Intersecting branes, strings & chirality in softly deformed $\mathcal{N}=4$ SYM

Harold C. Steinacker

Department of Physics, University of Vienna

DESY Theory Workshop 2018

Intersecting branes, strings & chirality in softly deformed $\mathcal{N}=4$ SYM

< ロ > < 同 > < 三 > < 三

the amazing richness of large-N gauge theory

- $SU(N) \mathcal{N} = 4$ SYM, deformed by cubic potential
 - \Rightarrow rich set of vacua = fuzzy branes in extra dim's $\mathbb{R}^4 \times \mathcal{K}_N$
 - intersecting branes, strings connecting branes, 3 generations, chirality
 - classical (Higgs) mechanism
- long-term goal/motivation: geometry & chiral physics from matrix models (IKKT) (without string landscape)

< ロ > < 同 > < 回 > < 回 > < 回 > <

-

Motivation	Fuzzy branes	Fluctuations	Fermions & chirality	stacks of branes & S.M.

outline

- SU(N) $\mathcal{N} = 4$ SYM with cubic ("flux") deformation
- vacua with SU(3) structure & self-intersecting branes
- zero modes, string states & chiral fermions
- new exact solutions: branes connected by strings
- stacks of branes ~→ Patti-Salam-like models
- H.S., M. Sperling arXiv:1803.07323;
- H.S., J. Zahn arXiv:1409.1440,
- H.S. arXiv:1504.05703, arXiv:1411.3139

・ 同 ト ・ ヨ ト ・ ヨ

-

deformed $\mathcal{N} = 4$ SYM & self-intersecting branes

starting point: $SU(N) \mathcal{N} = 4$ SYM

$$S = \int d^4x \frac{1}{4g^2} tr \Big(-F^{\mu\nu}F_{\mu\nu} - 2D^{\mu}\Phi^a D_{\mu}\Phi_a + [\Phi^a, \Phi^b][\Phi_a, \Phi_b] \Big) \\ + tr \Big(\bar{\Psi}\gamma^{\mu}iD_{\mu}\Psi + \bar{\Psi}\Gamma^a[\Phi_a, \Psi] \Big)$$

 $D_{\mu} = \partial_{\mu} - i[A_{\mu}, .]$

- 6 scalar fields Φ^a , global $SO(6)_R = SU(4)_R$
- N = 1 SYM in 10 D dim. red. to 4D
- (γ^μ, Γ^a) = Γ^A ... 10D Clifford generators, Ψ → 4 Weyl fermions

... beautiful but too "round" for physics

dimensionless scalar fields

$$\begin{array}{l} mY_{1}^{\pm} &= (\phi_{4} \pm i\phi_{5}) \\ mY_{2}^{\pm} &= (\phi_{6} \mp i\phi_{7}) \\ mY_{3}^{\pm} &= (\phi_{1} \mp i\phi_{2}) \end{array} \right\} \quad Y_{\alpha}^{\pm}, \quad \alpha = 1, 2, 3$$

consider Y^+_{α} as (3) under $SU(3)_R \subset SU(4)_R$

(non-regular!)

add $SU(3)_R$ -invariant soft susy breaking terms to potential

 $\mathcal{V}[\Phi] = \frac{m^4}{g^2} \left(V_4[Y] + V_{\text{soft}}[Y] \right)$

$$V_{4}[\Phi] = -\text{tr}[Y_{i}^{+}, Y_{j}^{+}][Y_{i}^{-}, Y_{j}^{-}] + \frac{1}{2}\text{tr}(\sum_{i}[Y_{i}^{+}, Y_{i}^{-}])(\sum_{j}[Y_{j}^{+}, Y_{j}^{-}]),$$

$$V_{\text{soft}}[\Phi] = \frac{4}{3}\text{tr}\left(-\varepsilon_{ijk}Y_{i}^{+}Y_{j}^{+}Y_{k}^{+} + \text{h.c.} + 3M_{i}^{2}Y_{i}^{-}Y_{i}^{+}\right)$$

• <u>known</u>: for $M_1 = 0 = M_2, M_3 = \sqrt{2}$: preserves $\mathcal{N} = 1$ SYM \rightarrow fuzzy sphere solutions $Y_i^{\pm} \sim J_i$ (cf. Polchinski-Strasssler

