Highly entangled quantum spin chains and their extensions by semigroups

Fumihiko Sugino

Center for Theoretical Physics of the Universe, Institute for Basic Science

Workshop on “Matrix Models for Noncommutative Geometry and String Theory”
Erwin Schrödinger Institute (ESI), July 12, 2018
Highly entangled quantum spin chains and their extensions by semigroups

Fumihiko Sugino

Center for Theoretical Physics of the Universe, Institute for Basic Science

Workshop on “Matrix Models for Noncommutative Geometry and String Theory”
Erwin Schrödinger Institute (ESI), July 12, 2018

F.S. and V. Korepin, arXiv:1806.04049
Outline

Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion
Quantum entanglement

- Most surprising feature of quantum mechanics,
 No analog in classical mechanics
Quantum entanglement

- Most surprising feature of quantum mechanics, No analog in classical mechanics
- From pure state of the full system S: $\rho = |\psi\rangle\langle\psi|$, reduced density matrix of a subsystem A: $\rho_A = \text{Tr}_{S-A} \rho$ can become mixed states, and has nonzero entanglement entropy

$$S_A = -\text{Tr}_A [\rho_A \ln \rho_A].$$

This is purely a quantum property.
Area law of entanglement entropy

- Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_A \propto (\text{area of } A)$

- Gapped systems in 1D are proven to obey the area law. [Hastings 2007]
Introduction 2

Area law of entanglement entropy

- Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_A \propto \text{(area of } A\text{)}$

- Gapped systems in 1D are proven to obey the area law. [Hastings 2007] (Area law violation) \Rightarrow Gapless

- For gapless case, (1 + 1)-dimensional CFT violates logarithmically: $S_A = \frac{c}{3} \ln (\text{volume of } A)$. [Calabrese, Cardy 2009]
Introduction 2

Area law of entanglement entropy

- Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_A \propto \text{(area of } A \text{)}$

- Gapped systems in 1D are proven to obey the area law. [Hastings 2007] (Area law violation) \Rightarrow Gapless

- For gapless case, $(1 + 1)$-dimensional CFT violates logarithmically: $S_A = \frac{c}{3} \ln \text{(volume of } A \text{)}. \quad \text{[Calabrese, Cardy 2009]}

- Belief for gapless case in D-dim. (over two decades): $S_A = O(L^{D-1} \ln L) \quad (L:\text{ length scale of } A)$
Area law of entanglement entropy

- Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_A \propto \text{(area of } A\text{)}$
- Gapped systems in 1D are proven to obey the area law. [Hastings 2007] (Area law violation) \Rightarrow Gapless
- For gapless case, (1 + 1)-dimensional CFT violates logarithmically: $S_A = \frac{c}{3} \ln \text{(volume of } A\text{)}. \quad [\text{Calabrese, Cardy 2009}]
- Belief for gapless case in D-dim. (over two decades) : $S_A = O(L^{D-1} \ln L)$ (L: length scale of A)
- Recently, 1D solvable spin chain model which exhibit extensive entanglement entropy have been discussed.
 - Beyond logarithmic violation: $S_A \propto \sqrt{\text{(volume of } A\text{)}}$
 [Movassagh, Shor 2014], [Salberger, Korepin 2016]
 Counterexamples of the belief!
Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion
Motzkin spin model 1

- 1D spin chain at sites $i \in \{1, 2, \cdots, 2n\}$
- Spin-1 state at each site can be regarded as up, down and flat steps;

 $|u\rangle \Leftrightarrow \uparrow$, \quad $|d\rangle \Leftrightarrow \downarrow$, \quad $|0\rangle \Leftrightarrow \rightarrow$
Motzkin spin model

- 1D spin chain at sites \(i \in \{1, 2, \cdots, 2n\} \)
- Spin-1 state at each site can be regarded as up, down and flat steps;
 \[
 |u\rangle \Leftrightarrow \uparrow, \quad |d\rangle \Leftrightarrow \downarrow, \quad |0\rangle \Leftrightarrow \rightarrow
 \]
- Each spin configuration \(\Leftrightarrow \) length-2\(n \) walk in \((x, y)\) plane

Example)

\[
\begin{array}{ccccccc}
|u\rangle_1 & |0\rangle_2 & |d\rangle_3 & |u\rangle_4 & |u\rangle_5 & |d\rangle_6 \\
\downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow
\end{array}
\]
Motzkin spin model 2

Hamiltonian: \(H_{\text{Motzkin}} = H_{\text{bulk}} + H_{\text{bdy}} \)

- **Bulk part:** \(H_{\text{bulk}} = \sum_{j=1}^{2n-1} \Pi_{j,j+1} \),

\[
\Pi_{j,j+1} = |D\rangle_{j,j+1}\langle D| + |U\rangle_{j,j+1}\langle U| + |F\rangle_{j,j+1}\langle F|
\]

(local interactions) with

\[
|D\rangle \equiv \frac{1}{\sqrt{2}} (|0, d\rangle - |d, 0\rangle),
\]

\[
|U\rangle \equiv \frac{1}{\sqrt{2}} (|0, u\rangle - |u, 0\rangle),
\]

\[
|F\rangle \equiv \frac{1}{\sqrt{2}} (|0, 0\rangle - |u, d\rangle).
\]
Motzkin spin model 2

Hamiltonian: $H_{\text{Motzkin}} = H_{\text{bulk}} + H_{\text{bdy}}$

- Bulk part: $H_{\text{bulk}} = \sum_{j=1}^{2n-1} \Pi_{j,j+1}$,

 $\Pi_{j,j+1} = |D\rangle_{j,j+1}\langle D| + |U\rangle_{j,j+1}\langle U| + |F\rangle_{j,j+1}\langle F|$

(local interactions) with

$|D\rangle \equiv \frac{1}{\sqrt{2}} (|0, d\rangle - |d, 0\rangle),$

$|U\rangle \equiv \frac{1}{\sqrt{2}} (|0, u\rangle - |u, 0\rangle),$

$|F\rangle \equiv \frac{1}{\sqrt{2}} (|0, 0\rangle - |u, d\rangle).$

$\Leftrightarrow \sim$
Motzkin spin model 2

Hamiltonian: $H_{\text{Motzkin}} = H_{\text{bulk}} + H_{\text{bdy}}$

- Bulk part: $H_{\text{bulk}} = \sum_{j=1}^{2n-1} \Pi_{j,j+1}$,

$$
\Pi_{j,j+1} = |D\rangle_{j,j+1}\langle D| + |U\rangle_{j,j+1}\langle U| + |F\rangle_{j,j+1}\langle F|
$$

(local interactions) with

$$
|D\rangle \equiv \frac{1}{\sqrt{2}} (|0, d\rangle - |d, 0\rangle),
$$

$$
|U\rangle \equiv \frac{1}{\sqrt{2}} (|0, u\rangle - |u, 0\rangle),
$$

$$
|F\rangle \equiv \frac{1}{\sqrt{2}} (|0, 0\rangle - |u, d\rangle).
$$
Motzkin spin model 2

[Bravyi et al 2012]

Hamiltonian: \(H_{\text{Motzkin}} = H_{\text{bulk}} + H_{\text{bdy}} \)

- Bulk part: \(H_{\text{bulk}} = \sum_{j=1}^{2n-1} \Pi_{j,j+1} \),

\[
\Pi_{j,j+1} = |D\rangle_{j,j+1} \langle D| + |U\rangle_{j,j+1} \langle U| + |F\rangle_{j,j+1} \langle F|
\]

