x} & T_{i}^{ \pm}+\phi_{i}^{ \pm} \quad \text { governed by } \\
& \left(\frac{\square_{4}}{m^{2}}+\square y+2\left(\square_{\text {mix }}+\not \square_{\text {diag }}\right)\right) \phi=0
\end{aligned}
$$

with

$$
\begin{aligned}
\left(D_{\operatorname{mix}} \phi\right)_{\alpha} & = \pm 2 \sum_{\beta \neq \alpha} e^{i\left(\omega_{a}-\omega_{\beta}-\omega_{\alpha-\beta}\right) x} r_{\alpha} r_{\beta} r_{\gamma}^{-1}\left[Y_{\alpha-\beta}, \phi_{\beta}\right] \\
\left(D_{\text {diag }} \phi\right)_{\alpha} & =2 r_{\alpha}\left[H_{\alpha}, \phi_{\alpha}\right] \quad \text { (no sum) }
\end{aligned}
$$

- zero modes:

$$
\mathbb{D}_{\operatorname{mix}} \phi^{(0)}=0
$$

... oblivious to rotation!! Lorentz-invariant
given by extremal weight states:

$$
T_{\alpha} \triangleright \phi_{\beta}^{(0)}=\left[T_{\alpha}, \phi_{\beta}^{(0)}\right]=0 \quad \text { for } \quad \alpha+\beta \in \mathcal{I}
$$

6 zero modes in each $\mathcal{H}_{\Lambda} \subset$ End $\left(\mathcal{H}_{\mu}\right)$,

$$
\phi_{-\alpha}^{(0)}=\left|w_{\alpha} \Lambda, \Lambda\right\rangle, \quad w_{\alpha} \in \mathcal{W}
$$

masses of $\phi_{\alpha}^{(0)}$:

$$
M_{\alpha}=0 \quad \text { if } \omega_{i}=\omega
$$

in general:

$$
\left(\begin{array}{c}
M_{\alpha_{3}} \\
M_{-\alpha_{2}} \\
M_{-\alpha_{1}}
\end{array}\right)=2\left(\begin{array}{ccc}
n_{1} & n_{2} & n_{3} \\
n_{2} & n_{3} & n_{1} \\
n_{3} & n_{1} & n_{2}
\end{array}\right)\left(\begin{array}{c}
r_{1}^{2} \\
r_{2}^{2} \\
r_{3}^{2}
\end{array}\right)
$$

sum rule

$$
M_{-\alpha_{1}}^{\phi}+M_{-\alpha_{2}}^{\phi}+M_{\alpha_{3}}^{\phi}=0
$$

- "heavy" modes:
... generic, couple to time-dependent background, break Lorentz-invariance
can be organized in terms of generalized translations

$$
x^{\mu} \rightarrow x^{\mu}+c^{\mu}, \quad Y_{\alpha} \rightarrow\left(\exp \left(i \omega_{i} c \tau_{i}\right) Y\right)_{\alpha}
$$

assume: no resonances (to be clarified)

second-stage SSB for $\omega_{i} \neq \omega_{j}$

\exists negative modes for would-be zero modes $\phi_{\alpha}^{(0)}$ stabilized by self-interactions

$$
V_{\mathrm{int}}(\phi)=\frac{m^{4}}{g^{4}} \operatorname{tr}\left(Y_{\alpha} \square_{\phi} \phi^{\alpha}+\frac{1}{4}\left[\phi_{\alpha}, \phi_{\beta}\right]\left[\phi^{\alpha}, \phi^{\beta}\right]\right)
$$

eom

$$
\left(\frac{\square_{4}}{m^{2}}+\square Y+\square_{\phi}+2 D_{a d}^{\phi}\right) Y_{\alpha}+\left(\frac{\square_{4}}{m^{2}}+\square Y+\square_{\phi}+2 D_{a d}^{Y}\right) \phi_{\alpha}=0
$$

ϕ_{α} decouple from rotating background Y_{α} if

$$
\not D_{\operatorname{mix}}^{\phi} Y_{\alpha} \equiv \sum_{\beta \neq \alpha}\left[\left[\phi_{\alpha}, \phi^{\beta}\right], Y_{\beta}\right]=0
$$