• <u>new</u>: for $M_i < \frac{2}{\sqrt{3}}$: SUSY broken,

 \rightarrow squashed coadjoint SU(3) orbits H.S., J. Zahn arXiv:1409.1440

dimensionless scalar fields

$$\begin{array}{l} mY_{1}^{\pm} &= (\phi_{4} \pm i\phi_{5}) \\ mY_{2}^{\pm} &= (\phi_{6} \mp i\phi_{7}) \\ mY_{3}^{\pm} &= (\phi_{1} \mp i\phi_{2}) \end{array} \right\} \quad Y_{\alpha}^{\pm}, \quad \alpha = 1, 2, 3$$

consider Y^+_{α} as (3) under $SU(3)_R \subset SU(4)_R$

(non-regular!)

add $SU(3)_R$ -invariant soft susy breaking terms to potential

 $\mathcal{V}[\Phi] = \frac{m^4}{g^2} \left(V_4[Y] + V_{\text{soft}}[Y] \right)$

$$V_{4}[\Phi] = -\text{tr}[Y_{i}^{+}, Y_{j}^{+}][Y_{i}^{-}, Y_{j}^{-}] + \frac{1}{2}\text{tr}(\sum_{i}[Y_{i}^{+}, Y_{i}^{-}])(\sum_{j}[Y_{j}^{+}, Y_{j}^{-}]),$$

$$V_{\text{soft}}[\Phi] = \frac{4}{3}\text{tr}\left(-\varepsilon_{ijk}Y_{j}^{+}Y_{j}^{+}Y_{k}^{+} + \text{h.c.} + 3M_{i}^{2}Y_{j}^{-}Y_{j}^{+}\right)$$

• <u>known</u>: for $M_1 = 0 = M_2, M_3 = \sqrt{2}$: preserves $\mathcal{N} = 1$ SYM \rightarrow fuzzy sphere solutions $Y_i^{\pm} \sim J_i$ (cf. Polchinski-Strasssler)

• <u>new</u>: for $M_i < \frac{2}{\sqrt{3}}$: SUSY broken,

 \rightarrow squashed coadjoint *SU*(3) orbits H.S., J. Zahn arXiv:1409.1440

lotivation	Fuzzy branes	Fluctuations	Fermions & ch	irality	stacks of branes & S.M.
eom:					
	0 = (□4	$+ m^2(\Box_Y + 4h)$	$(M_i^2))Y_i^+ + 4n$	$\eta^2 \varepsilon_{ijk} Y_i^{-1}$	Y_k^-
	$\Box_{\boldsymbol{Y}} \equiv [\boldsymbol{Y}_i^+$	$[Y_i^-, [Y_i^-, .]] + [Y_i^-]$	$[Y_i^+, [Y_i^+, .]]$		
squa	shed <i>SU</i> (3) bra	ne solutions			
	$Y_{i}^{\pm}\equiv Y_{\pmlpha_{i}}$ =	$= r_i \pi(T_{\pm \alpha_i})$			
$T_{\pm lpha_i}$	root generat	tors of $\mathfrak{su}(3)$, a	ny rep. π		••
(use s	au(3) Lie algebr	a, weight lattice	e)	$\left\langle \right\rangle$	
key:					α ₃
view dropp	$Y_{\pm lpha_i}$ as (6) \subset (8) ing Cartan's	B) = (adjoint) of	$SU(3)_Y \subset S$	SU(N),	•

◆□ > ◆圖 > ◆臣 > ◆臣 > ○

5 DQC

MotivationFuzzy branesFluctuationsFermions & chiralitystacks of branes & S.M.symmetries of background $Y_j^{\pm} \propto T_j^{\pm}$

- SU(N) gauge symmetry (completely or partially) broken (Higgs) → massive KK modes!
- T_a are $SU(3)_Y \subset SU(N)$ intertwiners
 - \rightarrow scalar fields ϕ_i^{\pm} transform as $\begin{cases} (3), (\overline{3}) & \text{under } SU(3)_R \\ (8) 2 & \text{under } SU(3)_Y \end{cases}$
- breaks $SU(3)_R \twoheadrightarrow U(1)_{K_1} \times U(1)_{K_2}$ up to gauge trafo

residual symmetry generated by

$$K_i := \underbrace{2\tau_i}_{SU(3)_R} - \underbrace{[H_{\alpha_i}, .]}_{gauge}$$