(local interactions) with

\[
|D\rangle \equiv \frac{1}{\sqrt{2}} (|0, d\rangle - |d, 0\rangle),
\]

\[
|U\rangle \equiv \frac{1}{\sqrt{2}} (|0, u\rangle - |u, 0\rangle),
\]

\[
|F\rangle \equiv \frac{1}{\sqrt{2}} (|0, 0\rangle - |u, d\rangle).
\]

\[
\Leftrightarrow \quad \Leftrightarrow \quad \sim \quad \sim \quad \sim \quad \Leftrightarrow \quad \Leftrightarrow \quad \sim \quad \sim \quad \sim \quad \text{“gauge equivalence”}.
\]
Motzkin spin model 3

Hamiltonian: $H_{\text{Motzkin}} = H_{\text{bulk}} + H_{\text{bdy}}$

$\text{Boundary part: } H_{\text{bdy}} = |d\rangle_1 \langle d| + |u\rangle_{2n} \langle u|$

\Downarrow

[Bravyi et al 2012]
Motzkin spin model 3

Hamiltonian: \(H_{Motzkin} = H_{bulk} + H_{bdy} \)

- Boundary part: \(H_{bdy} = |d\rangle_1 \langle d| + |u\rangle_{2n} \langle u| \)

\(\Downarrow \)

- \(H_{Motzkin} \) is the sum of projection operators.
 \(\Rightarrow \) Positive semi-definite spectrum

- We find the unique zero-energy ground state.
Motzkin spin model 3

[Bravyi et al 2012]

Hamiltonian: $H_{\text{Motzkin}} = H_{\text{bulk}} + H_{\text{bdy}}$

- Boundary part: $H_{\text{bdy}} = |d\rangle_1 \langle d| + |u\rangle_{2n} \langle u|$

\Rightarrow Positive semi-definite spectrum

- H_{Motzkin} is the sum of projection operators.

- We find the unique zero-energy ground state.
 - Each projector in H_{Motzkin} annihilates the zero-energy state.
 \Rightarrow Frustration free

- The ground state corresponds to random walks starting at $(0, 0)$ and ending at $(2n, 0)$ restricted to the region $y \geq 0$ (Motzkin Walks (MWs)).
In terms of $S = 1$ spin matrices

\[
S_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad S_\pm \equiv \frac{1}{\sqrt{2}} (S_x \pm iS_y) = \begin{pmatrix} 1 \\ \pm 1 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 1 \end{pmatrix},
\]

\[
H_{\text{bulk}} = \frac{1}{2} \sum_{j=1}^{2n-1} \left[1_j 1_{j+1} - \frac{1}{4} S_z j S_z j+1 - \frac{1}{4} S^2_j S_j S_{j+1} + \frac{1}{4} S_j S^2_{j+1} \\
- \frac{3}{4} S^2_{zj} S^2_{zj+1} + S_+ j (S_z S_-)_{j+1} + S_- j (S_+ S_z)_{j+1} - (S_- S_z)_j S_+ j+1 \\
- (S_+ S_z)_j S_- j+1 - (S_+ S_z)_{j+1} - (S_z S_+)_j (S_z S_-)_{j+1} \right],
\]

\[
H_{\text{bdy}} = \frac{1}{2} (S^2_z - S_z)_1 + \frac{1}{2} (S^2_z + S_z)_{2n}
\]

Quartic spin interactions
Motzkin spin model 5

Example) $2n = 4$ case,
MWs:

\[
\begin{align*}
|P_4\rangle &= \frac{1}{\sqrt{9}} \left[|0000\rangle + |ud00\rangle + |0ud0\rangle + |00ud\rangle \\
&\quad + |u0d0\rangle + |0u0d\rangle + |u00d\rangle + |udud\rangle \\
&\quad + |uudd\rangle \right].
\end{align*}
\]
Motzkin spin model 6

[Bravyi et al 2012]

Note
Forbidden paths for the ground state

1. Path entering $y < 0$ region

2. Path ending at nonzero height

Forbidden by H_{bdy}
Entanglement entropy of the subsystem $A = \{1, 2, \cdots, n\}$:

- Normalization factor of the ground state $|P_{2n}\rangle$ is given by the number of MWs of length $2n$: $M_{2n} = \sum_{k=0}^{n} C_k \binom{2n}{2k}$.

$$C_k = \frac{1}{k+1} \binom{2k}{k}: \text{Catalan number}$$
Motzkin spin model 7

Entanglement entropy of the subsystem \(A = \{1, 2, \cdots, n\} \):

- Normalization factor of the ground state \(|P_{2n}\rangle \) is given by the number of MWs of length \(2n \): \(M_{2n} = \sum_{k=0}^{n} C_k \binom{2n}{2k} \).

\[
C_k = \frac{1}{k+1} \binom{2k}{k} : \text{Catalan number}
\]

- Consider to trace out the density matrix \(\rho = |P_{2n}\rangle \langle P_{2n}| \) w.r.t. the subsystem \(B = \{n+1, \cdots, 2n\} \).

Schmidt decomposition:

\[
|P_{2n}\rangle = \sum_{h \geq 0} \sqrt{p_{n,n}^{(h)}} |P_{n}^{(0 \rightarrow h)}\rangle \otimes |P_{n}^{(h \rightarrow 0)}\rangle
\]

with \(p_{n,n}^{(h)} \equiv \left(\frac{M_{n}^{(h)}}{M_{2n}} \right)^2 \).

\[\uparrow\]
Paths from \((0, 0)\) to \((n, h)\)
Motzkin spin model 8

- $M_n^{(h)}$ is the number of paths in $P_n^{(0\rightarrow h)}$.
 For $n \to \infty$, Gaussian distribution

\[p_{n,n}^{(h)} \sim \frac{3\sqrt{6}}{\sqrt{\pi}} \frac{(h+1)^2}{n^{3/2}} e^{-\frac{3}{2} \frac{(h+1)^2}{n}} \times [1 + O(1/n)]. \]

- Reduced density matrix

\[\rho_A = \text{Tr}_B \rho = \sum_{h \geq 0} p_{n,n}^{(h)} |P_n^{(0\rightarrow h)}\rangle \langle P_n^{(0\rightarrow h)}| \]

- Entanglement entropy

\[S_A = - \sum_{h \geq 0} p_{n,n}^{(h)} \ln p_{n,n}^{(h)} \]

\[= \frac{1}{2} \ln n + \frac{1}{2} \ln \frac{2\pi}{3} + \gamma - \frac{1}{2} \quad (\gamma: \text{Euler constant}) \]

up to terms vanishing as $n \to \infty$.

[Bravyi et al 2012]
Notes

- The system is critical (gapless).
 \(S_A \) is similar to the \((1 + 1)\)-dimensional CFT with \(c = 3/2 \).
Notes

- The system is critical (gapless).
 \[S_A \] is similar to the \((1 + 1)\)-dimensional CFT with \(c = 3/2 \).
- But, gap scales as \(O(1/n^z) \) with \(z \geq 2 \).
 The system cannot be described by relativistic CFT.

Lifshitz type ?
Different \(z \) depending on excited states (Multiple dynamics) ?

