Covariant quantum spaces and higher-spin theory in the IKKT matrix model

Harold Steinacker

Department of Physics, University of Vienna

FШF

 Kyoto, september 2017

Motivation

requirements for fundamental theory (spacetime \& matter):

- simple, constructive
- finite dof (per "volume"), pre-geometric (?)
- gauge theory
string theory: remarkable features
issues:
- 10D \rightarrow compactification (why? 4D? landscape?)
- definition?

Motivation

requirements for fundamental theory (spacetime \& matter):

- simple, constructive
- finite dof (per "volume"), pre-geometric (?)
- gauge theory
string theory: remarkable features
issues:
- 10D \rightarrow compactification (why? 4D? landscape?)
- definition?

Matrix Models as fundamental theories of space-time \& matter?

- string theory (IKKT model (this talk!), BFSS model)
- NC gauge theory
- dim. red. of YM

matrix model describe dynamical NC spaces

prototype: fuzzy sphere
consider action

$$
S=\operatorname{Tr}\left(\left[Y_{a}, Y_{b}\right]\left[Y^{a}, Y^{b}\right]-2 i \epsilon_{a b c} Y^{a} Y^{b} Y^{c}-Y_{a} Y^{a}\right), \quad Y^{a} \in \operatorname{Mat}_{N}(\mathbb{C})
$$

matrix model describe dynamical NC spaces

prototype: fuzzy sphere
consider action

$$
\begin{aligned}
S & =\operatorname{Tr}\left(\left[Y_{a}, Y_{b}\right]\left[Y^{a}, Y^{b}\right]-2 i \epsilon_{a b c} Y^{a} Y^{b} Y^{c}-Y_{a} Y^{a}\right), \quad Y^{a} \in \operatorname{Mat}_{N}(\mathbb{C}) \\
& =\operatorname{Tr}\left(\left(\left[Y_{a}, Y_{b}\right]-i \epsilon_{a b c} Y^{c}\right)\left(\left[Y^{a}, Y^{b}\right]-i \epsilon^{a b d} Y_{d}\right)\right)
\end{aligned}
$$

minimum:

$$
\left[Y_{a}, Y_{b}\right]=i \epsilon_{a b c} Y^{c}
$$

i.e.: $Y^{a}=J_{(N)}^{a} \ldots$. generator of $\mathfrak{s u}(2)$ acting on \mathbb{C}^{N}
describes quantization of S^{2} with symplectic form $\omega_{N}=N \omega_{1}$

$$
\sum_{a} Y_{a} Y^{a}=R_{N}^{2}
$$

matrix models as NC gauge theories:

$$
S=\operatorname{Tr}\left(\left[Y^{a}, Y^{b}\right]\left[Y_{a}, Y_{b}\right] \quad+\ldots\right), \quad Y^{a} \in \operatorname{End}(\mathcal{H}), a, b=1, \ldots, D
$$

gauge invariance $Y^{a} \rightarrow U Y^{a} U^{-1}$
choose NC "background" $Y^{a}=X^{a}$

$$
\phi \in \operatorname{End}(\mathcal{H}) \quad \text {... function on } \mathcal{M}
$$

fluctuations \rightarrow covariant coordinates

$$
\begin{gathered}
Y^{a}=X^{a}+\mathcal{A}^{a} \rightarrow U Y^{a} U^{-1}=X^{a}+(U \mathcal{A}^{a} U^{-1}+\underbrace{U\left[X^{a}, U^{-1}\right]}_{\approx U \partial^{a} U^{-1}}) \\
S=\operatorname{Tr}\left(\left[Y^{a}, Y^{b}\right]\left[Y_{a} Y_{b}\right]\right) \sim \int_{\mathcal{M}} F_{\mu \nu} F^{\mu \nu}
\end{gathered}
$$

fluctuations \mathcal{A}^{a} of NC background in M.M. \rightarrow gauge fields
issue:
UV/IR mixing: high-energy states string-like $\sim|x\rangle\langle y| \in \operatorname{End}(\mathcal{H})$

quantum fluctuations (UV) \rightarrow strong non-locality (IR) except in $\mathcal{N}=4$ SYM
\equiv IKKT model, M.M. for string theory !
hence:

- M.M. describe dynamical NC spaces \rightarrow gravity ?!
- fluctuations \rightarrow gauge theory
- UV/IR \rightarrow SUSY \rightarrow unique model (= IKKT model)
goal:
- identify backgrounds (=suitable NC space solutions) s.t. fluctuations give good physics (\& gravity!)
- (long-term)
justify this with numerical simulations
cf. talk Nishimura

This talk: Lorentz / Euclidean invariance

- fully covariant 4D quantum space: fuzzy S^{4}
- leads to higher spin theory in M.M. (cf. Vasiliev)
- study resulting higher-spin theory (first steps)

HS, arXiv:1606.00769
M. Sperling \& HS, arXiv:1704.02863
M. Sperling \& HS, : arXiv:1707.00885

