The IKKT matrix model as a possible basis for (quantum) gravity & cosmology

Harold Steinacker

Univ. Vienna

DAMTP Cambridge, november 2023

how does gravity fit into the quantum world?

Einstein equations:

$$\underbrace{\mathcal{R}_{\mu\nu} - \frac{1}{2}g_{\mu\nu}\mathcal{R} + \Lambda g_{\mu\nu}}_{\text{classical}} \stackrel{?}{=} 8\pi G_N \underbrace{T_{\mu\nu}}_{\text{quantum}}$$

not renormalizable ($G_N \sim L_{\rm pl}^2$ strong at short distances)

superposition of massive objects

superposition of "gravitational potentials"

⇒ need quantum theory of geometry, different dof!

further motivation for modification of GR:

95 % of the universe is not understood!

ΛCDM model:

either

- general relativity is wrong, or
- particle physics is incomplete, or
- both (most likely)

sophisticated proposal: string theory

- gives 9+1D (quantum) gravity \$\forall 1\$
- ightarrow compactification ightarrow landscape $\ \odot$

non-perturbative approach defined by Matrix Models: IKKT, BFSS

- proposed as constructive def. of (corner of) string theory
- inherit magical properties of string theory (max. SUSY

here: consider the IKKT = IIB model as fundamental starting point

can the IKKT model yield (near-)realistic 3 + 1 dim. physics?

sophisticated proposal: string theory

gives 9+1D (quantum) gravity 2

ightarrow compactification ightarrow landscape $\ \odot$

non-perturbative approach defined by Matrix Models: IKKT, BFSS

- proposed as constructive def. of (corner of) string theory
- inherit magical properties of string theory (max. SUSY)

<u>here</u>: consider the IKKT = IIB model as fundamental starting point

can the IKKT model yield (near-)realistic 3 + 1 dim. physics?

IKKT = IIB Matrix Model

Ishibashi, Kawai, Kitazawa, Tsuchiya 1996

$$S = Tr([Y^a, Y^b][Y_a, Y_b] + \bar{\Psi}\Gamma_a[Y^a, \Psi])$$

maximal SUSY, closely related to IIB string theory

$$Y^a$$
, $a = 0,...,9$ $N \times N$ matrices, hermitian Ψ ... matrix-valued MW spinor of $SO(1,9)$

hep-th/9612115

- gauge invariance Y^a → U⁻¹Y^aU
- solutions / backgrounds = branes space-time = suitable 3+1d brane \bar{Y}^a ("brane-world")
- well-suited for quantization:

$$Z = \int dY d\Psi e^{iS[Y,\Psi]}$$

1-loop → induced 3+1d gravity

unique model without pathological UV/IR mixing

aside on string theory:

Q: isn't this just string theory in disguise?

A: maybe, but it provides a novel mechanism for gravity!

approach:

weakly coupled gauge theory on 3+1 dim. NC branes

ightarrow novel gauge theory for geometry/gravity (no holography!)

(NC $\mathcal{N} = 4$ SYM ... unique consistent 4D noncommutative QFT!)

physical modes on brane, nothing escapes into bulk (weak coupling!)

(much of 2000's literature on MM is about bulk physics)

quantization

avoids landscape: no compactification of target space!

relation with IIB string theory best seen via interactions of D-branes (1-loop)

IKKT hep-th/9612115

(holographic dual, unphysical!)

can (and should!) put IKKT model on a computer!

extensive work by group around

Nishimura, Tsuchiya, Anagnostopoulos, etal. Cf. 2307.01681

quantization

oscillating integral \rightarrow requires sophisticated methods (Langevin, Lefshetz thimble, ...)

some evidence for SSB of SO(9,1) & lower dimensional space-time brane, not yet conclusive

novel mechanism for 3+1 gravity on branes $\mathcal{M}^{3,1} \times \mathcal{K}_N \subset \mathbb{R}^{9,1}$

- 1-loop \rightarrow induced E-H action on brane for eff. metric (= open string metric)
- UV finite, reasonable cosmology without fine-tuning
- \mathcal{K}_N finite, gives structure to low-energy gauge theory
- no compactification of target space, no landscape problem

"fuzzy space(time)" = quantized symplectic brane $\mathcal{M}^{3,1}$

(1-loop sugra = weak, short-range r^{-8} interaction on brane)