[Chen, Fradkin, Witczak-Krempa 2017]
Motzkin spin model 9

[Bravyi et al 2012]

Notes

- The system is critical (gapless).
 \(S_A \) is similar to the \((1 + 1)\)-dimensional CFT with \(c = 3/2 \).
- But, gap scales as \(O(1/n^z) \) with \(z \geq 2 \).
 The system cannot be described by relativistic CFT.
 Lifshitz type?
 Different \(z \) depending on excited states (Multiple dynamics)?
 [Chen, Fradkin, Witczak-Krempa 2017]
- Excitations have not been much investigated.
Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion
Colored Motzkin spin model 1

- Introducing color d.o.f. $k = 1, 2, \cdots, s$ to up and down spins as

$$ |u^k\rangle \leftrightarrow \begin{array}{c} k \end{array}, \quad |d^k\rangle \leftrightarrow \begin{array}{c} k \end{array}, \quad |0\rangle \leftrightarrow \begin{array}{c} \rightarrow \end{array} $$

Color d.o.f. decorated to Motzkin Walks
Colored Motzkin spin model 1

- Introducing color d.o.f. $k = 1, 2, \cdots, s$ to up and down spins as

$$
|u^k\rangle \leftrightarrow \uparrow, \quad |d^k\rangle \leftrightarrow \downarrow, \quad |0\rangle \leftrightarrow \to
$$

Color d.o.f. decorated to Motzkin Walks

- Hamiltonian $H_{cMotzkin} = H_{bulk} + H_{bdy}$
 - Bulk part consisting of local interactions:

$$
H_{bulk} = \sum_{j=1}^{2n-1} \left(\Pi_{j,j+1} + \Pi_{j,j+1}^{cross} \right),
$$

$$
\Pi_{j,j+1} = \sum_{k=1}^{s} \left[|D^k\rangle_{j,j+1}\langle D^k| + |U^k\rangle_{j,j+1}\langle U^k| + |F^k\rangle_{j,j+1}\langle F^k| \right]
$$

with
Colored Motzkin spin model 2

\[D^k \equiv \frac{1}{\sqrt{2}} \left(|0, d^k\rangle - |d^k, 0\rangle \right), \]
\[U^k \equiv \frac{1}{\sqrt{2}} \left(|0, u^k\rangle - |u^k, 0\rangle \right), \]
\[F^k \equiv \frac{1}{\sqrt{2}} \left(|0, 0\rangle - |u^k, d^k\rangle \right), \]

and

\[\prod_{j,j+1}^{\text{cross}} = \sum_{k \neq k'} |u^k, d^{k'}\rangle_{j,j+1} \langle u^k, d^{k'}|. \]

⇒ Colors should be matched in up and down pairs.

Boundary part

\[H_{\text{bdy}} = \sum_{k=1}^{s} \left(|d^k\rangle_1 \langle d^k| + |u^k\rangle_{2n} \langle u^k| \right). \]
Colored Motzkin spin model 3

- Still unique ground state with zero energy
Colored Motzkin spin model 3

- Still unique ground state with zero energy
- Example) $2n = 4$ case,

\[|P_4\rangle = \frac{1}{\sqrt{1 + 6s + 2s^2}} \left[|0000\rangle + \sum_{k=1}^{s} \left\{ |u^k d^k 00\rangle + \cdots + |u^k 00 d^k \rangle \right\}
ight.
+ \sum_{k,k' = 1}^{s} \left\{ |u^k d^k u^k' d^k' \rangle + |u^k u^k' d^k d^k' \rangle \right\}. \]
Entanglement entropy

- Paths from $(0, 0)$ to (n, h), $P_n^{(0\rightarrow h)}$, have h unmatched up steps.

Let $\tilde{P}_n^{(0\rightarrow h)}(\{\kappa_m\})$ be paths with the colors of unmatched up steps frozen.

\[(\text{unmatched up from height } (m - 1) \text{ to } m) \rightarrow u^{\kappa_m}\]

- Similarly,

\[P_n^{(h\rightarrow 0)} \rightarrow \tilde{P}_n^{(h\rightarrow 0)}(\{\kappa_m\}),\]

\[(\text{unmatched down from height } m \text{ to } (m - 1)) \rightarrow d^{\kappa_m}\]

- The numbers satisfy $M_n^{(h)} = s^h \tilde{M}_n^{(h)}$.
Example

$2n = 8$ case, $h = 2$
Colored Motzkin spin model 6

- Schmidt decomposition

\[
| P_{2n} \rangle = \sum_{h \geq 0} \sum_{\kappa_1 = 1}^{s} \cdots \sum_{\kappa_h = 1}^{s} \sqrt{p_{n,n}^{(h)}} \\
\times | \tilde{P}_{n}^{(0 \rightarrow h)}(\{\kappa_m\}) \rangle \otimes | \tilde{P}_{n}^{(h \rightarrow 0)}(\{\kappa_m\}) \rangle
\]

with

\[
p_{n,n}^{(h)} = \left(\frac{\tilde{M}_{n}^{(h)}}{M_{2n}} \right)^2.
\]

- Reduced density matrix

\[
\rho_A = \sum_{h \geq 0} \sum_{\kappa_1 = 1}^{s} \cdots \sum_{\kappa_h = 1}^{s} p_{n,n}^{(h)} \\
\times | \tilde{P}_{n}^{(0 \rightarrow h)}(\{\kappa_m\}) \rangle \langle \tilde{P}_{n}^{(0 \rightarrow h)}(\{\kappa_m\}) |.
\]
For $n \to \infty$,

$$p_{n,n}^{(h)} \sim \frac{\sqrt{2} s^{-h}}{\sqrt{\pi} (\sigma n)^{3/2}} (h + 1)^2 e^{-\frac{(h+1)^2}{2\sigma n}} \times [1 + O(1/n)]$$

with $\sigma \equiv \frac{\sqrt{s}}{2\sqrt{s+1}}$. Note: Effectively $h \lesssim O(\sqrt{n})$.

Entanglement entropy

$$S_A = - \sum_{h \geq 0} s^h p_{n,n}^{(h)} \ln p_{n,n}^{(h)}$$
Colored Motzkin spin model 7

For \(n \to \infty \),

\[
p_{n,n}^{(h)} \sim \frac{\sqrt{2} s^{-h}}{\sqrt{\pi} (\sigma n)^{3/2}} (h + 1)^2 e^{-\frac{(h+1)^2}{2\sigma n}} \times [1 + O(1/n)]
\]

with \(\sigma \equiv \frac{\sqrt{s}}{2\sqrt{s+1}} \).

Note: Effectively \(h \lesssim O(\sqrt{n}) \).

Entanglement entropy

\[
S_A = - \sum_{h \geq 0} s^h p_{n,n}^{(h)} \ln p_{n,n}^{(h)}
\]

\[
= (2 \ln s) \sqrt{\frac{2\sigma n}{\pi}} + \frac{1}{2} \ln n + \frac{1}{2} \ln(2\pi\sigma) + \gamma - \frac{1}{2} - \ln s
\]

up to terms vanishing as \(n \to \infty \).

