An extended standard model and its Higgs geometry from the IKKT model

Harold Steinacker

Department of Physics, University of Vienna

KEK theory workshop 2014

H.S., J. Zahn, arXiv:1401.2020

H. Steinacker

An extended standard model and its Higgs geometry from the IKKT model

Motivation

- need quantum theory of fundamental interactions incl. gravity Higgs ? cosmological constant? dark ... (whatever)?
- too many string theory compactifications, "vacua"
 → lack of predictivity
- <u>here</u>: matrix model approach:

constructive, predictive, non-perturbative

 \rightarrow S.M. ?

(日)

Matrix Models as fundamental theory?

 <u>1996</u>: BFSS model, IKTT model proposed as non-perturbative definition of M-theory / IIB string theory focus on IKKT:
 Ishibashi, Kawai, Kitazawa, Tsuchiya 1996

$$S[X] = Tr([X^{a}, X^{b}][X^{a'}, X^{b'}]\eta_{aa'}\eta_{bb'} + \bar{\Psi}\Gamma_{a}[X^{a}, \Psi])$$
$$X^{a} = X^{a\dagger} \in Mat(N, \mathbb{C}), \qquad a = 0, \dots, 9$$

- describes (dynamical, non-commutative) branes in R¹⁰
- simple, constructive, predictive
 "predicts" 3 + 1 dim !!
 Kim, Nishimura, Tsuchiya 2012
- IKKT as starting point, extract resulting physics <u>here</u>: towards the standard model

Matrix Models as fundamental theory?

 <u>1996</u>: BFSS model, IKTT model proposed as non-perturbative definition of M-theory / IIB string theory focus on IKKT:
 Ishibashi, Kawai, Kitazawa, Tsuchiya 1996

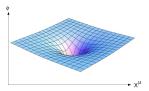
$$\begin{split} S[X] &= \operatorname{Tr} \left([X^a, X^b] [X^{a'}, X^{b'}] \eta_{aa'} \eta_{bb'} + \bar{\Psi} \Gamma_a [X^a, \Psi] \right) \\ X^a &= X^{a\dagger} \in \operatorname{Mat}(N, \mathbb{C}), \qquad a = 0, ..., 9 \end{split}$$

- describes (dynamical, non-commutative) branes in \mathbb{R}^{10}
- simple, constructive, predictive "predicts" 3 + 1 dim !! Kim, Nishimura, Tsuchiya 2012
- IKKT as starting point, extract resulting physics <u>here:</u> towards the standard model

basic objects: branes $(\rightarrow brane-worlds)$

<u>e.o.m.</u>: $\delta S = 0 \Rightarrow [X_a, [X^a, X^b]] = 0$

basic solutions:


• flat D(2n-1) branes \mathbb{R}^{2n}_{θ} embedded in \mathbb{R}^{10}

 $X^a = egin{pmatrix} X^\mu \ 0 \end{bmatrix}$ $[X^\mu, X^
u] = i heta^{\mu
u}$ 1

"quantum plane"

generic (curved) D(2n-1) branes

 $X^a = \begin{pmatrix} X^\mu \\ \phi^i(X^\mu) \end{pmatrix}$

non-commutative, *B*-field $\theta^{ab} \rightarrow \theta^{ab}(x)$

• *D*-branes in IIB string theory recovered

interaction in SUGRA recovered at one loop

(IKKT, BFSS, Kabat-Taylor,...)