- 1-loop → induced E-H action on brane for eff. metric (= open string metric)
- UV finite, reasonable cosmology without fine-tuning
- K_N finite, gives structure to low-energy gauge theory
- no compactification of target space, no landscape problem

"fuzzy space(time)" = quantized symplectic brane $\mathcal{M}^{3,1}$

(1-loop sugra = weak, short-range r^{-8} interaction on brane)

outline:

- geometric interpretation of Yang-Mills matrix models
- geometrical structures: frame, metric, torsion
- quantization: 1-loop effective action
 - → Einstein-Hilbert action (+ extras)
- covariant FLRW quantum space-time $\mathcal{M}_n^{3,1}$ & higher spin

introductory review: arXiv:1911.03162

quantization & E-H action: arXiv:2303.08012, 2110.03936

book "Quantum Geometry, Matrix Models, and Gravity" (soon)

quantum spaces from matrix models

$$S = Tr([Y^a, Y^b][Y_a, Y_b] + ...)$$

expect: dominant configs = "almost-commuting" matrix configurations

$$[Y^a, Y^b] \approx 0$$

= quantized symplectic spaces

quantization

 Y^a generates algebra of "functions" on ${\cal M}$

$$[Y^a, Y^b] \sim i\{y^a, y^b\}$$
 ...Poisson brackets

semi-classical correspondence (cf. QM!)

End(
$$\mathcal{H}$$
) \sim $\mathcal{C}(\mathcal{M})$

$$\Phi \sim \phi(y)$$

$$[\Phi, \Psi] \sim i\{\phi, \psi\}$$

$${
m Tr}\Phi \sim \int\limits_{\cal M}\Omega\phi, \qquad \Omega \dots {
m symp. volume}$$

old idea: Schrödinger, Heisenberg, Snyder, ...

borrow idea from QM:

QM = quantization of phase space $[Q, P] = i\hbar$

$$Y^a = \begin{pmatrix} P \\ Q \end{pmatrix}$$
 ... QM phase space = "quantum plane" \mathbb{R}^2_{θ}

 $\operatorname{End}(\mathcal{H})$... algebra of observables \cong functions on phase space

quantum spacetime = quantization $[Y^a, Y^b] = i\theta^{ab}(Y)$ of spacetime

inherent uncertainty of space(time)

use Q.M. techniques (coherent states, ...) for spacetime & geometry

in matrix model:

assume dominant / (meta-) stable

"vacuum" matrix configuration (solution) $Y^a \in \text{End}(\mathcal{H})$

interpreted as embedded symplectic manifold (\mathcal{M}, ω) ("brane")

$$Y^a \sim y^a: \mathcal{M} \hookrightarrow \mathbb{R}^D$$

physical meaning of Yang-Mills matrix models?

insight 1 (around 2000):

Introduction

Yang-Mills gauge theory arises from fluctuations of quantum spaces in Matrix Models

geometrical structures

$$[Y^{a}, Y^{b}] = i\theta^{ab}, Y^{a} \rightarrow Y^{a} + \mathcal{A}^{a}$$
$$[Y^{a} + \mathcal{A}^{a}, Y^{b} + \mathcal{A}^{b}] = i\theta^{ab} + i\theta^{aa'}\theta^{bb'}(\underbrace{\partial_{a}A_{b} - \partial_{b}A_{a} + i[A_{a}, A_{b}]}_{F_{ab}})$$

(use [Y^a , A] $\sim i\theta^{ab}\partial_b A$) simpler than on classical space-time!!

$$S = Tr[Y^a, Y^b][Y_a, Y_b] \sim \int F^{ab}F_{ab} + c$$

... NC gauge theory; pathological upon quantization (UV/IR mixing, non-renormalizability) (Susskind/Toumbas, Jack, Jones et al) except

 $\mathcal{N} = 4$ NC SYM \cong IKKT model contains geometrical theory encoded in U(1) sector 00000

insight 2:

Introduction

Matrix Models $S = Tr[Y^a, Y^b][Y_a, Y_b] \rightarrow \text{dynamical quantum spaces}$