Grows as \(\sqrt{n} \).
Comments

Matching color $\Rightarrow s^{-h}$ factor in $p^{(h)}_{n,n}$
\Rightarrow crucial to $O(\sqrt{n})$ behavior in S_A
Colored Motzkin spin model 8

Comments

- Matching color $\Rightarrow s^{-h}$ factor in $p_{n,n}^{(h)}$
 \Rightarrow crucial to $O(\sqrt{n})$ behavior in S_A

- Typical configurations:

\[h = O(\sqrt{n}) \]

+ (equivalence moves).
Colored Motzkin spin model 8

[Movassagh, Shor 2014]

Comments

Matching color \(\Rightarrow \) \(s^{-h} \) factor in \(p_{n,n}^{(h)} \)
\(\Rightarrow \) crucial to \(O(\sqrt{n}) \) behavior in \(S_A \)

Typical configurations:

For spin 1/2 chain (only up and down), the model in which similar behavior exhibits in colored as well as uncolored cases has been constructed. (Fredkin model)

[Salberger, Korepin 2016]
Correlation functions

\[
\langle S_z, 1 S_z, 2n \rangle_{\text{connected}} \rightarrow -0.034... \times \frac{s^3 - s}{6} \neq 0 \quad (n \rightarrow \infty)
\]

⇒ Violation of cluster decomposition property for \(s > 1 \)

(Strong correlation due to color matching)
Correlation functions

\[\langle S_z, 1S_z, 2n \rangle_{\text{connected}} \to -0.034... \times \frac{s^3 - s}{6} \neq 0 \quad (n \to \infty) \]

⇒ Violation of cluster decomposition property for \(s > 1 \)
 (Strong correlation due to color matching)

Deformation of models to achieve the volume law behavior
(\(S_A \propto n \))

Weighted Motzkin/Dyck walks

[Movassagh, Shor 2014]

[Dell’Anna et al, 2016]

[Zhang et al, Salberger et al 2016]
Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion
Symmetric Inverse Semigroups (SISs)

- **Inverse Semigroup** (⊂ Semigroup):
 An unique inverse exists for every element.
 But, no unique identity (partial identities).
Symmetric Inverse Semigroups (SISs)

- **Inverse Semigroup** (⊂ Semigroup):
 An unique inverse exists for every element.
 But, no unique identity (partial identities).

- **SIS** (⊂ Semigroup):
 Semigroup version of the symmetric group S_k

 $S_p^k \ (p = 1, \ldots, k)$
Symmetric Inverse Semigroups (SISs)

- **Inverse Semigroup** (⊂ Semigroup):
 An unique inverse exists for every element.
 But, no unique identity (partial identities).

- **SIS** (⊂ Semigroup):
 Semigroup version of the symmetric group S_k
 $$S_p^k \ (p = 1, \cdots, k)$$

- $x_{a,b} \in S_1^k$ maps a to b. ($a, b \in \{1, \cdots, k\}$)
 Product rule: $x_{a,b} \ast x_{c,d} = \delta_{b,c} x_{a,d}$

 - $x_{1,2} \ast x_{2,1} = x_{1,1}$, $x_{2,1} \ast x_{1,2} = x_{2,2}$
 - $(x_{1,2})^{-1} = x_{2,1}$

 (partial identities) (unique inverse)
Symmetric Inverse Semigroups (SISs)

- **Inverse Semigroup** (⊂ Semigroup):
 An unique inverse exists for every element.
 But, no unique identity (partial identities).

- **SIS** (⊂ Semigroup):
 Semigroup version of the symmetric group S_k
 $S_p^k \ (p = 1, \ldots, k)$

- $x_{a,b} \in S_1^k$ maps a to b. ($a, b \in \{1, \ldots, k\}$)
 Product rule: $x_{a,b} \ast x_{c,d} = \delta_{b,c} x_{a,d}$

- $x_{1,2} \ast x_{2,1} = x_{1,1}$, $x_{2,1} \ast x_{1,2} = x_{2,2}$

- $(x_{1,2})^{-1} = x_{2,1}$ (unique inverse)

- $x_{a_1,a_2; b_1,b_2} \in S_2^k$ etc, ...
Symmetric Inverse Semigroups (SISs)

- **Inverse Semigroup** (⊂ Semigroup):
 An unique inverse exists for every element.
 But, no unique identity (partial identities).

- **SIS** (⊂ Semigroup):
 Semigroup version of the symmetric group S_k
 S^k_p ($p = 1, \cdots, k$)

- $x_{a,b} \in S^k_1$ maps a to b. ($a, b \in \{1, \cdots, k\}$)
 Product rule: $x_{a,b} \ast x_{c,d} = \delta_{b,c} x_{a,d}$

 \[x_{1,2} \ast x_{2,1} = x_{1,1}, \quad x_{2,1} \ast x_{1,2} = x_{2,2} \]

 (partial identities)

 \[(x_{1,2})^{-1} = x_{2,1} \]

 (unique inverse)

- $x_{a_1,a_2; b_1,b_2} \in S^k_2$ etc, ...

 $S^k_k \equiv S_k$
Change the spin d.o.f. as $|x_{a,b}\rangle$ with $a, b \in \{1, 2, \cdots, k\}$.

$\begin{align*}
&\text{a < b case: ‘up’ } \iff \quad a \quad \quad \quad \quad \quad \quad b \\
&\text{a > b case: ‘down’ } \iff \quad a \quad \quad \quad b \\
&\text{a = b case: ‘flat’ } \iff \quad a \quad \quad \quad b
\end{align*}$
Change the spin d.o.f. as $|x_{a,b}\rangle$ with $a, b \in \{1, 2, \cdots, k\}$.

- $a < b$ case: ‘up’ \iff [Diagram: $a \uparrow b$]
- $a > b$ case: ‘down’ \iff [Diagram: $a \downarrow b$]
- $a = b$ case: ‘flat’ \iff [Diagram: $a \leftrightarrow b$]

We regard the configuration of adjacent sites $|(x_{a,b})_j\rangle |(x_{c,d})_{j+1}\rangle$ as a connected path for $b = c$.

c.f.) Analogous to the product rule of Symmetric Inverse Semigroup (S_1^k):

$x_{a,b} \ast x_{c,d} = \delta_{b,c} x_{a,d}$

a, b: semigroup indices

Inner product: $\langle x_{a,b} | x_{c,d} \rangle = \delta_{a,c} \delta_{b,d}$

Let us consider the $k = 3$ case.
Maximum height is lower than the original Motzkin case.
Hamiltonian $H_{S_{31} Motzkin} = H_{bulk} + H_{bulk, disc} + H_{bdy}$

- H_{bulk}: local interactions corresponding to the following moves:

 (Down) $a \to b \sim a \to b \quad (a > b)$

 (Up) $a \to b \sim a \to b \quad (a < b)$

 (Flat) $a \to a \to a \sim a \to b \quad (a < b)$

 (Wedge) $3 \to 1 \to 3 \sim 3 \to 2 \to 3$
SIS Motzkin model 4

\[H_{\text{bulk, disc}} \text{ lifts disconnected paths to excited states.} \]

\[\Pi|\psi\rangle: \text{projector to } |\psi\rangle \]

\[H_{\text{bulk, disc}} = \sum_{j=1}^{2n-1} \sum_{a,b,c,d=1; b \neq c}^{3} \Pi |(x_{a,b})_j, (x_{c,d})_{j+1}\rangle \]
$H_{bulk, disc}$ lifts disconnected paths to excited states.

\[H_{bulk, disc} = \sum_{j=1}^{2n-1} \sum_{a,b,c,d=1; b \neq c}^{3} \Pi |(x_{a,b})_j, (x_{c,d})_{j+1}\rangle \]

$H_{bdy} = \sum_{a<b} \Pi |(x_{a,b})_1\rangle + \sum_{a>b} \Pi |(x_{a,b})_{2n}\rangle$

\[+ \Pi |(x_{1,3})_1, (x_{3,2})_2, (x_{2,1})_3\rangle + \Pi |(x_{1,2})_{2n-2}, (x_{2,3})_{2n-1}, (x_{3,1})_{2n}\rangle \]

The last 2 terms have no analog to the original Motzkin model.
Ground states correspond to connected paths starting at
\((0, 0)\), ending at \((2n, 0)\) and not entering \(y < 0\).
Ground states correspond to connected paths starting at
(0, 0), ending at (2n, 0) and not entering y < 0.