$\rightarrow 2$ equations

$$
\begin{aligned}
\left(\frac{\square_{4}}{m^{2}}+\square_{Y}+\square_{\phi}+2 D_{\text {diag }}^{\phi}\right) Y_{\alpha} & =0 \\
\left(\frac{\square_{4}}{m^{2}}+\square_{\phi}+\square_{Y}+2 D_{\text {diag }}^{Y}\right) \phi_{\alpha} & =0
\end{aligned}
$$

nontrivial solutions for ansatz $\phi_{\alpha}=\varphi_{\alpha} T_{-\alpha} \Rightarrow$ eom:

$$
\left(\begin{array}{cccccc}
2 & 1 & 1 & -2 & 1 & 1 \\
1 & 2 & 1 & 1 & -2 & 1 \\
1 & 1 & 2 & 1 & 1 & -2 \\
-2 & 1 & 1 & 2 & 1 & 1 \\
1 & -2 & 1 & 1 & 2 & 1 \\
1 & 1 & -2 & 1 & 1 & 2
\end{array}\right)\left(\begin{array}{c}
r_{1}^{2} \\
r_{2}^{2} \\
r_{3}^{2} \\
\varphi_{1}^{2} \\
\varphi_{2}^{2} \\
\varphi_{3}^{2}
\end{array}\right)=-\frac{1}{2 m^{2}}\left(\begin{array}{c}
\omega_{1}^{2} \\
\omega_{1}^{2} \\
\omega_{1}^{2} \\
0 \\
0 \\
0
\end{array}\right)
$$

\exists solution with $\varphi_{3} \neq 0$ and $\varphi_{1}=0=\varphi_{2}$:

$$
\left(\begin{array}{c}
r_{1}^{2} \\
r_{2}^{2} \\
r_{3}^{2} \\
\varphi_{3}^{2}
\end{array}\right)=\frac{1}{8 m^{2}}\left(\begin{array}{c}
-2 \omega_{1}^{2}+2 \omega_{2}^{2}-\omega_{3}^{2} \\
2 \omega_{1}^{2}-2 \omega_{2}^{2}-\omega_{3}^{2} \\
-\omega_{1}^{2}-\omega_{2}^{2}+\omega_{3}^{2} \\
-\omega_{1}^{2}-\omega_{2}^{2}+2 \omega_{3}^{2}
\end{array}\right)
$$

negative mass $M_{3}^{\phi}<0$ leads to nontrivial VEV

$$
m^{2} \varphi_{3}^{2}=\frac{1}{8}\left(2 \omega_{3}^{2}-\omega_{1}^{2}-\omega_{2}^{2}\right) \approx \frac{\Delta \omega_{i}^{2}}{4}>0
$$

stable hierarchy!
towards interesting physics:
stacks of squashed $\mathcal{D}_{i}=\mathcal{C}\left[\mu_{i}\right]$ branes (=reducible rep. of $\mathfrak{s u}(3)$)

$$
Y^{a}=\left(\begin{array}{ll}
Y_{\mu_{1}}^{a} & \\
& Y_{\mu_{2}}^{a}
\end{array}\right)
$$

off-diagonal fermions

$$
\Psi=\left(\begin{array}{cc}
0 & \Psi_{12} \\
\Psi_{21} & 0
\end{array}\right)
$$

transform in bi-fundamental representation $H_{1} \otimes \mathcal{H}_{2}^{*}$ of $U\left(N_{1}\right) \times U\left(N_{2}\right)$
\rightarrow zero-modes as above
branes linked to point-branes: $\mathcal{H}_{2} \cong \mathbb{C}$,

$$
\Psi_{12} \in \mathcal{H}_{\mu} \otimes \mathbb{C}=\mathcal{H}_{\mu}
$$

$\rightarrow 3+3$ chiral zero-modes attached to extremal weights

- 3 generations, chiralities have different charges for lowest gauge modes
- can realize all standard model fermions
e.g: baryons link $\mathcal{C}[\mu]$ with 3 coincident point branes (\rightarrow color)
- same solutions in IKKT matrix model
\equiv noncommutative $\mathcal{N}=4$ SYM, relation string theory, gravity

conclusion

- \exists rich class of background solutions of $\mathcal{N}=4$ SYM $\mathbb{R}^{4} \times \mathcal{C}[\mu] \ldots$ self-intersecting fuzzy compact $\operatorname{SU}(3)$ orbits
- interesting low-energy physics:
space-filling \rightarrow chiral fermions, scalars \& gauge fields
- spinning branes \rightarrow hierarchy,