Alekseev-Recknagel-Schomerus, IKKT, HS, ... 1999 ff

ightarrow "emergent gravity" (cf. Rivelles, HS, Yang, ...) complementary / consistent with string theory

consider transversal fluctuations = scalar fields $\phi \in \text{End}(\mathcal{H})$

$$S[\phi] = -Tr\eta_{ab}[Y^a, \phi][Y^b, \phi]$$

 $\sim \int
ho_M \eta_{ab} E^{a\mu} \partial_\mu \phi E^{b
u} \partial_
u \phi \sim \int \sqrt{|G|} G^{\mu
u} \partial_\mu \phi \partial_
u \phi$

semi-classical frame & metric:

$$E^{a\mu} = \{Y^a, X^\mu\} \sim -i[Y^a, X^\mu]$$

divergence constraint $\nabla_{\nu}(\rho^{-2}E_{a}^{\ \nu})=0$

(Jacobi identity)

$$G^{\mu\nu} = \rho^{-2}\eta_{ab}E^{a\mu}E^{b\nu} = \rho^{-2}\gamma^{\mu\nu}$$

$$\rho^2 = \rho_M \sqrt{|\gamma^{\mu\nu}|}$$
dilaton

governs all fluctuations in M.M, universal \Rightarrow gravity!

no local Lorentz transformation of the frame!

Weitzenböck connection:

$$abla^{(W)} E_{\dot{a}} = 0$$
 (Weitzenböck) $\Rightarrow \nabla^{(W)} G^{\mu\nu} = 0$

flat but torsion:

$$T_{\dot{a}\dot{b}} \equiv T[E_{\dot{a}}, E_{\dot{b}}] = \nabla_{\dot{a}}E_{\dot{b}} - \nabla_{\dot{b}}E_{\dot{a}} - [E_{\dot{a}}, E_{\dot{b}}]$$

can show (Jacobi):

$$T_{\dot{a}\dot{b}}^{\ \mu} = \{\hat{\Theta}_{\dot{a}\dot{b}}, x^{\mu}\}, \qquad \hat{\Theta}_{\dot{a}\dot{b}} := -\{Y_{\dot{a}}, Y_{\dot{b}}\}$$

$$T_{\dot{a}}=dE_{\dot{a}}, \qquad E_{\dot{a}}=E_{\mu\dot{a}}dx^{\mu} \qquad ... coframe$$

torsion tensor encodes field strength of the NC gauge theory

(HS arXiv:2002.02742, cf. Langmann Szabo hep-th/0105094)

geometric form of the matrix eom $\{X^a, \{X_a, X^b\}\} = m^2 X^b$

Weitzenböck connection:

$$\nabla_{\nu}^{(W)} T^{\nu}_{\rho\mu} + T_{\nu\mu}^{\sigma} T_{\sigma\rho\nu} = -m^2 \gamma_{\rho\mu}$$

HS arXiv:2002.02742, cf. Hanada-Kawai-Kimura hep-th/0508211

Levi-Civita connection:

$$abla^{(G)
u} \left(
ho^2 T_{
u\mu}{}^{\dot{a}}
ight) + rac{1}{2} T^{(AS)
u\sigma}_{\mu} T_{
u\sigma}{}^{\dot{a}} = -m^2 E^{\dot{a}}_{\phantom{\dot{a}}\mu}$$

and

Introduction

$$\star T^{(AS)} = \tilde{T}_{\mu} dx^{\mu}, \qquad \tilde{T}_{\mu} =
ho^{-2} \partial_{\mu} \tilde{
ho}$$

... "gravitational axion"

Fredenhagen, HS arXiv: 2101.07297

E-H action in terms of torsion: identity

$$\int d^4x \sqrt{|G|} \mathcal{R} = -\int d^4x \sqrt{|G|} \Big(\frac{7}{8} T^\mu_{\sigma\rho} \, T_{\mu\sigma'}^{\rho} \, G^{\sigma\sigma'} + \frac{3}{4} \, \tilde{T}_\nu \, \tilde{T}_\mu G^{\mu\nu} \Big) \label{eq:controller}$$

(cf. teleparallel gravity)