• multiple branes: $X^a = \begin{pmatrix} X^a_{(1)} & 0\\ 0 & X^a_{(2)} \end{pmatrix}$

• intersecting branes, stacks $X^{a} = \begin{pmatrix} X^{a}_{(11)} & \phi_{(12)} \\ \phi_{(21)} & X^{a}_{(22)} \end{pmatrix}$

Aoki, Banks, Chepelev, Fischler, Iso, Kawai, Kitazawa, Kimura, Nair, Raamsdonk, Randjibar-Daemi, Shenker, Susskind, Zarembo,

< ロ > < 同 > < 回 > < 回 >

stack of coincident branes $\rightarrow su(N)$ gauge theory

background

$$\mathbf{X}^{\mathbf{a}} = \left(\begin{array}{c} \bar{\mathbf{X}}^{\mu} \otimes \mathbf{1}_{N} \\ \bar{\phi}^{i} \otimes \mathbf{1}_{N} \end{array}\right)$$

・ 同 ト ・ ヨ ト ・ ヨ

include fluctuations:

$$X^{a} = \left(egin{array}{c} ar{X}^{\mu} \otimes \mathbf{1}_{N} + \mathcal{A}^{\mu} \ ar{\phi}^{i} \otimes \mathbf{1}_{N} + \Phi^{i} \end{array}
ight)$$

write $\mathcal{A}^{\mu} = \theta^{\mu\nu} A_{\nu}$, note $[\bar{X}^{\mu}, f] \sim i \theta^{\mu\nu} \partial_{\nu} f$

$$\begin{bmatrix} X^{\mu}, X^{\nu} \end{bmatrix} = i\theta^{\mu\nu} + i\theta^{\mu\mu'}\theta^{\nu\nu'} (\partial_{\mu'}A_{\nu'} - \partial_{\nu'}A_{\mu'} + [A_{\mu'}, A_{\nu'}]) \\ = i\theta^{\mu\nu} + i\theta^{\mu\mu'}\theta^{\nu\nu'}F_{\mu'\nu'} \quad \text{field strength}$$

 \Rightarrow effective action on \mathbb{R}^4_{θ} :

$$S = \Lambda_0^4 \operatorname{Tr} \left([X^a, X^b] [X_a, X_b] + \overline{\Psi} \Gamma_a [X^a, \Psi] \right)$$

=
$$\int d^4 x \sqrt{G} \operatorname{tr}_N \left(\frac{1}{4g^2} (\mathcal{F}\mathcal{F})_G + \frac{1}{2} G^{\mu\nu} D_\mu \Phi^i D_\nu \Phi_i - \frac{1}{4} g^2 [\Phi^i, \Phi^j] [\Phi_i, \Phi_j] \right)$$

+
$$\overline{\psi} \tilde{\gamma}^\mu (i \partial_\mu + [\mathcal{A}_\mu, .]) \psi + g \overline{\psi} \Gamma^i [\Phi_i, \psi] \right)$$

where

$$\begin{aligned} G^{\mu\nu} &= \rho \theta^{\mu\nu'} \theta^{\nu\nu'} g_{\mu'\nu'}, \qquad \rho = \sqrt{|\theta^{-1}|} \\ \tilde{\gamma}^{\mu} &= \rho^{1/2} \theta^{\nu\mu} \gamma_{\nu}, \\ \frac{1}{4g^2} &= \frac{\Lambda_0^4}{(2\pi)^2} \rho^{-1} \end{aligned}$$

IKKT on stack of branes $\rightarrow SU(n) \mathcal{N} = 4$ SYM coupled to $G^{\mu\nu}$

holds also for curved branes, $U(1)_{tr} \rightarrow dynamical G^{\mu\nu}$ H.S., JHEP 0712:049 (2007), JHEP 0902:044,(2009)

this talk:

... use language of SU(N) $\mathcal{N} = 4$ SYM for sufficiently large N (ignore gravity, quantum space-time)

- find explicit brane solution which breaks SU(N) → SU(3)_c × U(1)_Q × U(1)_B
- resembles S.M. at low energies:
 - correct matter content of S.M. (2 generations ...) + ν_R coupled to SU(3)_c × SU(2)_L × U(1)_Y
 - electroweak SSB SU(2)_L × U(1)_Y → U(1)_Q via two Higgs doublets,

intrinsic part of geometry (minimal fuzzy spheres), essential for chiral nature of fermions

- mirror fermions at intermediate energies (above m_W), decay to S.M. fermions via new heavy gauge bosons
- singlet Higgs breaks SU(2)_R, may induce Majorana mass for ν_R
- gauginos, towers of massive KK modes ultimately completing N = 4 SUSY