The ground states have 5 fold degeneracy according to the
initial and final semigroup indices:
(1, 1), (1, 2), (2, 1), (2, 2) and (3, 3) sectors
The (3, 3) sector is trivial, consisting of only one path:
\[X_{3,3}X_{3,3} \cdots X_{3,3}. \]
Ground states correspond to connected paths starting at $(0, 0)$, ending at $(2n, 0)$ and not entering $y < 0$. The ground states have 5 fold degeneracy according to the initial and final semigroup indices: $(1, 1), (1, 2), (2, 1), (2, 2)$ and $(3, 3)$ sectors. The $(3, 3)$ sector is trivial, consisting of only one path: \(x_{3,3}x_{3,3} \cdots x_{3,3} \).

The number of paths can be obtained by recursion relations. For length-n paths from the semigroup index a to b ($P_{n,a\rightarrow b}$),

\[
P_{n,1\rightarrow 1} = x_{1,1}P_{n-1,1\rightarrow 1} + x_{1,2} \sum_{i=1}^{n-2} P_{i,2\rightarrow 2} x_{2,1} P_{n-2-i,1\rightarrow 1}
\]

\[
+ x_{1,3} \sum_{i=1}^{n-2} P_{i,3\rightarrow 3} x_{3,1} P_{n-2-i,1\rightarrow 1}
\]

\[
+ x_{1,3} \sum_{i=1}^{n-2} P_{i,3\rightarrow 3} x_{3,2} P_{n-2-i,2\rightarrow 1}, \quad \text{etc.}
\]
Result

- The entanglement entropies $S_{A,1\rightarrow 1}$, $S_{A,1\rightarrow 2}$, $S_{A,2\rightarrow 1}$ and $S_{A,2\rightarrow 2}$ take the same form as in the case of the Motzkin model.

Logarithmic violation of the area law

- The form of $p_n^{(h)} \sim \frac{(h+1)^2}{n^{3/2}} e^{-\text{const.} \frac{(h+1)^2}{n}}$ is universal.

- $S_{A,3\rightarrow 3} = 0$.
There are excited states corresponding to disconnected paths. Example) One such path in $2n = 6$ case,
There are excited states corresponding to disconnected paths. Example) One such path in $2n = 6$ case,

Corresponding excited state: $|P_{3,1\rightarrow1}\rangle \otimes |P_{3,2\rightarrow1}^{(1\rightarrow0)}\rangle$

Each connected component has no entanglement with other components. “2nd quantization” of paths
There are excited states corresponding to disconnected paths. Example) One such path in $2n = 6$ case,

Corresponding excited state: $|P_{3,1\rightarrow 1}\rangle \otimes |P_{3,2\rightarrow 1}^{(1\rightarrow 0)}\rangle$

Each connected component has no entanglement with other components. “2nd quantization” of paths

\Rightarrow 2pt connected correlation functions of local operators belonging to separate connected components vanish.

\Rightarrow Localization!
Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion
The SIS S_2^3

- 18 elements $x_{ab,cd}$ with $ab \in \{12, 23, 31\}$ and $cd \in \{12, 23, 31, 21, 32, 13\}$ satisfying

$$x_{ab,cd} \ast x_{ef,gh} = \delta_{c,e} \delta_{d,f} x_{ab,gh} + \delta_{c,f} \delta_{d,e} x_{ab,hg}.$$

- can be regarded as 2 sets of S_1^3. ⇒ color d.o.f.
Colored SIS Motzkin model 1

The SIS S^3_2

- 18 elements $x_{ab,cd}$ with $ab \in \{12, 23, 31\}$ and $cd \in \{12, 23, 31, 21, 32, 13\}$ satisfying

$$x_{ab,cd} \times x_{ef,gh} = \delta_{c,e} \delta_{d,f} x_{ab,gh} + \delta_{c,f} \delta_{d,e} x_{ab,hg}.$$

- can be regarded as 2 sets of S^3_1. ⇒ color d.o.f.

- Spin variables: $x^s_{a,b}$ ($s = 1, 2$) ($a, b = 1, 2, 3$)

- The new moves (C moves) introduced to the Hamiltonian.

$\cancel{a \rightarrow a} \sim \cancel{a \rightarrow a}$
Colored SIS Motzkin model 2

Hamiltonian: $H_{cs31\text{Motzkin}} = H_{bulk} + H_{bulk,\text{disc}} + H_{bdy}$

- In H_{bulk}, (Down), (Up) and (Flat) are essentially the same as before.

(Down) \[a \xrightarrow{s} a \xrightarrow{s} b \sim a \xrightarrow{s} b \xrightarrow{s} b \quad (a > b) \]

(Up) \[a \xrightarrow{s} \quad a \xrightarrow{s} b \sim a \xrightarrow{s} b \quad (a < b) \]

(Flat) \[a \xrightarrow{s} a \xrightarrow{s} a \sim a \xrightarrow{s} b \xrightarrow{s} a \quad (a < b) \]
Colored SIS Motzkin model 3

- **Wedge move:**

\[
(Wedge) \quad \begin{array}{c}
3 \quad s \quad s' \\
\downarrow 1 \\
3
\end{array} \sim \begin{array}{c}
3 \quad s \quad s' \\
\downarrow 2 \\
3
\end{array}
\]

- **Cross move:**

\[
(Cross)_{j,j+1} = \sum_{b > a,c} \left[\prod |(x_{a,b}^1)_{j} (x_{b,c}^2)_{j+1} \rangle + \prod |(x_{a,b}^2)_{j} (x_{b,c}^1)_{j+1} \rangle \right]
\]

forbids unmatched up and down steps in ground states.

\[
H_{bulk} = \mu \sum_{j=1}^{2n} C_j + \sum_{j=1}^{2n-1} [(Down)_{j,j+1} + (Up)_{j,j+1}
+ (Flat)_{j,j+1} + (Wedge)_{j,j+1} + (Cross)_{j,j+1}]
\]
Colored SIS Motzkin model 4

\[H_{\text{bulk, disc}} = \sum_{j=1}^{2n-1} \sum_{a,b,c,d=1}^{3} \sum_{b \neq c}^{2} \prod |(x_{a,b}^s)_{j}, (x_{c,d}^t)_{j+1} \rangle \]

\[H_{\text{bdy}} = \sum_{a>b}^{2} \prod |(x_{a,b}^s)_{1} \rangle + \sum_{a<b}^{2} \prod |(x_{a,b}^s)_{2n} \rangle \]

\[+ \sum_{s,t=1}^{2} \prod |(x_{1,3}^s)_{1}, (x_{3,2}^s)_{2}, (x_{2,1}^t)_{3} \rangle \]

\[+ \sum_{s,t=1}^{2} \prod |(x_{1,2}^s)_{2n-2}, (x_{2,3}^t)_{2n-1}, (x_{3,1}^t)_{2n} \rangle \]
5 ground states of (1, 1), (1, 2), (2, 1), (2, 2), (3, 3) sectors

Quantum phase transition between $\mu > 0$ and $\mu = 0$ in the 4 sectors except (3, 3).

- For $\mu > 0$,

$$S_A = (2 \ln 2) \sqrt{\frac{2\sigma n}{\pi}} + \frac{1}{2} \ln n + \frac{1}{2} \ln(2\pi\sigma) + \gamma - \frac{1}{2} + \ln \frac{3}{2^{1/3}}$$

with $\sigma \equiv \frac{\sqrt{2} - 1}{9\sqrt{2}}$.