S. Fredenhagen, H.S. arxiv:2101.07297

on-shell Ricci tensor

$$\mathcal{R}_{\nu\mu} = \frac{1}{4} T^{(AS)\sigma}_{\rho\mu} T^{(AS)\sigma}_{\sigma\nu} - T_{\mu\sigma}^{\rho} T_{\nu\sigma}^{\sigma} + 2\rho^{-2} \partial_{\nu}\rho \partial_{\mu}\rho + \frac{1}{4} G_{\nu\mu} (T^{\sigma}_{\nu\delta} T_{\sigma\rho}^{\nu} G^{\delta\rho} - \frac{1}{3} T^{(AS)\sigma}_{\rho\mu} T^{(AS)\sigma}_{\sigma\nu} G^{\mu\nu})$$

quadratic in T and $\partial \rho \Rightarrow$ linearized on-shell metric fluctuations on flat background are Ricci-flat

pre-gravity from classical matrix model:

dynamical geometry, lin. Ricci-flat, differs from GR at non-lin level

• bare action: $S \sim \int \frac{1}{a^2} \Theta_{\dot{a}\dot{b}} \Theta^{\dot{a}\dot{b}}$... 2 derivatives less than E-H

$$\int \text{d}^4x \sqrt{|\text{G}|} \mathcal{R} = \int \text{d}^4x \sqrt{|\text{G}|} \Big(-\frac{3}{4} \tilde{\textit{T}}_{\nu} \tilde{\textit{T}}_{\mu} \textit{G}^{\mu\nu} - \frac{7}{8} \textit{T}^{\mu}_{} \, \textit{T}_{\mu\sigma'}^{} \, \textit{G}^{\sigma\sigma'} \Big)$$

since
$$T^{\dot{a}\dot{b}\mu}=\{\Theta^{\dot{a}\dot{b}},x^{\mu}\}\sim\partial\Theta^{\dot{a}\dot{b}}$$
 ($\Theta^{\dot{a}\dot{b}}=\{Y^{\dot{a}},Y^{\dot{b}}\}$)

⇒ different from GR, expected to dominate on large scales

quantization is well-behaved!

- on covariant quantum spaces (later)
 - all gravitational dof, no ghosts, lin. Schwarzschild etc.
 Sperling, HS 1901.03522, HS 1905.072
 - "reasonable" cosmology without any fine-tuning BBounce, $a(t) \sim \frac{3}{2}t$ at late times
 - Feynman propagator

Karczmarek, HS 2207.00399; Battista, HS 2207.01295

• bare action: $S \sim \int \frac{1}{a^2} \Theta_{\dot{a}\dot{b}} \Theta^{\dot{a}\dot{b}}$... 2 derivatives less than E-H

$$\int \text{d}^4x \sqrt{|\text{G}|} \mathcal{R} = \int \text{d}^4x \sqrt{|\text{G}|} \Big(-\frac{3}{4} \tilde{\textit{T}}_{\nu} \tilde{\textit{T}}_{\mu} \textit{G}^{\mu\nu} - \frac{7}{8} \textit{T}^{\mu}_{\sigma\rho} \, \textit{T}_{\sigma\prime}^{\rho} \, \textit{G}^{\sigma\sigma'} \Big)$$

since
$$T^{\dot{a}\dot{b}\mu}=\{\Theta^{\dot{a}\dot{b}},x^{\mu}\}\sim\partial\Theta^{\dot{a}\dot{b}}$$
 ($\Theta^{\dot{a}\dot{b}}=\{Y^{\dot{a}},Y^{\dot{b}}\}$)

⇒ different from GR, expected to dominate on large scales

quantization is well-behaved!

- on covariant quantum spaces (later):
 - all gravitational dof, no ghosts, lin. Schwarzschild etc.

Sperling, HS 1901.03522, HS 1905.07255 ff

- "reasonable" cosmology without any fine-tuning BBounce, $a(t) \sim \frac{3}{2}t$ at late times
- Feynman propagator

Karczmarek, HS 2207.00399; Battista, HS 2207.01295

1-loop effective action and induced gravity

SUSY → mild quantum effects:

Idea:

Einstein-Hilbert action (+ extra) in the 1-loop effective action on $\mathcal{M}^{3,1}$ (cf. Sakharov '67)

$$\Gamma_{1-\mathrm{loop}} \ni \int\limits_{\mathcal{M}} T_{\nu\lambda}^{\mu} T_{\nu\lambda}^{\mu} + ... \sim \int\limits_{\mathcal{M}} d^4x \sqrt{G} \, m_{\mathcal{K}}^2 \mathcal{R}[G] + ...$$

requires presence of fuzzy extra dimensions \mathcal{K} finite, no UV divergence / cutoff !!

nonperturbative quantization of MM:

$$Z = \int dY d\Psi e^{iS[Y,\Psi]}, \qquad S = S_{\rm IKKT} + i\varepsilon Y^a Y^b \delta_{ab}$$

cf. numerical work (Nishimura, Tsuchiya, Anagnostopoulos etal.)