The IKKT model

IKKT or IIB model

Ishibashi, Kawai, Kitazawa, Tsuchiya 1996

$$
\begin{aligned}
& S[Y, \Psi]=-\operatorname{Tr}\left(\left[Y^{a}, Y^{b}\right]\left[Y^{a^{\prime}}, Y^{b^{\prime}}\right] \eta_{a a^{\prime}} \eta_{b b^{\prime}}+\bar{\Psi} \gamma_{a}\left[Y^{a}, \Psi\right]\right) \\
& Y^{a}=Y^{a^{\dagger}} \in \operatorname{Mat}(N, \mathbb{C}), \quad a=0, \ldots, 9, \quad N \text { large }
\end{aligned}
$$

gauge symmetry $Y^{a} \rightarrow U Y^{a} U^{-1}, S O(9,1)$, SUSY
proposed as non-perturbative definition of IIB string theory origins:

- quantized Schild action for IIB superstring
- reduction of 10D SYM to point, N large
- $\mathcal{N}=4$ SYM on noncommutative \mathbb{R}_{θ}^{4}

leads to "matrix geometry":

- $S \sim \operatorname{Tr}\left[X^{a}, X^{b}\right]^{2} \Rightarrow$ configurations with small $\left[X^{a}, X^{b}\right] \neq 0$ should dominate
i.e. "almost-commutative" configurations, geometry
- \exists basis of quasi-coherent states $|x\rangle$,

$$
\operatorname{minimize} \sum_{a}\langle x| \Delta X_{a}^{2}|x\rangle
$$

$X^{a} \approx$ diag., spectrum $=: \mathcal{M} \subset \mathbb{R}^{10}$

$$
\langle x| X^{a}\left|x^{\prime}\right\rangle \approx \delta\left(x-x^{\prime}\right) x^{a}, \quad x \in \mathcal{M}
$$

embedding of branes in target space \mathbb{R}^{10}

$$
X^{a} \sim x^{a}: \quad \mathcal{M} \hookrightarrow \mathbb{R}^{10}
$$

basic examples:

- The fuzzy 2-sphere S_{N}^{2} :
choose $X^{a}=J_{(N)}^{a} \ldots$ irrep of $S U(2)$ on $\mathcal{H}=\mathbb{C}^{N}$

$$
\left[X^{a}, X^{b}\right]=i \varepsilon^{a b c} X^{c}, \quad X^{a} X_{a}=\frac{1}{4}\left(N^{2}-1\right)=: R_{N}^{2} .
$$

quantized symplectic space $\left(S^{2}, \omega_{N}\right)$

$$
X^{a} \sim x^{a}: \quad S^{2} \hookrightarrow \mathbb{R}^{3}
$$

fully covariant under SO (3)
functions on $S_{N}^{2}: \mathcal{A}=\operatorname{End}(\mathcal{H})=\bigoplus_{I=0}^{N-1} \underbrace{(2 I+1)}_{\hat{Y}_{m}^{\prime}}$

- The Moyal-Weyl quantum plane \mathbb{R}_{θ}^{4} :

$$
\left[X^{a}, X^{b}\right]=i \theta^{a b} 1 \quad \ldots \text { Heisenberg algebra }
$$

quantized symplectic space $\left(\mathbb{R}^{4}, \omega\right)$
admits translations, breaks rotations
functions: $\mathcal{A}=\operatorname{End}(\mathcal{H}) \ni \phi=\int d^{4} k e^{i k X} \hat{\phi}(k)$
generic quantized symplectic space $\mathcal{M} \subset \mathbb{R}^{D}$:
matrices $X^{a}=$ quantized embedding maps

$$
\begin{array}{rr}
X^{a} \sim x^{a}: \mathcal{M} \hookrightarrow \mathbb{R}^{D} \\
{\left[X^{a}, X^{b}\right] \sim i \theta^{a b}(x)} & \ldots \text { Poisson tensor }
\end{array}
$$

fluctuations $X^{a} \rightarrow X^{a}+\mathcal{A}^{a}$ describe

- gauge theory on \mathcal{M} effective (open string) metric $G^{\mu \nu} \sim \theta^{\mu \mu^{\prime}} \theta^{\nu \nu^{\prime}} g_{\mu^{\prime} \nu^{\prime}}$ dynamical geometry (\rightarrow "emergent" gravity on \mathcal{M})

review: H.S. arXiv:1003.4134 cf. Rivelles, H-S. Yang
- $\theta^{\mu \nu}$ breaks Lorentz/Euclidean invariance (in emerg. gravity) may enter at 1-loop (e.g. $R_{\mu \nu \rho \sigma} \theta^{\mu \nu} \theta^{\rho \sigma}$)

Blaschke, Steinacker arXiv:1003.4132

- "averaging" over $\theta^{\mu \nu}$ desirable

4D covariant quantum spaces

- \exists fully $S O(5)$ covariant fuzzy four-sphere S_{N}^{4}

Grosse-Klimcik-Presnajder; Castelino-Lee-Taylor; Ramgoolam; Kimura; Hasebe; Azuma-Bal-Nagao-Nisimura; Karabail-Nair; Zhang-Hu 2001 (QHE!) ... hidden "internal structure" \rightarrow higher spin theory

