Matrix models and the quantum structure of space, time and matter

Harold Steinacker

Department of Physics, University of Vienna

February 2, 2018
outline:

- status of “fundamental theory”
- quantum space-time & geometry
- matrix models
- 4D quantum spaces & cosmological space-times
- towards particle physics, outlook
present understanding of fundamental matter & interactions:

- standard model of elementary particle physics
 = quantum field theory
 governs fundamental constituents of matter & interactions except for gravity!

- general relativity (GR)
 = classical geometrical theory of gravity

however: class. Einstein equations inconsistent with QM:

\[\mathcal{R}_{\mu\nu} - \frac{1}{2} g_{\mu\nu} \mathcal{R} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \]

GR resists quantization, not renormalizable
Motivation

Quantum geometry

IKKT model, NC branes

Cosmological space-times

present understanding of fundamental matter & interactions:

- **standard model of elementary particle physics**
 = quantum field theory

 governs fundamental constituents of matter & interactions
 except for gravity!

- **general relativity (GR)**
 = classical geometrical theory of gravity

 however: class. Einstein equations **inconsistent** with QM:

\[
\mathcal{R}_{\mu\nu} - \frac{1}{2}g_{\mu\nu}\mathcal{R} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}
\]

 classical

 quantum

GR resists quantization, not renormalizable
underlying issue: superposition principle of quantum mechanics

superposition of massive objects

⇒ need quantum theory of geometry & gravity

requires new framework for quantum space-time
Observational issue
present cosmological concordance model: ΛCDM model

95% of the Universe is not understood!!
either
- General Relativity is wrong, or
- particle physics is incomplete, or
- both (most likely)
→ expect major change in fundamental physics!
approaches to quantum & gravity

- direct quantization of (pure) gravity:
 - loop quantum gravity, canonical QG
 - causal dynamical triangulations
 - asymptotic safety
 - ...

(all have problems!)

- quantization of very special models which include gravity
 - string theory
 - Matrix Models (this talk!)

(landscape? def?)

- (holography)

- “quantum” (noncommutative) geometry described by Matrix Models
 physics emerges from fluctuations
fuzzyness of space-time

Q.M. & G.R. \Rightarrow break-down of classical space-time

<table>
<thead>
<tr>
<th>Measure object of size Δx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.M. \Rightarrow energy $E \geq \hbar kc \sim \frac{\hbar c}{\Delta x}$</td>
</tr>
<tr>
<td>G.R. \Rightarrow $\Delta x \geq R_{\text{Schwarzschild}} \sim \frac{GM}{c^2} \geq \frac{\hbar G}{c^3 \Delta x}$</td>
</tr>
</tbody>
</table>

$\Rightarrow (\Delta x)^2 \geq \frac{G\hbar}{c^3} = L_{Pl}^2, \quad L_{Pl} = 10^{-33} cm$

Classical geometry breaks down, need pre-geometric framework

“fuzzy”, “foam-like” structure of space-time

J. Wheeler 1955

“Unanwendbarkeit der Geometrie im Kleinen”

Schrödinger 1934

Why worry? Because virtual quantum effects in QFT probe UV scale, very significant!!

(cf. UV divergences in 4D QFT)

H. Steinacker

Matrix models and the quantum structure of space, time and matter
fuzzyness of space-time

Q.M. & G.R. ⇒ break-down of classical space-time

measure object of size Δx

<table>
<thead>
<tr>
<th>Q.M.</th>
<th>energy $E \geq \hbar kc \sim \frac{\hbar c}{\Delta x}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.R.</td>
<td>$\Delta x \geq R_{\text{Schwarzschild}} \sim \frac{GM}{c^2} \geq \frac{\hbar G}{c^3 \Delta x}$</td>
</tr>
</tbody>
</table>

$\Rightarrow (\Delta x)^2 \geq \frac{G\hbar}{c^3} = L_{Pl}^2$, \hspace{1cm} $L_{Pl} = 10^{-33} \text{cm}$

classical geometry breaks down, need pre-geometric framework

“fuzzy”, “foam-like” structure of space-time
J. Wheeler 1955

“Unanwendbarkeit der Geometrie im Kleinen”
Schrödinger 1934

why worry? because

virtual quantum effects in QFT probe UV scale, very significant!!
(cf. UV divergences in 4D QFT)
what is the quantum structure of geometry?