- $\Rightarrow \mathfrak{su}(3)_{K_i}$ weight lattice respected
- $\rightarrow~{\rm organization}~{\rm of}~{\rm modes}$

 Motivation
 Fuzzy branes
 Fluctuations
 Fermions & chirality
 stacks of branes & S.M.

 internal geometry: squashed fuzzy coadjoint orbits

 $Y_a = \pi_\mu(T_a)$... quantized coadjoint orbit projected along Cartans:

... 4- or 6-dim. self-intersecting variety in $\mathbb{R}^6~$ H.S., J. Zahn arxiv:1409.1440

• $\mu = (n, 0)$ or $\mu = (0, n)$:

 $C[\mu]$... 4-dim. squashed $\mathbb{C}P^2$:

• $\mu = (n, m)$ generic: $C[\mu]...$ 6-dim. orbit $\xrightarrow{\Pi}$ 6 coinciding sheets

H. Steinacker

Motivation Fuzzy branes Fluctuations Fermions & chirality internal geometry: squashed fuzzy coadjoint orbits $Y_a = \pi_u(T_a)$... quantized coadjoint orbit projected along Cartans:

> $y^a: \quad \mathcal{C}[\mu] = \{g^{-1}\mu g; g \in SU(3)\} \quad \hookrightarrow \mathbb{R}^8 \cong \mathfrak{su}(3)$ П ₽6

... 4- or 6-dim. self-intersecting variety in \mathbb{R}^6 H.S., J. Zahn arxiv:1409.1440

• $\mu = (n, 0)$ or $\mu = (0, n)$:

 $\mathcal{C}[\mu]$... 4-dim. squashed $\mathbb{C}P^2$:

• $\mu = (n, m)$ generic:

 $\mathcal{C}[\mu]$... 6-dim. orbit $\stackrel{\Pi}{\rightarrow}$ 6 coinciding sheets

self-intersections \Rightarrow zero-modes: strings linking sheets at origin

・ 同 ト イ ヨ ト イ ヨ ト

computer measurement of $Y^a = \pi_{\mu}(T^a)$:

squashed $C_N[\mu]$ for $\mu = (20, 0)$.

L. Schneiderbauer, H.S. arXiv:1601.08007 < A >

→ ∃ → < ∃</p>

Motivation Fuzzy branes	Fluctuations	Fermions & chirality	stacks of branes & S.M.
$\mathcal{C}[\mu]$ is symplectic	(Kirillov-Kostant)	\rightarrow correspondence	
classical $C[\mu]$	\leftrightarrow	quantized (fuzzy) sp	bace $C_N[\mu]$
$\mu = (n_1, n_2) \dots$ dom. in points $y \in C[\mu]$ algebra of functions	nt. weight $\leftrightarrow \\ \leftrightarrow \\ \leftrightarrow$	\mathcal{H}_{μ} highest we coherent states j matrix algebra	$egin{array}{l} { m ight} \ { m irrep} \ {m arphi} \ { m \in } \ {\cal H}_{\mu} \end{array}$
$Fun(\mathcal{C}[\mu]) \cong \oplus_{\Lambda}$	$m_{\Lambda}\mathcal{H}_{\Lambda}$ \leftrightarrow	$\mathit{End}(\mathcal{H}_{\mu})\cong$	${}^{{}_{\!$
$\phi(\mathbf{y})$	$\leftarrow Q$	$\rightarrow \int dy \phi(y)$	$() y\rangle\langle y $
Poisson brackets	\leftrightarrow	commutation rela	tions
$\{y^a,y^b\}=f^{ab}_c$	'y ^c	[Y ^a , Y ^b] =	= i f _c ^{ab} Y ^c
metric Laplacian -{y	$\{y^a, \{y^a, .\}\} \leftrightarrow$	matrix Laplacian	[Y _a ,[Y ^a ,.]] <≅≻<≅≻ ≅ ∽Q
H. Steinacker	Intersecting bra	nes, strings & chirality in softly	deformed $\mathcal{N}=4$ SYM

fluctuation & extra dimensions

all fields (scalar, gauge fields, fermions) take values in $\mathfrak{u}(N) = Mat(\mathcal{H}_{\mu}) \cong$ functions on squashed $\mathcal{C}_{N}[\mu]$... KK modes !