1-loop effective action

$$e^{i\Gamma_{1-\text{loop}}[Y]} = \int\limits_{1 \text{ loop}} d\mathcal{A}d\Psi e^{iS[Y+\mathcal{A},\Psi]}$$

$$\begin{split} \Gamma_{\text{Iloop}}[Y] &= \frac{1}{2} \text{Tr} \Big(\log(\Box - M_{ab}[\Theta^{ab},.]) - \frac{1}{2} \log(\Box - M_{ab}^{(\psi)}[\Theta^{ab},.]) - 2 \log(\Box) \Big) \\ &= \frac{1}{2} \text{Tr} \Bigg(\sum_{n=4}^{\infty} \frac{1}{n} \Big((\Box^{-1} M_{ab}[\Theta^{ab},.])^n - \frac{1}{2} (\Box^{-1} M_{ab}^{(\psi)}[\Theta^{ab},.])^n \Big) \Bigg) \end{split}$$

UV-finite on 4D backgrounds due to max. SUSY !!

evaluate trace use string mode formalism

$$\text{Tr}_{\text{End}(\mathcal{H})}\mathcal{O} = \frac{1}{(2\pi)^m} \int\limits_{\mathcal{M} \times \mathcal{M}} dx dy \begin{pmatrix} x \\ y \end{pmatrix} \mathcal{O} \Big|_y^x \end{pmatrix}$$

string modes:

Introduction

$$\binom{x}{y} := |x\rangle\langle y|$$
 $\in \operatorname{End}(\mathcal{H})$

 $|x\rangle$... coherent state on \mathcal{M}

... "string" from x to y, extreme UV but non-local on any NC space

H.S. arXiv:1606.00646, cf. Iso Kawai Kitazawa hep-th/0001027

H.S., J. Tekel arXiv:2203.02376

pprox diagonalize kinetic operators:

$$[Y^{a}, {x \choose y}] \approx (x^{a} - y^{a}) {x \choose y}$$

$$\square {x \choose y} \approx (|x - y|^{2} + 2\Delta^{2}) {x \choose y}$$

evaluate trace use string mode formalism

$$\text{Tr}_{\text{End}(\mathcal{H})}\mathcal{O} = \frac{1}{(2\pi)^m}\int\limits_{\mathcal{M}\times\mathcal{M}} \textit{dxdy}\left(_y^x \middle| \mathcal{O} \middle|_y^x\right)$$

string modes:

Introduction

$$\binom{x}{y} := |x\rangle\langle y|$$
 $\in \operatorname{End}(\mathcal{H})$

 $|x\rangle$... coherent state on \mathcal{M}

... "string" from x to y, extreme UV but non-local on any NC space

H.S. arXiv:1606.00646, cf. Iso Kawai Kitazawa hep-th/0001027

H.S., J. Tekel arXiv:2203.02376

 \approx diagonalize kinetic operators:

$$\begin{aligned} \left[Y^a, \right]_y^x) \right] &\approx \left(x^a - y^a \right) \Big|_y^x \right) \\ & \Box \Big|_y^x \right) &\approx \left(|x - y|^2 + 2\Delta^2 \right) \Big|_y^x \right) \end{aligned}$$

quantization

evaluation of 1-loop trace of IKKT model using string modes:

max. SUSY, UV-finite \Rightarrow short string modes \cong plane wave packets dominate:

$$\Psi_{k;y}^{(L)} := \int d^4z \, e^{-|y-z|^2/L^2} \big|_{z-\frac{k}{2}}^{z+\frac{k}{2}} \big) \cong e^{ikx} e^{-|x-y|^2/L^2}$$

locally diagonalize kinetic operators in IR:

$$\Box \Psi_{k;y}^{(L)} \approx \gamma^{\mu\nu}(x) k_{\mu} k_{\nu} \Psi_{k;y}^{(L)}$$