< ロ > < 同 > < 回 > < 回 > < 回 > <

chiral fermions on intersecting NC branes

A. Chatzistavrakidis, H.S., G. Zoupanos (2011)

$$\Phi^{i} = \begin{pmatrix} \Phi^{i}_{(1)} & \\ & \Phi^{i}_{(2)} \end{pmatrix}, \quad \Psi = \begin{pmatrix} & \Psi_{(12)} \\ & \Psi_{(21)} \end{pmatrix}$$

M.M. Dirac operator on $\mathbb{R}^2_{\theta} \cap \mathbb{R}^2_{\theta}$

$$\begin{split} \not{\!\!D}_{int} \Psi_{(12)} &= \Gamma_i [\Phi^i, \Psi_{(12)}] = \Gamma_i (\Phi^i_{(1)} \Psi_{(12)} - \Psi_{(12)} \Phi^i_{(2)}) \\ &= \not{\!\!D}_{(1)} \Psi_{(12)} - \not{\!\!D}_{(2)} \Psi_{(12)} \end{split}$$

use oscillator basis for (noncommutative!) branes

$$\begin{array}{rcl} \boldsymbol{a} &=& \Phi^4 - i\Phi^5, \quad \boldsymbol{b} = \Phi^6 - i\Phi^7, \\ \boldsymbol{\alpha} &=& \frac{1}{2}(\Gamma^4 + i\Gamma^5), \quad \boldsymbol{\beta} = \frac{1}{2}(\Gamma^6 + i\Gamma^7) \\ \boldsymbol{\mathcal{D}}_{(1)} \Psi &=& (\boldsymbol{\alpha} \boldsymbol{a}^{\dagger} + \boldsymbol{\alpha}^{\dagger} \boldsymbol{a}) \Psi \\ \boldsymbol{\mathcal{D}}_{(2)} \Psi &=& \boldsymbol{\beta} \Psi \boldsymbol{b}^{\dagger} + \boldsymbol{\beta}^{\dagger} \Psi \boldsymbol{b} \end{array}$$

$$ot\!\!/ p_{\mathrm{int}} \Psi_{(12)} = 0 \quad \Leftrightarrow \quad \Psi_{(12)} = |0,\downarrow\rangle_{(1)} \langle 0,\uparrow|_{(2)}$$

chiral zero mode in $\mathbb{R}^2 \times \mathbb{R}^2$ localized at intersection (coherent state)

H. Steinacker

An extended standard model and its Higgs geometry from the IKKT model

towards the standard model

• consider intersecting branes $\mathbb{R}^4 \times \mathcal{K}_i \subset \mathbb{R}^{10}$

 \mathcal{K}_{i} ... fuzzy spaces (=quantized compact spaces) e.g. S_{N}^{2} , T_{N}^{2} , $S_{N}^{2} \times S_{N}^{2}$...

 \rightarrow chiral fermions localized at $\mathcal{K}_i \cap \mathcal{K}_j$, propagate on \mathbb{R}^4

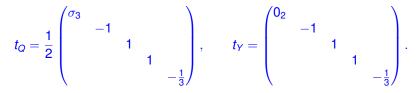
• stacks of n_i branes $\rightarrow SU(n_i)$ gauge fields fermions $\Psi_{(12)}$ in $(n_1) \otimes (\bar{n}_2)$

standard model fields embedded in adjoint of SU(N):

A. Chatzistavrakidis, H.S., G. Zoupanos (2011)

$$\Psi = egin{pmatrix} 0_2 & 0 & 0 & l_L & Q_L \ & 0 & \begin{pmatrix} 0 & e_R \ 0 &
u_R \end{pmatrix} & Q_R \ & & 0 & 0 \ & & & 0_3 \end{pmatrix},$$

where


$$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \qquad l_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, \qquad Q_R = \begin{pmatrix} d_R \\ u_R \end{pmatrix}$$

realized by 5 types of branes:

- \mathcal{D}_l "leptonic" brane
- $3 \otimes \mathcal{D}_B$ "baryonic" branes $\rightarrow SU(3)_c$
- $2 \otimes \mathcal{D}_w$ "electroweak" branes $\rightarrow SU(2)_L$
- 1 + 1 "right-handed" branes $\mathcal{D}_a, \mathcal{D}_b$

(cf. intersecting brane models in string theory)

An extended standard model and its Higgs geometry from the IKKT model

problems:

- compact $\mathcal{K}_i \cap \mathcal{K}_j \to \text{pairs}$ of intersections (zero index of \mathcal{D}_{int})
 - \rightarrow additional chiral fermions besides S.M. fermions
- need EW Higgs:

$$\Phi^{a}_{(H)} = \begin{pmatrix} 0_{2} & H_{d} & H_{u} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & S & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & \phi_{u} & 0 & 0 \\ 0 & 0 & \phi_{d} & 0 & 0 & 0 \\ 0 & \phi^{\dagger}_{d} & 0 & 0 & 0 & 0 \\ \phi^{\dagger}_{u}^{\dagger} & 0 & 0 & 0 & S & 0 \\ 0 & 0 & 0 & S^{\dagger} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

S ... sterile Higgs

solution:

Higgs connects 2 patches into one brane

... intrinsic part of fuzzy internal geometry

other proposal: warped extra dimensions

Nishimura, Tsuchiya 2013, Aoki Nishimura, Tsuchiya 2014 or control of the second secon

An extended standard model and its Higgs geometry from the IKKT model

deconstructing compact branes

consider block-config. with off-diagonal Higgs

$$\Phi^i = egin{pmatrix} \Phi^1 & 0 \ 0 & \Phi^1_{(2)} \end{pmatrix} + egin{pmatrix} 0 & \phi \ \phi^\dagger & 0 \end{pmatrix}$$

acting irreducibly on

$$\mathcal{H} = \mathcal{H}_{(1)} \oplus \mathcal{H}_{(2)}$$

joining two branes $\mathcal{D}_{(1)}$ and $\mathcal{D}_{(2)}$

Higgs as glue for compact branes from patches example: fuzzy sphere S_N^2 by glueing two disks with Higgs

- 4 B b

Example: the fuzzy sphere S_N^2

fuzzy sphere S_N^2 :

(Madore, Hoppe)

$$\begin{array}{ll} [X^i,X^j] &= Ri\varepsilon^{ijk}\,X^k\,,\\ X^iX^i &= \frac{R^2}{4}(N^2-1) \end{array}$$

... quantization of S^2 , N quantum cells

Poisson structure $\{x^i, x^j\} = \frac{2R}{N} \varepsilon^{ijk} x^k$

 $X^i := RJ^i_{(N)}$... N – dim irrep of $\mathfrak{su}(2)$ on \mathbb{C}^N

minimal fuzzy ellipsoid: N = 2

$$X_4 \pm iX_5 = \phi \sigma_{\pm} = \begin{pmatrix} 0 & \phi \\ \phi^{\dagger} & 0 \end{pmatrix}, \quad X_6 = r \sigma_3 = \begin{pmatrix} r & 0 \\ 0 & -r \end{pmatrix}$$

イロト イポト イラト イラ

Example: the fuzzy sphere S_N^2

fuzzy sphere S_N^2 :

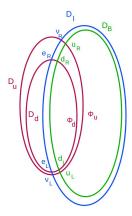
(Madore, Hoppe)

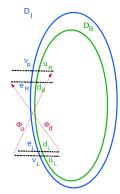
$$\begin{array}{ll} [X^i,X^j] &= Ri\varepsilon^{ijk} X^k \ , \\ X^i X^i &= \frac{R^2}{4} (N^2-1) \end{array}$$