- here:
- work out lowest spin modes (spin 2!) on S_{N}^{4} in IKKT model
- generalized S_{Λ}^{4}
- Lorentzian versions possible (future work)

basic message:

IKKT model \rightsquigarrow Yang-Mills for higher spin algebra $\mathfrak{h s}$
\exists action, suitable for quantization
($=$ Vasiliev theory!)
"almost" contains gravity (...)

covariant fuzzy four-spheres

5 hermitian matrices $X_{a}, a=1, \ldots, 5$ acting on \mathcal{H}_{N}

$$
\sum_{a} X_{a}^{2}=\mathcal{R}^{2}
$$

covariance: $\quad X_{a} \in \operatorname{End}\left(\mathcal{H}_{N}\right)$ transform as vectors of $\operatorname{SO}(5)$

$$
\begin{aligned}
{\left[\mathcal{M}_{a b}, X_{c}\right]=} & i\left(\delta_{a c} X_{b}-\delta_{b c} X_{a}\right), \\
{\left[\mathcal{M}_{a b}, \mathcal{M}_{c d}\right]=} & i\left(\delta_{a c} \mathcal{M}_{b d}-\delta_{a d} \mathcal{M}_{b c}-\delta_{b c} \mathcal{M}_{a d}+\delta_{b d} \mathcal{M}_{a c}\right) . \\
& \quad \mathcal{M}_{a b} \ldots \text { so(5) generators acting on } \mathcal{H}_{N}
\end{aligned}
$$

denote

$$
\left[X^{a}, X^{b}\right]=: i \Theta^{a b}
$$

particular realization $\mathfrak{s o}(6) \cong \mathfrak{s u}(4)$ generators $\mathcal{M}_{a b}$:

$$
\begin{aligned}
& X^{a}=r \mathcal{M}^{a 6}, \quad a=1, \ldots, 5, \quad \Theta^{a b}=r^{2} \mathcal{M}^{a b} \\
&(\text { cf. Snyder, Yang, 1947) }
\end{aligned}
$$

- basic fuzzy 4-sphere \mathcal{S}_{N}^{4} :

Grosse-Klimcik-Presnajder 1996; Castelino-Lee-Taylor Ramgoolam; Medina-o'Connor, Dolan, ...
choose $\mathcal{H}_{N}=(0,0, N)_{\mathfrak{s o}(6)} \cong\left(\mathbb{C}^{4}\right)^{\otimes_{S} N}$
satisfies

$$
\begin{aligned}
& X_{a} X_{a}=R^{2} 1, \quad R^{2} \sim \frac{1}{4} N^{2} \\
& \epsilon^{\text {abcde } X_{a} X_{b} X_{c} X_{d} X_{e}}=(N+2) R^{2} \quad \text { (volume quantiz.) }
\end{aligned}
$$

- generalized fuzzy 4-spheres $\mathcal{S}_{\Lambda}^{4}$:
H.S, arXiv:1606.00769, M. Sperling \& HS, arXiv:1704.02863
choose e.g. $\mathcal{H}_{\Lambda}=(n, 0, N)_{\mathfrak{s o}(6)}$
... thick sphere; $\mathcal{R}^{2}:=X_{a} X_{a}$ not sharp
bundle over S_{N}^{4} with fiber $\mathbb{C} P_{n}^{2}$
(\rightarrow fuzzy extra dim's!)
H. Steinacker
local description: pick north pole $p \in S^{4}$
\rightarrow tangential \& radial generators

$$
X^{a}=\binom{X^{\mu}}{X^{5}}, \quad x^{\mu} \sim X^{\mu}, \mu=1, \ldots, 4 \ldots \text { tangential coords at } p
$$

separate $S O$ (5) into $S O(4) \&$ translations

$$
\mathcal{M}^{a b}=\left(\begin{array}{ll}
\mathcal{M}^{\mu \nu} & \mathcal{P}^{\mu} \\
-\mathcal{P}^{\mu} & 0
\end{array}\right)
$$

rescale

$$
P_{\mu}=\frac{1}{R} g_{\mu \nu} \mathcal{P}^{\nu} \quad \text { (cf. Wigner contraction) }
$$

algebra

$$
\begin{aligned}
{\left[P_{\mu}, X^{\nu}\right] } & \simeq i \delta_{\mu}^{\nu} \frac{X^{5}}{R} \approx i \delta_{\mu}^{\nu}, \\
{\left[P_{\mu}, P_{\nu}\right] } & =\frac{i}{R^{2}} \mathcal{M}^{\mu \nu} \rightarrow 0 \\
{\left[X^{\mu}, X^{\nu}\right] } & =i \theta^{\mu \nu}=i r^{2} \mathcal{M}^{\mu \nu} \quad \approx 0
\end{aligned}
$$

cf. Snyder space !!

basic \mathcal{S}_{N}^{4}

semi-classical picture:

Ho-Ramgoolam, Medina-O'Connor, Abe, ...
$x^{a}=\bar{\psi} \Sigma^{a 6} \psi \quad$... functions on $\mathbb{C} P^{3}$
$X^{a}=\bar{\Psi} \Sigma^{a 6} \Psi, \quad\left[\bar{\Psi}^{\alpha}, \Psi_{\beta}\right]=\delta_{\beta}^{a} \ldots$ functions on fuzzy $\mathbb{C} P_{N}^{3}$
fuzzy S_{N}^{4} is really fuzzy $\mathbb{C} P_{N}^{3}=$ twisted S^{2} bundle over S^{4} !
Poisson tensor

$$
\theta^{\mu \nu}(x, \xi) \sim-i\left[X^{\mu}, X^{\nu}\right]
$$

rotates along fiber $\xi \in S^{2}$!
is averaged $\left[\theta^{\mu \nu}(x, \xi)\right]_{0}=0$ over fiber \rightarrow local $S O(4)$ preserved,

4D "covariant" quantum space

fields and harmonics on S_{N}^{4}

"functions" on S_{N}^{4} :

$$
\phi \in \operatorname{End}\left(\mathcal{H}_{N}\right) \cong \bigoplus_{s \leq n \leq N}(n-s, 2 s)_{\mathfrak{s o}(5)} \quad=\bigoplus \square \square \square
$$

$(n, 0)$ modes $=$ scalar functions on S^{4} :

$$
\phi(X)=\phi_{a_{1} \ldots a_{n}} X^{a_{1}} \ldots X^{a_{n}}=\square \square \square
$$

$(n, 2)$ modes $=$ selfdual 2-forms on S^{4}

$$
\phi_{b c}(X) \mathcal{M}^{b c}=\phi_{a_{1} \ldots a_{n} b ; c} X^{a_{1}} \ldots X^{a_{n}} \mathcal{M}^{b c}=\square \square \square
$$

etc.
tower of higher spin modes, $s=0,1,2, \ldots, N$ from "twisted" would-be KK modes on S^{2}
(local $S O(4)$ acts non-trivially on S^{2} fiber)

relation with spin s fields:

$$
\phi \in \operatorname{End}\left(\mathcal{H}_{N}\right) \cong \bigoplus_{s} \underbrace{\left(\oplus_{n}(n-s, 2 s)\right)}_{\mathcal{C}^{s}}=\bigoplus \square \square \square \square
$$

\exists isomorphism

$$
\mathcal{C}^{s} \cong T^{*} \otimes_{s}^{s} S^{4}
$$

$$
\phi^{(s)}=\phi_{b_{1} \ldots b_{s} ; c_{1} \ldots c_{s}}^{(s)}(x) \theta^{b_{1} c_{1}} \ldots \theta^{b_{s} c_{s}} \quad \mapsto \phi_{c_{1} \ldots c_{s}}^{(s)}(x)=\phi_{b_{1} \ldots b_{s} ; c_{1} \ldots c_{s}}^{(s)} x^{b_{1}} \ldots x^{b_{s}}
$$

... "symbol" of $\phi \in \mathcal{C}^{s}$
M. Sperling \& HS, arXiv:1707.00885
= symm., traceless, tangential, div.-free rank s tensor field on S^{4}

$$
\begin{aligned}
\phi_{c_{1} \ldots c_{s}}(x) x^{c_{i}} & =0 \\
\phi_{c_{1} \ldots c_{s}}(x) g^{c_{1} c_{2}} & =0 \\
\partial^{c_{i}} \phi_{c_{1} \ldots c_{s}}(x) & =0 .
\end{aligned}
$$

semi-classical limit \& higher spin

general functions on S_{N}^{4} :

$$
\phi=\phi_{\underline{\alpha}}(x) \bar{\Xi}^{\underline{\alpha}}, \quad \overline{\underline{\alpha}}=\mathcal{M} \ldots \mathcal{M} \quad \in \mathfrak{h} \mathfrak{S}
$$

where

$$
\equiv \underline{\alpha} \in \mathfrak{h s}:=\bigoplus_{s=0}^{\infty}(0,2 s) \cong \oplus \square \square
$$

as vector space, (Poisson) Lie algebra

$$
\left\{\mathcal{M}^{a b}, \mathcal{M}^{b_{1} c_{1}} \ldots \mathcal{M}^{b_{s} c_{s}}\right\}=g^{a b_{1}} \mathcal{M}^{b c_{1}} \ldots \mathcal{M}^{b_{s} c_{s}} \pm \ldots
$$

relations

$$
\mathcal{M}^{a b} \mathcal{M}^{a c}=\frac{R^{2}}{\theta} P_{T}^{a b}, \quad \varepsilon_{a b c d e} \mathcal{M}^{a b} \mathcal{M}^{c d}=\frac{R}{\theta} x^{e}
$$

functions on $S_{N}^{4} \cong \mathfrak{h s}$ - valued functions on S^{4}
cf. Vasiliev theory!
local representation \& constraints \quad near north pole $R(1,0,0,0,0)$:

- spin 1:

$$
\begin{aligned}
\phi^{(1)} & =\phi_{a_{1} \ldots a_{n} b ; c} x^{a_{1}} \ldots x^{a_{n}} \theta^{b c} \quad \in(n, 2) \subset \mathcal{C}^{1} \\
& =: A_{\mu}(x) P^{\mu}+\omega_{\mu \nu}(x) \mathcal{M}^{\mu \nu}
\end{aligned}
$$

where

$$
\omega_{\mu \nu}=-\frac{1}{2(n+2)}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right), \quad \partial^{\mu} A_{\mu}=0
$$

- spin 2:

$$
\begin{aligned}
\phi^{(2)} & =\phi_{a_{1} \ldots a_{n} b c ; d e} X^{a_{1}} \ldots x^{a_{n}} \theta^{b d} \theta^{c e} \quad \in(n, 4) \subset \mathcal{C}^{4} \\
& =: h_{\mu \nu}(x) P^{\mu} P^{\nu}+\omega_{\mu: \alpha \beta}(x) P^{\mu} \mathcal{M}^{\alpha \beta}+\Omega_{\alpha \beta ; \mu \nu}(x) \mathcal{M}^{\alpha \beta} \mathcal{M}^{\mu \nu}
\end{aligned}
$$

where

$$
\begin{aligned}
\partial^{\mu} h_{\mu \nu} & =0 \\
\omega_{\mu ; \alpha \beta} & =-\frac{n+1}{(n+2)(n+3)}\left(\partial_{\alpha} h_{\mu \beta}-\partial_{\beta} h_{\mu \alpha}\right) \ldots \text { lin. spin conn. of } h_{\mu \nu} \\
\Omega_{\alpha \beta ; \mu \nu}(x) & =-\frac{1}{(n+2)(n+3)} \mathcal{R}_{\alpha \beta \mu \nu} \quad \ldots . \text { lin. curvature of } h_{\mu \nu}
\end{aligned}
$$

Fluctuation modes on S_{λ}^{4}

organize tangential fluctuations at $p \in S^{4}$ as

$$
\mathcal{A}^{\mu}=\theta^{\mu \nu} \mathbf{A}_{\nu}
$$

where

$$
\mathbf{A}_{\nu}(x)=A_{\nu}(x)+\underbrace{A_{\nu \rho}(x) P^{\rho}+A_{\nu \rho \sigma}(x) \mathcal{M}^{\rho \sigma}}_{A_{\nu a b} \mathcal{M}^{\text {ab }} \ldots S O(5) \text { connection }}+\ldots
$$

rank 2 tensor field

$$
A_{\nu \rho}(x)=\frac{1}{2}\left(h_{\nu \rho}+a_{\nu \rho}\right) \quad h_{\nu \rho}=h_{\rho \nu} \quad \ldots \text { metric fluctuation }
$$

rank 3 tensor field
$A_{\nu \rho \sigma}(x) \mathcal{M}^{\rho \sigma} \quad . . . \mathfrak{s o}(4)$ connection
rank 1 field $\quad A_{\nu}(x) \quad \ldots \quad U(1)$ gauge field

gauge transformations:

$$
\begin{aligned}
& Y^{a} \rightarrow U Y^{a} U^{-1}=U\left(X^{a}+\mathcal{A}^{a}\right) U^{-1} \text { leads to } \\
& \delta \mathcal{A}^{a}=i\left[\Lambda, X^{a}\right]+i\left[\Lambda, \mathcal{A}^{a}\right]
\end{aligned}
$$

$$
\left(U=e^{i \Lambda}\right)
$$

expand

$$
\Lambda=\Lambda_{0}+\frac{1}{2} \Lambda_{a b} \mathcal{M}^{a b}+\ldots
$$

... $U(1) \times S O(5) \times \ldots$ - valued gauge trafos
diffeos from $\delta_{v}:=i\left[v_{\rho} P^{\rho},.\right]$

$$
\begin{aligned}
\delta h_{\mu \nu} & =\left(\partial_{\mu} v_{\nu}+\partial_{\nu} v_{\mu}\right)-v^{\rho} \partial_{\rho} h_{\mu \nu}+(\Lambda \cdot h)_{\mu \nu} \\
\delta A_{\mu \rho \sigma} & =\frac{1}{2} \partial_{\mu} \Lambda_{\sigma \rho}(x)-v^{\rho} \partial_{\rho} A_{\mu \rho \sigma}+(\Lambda \cdot A)_{\mu \rho \sigma}
\end{aligned}
$$

etc.

metric and vielbein

consider scalar field $\phi=\phi(X) \quad\left(=\right.$ transversal fluctuation $\left.\mathcal{A}^{a}(X)\right)$
kinetic term

$$
-\left[X^{\alpha}, \phi\right]\left[X_{\alpha}, \phi\right] \sim e^{\alpha} \phi \boldsymbol{e}_{\alpha} \phi=\gamma^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi,
$$

vielbein

$$
\begin{aligned}
e^{\alpha} & :=\left\{\boldsymbol{X}^{\alpha}, .\right\}=e^{\alpha \mu} \partial_{\mu} \\
e^{\alpha \mu} & =\theta^{\alpha \mu}
\end{aligned}
$$