... lots of possibilities, generic problem:

- modifications of geometry in UV → uncontrollable, unexpected effects in IR (cf. UV divergences in 4D QFT)
- most approaches will fail, need protection mechanism

more precise statement: Doplicher Fredenhagen Roberts 1995

\[\sum \Delta x^\mu \Delta x^\nu \geq L^2_{Pl} \]

... space-time uncertainty relations, follows from

\[[X^\mu, X^\nu] = i\theta^{\mu\nu} \]

(cf. Q.M. !)

... noncommutative (quantum) space-time
what is the quantum structure of geometry?

... lots of possibilities, **generic problem**:

- modifications of geometry in UV → uncontrollable, unexpected effects in IR
 (cf. UV divergences in 4D QFT)
- most approaches will fail, need **protection mechanism**

more precise statement: Doplicher Fredenhagen Roberts 1995

\[
\sum \Delta x^\mu \Delta x^\nu \geq L_{Pl}^2
\]

... space-time uncertainty relations, follows from

\[
[X^\mu, X^\nu] = i\theta^{\mu\nu}
\]
 (cf. Q.M. !)

... noncommutative (quantum) space-time
Motivation Quantum geometry IKKT model, NC branes Cosmological space-times

quantized space-time & geometry

old idea: Schrödinger, Heisenberg, Snyder, ...

borrow idea from QM:

QM = quantization of phase space $[X, P] = i\hbar$

quantum space = quantization $[X^\mu, X^\nu] = i\theta^{\mu\nu}$ of space-time

inherent uncertainty of space(time)

use Q.M. techniques (coherent states, ...) for spacetime & geometry
basic message of GR:

cannot separate space-time ↔ matter

need unified model governing space-time, matter & interaction

task:

- find correct model which governs dynamical quantum space-times

 (many approaches conceivable, most will fail)

- find correct space-time solutions

- identify mechanisms for emergent physics

 (gauge theory & gravity)

how to choose model & framework?
two crucial insights:

insight 1 (around 2000):

Yang-Mills gauge theory arises from fluctuations of quantum spaces in Matrix Models

\[
\begin{align*}
[X^\mu, X^\nu] &= i\theta^{\mu\nu}, \\
[X^\mu + A^\mu, X^\nu + A^\nu] &= i\theta^{\mu\nu} + i\partial_\mu A_\nu - \partial_\nu A_\mu + i[A_\mu, A_\nu]
\end{align*}
\]

simpler than in classical space-time!! (use \([X^\mu, A] \sim i\theta^{\mu\nu} \partial_\nu A\))

\[
S = \text{Tr}[X^\mu, X^\nu][X^\mu, X^\nu] \sim \int F^{\mu\nu} F_{\mu\nu} + c
\]

what about gravity?

insight 2:

Matrix Models \(S = \text{Tr}[X^\mu, X^\nu][X^\mu, X^\nu] \rightarrow \) dynamical quantum spaces
useful guideline: Schomerus, Chu-Ho, Seiberg-Witten, ... \(\sim \) 1999

NC spaces & gauge theory arise on D-branes in string theory
... “NonCommutative (quantum) field theory”

problem: UV/IR mixing Minwalla, van Raamsdonk, Seiberg 1999

- virtual quantum effects in QFT probe shortest scales
- string-like behavior \(|x\rangle \langle y| \) at high energies, non-local
- UV divergences in QFT \(\rightsquigarrow \) new IR divergences

\(\rightarrow \) naive approaches will fail

avoided in one special model: IKKT matrix model

2-fold origin/interpretation:
- maximally SUSY Yang-Mills theory
- nonperturbative string theory
Motivation Quantum geometry IKKT model, NC branes Cosmological space-times

Matrix Models as candidates for a fundamental theory

IKKT or IIB model

\[S[X, \psi] = -\text{Tr} \left([X^a, X^b][X^a', X^b']\eta_{aa'}\eta_{bb'} + \bar{\psi}\gamma_a[X^a, \psi] \right) \]

\[X^a = X^a\dagger \in \text{Mat}(N, \mathbb{C}), \quad a = 0, ..., 9, \quad N \text{ large} \]

gauge symmetry \[X^a \rightarrow UX^aU^{-1}, \quad SO(9, 1), \quad \text{SUSY} \]

proposed as non-perturbative definition of IIB string theory

- maximally SUSY Yang-Mills in 3+1 dim.
- quantization via matrix “path integral”

\[Z = \int dXd\psi \ e^{iS[X]} \]