... quantization of S^2 , N quantum cells

Poisson structure $\{x^i, x^j\} = \frac{2R}{N} \varepsilon^{ijk} x^k$

 $X^i := RJ^i_{(N)}$... N – dim irrep of $\mathfrak{su}(2)$ on \mathbb{C}^N


minimal fuzzy ellipsoid: N = 2


$$X_4 \pm iX_5 = \phi \sigma_{\pm} = \begin{pmatrix} 0 & \phi \\ \phi^{\dagger} & 0 \end{pmatrix}, \quad X_6 = r \sigma_3 = \begin{pmatrix} r \\ -r \end{pmatrix}$$

• • • • • • • • • • • • •

join $\begin{array}{ccc} \mathcal{D}_a \cup \mathcal{D}_w & \to & \mathcal{D}_u \\ \mathcal{D}_b \cup \mathcal{D}_{w'} & \to & \mathcal{D}_d \end{array}$... deconstructed minimal ellipsoids

 $\mathcal{D}_u, \mathcal{D}_d$ intersecting with $\mathcal{D}_I, \mathcal{D}_B \approx$ standard model

- obtain precisely chiral matter content of standard model + ν_R (one generation)
- SU(2)_L at coinciding "south poles" of S²₂ in D_u, D_d broken by Higgs φ

intersecting brane solutions

branes interact (1-loop $\rightarrow \approx$ SUGRA, typically attraction)

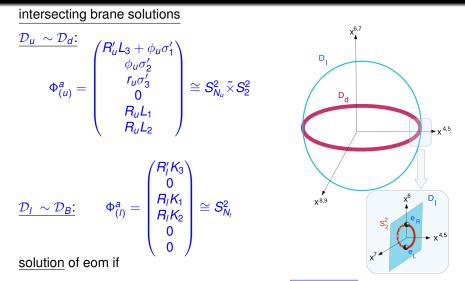
 \rightarrow deform model by SO(6)-invariant potential

$$S \rightarrow S - \rho \int d^4 x V_{\text{quant}},$$

$$V_{\text{quant}} = f(tr_N \sum_{i=4}^{9} X_i X^i) \stackrel{e.g.}{=} -m^2 tr(X_i X^i) + \lambda (tr X_i X^i)^2$$

(note: \mathbb{R}^4_{θ} has scale Λ_{NC} !)

e.o.m.


$$\Box X^{i} = -(2\pi g \rho^{-\frac{1}{2}} f') X^{i}, \qquad \Box = [X^{j}, [X_{j}, .]]$$

(similarly for branes rotating in 45, 67, 89 directions,

cf. IR regularization

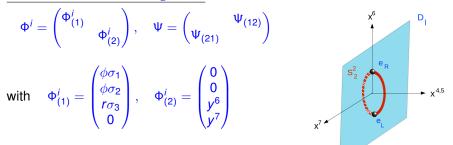
Kim Nishimura (2012)

< ロ > < 同 > < 回 > < 回 > < 回 > <

$$R_u = R'_u = R_l = R'_l = r_u = \phi_u = \sqrt{-\pi g \rho^{-1/2} f'}$$

intersections:

assume $N \gg 1$: 2 intersection regions (2 generations!) near $\pm N_l R_2'(1,0,0,0,0,0)$


flat limit $S_N^2 \to \mathbb{R}^2_{\theta}$ near intersections:

replace $\mathcal{D}_u \to \mathbb{R}^2_{\theta} \tilde{\times} S^2$ and $\mathcal{D}_I \to \mathbb{R}^2_{\theta}$

イロン イボン イヨン イヨン

э.

fermions on intersection $S_2^2 \cap \mathbb{R}^2_{\theta}$:

- no Higgs $\phi = 0$: 2 points at $x^6 = \pm r$ pair of zero modes, both chiralities, at each location
- 3 switch on Higgs $\phi \neq 0$:

one chiral zero mode localized at each intersection $x^6 = \pm r$ (coherent states)

$$\begin{split} \boldsymbol{e}_{R} &= |+,\downarrow\rangle_{(1)} \langle +\boldsymbol{r},\uparrow|_{(2)}, \quad \boldsymbol{e}_{L} = |-,\uparrow\rangle_{(1)} \langle -\boldsymbol{r},\uparrow|_{(2)} \\ \text{massive mirror fermion at each intersection, mass } \boldsymbol{m} \sim \boldsymbol{\phi} \\ \tilde{\boldsymbol{e}}_{L} &= |+,\uparrow\rangle_{(1)} \langle +\boldsymbol{r},\uparrow|_{(2)}, \quad \tilde{\boldsymbol{e}}_{R} = |-,\downarrow\rangle_{(1)} \langle -\boldsymbol{r},\uparrow|_{(2)} \\ \tilde{\boldsymbol{e}}_{L} &= |+,\uparrow\rangle_{(1)} \langle +\boldsymbol{r},\uparrow|_{(2)}, \quad \tilde{\boldsymbol{e}}_{R} = |-,\downarrow\rangle_{(1)} \langle -\boldsymbol{r},\uparrow|_{(2)} \\ \tilde{\boldsymbol{e}}_{L} &= |-,\downarrow\rangle_{(1)} \langle -\boldsymbol{r},\downarrow\rangle_{(2)} \\ \tilde{\boldsymbol{e}}_{L} &= |-,\downarrow\rangle_{(1)} \langle -\boldsymbol{r},\downarrow\rangle_{(1)} \\ \tilde{$$

on $S^2 \times \mathbb{R}^2 \cap \mathbb{R}^2$:

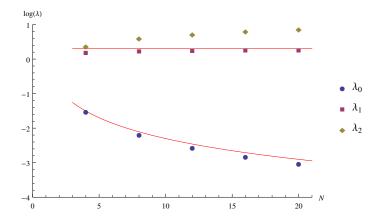
- exact chiral zero modes, e.g. $\Psi_{(12)} = |+0,\uparrow\downarrow\rangle_{(1)}\langle+r,\downarrow|_{(2)}$
- massive mirror fermions, e.g. $\tilde{\Psi}_{(12)} = |+0,\downarrow\downarrow\rangle_{(1)}\langle+r,\downarrow|_{(2)}$, mass $m \sim \phi$

(opposite chirality on S_2^2 , same localization)

 $\underline{\text{on } S_N^2 \tilde{\times} S_2^2 \cap S_N^2}:$

expect pairs of near-zero eigenmodes of p_{int} consisting of nearly-localized chiral states

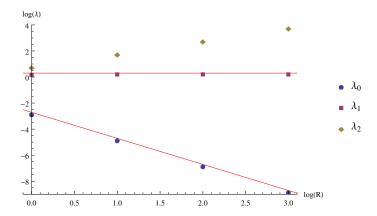
gives Yukawa coupling


$$tr_N \Psi_{-R}^* \gamma_0 \gamma_5 \not\!\!\!D_{\rm int} \Psi_{+L} \approx \phi f_{\psi}$$

spin non-alignment at intersections \rightarrow expect

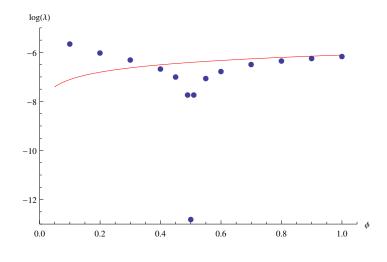
$$f_{\psi} \approx 4 \frac{r^2}{N_l^2 R_l^2}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <


<u>numerical results</u>: lowest eigenvalues of D_{int} (= Yukawas) for $N_i = N, R_i = 1, r = \phi = 1$:

approximate localization also verified

H. Steinacker


lowest eigenvalues for $N_i = 16$, $R_i = R$, $r = \phi = 1$:

(a)