Poisson structure \rightarrow frame bundle!
metric

$$
\gamma^{\mu \nu}=g_{\alpha \beta} e^{\alpha \mu} e^{\beta \nu}=\frac{1}{4} \Delta^{4} g^{\mu \nu}
$$

averaging over internal S^{2} :

$$
\left[e^{\alpha \nu}\right]_{0}=0, \quad\left[\bar{\gamma}^{\mu \nu}\right]_{0}=\bar{\gamma}^{\mu \nu}=\frac{\Delta^{4}}{4} g^{\mu \nu} \ldots \mathrm{SO}(5) \text { invariant ! }
$$

perturbed vielbein: $\quad Y^{a}=X^{a}+\mathcal{A}^{a}$

\[

\]

linearize \& average over fiber \rightarrow

$$
\gamma^{\mu \nu} \sim e^{\alpha \mu}[\mathcal{A}] e_{\alpha}^{\nu}[\mathcal{A}]=\bar{\gamma}^{\mu \nu}+\left[\delta \gamma^{\mu \nu}\right]_{0}
$$

complication:

graviton is combination

$$
h_{\mu \nu}:=\left[\delta \gamma_{\mu \nu}\right]_{0}=\frac{\Delta^{4}}{4}\left(\boldsymbol{A}_{\mu \nu}+\partial^{\rho} \boldsymbol{A}_{\mu \rho \nu}+\partial^{\rho} \boldsymbol{A}_{\nu \rho \mu}\right)
$$

- basic S_{N}^{4} : $\quad \partial^{\rho} A_{\mu \rho \nu} \approx n A_{\mu \nu}$ dominates \rightarrow bad propagator
- generalized S_{Λ}^{4} : modes $A_{\mu \nu}, A_{\mu \rho \nu}$ independent, issue should be resolved (?)

action for spin 2 modes:

expand IKKT action to second oder in $\mathcal{A}^{\text {a }}$

$$
S[Y]=S[X]+\frac{2}{g^{2}} \operatorname{Tr} \mathcal{A}_{a} \underbrace{\left(\left(\square+\frac{1}{2} \mu^{2}\right) \delta_{b}^{a}+2\left[\left[X^{a}, X^{b}\right], .\right]-\left[X^{a},\left[X^{b}, .\right]\right]\right)}_{\mathcal{D}^{2}} \mathcal{A}_{b}
$$

for spin 2 modes $\mathcal{A}^{\mu} \sim \theta^{\mu \nu} A_{\nu \rho} P^{\rho}+\ldots$

$$
\int \mathcal{A D}{ }^{2} \mathcal{A} \sim \int n^{2} A^{\mu \nu} A_{\mu \nu}=\int h_{\mu \nu} h^{\mu \nu}
$$

coupling to matter:

$$
S[\text { matter }] \sim \int_{\mathcal{M}} d^{4} x h^{\mu \nu} T_{\mu \nu}
$$

\rightarrow auxiliary field $h_{\mu \nu} \sim T_{\mu \nu}$!
"graviton" doesn't propagate, due to constraint $A_{\mu \nu}, A_{\mu \rho \nu}$
possible ways out:
(1) there are 4 independent spin 2 modes on S_{N}^{4} !
(2) 1-loop \rightarrow induced gravity action $\sim \int h_{\mu \nu} \square h^{\mu \nu}$ can get (lin.) Einstein equations (fine-tuning ...)
(3) better (?): generalized fuzzy sphere S_{Λ}^{4}

- modes $A_{\mu \nu}, A_{\mu \rho \nu}$ independent
- fuzzy extra dims

exact treatment of spin 2 modes on S_{N}^{4} :

Marcus Sperling \& HS, arXiv:1707.00885
3 independent "graviton" modes

$$
\begin{aligned}
& h_{\mu \nu}\left[A^{B}\right]=-c\left(1+\frac{2}{n^{2}+7 n+8}\right) T_{\mu \nu} \\
& h_{\mu \nu}\left[A^{C}\right]=-3 c\left(1+\frac{7}{3(2 n+7)}-\frac{2}{3(n+8)}\right) T_{\mu \nu} \\
& h_{\mu \nu}\left[A^{D}\right]=-\frac{1}{3} c\left(1+\frac{2}{3(n-1)}-\frac{7}{3(2 n+7)}\right) T_{\mu \nu}
\end{aligned}
$$

$$
\boldsymbol{c}=\frac{4}{5 L_{N C}^{4}} \frac{g^{2} \operatorname{Vol}\left(\mathcal{S}^{4}\right)}{\operatorname{dim}(\mathcal{H})}
$$

combined metric fluct:

$$
h_{\mu \nu}=h_{\mu \nu}\left[A^{B}\right]+h_{\mu \nu}\left[A^{C}\right]+h_{\mu \nu}\left[A^{D}\right]
$$