expand into $SU(3)_Y$ harmonics:

<u>gauge fields</u>: $A_{\mu}(x) = \sum A_{\mu}^{(\Lambda)}(x) \underbrace{\hat{Y}_{\Lambda}}_{SU(3)_{Y} \text{ modes}} \equiv A_{\mu}(x, y)$ <u>scalar fields</u>: $\Phi^{a} = mY^{a} + \phi^{a}(x),$ $\phi_{a}(x) = \sum \phi_{a}^{(\Lambda)}(x)\hat{Y}_{\Lambda} \equiv \phi_{a}(x, y)$

fermions ... (similar)

dynamical generation of fuzzy extra dimensions, recover massive KK tower

cf. Aschieri, Grammatikopoulos, HS and Zoupanos, hep-th/0606021

Motivation

massive gauge bosons as KK modes

<u>Higgs effect</u> \rightarrow gauge modes $A_{\mu}(x) = \sum A_{\mu}^{(\Lambda)}(x) \hat{Y}_{\Lambda}$ acquire mass

$$\int \operatorname{tr}(D_{\mu}\Phi_{a})^{\dagger}D_{\mu}\Phi_{a} = \int \operatorname{tr}(D_{\mu}\phi_{a}^{\dagger}D_{\mu}\phi_{a} + \sum m_{\Lambda}^{2}A_{\mu,(\Lambda)}^{\dagger}A_{(\Lambda)}^{\mu}) + S_{int}$$

ing $D_{\mu}\Phi_{a} = (\partial_{\mu} + i[A_{\mu\nu}])(mY_{a} + \phi_{a})$

using $D_{\mu}\Phi_a = (\partial_{\mu} + i[A_{\mu}, .])(mY_a + \phi_a)$ <u>KK mass</u>:

$$\Box_Y \hat{Y}_{\Lambda} \equiv [Y^a, [Y_a, \hat{Y}_{\Lambda}]] = \frac{m_{\Lambda}^2 \hat{Y}_{\Lambda}}{m_{\Lambda}^2} = O(\frac{\Lambda^2}{g^2}m^2) > 0$$

⇒ tower of massive KK modes

geometric interpretation of Higgs effect

 $\begin{array}{l} A_{\mu}(x) = \sum A_{\mu}^{(\Lambda)}(x) \hat{Y}_{\Lambda} \equiv A_{\mu}(x,y) \quad \text{on } \mathbb{R}^{4} \times \mathcal{C}[\mu] \\ \text{massive gauge modes} = \mathsf{KK} \text{ modes on } \mathcal{C}[\mu], \end{array}$

 \rightarrow effect. gauge theory on $\mathbb{R}^4 \times \mathcal{C}[\mu]$

similar for scalar fields & fermions

H. Steinacker

Intersecting branes, strings & chirality in softly deformed $\mathcal{N}=4$ SYM

(ロ) (同) (E) (E) (E) (C)

scalar modes & stringy zero modes on $C[\mu]$

scalar fluctuations: $Y_{\alpha} \rightarrow Y_{\alpha} + \phi_{\alpha}$ quadratic potential for ϕ_{α} :

$$\begin{split} V_{2}[\phi] &= \mathrm{tr}\phi^{\alpha} \left(\Box_{Y} + 2\not{D}_{\mathrm{diag}} - 2\not{D}_{\mathrm{mix}}\right)\phi_{\alpha}, \\ (\not{D}_{\mathrm{mix}}\phi)_{i}^{+} &= -\varepsilon_{ikj}[Y_{k}^{-},\phi_{j}^{-}] \\ (\not{D}_{\mathrm{diag}}\phi)_{\alpha} &= [H_{\alpha},\phi_{\alpha}] \quad (\text{no sum}) \\ \end{split}$$
respects $(U(1) \times U(1))_{K_{i}}, \quad \tau \not{D}_{\mathrm{mix}} = -\not{D}_{\mathrm{mix}}\tau, \quad \tau \phi_{\pm \alpha} = \pm \phi_{\pm \alpha} \\ \underline{can \ show}: \end{split}$