э

coupling to "Higgs" ϕ : expected linear; lowest eigenvalue as a function of ϕ , for $N_i = 8$, $R_i = r = 1$

singlet Higgs S

links \mathcal{D}_u with \mathcal{D}_l at ν_R

$$H^a_{(S)} = h^a S + h.c., \qquad S = \sum_n |p_n+\rangle_u \langle q_n|_l$$

rotating in 8-9 plane, $h^a = h(e^8 + ie^9)e^{i\omega_S t}$

solves linearized eom for suitable ω_S

- breaks $SU(2)_R$ and $U(4) \rightarrow SU(3)_c \times U(1)_B$ (and $U(1)_{B-L}$) (not needed for other geometries)
- might induce Majorana mass for ν_R

٠

$$\int d^4x \, tr_N(\nu_R^T \gamma^0 S^\dagger \nu_R S^\dagger).$$

< ロ > < 同 > < 回 > < 回 >

SSB, low-energy action

2 stage SSB:

- 4 coincident branes D_B ≅ D_l, 2 coincident branes D_u ≅ D_d
 → unbroken U(4) × U(2)
- switch on S
 - $\rightarrow SU(3)_c \times U(1)_Q \times U(1)_B \times U(1)_{tr}$

note: electric charge generator

$$t_Q = t_3 + \frac{1}{2}t_Y = \frac{1}{2}(\mathbf{1}_u - \mathbf{1}_d + \mathbf{1}_l - \frac{1}{3}\mathbf{1}_B)$$

guaranteed to be unbroken

< ロ > < 同 > < 回 > < 回 > < 回 > <

gauge bosons:

from fluctuations $X^{\mu} + A^{\mu}$ of space-time matrices

$$\mathcal{A} = g_{W}(W_{-}t_{+} + W_{+}t_{-} + W_{3}t_{3}) + \frac{1}{2}g'Bt_{Y} + g_{5}B_{5}t_{5} + g_{S}A_{\alpha}t_{\alpha} + \dots$$

identify gauge couplings

$$g_{\mathsf{w}}=rac{g}{\sqrt{N_u}}, \quad g_{\mathcal{S}}=rac{g}{\sqrt{N_l}}, \quad rac{1}{2}g'=rac{g}{\sqrt{8N_u+rac{8}{3}N_l}},$$

э.

EW symmetry breaking:

$$\operatorname{recall} \Phi^{+} := \Phi^{4} + i\Phi^{5} = \begin{pmatrix} R'_{u}L_{3} & 0 & 0 & \phi_{u}\mathbf{1} \\ 0 & R'_{d}L_{3} & \phi_{d}\mathbf{1} & 0 \\ 0 & 0 & R'_{d}L_{3} & 0 \\ 0 & 0 & 0 & R'_{u}L_{3} \\ & & & & R'_{2}K_{3}\mathbf{1}_{3} \end{pmatrix}$$

kinetic term for two Higgs doublets $H_{d} = \begin{pmatrix} 0 \\ \phi_{d} \end{pmatrix}, \quad H_{u} = \begin{pmatrix} \phi_{u} \\ 0 \end{pmatrix}$
 $S[\phi] = -\frac{1}{2}\int d^{4}x \, G^{\mu\nu} tr_{N} \Big((D_{\mu}H_{d})^{\dagger}D_{\nu}H_{d} + (D_{\mu}H_{u})^{\dagger}D_{\nu}H_{u} \Big)$

$$S[\phi] = -\frac{1}{2} \int d^4 x \, G^{\mu\nu} tr_N \Big((D_\mu H_d)^{\dagger} D_\nu H_d + (D_\mu H_u)^{\dagger} D_\nu H_u \Big) \\ = -\int d^4 x \, tr_N \Big(\frac{1}{4} \phi^2 g_w^2 (W_1^2 + W_2^2) + \frac{1}{4} \phi^2 (g_w^2 + {g'}^2) Z^2 + \phi^2 g_5^2 B_5^2 \Big)$$

gives W mass

$$m_W^2 = \frac{1}{2}g^2\phi^2$$

Weinberg angle:

 $\sin^2\theta_W = \frac{1}{2 + \frac{2N_l}{3N_u}}$ for $N_u = N_l$: $g_S = g_W$, $\sin^2 \theta_W = 3/8$