- leading contrib:

$$
h_{\mu \nu}^{(\text {aux })}=-G_{N} R^{2} T_{\mu \nu} \quad \text { aux. field, too strong }
$$

- subleading contrib:

$$
\square h_{\mu \nu}^{(\text {grav) }}=G_{N} T_{\mu \nu} \quad \ldots \text { lin. graviton! }
$$

- strange contrib:

$$
\sqrt{|\square|} h_{\mu \nu}^{(\text {nonloc })}=-G_{N} R T_{\mu \nu}
$$

$$
h_{\mu \nu}^{(\text {nonloc })} \sim-\frac{1}{4 \pi^{2} r^{3}}+\ldots \quad \ldots \text { nonloc. }, \text { strong }
$$

$$
G_{N}=\frac{4}{5 R^{2} L_{N C}^{4}} \frac{g^{2} \operatorname{Vol}\left(\mathcal{S}^{4}\right)}{\operatorname{dim}(\mathcal{H})}=: \quad L_{p l}^{2}
$$

induced gravity scenario:
assume large induced gravity action $\int \Lambda^{2} R \sim \int h_{\mu \nu} \square h^{\mu \nu}$

- auxiliary modes \rightsquigarrow linearized gravitons, mass set by Λ^{2}
- remaining modes \rightsquigarrow sub-leading, very long-range
(cf. conformal gravity)

generalized fuzzy sphere

basic sphere \mathcal{S}_{N}^{4} :

$$
\begin{array}{cll}
\Lambda=(0,0, N)_{\mathfrak{s o}(6)}, & H_{\Lambda}=N\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right| \\
\mathbb{C} P^{3} & \ni & \psi \\
\downarrow & & \downarrow \\
S^{4} & \ni & x^{a}=\frac{\downarrow}{\psi} \gamma^{a} \psi
\end{array}
$$

$\mathbb{C} P^{3}$ is a S^{2} bundle over S^{4}.
$\underline{\text { generalized } \mathcal{S}_{\Lambda}^{4}}$:

$\mathcal{S}_{\Lambda}^{4}=\mathbb{C} P^{2}$ bundle over $\mathbb{C} P^{3} \cong \mathcal{S}^{4} \times S^{2}$
generators of S_{\wedge}^{4} :

$$
\begin{aligned}
X^{a} & =\pi_{\Lambda}\left(T^{a 6}\right) \quad \ldots \mathfrak{s o}(6) \text { generators, } \Lambda=(n, 0, N) \\
X_{a} X^{a} & \approx \mathcal{R}^{2}
\end{aligned}
$$

characteristic equation:
$\left((i \mathcal{M}+2)^{2}-\frac{(N-n)^{2}}{4}\right)\left(\left(i \mathcal{M}+\frac{3}{2}\right)^{2}-\frac{(N+n+3)^{2}}{4}\right)=0, \quad \mathcal{M}^{a b}=\pi_{\Lambda}\left(T^{a b}\right)$
new $S O(5)$ vector generators:

$$
\begin{aligned}
T^{a} & :=\left(\mathcal{M}^{2}-2 i \mathcal{M}\right)^{a 6}=T^{a \dagger} \\
Y^{a} & :=\left(\mathcal{M}^{3}+\ldots\right)^{a 6}=Y^{a \dagger} \\
T \cdot X & =0=T \cdot Y
\end{aligned}
$$

$T^{a} \approx$ "momentum" generators
commutation relations

$$
\begin{aligned}
{\left[X^{a}, X^{b}\right] } & =i \mathcal{M}^{a b} \\
{\left[X^{a}, Y^{b}\right] } & =i Y^{a b}=i\left(\mathcal{M}_{N}^{a b}-\mathcal{M}_{n}^{a b}\right) \\
{\left[X^{a}, T^{b}\right] } & =-i \tilde{\mathcal{T}}^{a b}+i\left(\mathcal{R}^{2}-c\right) g^{a b}, \\
{\left[Y^{a}, Y^{b}\right] } & =\frac{2 i}{\operatorname{det} \tilde{A}}\left(Y^{a b}\left(-2 c+\mathcal{R}^{2}\right)-Y^{a} T^{b}+T^{a} Y^{b}+i\left(Y^{a} X^{b}-X^{a} Y^{b}\right)\right) \\
{\left[T^{a}, T^{b}\right] } & =\frac{i}{2} \operatorname{det} \tilde{A} Y^{a b}+i\left(2 c-\mathcal{R}^{2}\right) \mathcal{M}^{a b}-i\left(X^{a} T^{b}-T^{a} X^{b}\right)+\tilde{\mathcal{T}}^{a b}-g^{a b} \\
{\left[T^{a}, Y^{b}\right] } & =i\left(Y^{a} X^{b}-X^{a} Y^{b}\right)
\end{aligned}
$$

embedding in Euclidean IKKT model (solutions!):
$S O(5)$ - invariant extra potential