- no negative modes (!)
- ∃ zero modes: regular & exceptional H.S., J. Zahn arxiv:1409.1440
- stabilized e.g. by small M²_i

Wotivation	Tuzzy branes	Tuctuation	15		Stacks of branes of	x 3.IV
• <u>r</u>	egular zero mo	odes: ϕ_i^{\pm} , o	harac	terized by		
decou	pling conditior	1:				
	$[Y_j^+,\phi_i^+] = 0$	for $j \neq i$,	and	$[Y_i^-,\phi_i^+] = 0$	(no sum).	
form	<mark>ring</mark> , 3 generat	tions		H.S., M. Sperli	ing arXiv:1803.07323	J
					• •	<i>p</i>

... 6 extremal charges of $U(1)_{K_i}$ for each $\mathfrak{su}(3)_Y$ irrep in $Mat(\mathcal{H}) \otimes (8)$

in particular: strings $|\mu'\rangle\langle\mu|$ between intersecting sheets of $C[\mu]$ a $|\mu\rangle$... coherent states "Higgs sector" exceptional zero modes:

exceptional zero modes:

in particular: 6 Goldstone bosons (from $SU(3)/U(1) \times U(1)$) $\equiv 0$

Intersecting branes, strings & chirality in softly deformed $\mathcal{N}=4$ SYM

Motivation	Fuzzy branes	Fluctuations	Fermions & chirality	stacks of branes & S.M.
exam	ples:			
۹	squashed CP2	brane $C[(N, 0)$] with regular <mark>zero</mark>	mode:
	Y ₁ ⁺	$= T_1^+ + \varepsilon_{\alpha} (7$	$(r_1^-)^n, n=1,$., N
	Y ₂ +	$=T_2^+, \qquad Y$	$T_{3}^{+} = T_{3}^{+}$	

maximal zero mode $(T_1^-)^N$ = string $|2\rangle\langle 1| \in End((N,0))$

similarly: strings connecting stacks of branes

 ϕ_1^+

what about stability? full interactions?

Motivation	ruzzy branes	Huchanons	remions & chirality	stacks of branes & c.m.
FACTS	for backgro	und brane + re	egular zero mode:	
		$Y_{lpha}=T_{lpha}$	$\phi_{\alpha} + \phi_{\alpha}$	
decoup	ling conditions	\Rightarrow		
• V($Y+\phi)=V(Y$	$) + V(\phi)$		
		() .		

typically V(Y), $V(\phi) < 0$, "bound states"

- $eom(Y + \phi) = eom(Y) + eom(\phi)$
 - ⇒ \exists <u>exact solutions</u>, "Higgs condensate" ϕ given by triple of maximal zero modes

because:

 ϕ_{α} act on corners, form (1,0) of $\mathfrak{su}(3)$

 $\phi_3^+ \qquad \phi_2^+ \qquad \phi_1^+$

 \exists lots of solutions connecting stacks of branes

H.S., M. Sperling arXiv:1803.07323

Motivation	Fuzzy branes	Fluctuations	Fermions & chirality	stacks of branes & S.M.
stabili	zation of $Y_{\alpha} =$	$T_{lpha}+\phi_{lpha}$ by ma	sses M _i	

- typically \exists instabilities for $M_i = 0$
- can add masses $0 < M_i < \frac{1}{2}$, solutions persist
- <u>numerical observation</u>: stabilization achieved for range of M_i
- <u>exact statement</u>: rewrite potential as

$$V[X] = \frac{1}{2} \operatorname{tr}(F_{I}F_{I}^{\dagger}) + \frac{1}{2} \operatorname{tr}(DD^{\dagger}) + 4 \sum_{i} (M_{i}^{2} - \frac{2}{9}) \operatorname{tr}(X_{i}^{-}X_{i}^{+})$$

where

$$F_{l} = \sum_{i,j} \varepsilon_{lij} \left([X_{i}^{+}, X_{j}^{+}] - \frac{2}{3} \sum_{k} \varepsilon_{ijk} X_{k}^{-} \right), \qquad D = \sum_{i} [X_{i}^{+}, X_{i}^{-}]$$