$$[\theta^{ab}, \Psi_{k;y}^{(L)}] \approx -\{\theta^{ab}, x^{\mu}\} k_{\mu} \Psi_{k;y}^{(L)}$$

trace formula for UV-finite traces on NC spaces:

$$\text{Tr}\mathcal{O} = \frac{1}{(2\pi)^m}\int\limits_{\mathcal{M}\times\mathcal{M}} \Omega_x \Omega_y \left(_y^x \middle| \mathcal{O} \middle|_y^x\right) \\ \approx \frac{1}{(2\pi)^m}\int\limits_{\mathcal{M}} \sqrt{G} dx \int \frac{1}{\sqrt{G}} dk \langle \Psi_{k,x}^{(L)}, \mathcal{O} \Psi_{k,x}^{(L)} \rangle$$

use this to evaluate 1-loop eff. action

a priori: 4-derivative action ©

<u>however</u>: brane $\mathcal{M} \times \mathcal{K} \subset \mathbb{R}^{9,1}$ with fuzzy extra dim.

from 6 transversal directions $\langle \phi^i \rangle \neq 0$

covariant fuzzy spaces & hs

mixed term $(\delta \Theta^{\alpha\beta} \delta \Theta^{\alpha\beta}) (\delta \Theta^{ij} \delta \Theta^{ij})$ leads to induced E-H action

$$\begin{split} \{\theta^{\alpha\beta}, \{\theta^{\alpha\beta}, \psi_{k;y}\}\} & \approx -\{\theta^{\alpha\beta}, x^{\mu}\} \{\theta^{\alpha\beta}, x^{\nu}\} k_{\mu} k_{\nu} \psi_{k;y} \\ & = -T^{\alpha\beta\mu} k_{\mu} T^{\alpha\beta\nu} k_{\nu} \psi_{k;y} \\ & \text{(torsion } T^{\alpha\beta\mu} = \{\theta^{\alpha\beta}, x^{\mu}\} \text{)} \end{split}$$

$$\begin{split} \Gamma_{lloop} &\sim -\int\limits_{\mathcal{M}} d^4x \sqrt{G} \, c_{\mathcal{K}}^2 m_{\mathcal{K}}^2 \, T^{\rho}_{\ \sigma\mu} \, T_{\rho'}^{\ \ \sigma}_{\ \mu} \, G^{\mu\mu'} \\ &\sim \int d^4x \sqrt{G} \, c_{\mathcal{K}}^2 m_{\mathcal{K}}^2 \left(8 \mathcal{R}[\textbf{G}] + 6 \, \tilde{T}_{\nu} \, \tilde{T}_{\mu} G^{\mu\nu} \right) \end{split}$$

where

Introduction

 m_{κ}^2 ... KK scale on K

bottom line:

• Γ_{1loop} includes Einstein-Hilbert action, eff. Newton constant

$$G_N \sim rac{
ho^2}{c_{\mathcal{K}}^2 m_{\mathcal{K}}^2}$$

set by Kaluza-Klein mass scale on K

large vacuum energy

$$\Gamma_{1\text{loop}}^{\mathcal{K}} \sim -\int_{\mathcal{M}} \Omega \, \rho^{-2} m_{\mathcal{K}}^4 \sum_{\Lambda s} \frac{V_{4,\Lambda}}{\mu_{\Lambda}^4} + \dots$$

not c.c., leads to stabilization of $m_{\mathcal{K}}$ at one loop!

HS 2303.08012

K also leads to interesting low-energy gauge theory
 (e.g. self-intersecting brane & chiral Ψ, 1803.07323)

$$S \sim \int \Theta^{ab} \Theta^{ab} + S_{E-H}$$

two scaling regimes:

Introduction

- cosmic scale: bare M.M. $S \sim \int \Theta^{ab} \Theta^{ab}$ dominates, stabilizes FLRW space-time irrespective of matter M. Sperling, HS 1901.03522
- "intermediate" scale: 1-loop term dominates. expect to recover \approx GR + extra modes

4D covariant quantum spaces & hs

issues on "basic" NC branes:

Introduction

- Poisson structure $\theta^{\mu\nu}$ breaks Lorentz / rotation invariance
- enough dof for metric, frame ?