- For $\mu = 0$, colors 1 and 2 decouple.

$$S_A \propto \ln n.$$
Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion
Rényi entropy

- Rényi entropy has further importance than the von Neumann entanglement entropy:

\[S_{A, \alpha} = \frac{1}{1 - \alpha} \ln \text{Tr} A \rho_A^\alpha \quad \text{with} \quad \alpha > 0 \quad \text{and} \quad \alpha \neq 1. \]
Rényi entropy

• Rényi entropy has further importance than the von Neumann entanglement entropy:
 \[S_{A,\alpha} = \frac{1}{1 - \alpha} \ln \text{Tr}_A \rho_A^{\alpha} \]

 with \(\alpha > 0 \) and \(\alpha \neq 1 \).

• Generalization of the von Neumann entanglement entropy:
 \[\lim_{\alpha \rightarrow 1} S_{A,\alpha} = S_A \]
Rényi entropy

- Rényi entropy has further importance than the von Neumann entanglement entropy:

\[S_{A,\alpha} = \frac{1}{1 - \alpha} \ln \text{Tr}_A \rho_A^\alpha \]

with \(\alpha > 0 \) and \(\alpha \neq 1 \).

- Generalization of the von Neumann entanglement entropy:

\[\lim_{\alpha \to 1} S_{A,\alpha} = S_A \]

- Reconstructs the whole spectrum of the entanglement Hamiltonian \(H_{\text{ent},A} \equiv -\ln \rho_A \).
Rényi entropy

- Rényi entropy has further importance than the von Neumann entanglement entropy:

\[S_{A, \alpha} = \frac{1}{1 - \alpha} \ln \text{Tr}_A \rho_A^\alpha \quad \text{with } \alpha > 0 \text{ and } \alpha \neq 1. \]

- Generalization of the von Neumann entanglement entropy:

\[\lim_{\alpha \to 1} S_{A, \alpha} = S_A \]

- Reconstructs the whole spectrum of the entanglement Hamiltonian \(H_{\text{ent, } A} \equiv -\ln \rho_A \).

- For \(S_{A, \alpha} \) (0 < \(\alpha < 1 \)), the gapped systems in 1D is proven to obey the area law.

[Huang, 2015]
Rényi entropy

- Rényi entropy has further importance than the von Neumann entanglement entropy:

\[S_{A, \alpha} = \frac{1}{1 - \alpha} \ln \text{Tr}_A \rho_A^\alpha \]

with \(\alpha > 0 \) and \(\alpha \neq 1 \).

- Generalization of the von Neumann entanglement entropy:

\[\lim_{\alpha \to 1} S_{A, \alpha} = S_A \]

- Reconstructs the whole spectrum of the entanglement Hamiltonian \(H_{\text{ent}, A} \equiv -\ln \rho_A \).

- For \(S_{A, \alpha} \) (\(0 < \alpha < 1 \)), the gapped systems in 1D is proven to obey the area law.

[Huang, 2015]

Here, I give a review of Motzkin spin chain and analytically compute its Rényi entropy of half-chain.

New phase transition found at \(\alpha = 1 \)!
Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion
What we compute is the asymptotic behavior of

\[S_{A, \alpha} = \frac{1}{1 - \alpha} \ln \sum_{h=0}^{n} s^h \left(p_{n,n}^{(h)} \right)^\alpha. \]
What we compute is the asymptotic behavior of

$$S_{A, \alpha} = \frac{1}{1 - \alpha} \ln \sum_{h=0}^{n} s^h \left(\rho_{n,n}^{(h)} \right)^\alpha.$$

For colorless case ($s = 1$), we obtain

$$S_{A, \alpha} = \frac{1}{2} \ln n + \frac{1}{1 - \alpha} \ln \Gamma \left(\alpha + \frac{1}{2} \right)$$

$$- \frac{1}{2(1 - \alpha)} \left\{ (1 + 2\alpha) \ln \alpha + \alpha \ln \frac{\pi}{24} + \ln 6 \right\}$$

up to terms vanishing as $n \to \infty$.
What we compute is the asymptotic behavior of

\[S_{A, \alpha} = \frac{1}{1 - \alpha} \ln \sum_{h=0}^{n} s^h \left(p_{n,n}^{(h)} \right)^\alpha. \]

For colorless case \((s = 1)\), we obtain

\[S_{A, \alpha} = \frac{1}{2} \ln n + \frac{1}{1 - \alpha} \ln \Gamma \left(\alpha + \frac{1}{2} \right) \]

\[- \frac{1}{2(1 - \alpha)} \left\{ (1 + 2\alpha) \ln \alpha + \alpha \ln \frac{\pi}{24} + \ln 6 \right\} \]

up to terms vanishing as \(n \to \infty \).

- Logarithmic growth
- Reduces to \(S_A \) in the \(\alpha \to 1 \) limit.
- Consistent with half-chain case in the result in [Movassagh, 2017]
Réyni entropy of Motzkin model 2

Colored case ($s > 1$)

- The summand $s^h \left(p_{n,n}^{(h)} \right)^\alpha$ has a factor $s^{(1-\alpha)h}$.
Réyni entropy of Motzkin model 2

Colored case ($s > 1$)

- The summand $s^h \left(p_{n,n}^{(h)}\right)\alpha$ has a factor $s^{(1-\alpha)h}$.

 For $0 < \alpha < 1$, exponentially growing (colored case ($s > 1$)).

 \Rightarrow Saddle point value of the sum: $h_* = O(n)$
Réyni entropy of Motzkin model 2

Colored case \((s > 1)\)

- The summand \(s^h \left(p_{n,n}^{(h)} \right)^\alpha \) has a factor \(s^{(1-\alpha)h}\).

 For \(0 < \alpha < 1\), exponentially growing (colored case \((s > 1))\).

 \(\Rightarrow\) Saddle point value of the sum: \(h_* = O(n)\)

- Saddle point analysis for the sum leads to

\[
S_{A,\alpha} = n \frac{2\alpha}{1 - \alpha} \ln \left[\sigma \left(s^{\frac{1-\alpha}{2\alpha}} + s^{-\frac{1-\alpha}{2\alpha}} + s^{-1/2} \right) \right] + \frac{1 + \alpha}{2(1 - \alpha)} \ln n + C(s, \alpha)
\]

with \(C(s, \alpha)\) being \(n\)-independent terms.
Réyni entropy of Motzkin model 2

[F.S., Korepin, 2018]

Colored case \((s > 1)\)

- The summand \(s^h \left(p_{n,n}^{(h)} \right)^\alpha\) has a factor \(s^{(1-\alpha)h}\).

 For \(0 < \alpha < 1\), exponentially growing (colored case \((s > 1)\)).

 \(\Rightarrow\) Saddle point value of the sum: \(h_* = O(n)\)

- Saddle point analysis for the sum leads to

 \[
 S_{A,\alpha} = n \frac{2\alpha}{1-\alpha} \ln \left[\sigma \left(s^{\frac{1-\alpha}{2\alpha}} + s^{-\frac{1-\alpha}{2\alpha}} + s^{-1/2} \right) \right] \\
 + \frac{1 + \alpha}{2(1 - \alpha)} \ln n + C(s, \alpha)
 \]

 with \(C(s, \alpha)\) being \(n\)-independent terms.

- The saddle point value is \(h_* = n \left[\frac{1}{s^{\frac{1}{2\alpha}}} - \frac{1}{s^{-\frac{1}{2\alpha}}} \right] \frac{1}{s^{\frac{1}{2\alpha}} + s^{-\frac{1}{2\alpha}} + 1} + O(n^0)\).
Réyni entropy of Motzkin model 2

Colored case \((s > 1)\)

- The summand \(s^h \left(p^{(h)}_{n,n} \right)^\alpha \) has a factor \(s^{(1-\alpha)h}\).