- cf. BFSS model 1996: matrix quantum mechanics (class. time)
leads to "matrix geometry" (\approx NC geometry):

- $S_E \sim \text{Tr}[X^a, X^b]^2 \Rightarrow$ config's with small $[X^a, X^b] \neq 0$ dominate

 i.e. "almost-commutative" configurations

- \exists quasi-coherent states $|x\rangle$, minimize $\sum_a \langle x|\Delta X^2_a|x\rangle$

- $(X^a) \approx \text{diag.}$, spectrum $\equiv: \mathcal{M} \subset \mathbb{R}^{10}$

- $\langle x|X^a|x'\rangle \approx \delta(x - x')x^a, \quad x \in \mathcal{M}$

- "condensation" of matrices \rightarrow geometry:

NC branes embedded in target space \mathbb{R}^{10}

$X^a \sim x^a: \quad \mathcal{M} \hookrightarrow \mathbb{R}^{10}$

matrices = observables $X^a = \text{quantized functions } x^a$ (cf. Q.M)
examples of matrix geometries:

- three 2×2 matrices

$$X^3 = \begin{pmatrix} x(1) \\ x(2) \end{pmatrix} = x(1)|1\rangle\langle 1| + x(2)|2\rangle\langle 2|,$$

$$X^1 + iX^2 = \begin{pmatrix} x(12) \\ x(21) \end{pmatrix} = x(12)|2\rangle\langle 1|,$$

$$X^1 - iX^2 = \begin{pmatrix} x(12) \\ x(21) \end{pmatrix} = x(21)|1\rangle\langle 2|,$$

describe two points at $x(1), \quad x(2) \in \mathbb{R}^D$

- off-diagonal matrices \approx strings connecting branes

spectrum of $X^a \leftrightarrow$ location in \mathbb{R}^D
examples of matrix geometries:

- three 2×2 matrices

\[
X^3 = \begin{pmatrix} x^{(1)} \\ x^{(2)} \end{pmatrix} = x^{(1)}|1\rangle\langle 1| + x^{(2)}|2\rangle\langle 2|,
\]
\[
X^1 + iX^2 = \begin{pmatrix} x^{(12)} \end{pmatrix} = x^{(12)}|2\rangle\langle 1|,
\]
\[
X^1 - iX^2 = \begin{pmatrix} x^{(21)} \end{pmatrix} = x^{(21)}|1\rangle\langle 2|,
\]

describe two points at $x^{(1)}, x^{(2)} \in \mathbb{R}^D$

• ↔ •

(“point branes”)

off-diagonal matrices \approx strings connecting branes

spectrum of $X^a \leftrightarrow$ location in \mathbb{R}^D

• \rightarrow minimal fuzzy sphere $S^2 \hookrightarrow \mathbb{R}^3$

$X^a = \sigma^a, \quad X_1^2 + X_2^2 + X_3^2 = \frac{3}{4}$
examples of matrix geometries:

- three 2×2 matrices

\[
X^3 = \begin{pmatrix} x^{(1)} \\ x^{(2)} \end{pmatrix} = x^{(1)} |1\rangle \langle 1| + x^{(2)} |2\rangle \langle 2|,
\]

\[
X^1 + iX^2 = \begin{pmatrix} x^{(12)} \end{pmatrix} = x^{(12)} |2\rangle \langle 1|,
\]

\[
X^1 - iX^2 = \begin{pmatrix} x^{(21)} \end{pmatrix} = x^{(21)} |1\rangle \langle 2|.
\]

describe two points at $x^{(1)}, x^{(2)} \in \mathbb{R}^D$

- (“point branes”)

off-diagonal matrices \approx strings connecting branes

spectrum of $X^a \leftrightarrow$ location in \mathbb{R}^D

- minimal fuzzy sphere $S^2 \leftrightarrow \mathbb{R}^3$

$X^a = \sigma^a,$ $X_1^2 + X_2^2 + X_3^2 = \frac{3}{4}$
generic class of matrix geometries:

fuzzy spaces = quantized Poisson manifolds (cf. phase space, QM)

\[
X^a \sim x^a : \quad \mathcal{M} \hookrightarrow \mathbb{R}^D
\]

quantization map:

\[
\mathcal{Q} : \mathcal{C}(\mathcal{M}) \rightarrow \text{End}(\mathcal{H}) \cong \text{Mat}(N, \mathbb{C}) \quad \mathcal{H} = \mathbb{C}^N
\]

such that

\[
\begin{align*}
\mathcal{Q}(f) \mathcal{Q}(g) &= \mathcal{Q}(fg) + O(\theta), \quad \theta \sim \frac{1}{N} \\
[\mathcal{Q}(f), \mathcal{Q}(g)] &= \mathcal{Q}(i\{f, g\}) + O(\theta^2)
\end{align*}
\]

\[
f = f(X) = f^\dagger \in \text{Mat}(N, \mathbb{C}) \quad \text{... quantized algebra of functions on } \mathcal{M}
\]