Lorentz-invariant low-energy sector

- not far from standard model (?!)
cf. H.S., J. Zahn arXiv:1401.2020, H.S. arXiv:1411.3139
- open issues: stability (resonances?), full SSB gravity in matrix model version (?) realization in string theory?
coherent states on $\mathbb{C}[\mu]$: let $p \in \mathcal{C}[\mu] \ldots$ north pole

$$
\begin{aligned}
S U(3) & \rightarrow \mathcal{C}[\mu] \\
g & \mapsto g \triangleright p
\end{aligned}
$$

stabilizer $\mathcal{K} \subset S U(3) \Rightarrow \mathcal{C}[\mu] \cong S U(3) / \mathcal{K} \ldots$ coadjoint orbit let $|\mu\rangle \in \mathcal{H}_{\mu} \quad$.. highest weight vector in \mathcal{H}_{μ}

$$
\langle\mu| \vec{y}|\mu\rangle=\vec{p} \quad \text {...localized at north pole }
$$

def. $\left|\psi_{g}\right\rangle:=g \triangleright|\mu\rangle$
projector $\Pi_{p}=\left|\psi_{g}\right\rangle\left\langle\psi_{g}\right| \in \operatorname{End}\left(\mathcal{H}_{\mu}\right) \ldots$ independent of $\mathcal{K} \subset S U(3)$

$$
\begin{aligned}
\mathcal{C}[\mu] \cong S U(3) / \mathcal{K} & \rightarrow \operatorname{End}\left(\mathcal{H}_{\mu}\right) \\
p & \mapsto \quad \Pi_{p}:=\left|\psi_{g}\right\rangle\left\langle\psi_{g}\right| \quad=: \delta_{N}(y-p)
\end{aligned}
$$

$$
\langle p| \vec{y}|p\rangle=\operatorname{tr}\left(\Pi_{p} \vec{y}\right)=\vec{p} \quad \ldots \text { sweeps out } \mathcal{C}[\mu]
$$

example: fuzzy $\mathbb{C} P_{N}^{2}$
arises for $\mu=N \Lambda_{1}$ or $\mu=N \Lambda_{2}$, stabilizer $\mathcal{K}=S U(2) \times U(1)$
satisfy the relations

$$
\begin{aligned}
{\left[Y^{a}, Y^{b}\right] } & =\frac{i}{2} \Lambda_{N} f_{a b c} Y^{c} \\
\delta_{a b} Y^{a} Y^{b} & =R^{2}, \\
d_{a b}^{c} Y^{a} Y^{b} & =R \frac{2 N / 3+1}{\sqrt{\frac{1}{3} N^{2}+N}} Y^{c} .
\end{aligned}
$$

harmonic decomposition

$$
\mathcal{A}=\operatorname{End}\left(\mathcal{H}_{\mu}\right)=\bigoplus_{n=0}^{N} \mathcal{H}_{(n, n)} .
$$

squashed $\mathbb{C} P_{N}^{2}$:

projection $\Pi \equiv$ take away H_{3}, H_{8}

- $\langle\mu| \vec{y}|\mu\rangle=\overrightarrow{0}$, projected to 0 by Π
- acting with $S U(3)$ on $|\mu\rangle$: stabilizer $S U(2)_{3}$
$\Rightarrow 4 D$ orbit along 4567 plane
- analogous for 3 Weyl images of μ

- three 4D sheets intersecting at origin
- extremal weight states $|\mu\rangle=$ coherent states on different sheets at origin

6-dimensional squashed $\mathcal{C}[\mu]$:

6 extremal weights $\mathcal{W} \mu$ located at origin, 6 -dimensional orbits
$\Rightarrow 6$-fold covering of \mathbb{R}^{6} near origin,
$3+3$ oriented sheets C_{L}, C_{R} with opposite orientation (defined by $\operatorname{Pfaff}\left(\theta^{a b}\right)$)

squashed $\mathcal{C}[(N, 1)] \ldots$ squashed S^{2} bundle over $\mathbb{C} P^{2}$