An extended standard model and its Higgs geometry from the IKKT model

fermion masses

Yukawa coupling

$$\int d^4x \, gtr_N \bar{\psi} \Gamma^a[\Phi_a, .]\psi = 2 \int d^4x \, gf_\psi \phi \bar{\psi}_{12} \psi_{12}$$

gives

$$m_{\psi} = g \phi f_{\psi}$$

• f_{ψ} arbitrarily small for S.M. fermions \equiv would-be zero modes

•
$$\tilde{f}_{\psi} = 1$$
 for lowest mirror fermions, e.g. \tilde{e}_R

 $\Rightarrow \tilde{m}_{\psi} \approx \sqrt{2}m_W$

however: tree-level masses at high energies KK modes on $\mathcal{D}_{B,l}$ couple to chiral fermions, not to W, Z bosons integrate out \Rightarrow significant running of Yukawas

e.g.
$$\alpha \int d^4x \, gtr_N \bar{\psi} \Gamma^a[\Phi_a, .]\psi, \quad \alpha > 1 \Rightarrow \text{mirror fermions heavier}$$

An extended standard model and its Higgs geometry from the IKKT model

Higgs mass ?

two doublets
$$H_d = \begin{pmatrix} 0 \\ \phi_d \end{pmatrix}$$
, $H_u = \begin{pmatrix} \phi_u \\ 0 \end{pmatrix}$, (cf. MSSM)
tan $\beta = \frac{\phi_u}{\phi_d} = 1$ at tree level
assume $\phi_{u,d}$ is physical Higgs fluctuation !?

$$m_{\phi}^2 = 2g^2 \phi^2 \left(1 + 2\pi^2 f''\right) ~(pprox 4m_W^2)$$

(... just illustration !)

<ロ> <回> <回> <回> < 回</p>

extra gauge bosons:

 C_{μ} ... link mirror fermions to S.M. fermions, e.g. $\tilde{e}_L \leftrightarrow \nu_L, e_L$

```
(extend SU(2)_L \times SU(2)_R to SU(4))
```

```
extra U(1)'s:
```

```
unbroken gauge group SU(3)_c \times U(1)_Q \times U(1)_B \times U(1)_{tr}
```

```
anomalous U(1)<sub>B</sub> gauge bosons
expected to acquire (Stückelberg) mass
```

< ロ > < 同 > < 回 > < 回 > < 回 > <

-

general predictions:

- mirror fermions at "intermediate" (??) energies
- right-handed neutrinos
- towers of massive KK modes, completing N = 4 spectrum no "grand desert"
- requires non-standard ("emergent") gravity mechanism

more specific (BG-dependent):

- two Higgs doublets (physical fluct. ?)
- mirror fermons approx. degenerate

< ロ > < 同 > < 三 > < 三 >

issues:

- stabilization of compact branes ?
 - quantum effects \rightarrow SUGRA in extra dimensions \rightarrow (attractive) force between branes
 - rotation in extra dimensions
- Iow scale of mirror fermions?

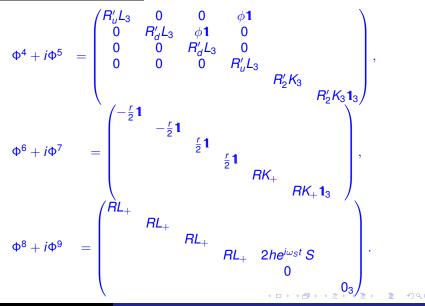
quantum corrections will modify Yukawas

generations? multiple intersections of branes
 e.g.: D_u = S²_N ⊕ S²₂ → (S²_{N₁} ⊕ S²_{N₂} ⊕ S²_{N₂})⊕ S²₂

< ロ > < 同 > < 回 > < 回 > .

no obstacle in principle to get S.M. from IKKT at low energy

the simplest possible model might actually work !?


H. Steinacker

An extended standard model and its Higgs geometry from the IKKT model

• I > • I > •

-

explicit brane background:

H. Steinacker

An extended standard model and its Higgs geometry from the IKKT model