(cf. QM!)

in particular:

\[
X^a = \mathcal{Q}(x^a)
\]

typically

\[
\text{Tr} \mathcal{Q}(f) \sim \int_\mathcal{M} f(x)
\]
Example: the fuzzy sphere S^2_N

classical S^2:

$x^a : S^2 \hookrightarrow \mathbb{R}^3$

$$(x^1)^2 + (x^2)^2 + (x^3)^2 = 1$$

fuzzy sphere S^2_N:

3 matrices $X^a := \frac{1}{\sqrt{C_N}} \pi_N(J^a)$... spin $\frac{N-1}{2}$ generators of $su(2)$

$$
(X^1)^2 + (X^2)^2 + (X^3)^2 = 1,

[X^a, X^b] = \frac{i}{\sqrt{C_N}} \varepsilon^{abc} X^c \sim \frac{i}{N}, \quad C_N = \frac{1}{4}(N^2 - 1)
$$

algebra $\mathcal{A} = \text{Mat}(N, \mathbb{C})$... quantized functions on S^2_N

S^2_N ... quantization of S^2 with Poisson bracket $\{x^a, x^b\} = \frac{2}{N} \varepsilon^{abc} x^c$
covariance: \(SO(3) \) rotations

\[
\mathfrak{so}(3) \times \mathcal{A} \rightarrow \mathcal{A}
\]

\[
(J^a, \phi) \mapsto [\pi_N(J^a), \phi]
\]

\(\rightarrow \) fuzzy spherical harmonics, \(\text{UV cutoff} \)

\[
\mathcal{A} = \text{Mat}(N, \mathbb{C}) \cong (N) \otimes (\bar{N}) = (1) \oplus (3) \oplus \ldots \oplus (2N-1)
\]

\[
= \{ \hat{Y}_0 \} \oplus \{ \hat{Y}_1 \} \oplus \ldots \oplus \{ \hat{Y}_{N-1} \}
\]

\(S_N^2 \) is fully covariant!

metric encoded in NC Laplace operator

\[
\Box : \mathcal{A} \rightarrow \mathcal{A},
\]

\[
\Box \phi = [X^a, [X^b, \phi]]\delta_{ab} = \frac{1}{C_N} J^a J^a \phi
\]

compute

\[
\Box \hat{Y}_l^m = \frac{1}{C_N} l(l+1) \hat{Y}_m^l
\]

spectrum identical with classical case

\[
\Delta g\phi = \frac{1}{\sqrt{|g|}} \partial_\mu (\sqrt{|g|} g^{\mu \nu} \partial_\nu \phi)
\]

\(\Rightarrow \) effective metric of \(\Box = \) round metric on \(S^2 \)
can measure such matrix geometries $\{X^a\}$:

measure energy $E(x)$ of string connecting \mathcal{M} with point at $x \in \mathbb{R}^D$
location of $\mathcal{M} \subset \mathbb{R}^D \leftrightarrow$ minima of $E(x)$

Mathematica package “Bprobe”

DOI 10.5281/zenodo.45045
Schneiderbauer - HS

examples:

squared fuzzy $\mathbb{C}P^2_N \subset \mathbb{R}^6$
fuzzy torus T^2_N

H. Steinacker
Motivation: Quantum geometry, IKKT model, NC branes, Cosmological space-times

4D covariant quantum spaces

- **Issue**: NC spaces: \([X^\mu, X^\nu] =: i\theta^{\mu\nu} \neq 0\) breaks Lorentz invariance.

- **However**: \(\exists\) fully \(SO(5)\) covariant fuzzy four-sphere \(S^4_N\)

 Grosse-Klimcik-Presnajder 1996; Castelino-Lee-Taylor; Ramgoolam; Kimura; Hasebe; Medina-O’Connor; Karabail-Nair; Zhang-Hu 2001 (QHE!) ...