 $\Rightarrow Y_{\alpha} = T_{\alpha} + \phi_{\alpha}$ exact global minima for

$$M_i = rac{\sqrt{2}}{3} =: M^*$$

rich class of exact solutions H.S., M. Sperling arXiv:1803.07323 no instabilities, compact moduli space

H. Steinacker

Intersecting branes, strings & chirality in softly deformed $\mathcal{N}=4$ SYM

Motivation	Fuzzy branes	Fluctuations	Fermions & chirality	stacks of branes & S.M.
fermions	S			

Dirac operator on squashed $C_N[\mu]$:

$$onumber D_{(int)} \Psi = \sum_{i=1}^{3} \left(\gamma_i [Y_i^+, .] + \gamma_i^\dagger [Y_1^-, .] \right) \Psi$$

zero modes:

 $ot\!\!\!/ p_{(int)} \Psi_{\alpha} = 0$

 in one-to-one correspondence to regular zero modes φ_α in particular: (fermionic) strings ψ_α ~ |x⟩⟨0| connecting C

SUSY no counterpart for exceptional zero modes

- have distinct chirality $\tau = \pm 1$ determined by flux on branes
- Yukawas from (stringy) zero mode condensates

chirality & zero modes on 6D branes C[(n, m)]

3+3 locally space-filling branes with non-deg. flux

def. "chirality" generator

$$\begin{split} \chi &:= i\varepsilon_{abcdef}^{(6)}[T^a, T^b][T^c, T^d][T^e, T^f] &\in \mathfrak{u}(N) \\ &\sim \varepsilon_{abcdef}^{(6)}\{y^a, y^b\}\{y^c, y^d\}\{y^e, y^f\} = \mathrm{Pf}\theta^{ab} \\ &\sim \mathbf{1}_L - \mathbf{1}_R \end{split}$$

corresponding "chiral" gauge field:

 $A_{\mu} = A_{\mu}(x)\chi$.

- measures chirality of the L and R sheets,
- (among) lightest gauge modes

H. Steinacker

Intersecting branes, strings & chirality in softly deformed $\mathcal{N}=4$ SYM

A Pati-Salam-like brane configuration

assume "Pati-Salam" Higgs ϕ_S , breaks gauge symmetry to $SU(3)_c \times U(1)_Q \times U(1)_{B'}$.

$$Q := \frac{1}{2} (\mathbf{1}_u - \mathbf{1}_d + \mathcal{L} - B) ,$$

$$B = \frac{1}{3} \mathbf{1}_c, \qquad \mathcal{L} = \mathbf{1}_l$$

$$Y = \mathbf{1}_{Ru} - \mathbf{1}_{Rd} + \mathcal{L} - B .$$

Higgs doublets ϕ_u, ϕ_d from zero modes

H. Steinacker

SM-like fermions, correct charges from zero modes linking branes

$$\Psi=egin{pmatrix} *_2 & ilde{H}_u & ilde{H}_d & l_L & Q_L\ * & ? &
u_R & U_R\ & * & e_R & d_R\ & & * & U'\ & & *_3\end{pmatrix},$$
 $Q_L=egin{pmatrix} u_L\ d_L\end{pmatrix}, \qquad l_L=egin{pmatrix}
u_L\ e_L\end{pmatrix},$

- 3 generations (Z₃ Weyl rotations)
- all standard model fermions, superpartners, ν_R
- extra fermions u', ?, gauginos etc., no exotic charges
- rich Higgs sector (=zero modes), not fully understood
 2 Higgs doublets, 3 generations, Pati-Salam φ_S
- massless $U(1)_B$? (possibly resolved in matrix model)

- rich class of vacuum solutions of deformed SU(N) N = 4 SYM
 → self-intersecting extra dim ℝ⁴ × C[µ]
- fluctuations \rightarrow KK modes & string-like modes

large N gauge theory \rightarrow small, rich low-energy sector chiral low-energy physics possible, index 0

- can be fairly close to standard model (in broken phase)
- open issues:

elaborate rich zero mode sector (Higgs) for C[(n, m)] branes quantum corrections (weak coupling)