 For \(0 < \alpha < 1\), exponentially growing (colored case \((s > 1)\)).

 \(\Rightarrow\) Saddle point value of the sum: \(h_* = O(n)\)

- Saddle point analysis for the sum leads to

\[
S_{A,\alpha} = n \frac{2\alpha}{1 - \alpha} \ln \left[\sigma \left(s^{\frac{1-\alpha}{2\alpha}} + s^{-\frac{1-\alpha}{2\alpha}} + s^{-1/2} \right) \right] + \frac{1 + \alpha}{2(1 - \alpha)} \ln n + C(s, \alpha)
\]

with \(C(s, \alpha)\) being \(n\)-independent terms.

- The saddle point value is \(h_* = n \frac{s^{\frac{1}{2\alpha}} - s^{\frac{1}{2\alpha}} - s^{-\frac{1}{2\alpha}}}{s^{\frac{1}{2\alpha}} + s^{\frac{1}{2\alpha}} + 1} + O(n^0)\).

- Linear growth in \(n\).
Réyni entropy of Motzkin model 2

Colored case \((s > 1)\)

- The summand \(s^h \left(p_{n,n}^{(h)} \right)^\alpha\) has a factor \(s^{(1-\alpha)h}\).

 For \(0 < \alpha < 1\), exponentially growing (colored case \((s > 1)\)).

 \(\Rightarrow\) Saddle point value of the sum: \(h_\ast = O(n)\)

- Saddle point analysis for the sum leads to

\[
S_{A,\alpha} = n \frac{2\alpha}{1 - \alpha} \ln \left[\sigma \left(s^{\frac{1-\alpha}{2\alpha}} + s^{-\frac{1-\alpha}{2\alpha}} + s^{-1/2} \right) \right] + \frac{1 + \alpha}{2(1 - \alpha)} \ln n + C(s, \alpha)
\]

with \(C(s, \alpha)\) being \(n\)-independent terms.

- The saddle point value is \(h_\ast = n \frac{s^{\frac{1}{2\alpha}} - s^{-\frac{1}{2\alpha}}}{s^{\frac{1}{2\alpha}} + s^{-\frac{1}{2\alpha}} + 1} + O(n^0)\).

- Linear growth in \(n\).

- Note: \(\alpha \to 1\) or \(s \to 1\) limit does not commute with the \(n \to \infty\) limit.
Rényi entropy for $\alpha > 1$

- For $\alpha > 1$, the factor $s^{(1-\alpha)h}$ in the summand $s^h \left(\rho_{n,n}^{(h)} \right)^{\alpha}$ exponentially decays.
Rényi entropy for $\alpha > 1$

- For $\alpha > 1$, the factor $s^{(1-\alpha)h}$ in the summand $s^h \left(p_n^{(h)} \right)^\alpha$ exponentially decays.

 $\Rightarrow h \lesssim O \left(\frac{1}{(\alpha-1) \ln s} \right) = O(n^0)$ dominantly contributes to the sum.
Rényi entropy for $\alpha > 1$

- For $\alpha > 1$, the factor $s^{(1-\alpha)h}$ in the summand $s^{h} \left(p_{n,n}^{(h)} \right)^{\alpha}$ exponentially decays.

$$h \lesssim O\left(\frac{1}{(\alpha-1) \ln s} \right) = O(n^0)$$

This dominantly contributes to the sum.

- The result:

$$S_{A,\alpha} = \frac{3\alpha}{2(\alpha - 1)} \ln n + O(n^0).$$
Rényi entropy for $\alpha > 1$

▶ For $\alpha > 1$, the factor $s^{(1-\alpha)h}$ in the summand $s^h \left(p^{(h)}_{n,n} \right)^\alpha$ exponentially decays.

$$\Rightarrow h \lesssim O \left(\frac{1}{(\alpha-1) \ln s} \right) = O(n^0)$$

This dominantly contributes to the sum.

▶ The result:

$$S_{A,\alpha} = \frac{3\alpha}{2(\alpha - 1)} \ln n + O(n^0).$$

▶ Logarithmic growth
Rényi entropy for $\alpha > 1$

- For $\alpha > 1$, the factor $s^{(1-\alpha)h}$ in the summand $s^h \left(p_{n,n}^{(h)} \right)^\alpha$ exponentially decays.

 \[h \lesssim O \left(\frac{1}{(\alpha-1)\ln s} \right) = O(n^0) \] dominantly contributes to the sum.

- The result:

 \[S_{A,\alpha} = \frac{3\alpha}{2(\alpha - 1)} \ln n + O(n^0). \]

- Logarithmic growth

 - $\alpha \to 1$ or $s \to 1$ limit does not commute with the $n \to \infty$ limit.
Rényi entropy of Motzkin model 4

Phase transition

- $S_{A\alpha}$ grows as $O(n)$ for $0 < \alpha < 1$ while as $O(\ln n)$ for $\alpha > 1$.
Réyni entropy of Motzkin model 4

Phase transition

- $S_{A\alpha}$ grows as $O(n)$ for $0 < \alpha < 1$ while as $O(\ln n)$ for $\alpha > 1$.
 - Non-analytic behavior at $\alpha = 1$ (Phase transition)

In terms of the entanglement Hamiltonian, $\text{Tr}_A \rho_\alpha A = \text{Tr}_A e^{-\alpha H_{\text{ent}}}$, A_α: "inverse temperature"

- $0 < \alpha < 1$: "high temperature" (Height of dominant paths $h = O(n)$)
- $\alpha > 1$: "low temperature" (Height of dominant paths $h = O(\sqrt{n})$)
Phase transition

- $S_A \alpha$ grows as $O(n)$ for $0 < \alpha < 1$ while as $O(\ln n)$ for $\alpha > 1$.
 ⇒ Non-analytic behavior at $\alpha = 1$ (Phase transition)

- In terms of the entanglement Hamiltonian,
 $\text{Tr}_A \rho_A^{\alpha} = \text{Tr}_A e^{-\alpha H_{\text{ent}, A}}$
 α: “inverse temperature”
Réyni entropy of Motzkin model 4

Phase transition

- $S_A \alpha$ grows as $O(n)$ for $0 < \alpha < 1$ while as $O(\ln n)$ for $\alpha > 1$.
 \Rightarrow Non-analytic behavior at $\alpha = 1$ (Phase transition)

- In terms of the entanglement Hamiltonian,
 $\text{Tr}_A \rho_A^\alpha = \text{Tr}_A e^{-\alpha H_{\text{ent},A}}$
 α: “inverse temperature”
 - $0 < \alpha < 1$: “high temperature”
 (Height of dominant paths $h = O(n)$)
 - $\alpha > 1$: “low temperature”
 (Height of dominant paths $h = O(n^0)$)
Réyni entropy of Motzkin model 4

Phase transition

- $S_{A,\alpha}$ grows as $O(n)$ for $0 < \alpha < 1$ while as $O(\ln n)$ for $\alpha > 1$.
 \Rightarrow Non-analytic behavior at $\alpha = 1$ (Phase transition)

- In terms of the entanglement Hamiltonian,
 $\text{Tr}_A \rho_A^\alpha = \text{Tr}_A e^{-\alpha H_{\text{ent},A}}$
 α: “inverse temperature”
 - $0 < \alpha < 1$: “high temperature”
 (Height of dominant paths $h = O(n)$)
 - $\alpha > 1$: “low temperature”
 (Height of dominant paths $h = O(n^0)$)

- The transition point $\alpha = 1$ itself forms the third phase.

\[S_{A,\alpha} : \quad O(\ln n) \quad O(\sqrt{n}) \quad O(n) \]

\[h : \quad O(n^0) \quad O(\sqrt{n}) \quad O(n) \]
Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion
Summary and discussion 1

Summary

- We have reviewed the (colored) Motzkin spin models which yield large entanglement entropy proportional to the square root of the volume.
Summary and discussion 1

Summary

- We have reviewed the (colored) Motzkin spin models which yield large entanglement entropy proportional to the square root of the volume.
- We have extended the models by introducing additional d.o.f. based on Symmetric Inverse Semigroups.
 - Quantum phase transitions
 - In uncolored case (S_1^3), log. violation v.s. area law $O(1)$ for S_A
 - In colored case (S_2^3), \sqrt{n} v.s. $\ln n$ for S_A.