 Complication/bonus: “internal structure”

 - Fluctuations includes spin 2 modes \(\rightarrow\) higher spin theory
 - “Gravity” naturally emerges

Euclidean case unphysical
∃ analogous

covariant cosmological quantum space-time solutions of IKKT models

- exactly homogeneous & isotropic
- finite density of microstates
- mechanism for Big Bang
starting point: Euclidean fuzzy hyperboloid H^4_n

\mathcal{M}^{ab} ... hermitian generators of $\mathfrak{so}(4, 2)$,

$$[\mathcal{M}_{ab}, \mathcal{M}_{cd}] = i(\eta_{ac}\mathcal{M}_{bd} - \eta_{ad}\mathcal{M}_{bc} - \eta_{bc}\mathcal{M}_{ad} + \eta_{bd}\mathcal{M}_{ac}).$$

choose “short” discrete unitary irreps \mathcal{H}_n ("minireps", doubletons)

special properties:

- irreducible under $\mathfrak{so}(4, 1)$, multiplicity-free
- positive discrete spectrum

$$\text{spec}(\mathcal{M}^{05}) = \{E_0, E_0 + 1, \ldots\}, \quad E_0 = 1 + \frac{n}{2}$$

- eigenspaces of \mathcal{M}^{05} finite-dim.
fuzzy hyperboloid H^4_n:

def. 5 hermitian matrices

$$X^a := rM^a{}^5, \quad a = 0, \ldots, 4$$

satisfy

$$\eta_{ab}X^aX^b = X^iX^i - X^0X^0 = -R^21, \quad R^2 = r^2(n^2 - 4)$$

$$[X^a, X^b] = ir^2M^{ab} =: i\Theta^{ab}$$

one-sided hyperboloid in $\mathbb{R}^{1,4}$, covariant under $SO(4,1)$

note: induced metric is Euclidean
oscillator construction: 4 bosonic oscillators \([\psi_\alpha, \bar{\psi}^\beta] = \delta^\beta_\alpha\)

then

\[X^a = r \bar{\psi} \gamma^a \psi \]

on Fock space \(\mathcal{H}_n\)

\(\mathcal{H}^4_n\) is really quantized \(\mathbb{C}P^{1,2} = S^2\) bundle over \(H^4\), selfdual \(\theta^{\mu\nu}\)

(analogous to \(S^4_N\))

\(\text{spec}(X^0 = \mathcal{M}^{05})\) discrete, finite degeneracy

\(\Rightarrow\) finite density of microstates!
open FRW universe from projected H^4_n

$Y^\mu := X^\mu$, for $\mu = 0, 1, 2, 3$ (drop X^4 !)

= projection of H^4_n in $\mathbb{R}^{1,3}$ via

$$Y^\mu \sim y^\mu : \mathbb{C}P^{1,2} \rightarrow H^4 \xrightarrow{\Pi} \mathbb{R}^{1,3}.$$

is solution of IKKT with $m^2 = -3r^2$, since

$$[Y^\mu, [Y^\mu, Y^\nu]] = ir^2[Y^\mu, M^{\mu\nu}] \quad \text{(no sum)}$$

$$= r^2 \begin{cases}
Y^\nu, & \nu \neq \mu \neq 0 \\
-Y^\nu, & \nu \neq \mu = 0 \\
0, & \nu = \mu
\end{cases}$$

hence

$$\Box Y^\mu = [Y^\nu, [Y_\nu, Y^\mu]] = 3r^2 Y^\mu \quad (= \text{eom of IKKT})$$
Motivation
Quantum geometry
IKKT model, NC branes
Cosmological space-times

properties:

- $SO(3, 1)$ manifest \Rightarrow foliation into $SO(3, 1)$-invariant space-like 3-hyperboloids H^3_i (homogeneous & isotropic!)
- double-covered FRW space-time with hyperbolic ($k = -1$) spatial geometries

\[ds^2 = dt^2 - a(t)^2 d\Sigma^2, \]

\[d\Sigma^2 \ldots SO(3, 1)\text{-invariant metric on space-like } H^3 \]
effective metric:

\[\Box_Y = [Y_\mu, [Y^\mu, .]] \sim \frac{1}{\sqrt{|G|}} \partial_\mu (\sqrt{|G|} G^{\mu\nu} \partial_\nu) : \]