quantized twistor space as brane:

$$\mathbb{C}P_N^{1,2} \stackrel{loc}{\cong} S^2 \times \mathcal{M}^{3,1} \subset \mathbb{R}^{9,1}$$

sympl. equivariant S^2 - bundle over space(time) $\mathcal{M}^{3,1}$

- $\bullet \langle \theta^{\mu\nu} \rangle_{\mathcal{M}} = 0!$
- price to pay: higher-spin theory, all dof for metric on M^{3,1}
- vol.-preserving diffeos on $\mathcal{M} \subset$ higher-dim symplectomorphisms

HS: 1606.00769, M. Sperling, HS 1806.05 ff, HS, T. Tran 2203.05436

MM description: 2-step procedure

MM background

$$Y^a := \frac{1}{R} \mathcal{M}^{a5}, \ a = 0, ..., 4$$

quantization

for \mathcal{H}_n ... doubleton unitary irrep of $\mathfrak{so}(4,2)$ $\cong \mathbb{C}P_n^{1,2} = \text{quantized } S_n^2 \text{-bundle over } H_n^4$

harmonics:

$$\operatorname{End}(\mathcal{H}_n) \cong \ \mathcal{C}(\mathbb{C}P^{1,2}) \ \cong \ \bigoplus_{s=0}^n \ \mathcal{C}^s$$

would-be KK modes o spin s modes on H^4 in $\mathfrak{hs} = \oplus$

matrix model \rightarrow higher spin gauge theory, truncated at n

• further projection $H^4 \to \mathcal{M}^{3,1}$... FLRW quantum space-time manifest homogeneous & isotrop, Big Bounce

MM description: 2-step procedure

MM background

$$Y^a := \frac{1}{R} \mathcal{M}^{a5}, \ a = 0, ..., 4$$

for \mathcal{H}_n ... doubleton unitary irrep of $\mathfrak{so}(4,2)$ $\cong \mathbb{C}P_n^{1,2} = \text{quantized } S_n^2 \text{-bundle over } H_n^4$

harmonics:

$$\operatorname{End}(\mathcal{H}_n) \cong \ \mathcal{C}(\mathbb{C}P^{1,2}) \ \cong \ \bigoplus_{s=0}^n \ \mathcal{C}^s$$

would-be KK modes o spin s modes on H^4 in $\mathfrak{hs} = \oplus$

matrix model \rightarrow higher spin gauge theory, truncated at n

• further projection $H^4 \to \mathcal{M}^{3,1}$... FLRW quantum space-time manifest homogeneous & isotrop, Big Bounce

cosmological FLRW space-time solution:

very simple: $Y^{\mu} := \frac{1}{B} \mathcal{M}^{\mu 4}$

quantization

- manifest $SO(3,1) \Rightarrow$ foliation into space-like 3-hyperboloids H_{τ}^3
- ullet $\Box = [\bar{Y}^{\mu}, [\bar{Y}_{\mu}, .]] \sim \Box_{G}$ encodes FLRW metric

$$ds^2 = d\tau^2 - a(\tau)^2 d\Sigma^2,$$

double-covered space-time (k = -1)

$$a(t) \propto t$$
, $t \to \infty$... 'reasonable', coasting universe

• Big Bounce $a(t) \sim (t - t_0)^{1/5}$

M. Sperling, HS 1901.03522; E. Battista, HS 2207.01295

summary & outlook

gravity arises as quantum effect on 3+1-dim. quantum space-time in the IKKT matrix model

- MM = "pre-gravity", suitable for quantization
- quantization → induced Einstein-Hilbert action. no c.c. problem (?)
- cross-over GR ↔ cosm. regime
- covariant quantum spaces = twisted S^2 bundles over $\mathcal{M}^{3,1}$
 - → higher spin gauge theory rotation invariance manifest
- new physics (axion, dilaton, hs ...)