"2nd quantized paths"
Summary and discussion 1

Summary

- We have reviewed the (colored) Motzkin spin models which yield large entanglement entropy proportional to the square root of the volume.
- We have extended the models by introducing additional d.o.f. based on Symmetric Inverse Semigroups.
 - Quantum phase transitions
 - In uncolored case (S_1^3), log. violation v.s. area law $O(1)$ for S_A
 - In colored case (S_2^3), \sqrt{n} v.s. $\ln n$ for S_A.
- Semigroup extension of the Fredkin model

[Padmanabhan, F.S., Korepin 2018]
Summary and discussion 1

Summary

- We have reviewed the (colored) Motzkin spin models which yield large entanglement entropy proportional to the square root of the volume.
- We have extended the models by introducing additional d.o.f. based on Symmetric Inverse Semigroups.
 - Quantum phase transitions
 - In uncolored case (S_1^3), log. violation v.s. area law $O(1)$ for S_A
 - In colored case (S_2^3), \sqrt{n} v.s. $\ln n$ for S_A.
- Semigroup extension of the Fredkin model
 [Padmanabhan, F.S., Korepin 2018]
- As a feature of the extended models, Anderson-like localization occurs in excited states corresponding to disconnected paths.
 - “2nd quantized paths”.
Summary and discussion 2

Summary

▶ We have analytically computed the Rényi entropy of half-chain in the Motzkin model.
 ▶ Phase transition at \(\alpha = 1 \) (New phase transition!)
 No analog for other spin chains investigated so far (XX, XY, AKLT,...).
▶ For \(0 < \alpha < 1 \) (“high temperature”), \(S_{A,\alpha} = O(n) \).
▶ For \(\alpha > 1 \) (“low temperature”), \(S_{A,\alpha} = O(\ln n) \).
▶ We also have a similar result for the Fredkin spin chain.
 \[F.S., Korepin, 2018\]
▶ Rényi entropy of chain of general length (in progress)
 Our conjecture: the same phase transition occurs for chain of general length
▶ Similar computation for semigroup extensions (in progress)
 \[F.S., Padmanabhan, 2018\], \[Padmanabhan, F.S., Korepin, 2018\]
Summary and discussion 2

Summary

- We have analytically computed the Rényi entropy of half-chain in the Motzkin model.
 - Phase transition at $\alpha = 1$ (New phase transition!)
 No analog for other spin chains investigated so far (XX, XY, AKLT,...).
 - For $0 < \alpha < 1$ ("high temperature"), $S_{A,\alpha} = O(n)$.
 - For $\alpha > 1$ ("low temperature"), $S_{A,\alpha} = O(\ln n)$.

We also have a similar result for the Fredkin spin chain.

- Our conjecture: the same phase transition occurs for chain of general length.
- Similar computation for semigroup extensions (in progress)

[F.S., Korepin, 2018]
[F.S., Padmanabhan, 2018]
Summary and discussion 2

Summary

- We have analytically computed the Rényi entropy of half-chain in the Motzkin model.
 - Phase transition at $\alpha = 1$ (New phase transition!)
 No analog for other spin chains investigated so far (XX, XY, AKLT,...).
 - For $0 < \alpha < 1$ (“high temperature”), $S_{A,\alpha} = O(n)$.
 - For $\alpha > 1$ (“low temperature”), $S_{A,\alpha} = O(\ln n)$.
- We also have a similar result for the Fredkin spin chain.

[F.S., Korepin, 2018]
Summary and discussion 2

Summary

✈ We have analytically computed the Rényi entropy of half-chain in the Motzkin model.

✈ Phase transition at $\alpha = 1$ (New phase transition!)
 No analog for other spin chains investigated so far (XX, XY, AKLT,...).

✈ For $0 < \alpha < 1$ (“high temperature”), $S_{A,\alpha} = O(n)$.

✈ For $\alpha > 1$ (“low temperature”), $S_{A,\alpha} = O(\ln n)$.

✈ We also have a similar result for the Fredkin spin chain.
 [F.S., Korepin, 2018]

✈ Rényi entropy of chain of general length (in progress)
 Our conjecture: the same phase transition occurs for chain of general length

✈ Similar computation for semigroup extensions (in progress)
 [F.S., Padmanabhan, 2018], [Padmanabhan, F.S., Korepin, 2018]
Summary and discussion 2

Summary

- We have analytically computed the Rényi entropy of half-chain in the Motzkin model.
 - Phase transition at $\alpha = 1$ (New phase transition!)
 No analog for other spin chains investigated so far (XX, XY, AKLT,...).
 - For $0 < \alpha < 1$ (“high temperature”), $S_{A,\alpha} = O(n)$.
 - For $\alpha > 1$ (“low temperature”), $S_{A,\alpha} = O(\ln n)$.

- We also have a similar result for the Fredkin spin chain.

 [F.S., Korepin, 2018]

- Rényi entropy of chain of general length (in progress)
 Our conjecture: the same phase transition occurs for chain of general length

- Similar computation for semigroup extensions (in progress)

 [F.S., Padmanabhan, 2018], [Padmanabhan, F.S., Korepin, 2018]
Summary and discussion 3

Future directions

- Continuum limit? (In particular, for colored case)
 [Chen, Fradkin, Witczak-Krempa 2017]
Summary and discussion

Future directions

▶ Continuum limit? (In particular, for colored case)
 [Chen, Fradkin, Witczak-Krempa 2017]

▶ Holography? Application to quantum gravity or black holes?
 [Alexander, Klich 2018]

▶ Higher-dimensional models \((d = 2, 3, \ldots)\)?
Summary and discussion 3

Future directions

- Continuum limit? (In particular, for colored case)
 [Chen, Fradkin, Witczak-Krempa 2017]

- Holography? Application to quantum gravity or black holes?
 [Alexander, Klich 2018]

- Higher-dimensional models ($d = 2, 3, ...$)?

Thank you very much for your attention!
By adding the balancing term to the Hamiltonian

\[\lambda_2 \sum_{j=1}^{2n-1} \left(\prod \left| (x_1,3)_j, (x_3,2)_{j+1} \right> + \prod \left| (x_2,3)_j, (x_3,1)_{j+1} \right> \right) \]

with \(\lambda_1 \) put to the term, quantum phase transition takes place in the 4 sectors except (3, 3):

\[\lambda_1 \quad S_A \propto \ln n \]

\[0 \quad S_A = O(1) \text{ (area law)} \]

\(\lambda_1, \lambda_2 > 0 \) is not frustration free (here, we do not consider).