\[G^{\mu\nu} = \alpha g^{\mu'\nu'} [\theta_{\mu'\mu} \theta_{\nu'\nu}] S^2, \quad \alpha = \sqrt{|\theta_{\mu\nu}|} \]

\[\cong \alpha \text{ diag}(c_0(\eta), c(\eta), c(\eta), c(\eta)) \]

where \([.]._S^2 \ldots \text{ averaging over the internal } S^2\]

\[c(\eta) = 1 - \frac{1}{3} \cosh^2(\eta) \]

\[c_0(\eta) = \cosh^2(\eta) - 1 \geq 0 \]

signature change at \(c(\eta) = 0\)

\[\cosh^2(\eta_0) = 3 \quad \ldots \text{Big Bang!} \]

Euclidean for \(\eta < \eta_0\), Minkowski \((+----)\) for \(\eta > \eta_0\)
FRW metric and scale factor

\[ds_G^2 = dt^2 - a^2(t)d\Sigma^2 \]

with

\[\frac{dy_0}{dt} = \frac{c_0(y_0)^{1/2}}{|c(y_0)|^{3/4}}, \quad a(t) = |c(y_0)|^{1/2} y_0^2. \]

Big Bang:

shortly after the BB:

\[a(t) \propto c(t)^{1/4} \propto t^{1/7} \]

![Graph showing the scale factor a(t) vs. time t]
late times:

linear coasting cosmology

\[a(t) \sim \frac{3\sqrt{3}}{2} t. \]
$a(t) \sim t$ is remarkably close to observation:

- age of univ. 13.9×10^9 y from present Hubble parameter similar to Milne Univ;

![Graph showing scale factor $a(t)$ vs. time t/t_0.](image)

- artificial within GR, natural in M.M.
- gravity should emerge below cosm. scales (?!)
- can reproduce SN1a (without acceleration)
- different physics for early universe (CMB etc.)

other features:

- ∃ Euclidean pre-BB era
- 2 sheets with opposite intrinsic “chirality”

- fluctuations on internal $S^2 \rightarrow$ higher-spin fluctuation modes

$$A^\mu = \theta^{\mu \nu} h_{\nu \rho}(x) P^\rho$$

expect (higher-spin-extended) gravity (spin 2 = gravity!)

towards particle physics from the IKKT model

IKKT model has 9+1 “dimensions“

idea (cf. string theory):

consider solutions $\mathcal{M}^{3,1} \times \mathcal{K}_N$ with 6 fuzzy extra dimensions

requires embedding of standard model fields in adjoint of $SU(N)$:

indeed:

A. Chatzistavrakidis, H.S., G. Zoupanos arXiv:1107.0265

$$\psi = \begin{pmatrix} 0_2 & 0 & 0 & I_L & Q_L \\ 0 & 0 & e_R & Q_R \\ 0 & 0 & \nu_R & Q_R \\ 0 & 0 & 0_3 & 0 \end{pmatrix},$$

where

$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$,

$I_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$,

$Q_R = \begin{pmatrix} d_R \\ u_R \end{pmatrix}$

similar to brane constructions of the S.M. in string theory
3 generations

from projected quantized coadjoint $SU(3)$ orbits in extra dim.

$Y_a = \pi_\mu(T_a), \quad T_a \ldots su(3)$ root generators

$C[\mu] \mapsto \mathbb{R}^8 \quad \pi \mapsto \mathbb{R}^6$

$(y^a)_{a=1,\ldots,8} \mapsto (y^a)_{a=1,2,4,5,6,7}$

= solutions of IKKT model with cubic term,

4- or 6-dimensional self-intersecting variety in \mathbb{R}^6

chiral fermions from strings linking self-intersecting sheets

$\psi_{\alpha,\Lambda} = |\mu'\rangle\langle \mu|$, \quad $|\mu\rangle$... coherent states

triple self-intersection \rightarrow 3 generations!

no obstacle in principle to get (extended) standard model from IKKT, no need for string compactifications

the simplest possible model might actually work !?
understanding of fundamental physics is **not** complete

→ opportunities!

matrix models: promising framework for quantum theory of space-time & geometry

- analogous math as in Q.M.
- extremely simple, good UV behavior (IKKT model)
- all ingredients for gravity & particle physics
- cosmological space-times & BB from fuzzy H_n^4
 finite d.o.f. per volume
- gravity expected to emerge

... exciting potential, seize the opportunity!