$$
\begin{aligned}
S_{\mathrm{eff}}[\mathcal{Y}]=\frac{1}{g^{2}} \operatorname{Tr}(& -\left[\mathcal{Y}_{A}, \mathcal{Y}_{B}\right]\left[\mathcal{Y}^{A}, \mathcal{Y}^{B}\right]+\mu_{1}^{2} \mathcal{R}_{(1)}^{2}+\mu_{2}^{2} \mathcal{R}_{(2)}^{2} \\
& \left.+\lambda_{1}\left(\mathcal{R}_{(1)}^{2}\right)^{2}+\lambda_{2}\left(\mathcal{R}_{(2)}^{2}\right)^{2}+\mu_{12} \mathcal{R}_{(12)}+\ldots\right)
\end{aligned}
$$

new $S O(5)$ covariant solution: e.g. $\left(\mathcal{R}_{(1)}^{2}=\mathcal{Y}_{(1)}^{a} \cdot \mathcal{Y}_{(1)}^{a}\right.$ etc. $)$

$$
\mathcal{Y}^{A}=\binom{\mathcal{Y}_{(1)}^{a}}{\mathcal{Y}_{(2)}^{a}}=\binom{Y^{a}}{T^{a}}, \quad a=1, \ldots, 5,
$$

Y^{a} similar to $X^{a} \approx$ "thick" 4-sphere
S^{4} with fuzzy extra dimensions
interesting for gravity \& particle physics \equiv "squashed $\mathbb{C} P^{2} \times S^{2}$
(cf. HS arXiv:1504.05703 , HS \& J. Zahn arXiv:1409.1440)
metric in x, y, t space worked out
towards gravity on generalized S_{Λ}^{4}
new modes, $A_{\mu \nu}$ independent from $A_{\mu \rho \sigma}$
neglect/ suppress mixing (incomplete)
\rightarrow lin. Einstein eq.

$$
\mathcal{G}_{\mu \nu}[g+H] \approx-\frac{3}{R^{2}} g_{\mu \nu}+\frac{1}{2} \partial \cdot \partial \tilde{h}_{\mu \nu} \propto T_{\mu \nu}
$$

drop background curvature $\sim \frac{1}{R^{2}}$
(\& local effects)
more complete treatment needed

summary

- \exists 4D covariant quantum spaces, e.g. fuzzy S_{N}^{4}
\rightarrow UV-regularized higher spin theory
- UV cutoff \leftrightarrow NC scale Poisson structure \rightarrow frame bundle
- closely related to Vasiliev theory, $\mathfrak{h s}$ algebra
- in IKKT model:
- \approx YM for $\mathfrak{h s}$, good UV behavior expected
- (lin.) 4-D Einstein equations expected (?) for generalized $\mathcal{S}_{\Lambda}^{4}$ (preliminary, needs more work ...)
- induced gravity may play a role
- IR modifications (massive?), additional modes
- Minkowski version possible, needs more work
- if it works:
quantum theory of 4D gravity, stringy, no compactification!

... there is no free lunch

but we have the ingredients!

eom for extra dimensions:

$$
\begin{aligned}
& \square \mathcal{Y} \mathcal{Y}_{(1)}^{a}=-\frac{\mu_{1}^{2}}{2} \mathcal{Y}_{(1)}^{a}-\frac{\mu_{12}}{2} \mathcal{Y}_{(2)}^{a}-\lambda_{1}\left\{\mathcal{R}_{1}^{2}, \mathcal{Y}_{(1)}^{a}\right\}_{+} \\
& \square \mathcal{Y} \mathcal{Y}_{(2)}^{a}=-\frac{\mu_{2}^{2}}{2} \mathcal{Y}_{(2)}^{a}-\frac{\mu_{12}}{2} \mathcal{Y}_{(1)}^{a}-\lambda_{2}\left\{\mathcal{R}_{2}^{2}, \mathcal{Y}_{(2)}^{a}\right\}_{+}
\end{aligned}
$$

geometry: (quantized) coadjoint $S O(6)$ orbits

(co)adjoint orbits:

$$
\mathcal{O}[\Lambda]=\left\{g \cdot H_{\Lambda} \cdot g^{-1} ; g \in S O(6)\right\} \subset \mathfrak{s o}(6) \cong \mathbb{R}^{15}
$$

embedding functions:

$$
\begin{aligned}
m^{a b}: \mathcal{O}[\Lambda] & \hookrightarrow \mathbb{R}^{15} \\
X & \mapsto m^{a b}=\operatorname{tr}\left(X \Sigma^{a b}\right)
\end{aligned}
$$

$$
\Sigma^{a b} \in \mathfrak{s o}(6)
$$

quantized ("fuzzy") coadjoint orbits $\mathcal{S}_{\Lambda}^{4}$:
functions $m^{a b} \rightarrow$ generators $\mathcal{M}^{a b}$ on \mathcal{H}_{Λ},
^ ... (dominant) integral weight.
algebra of functions: $\mathcal{C}^{\infty}(\mathcal{O}) \rightarrow \operatorname{End}\left(\mathcal{H}_{\Lambda}\right)$
semi-classical limit: $\quad[.,.] \rightarrow i\{.,$.$\} , same geometry as \mathcal{O}[\Lambda]$