IKKT = distinguished model for emergent near-realistic (?) physics string theory without compactification

$$\begin{split} \mathcal{R}_{\mu\lambda} - \tfrac{1}{2} G_{\mu\lambda} \mathcal{R} &= 8\pi G_N \big[T_{\mu\lambda}^{(m)} - \rho^{-4} G_{\mu\lambda} \big(2\rho^2 \mathcal{F}_{\mathcal{K}}^2 m_{\mathcal{K}}^4 - C_1 m_{\mathcal{K}}^4 + \tfrac{C_2}{R^4} + 3 \tfrac{C_3}{R^8 m_{\mathcal{K}}^4} \big) \\ &+ 4 \big(C_{\mu\lambda} - \tfrac{1}{2} G_{\mu\lambda} C \big) \big] \\ &+ 2 \big(\partial_\mu \sigma \partial_\lambda \sigma - \partial_\mu \partial_\lambda \sigma + G_{\mu\lambda} \big(\Box_G \sigma - \tfrac{3}{2} \partial \sigma \cdot \partial \sigma \big) \big) \end{split}$$

C_{uv} ... "anharmonicity"

Introduction

K. Kumar, HS 2312.xxxxx

Fuzzy extra dimensions K

consider backgrounds with product structure

$$\mathcal{M}^{3,1} \times \mathcal{K}$$
 $(\subset \mathbb{R}^{9,1}!)$

 \mathcal{K} ... quantized compact symplectic space, e.g. S_N^2 ,...

realized by

Introduction

$$Y^{\dot{a}} \sim y^{\dot{a}}: \qquad \mathcal{M} \hookrightarrow \mathbb{R}^{3,1}, \qquad \dot{a} = 0, ..., 3$$

 $Y^{i} \sim y^{i}: \qquad \mathcal{K} \hookrightarrow \mathbb{R}^{6}. \qquad i = 4, 9$

matrix d'Alembertian decomposes as

$$\square = [Y^{\dot{a}}, [Y_{\dot{a}}, .]] + [Y^{i}, [Y_{i}, .]] = \square_{\mathcal{M}} + \square_{\mathcal{K}}.$$

internal $\square_{\mathcal{K}}$ has a positive spectrum

$$\Box_{\mathcal{K}}\lambda_{\Lambda}=m_{\Lambda}^2\,\lambda_{\Lambda}$$

hence

$$\Box \phi_{\Lambda} = (\Box_{\mathcal{M}} + m_{\Lambda}^{2})\phi_{\Lambda} , \qquad [\Theta^{ij}, [\Theta^{ij}, \lambda_{\Lambda}]] = m_{\mathcal{K}}^{4} C_{\Lambda}^{2} \lambda_{\Lambda}$$

(= Higgs mechanism!)

... arise from $Y^a \rightarrow U^{-1}Y^aU$ on NC branes $\mathcal M$

scalar fields:

Introduction

$$\delta_{\Lambda}\phi = \{\Lambda, \phi\} = \xi^{\mu}\partial_{\mu}\phi = \mathcal{L}_{\xi}\phi, \qquad \xi^{\mu} = \{\Lambda, \mathbf{x}^{\mu}\}$$

vector fields (frame!):

$$\begin{array}{ll} \delta_{\Lambda} Y_{\dot{\alpha}} &= \{\Lambda, Y_{\dot{\alpha}}\} \\ \\ \delta_{\Lambda} E_{\dot{\alpha}} &= \{\Lambda, \{Y_{\dot{\alpha}}, .\}\} - \{Y_{\dot{\alpha}}, \{\Lambda, .\}\} = \mathcal{L}_{\xi} E_{\dot{\alpha}} \end{array} \quad \text{(Jacobi)}$$

hence

$$\delta_{\Lambda} E_{\dot{lpha}}^{\ \ \mu} = \mathcal{L}_{\xi} E_{\dot{lpha}}^{\ \ \mu}, \qquad \delta_{\Lambda} G^{\mu
u} = \mathcal{L}_{\xi} G^{\mu
u}$$

diffeos from NC gauge trafos!

{\Lambda,...} ... Hamiltonian VF

on covariant quantum space $\mathcal{M}^{3,1}$: all dof for vol-preserving diffeos

more precisely:

semi-classical correspondence:

approximate isometry in IR regime

$$\begin{array}{ccc} \operatorname{End}(\mathcal{H}) & & \mathcal{C}(\mathcal{M}) \\ & \cup & & \cup \\ \operatorname{Loc}(\mathcal{H}) & \cong & \mathcal{C}_{\operatorname{IR}}(\mathcal{M}) \end{array}$$

"almost-commutative" = sufficiently large semi-classical IR regime