2ex minus .8ex

Quantized D-branes on group manifolds

Harold Steinacker

Berkeley, 2002
hep-th/0203110, J. Pawelczyk, H. Steinacker

Quantized D-branes on group manifolds

Harold Steinacker

Caltech, 2002
hep-th/0203110, J. Pawelczyk, H. Steinacker

Outline:

- Review of D-branes in WZW models
- The quantum algebraic description
- Comparison with the CFT results
- Examples: Fuzzy $S_{q}^{2}, \mathbb{C} P_{q}^{N}$

D-branes on groups: CFT description

(Alekseev, Schomerus; Bachas, Douglas, Schweigert; ...) consider D-branes on (matrix) group

$$
G=S U(N), S O(N), U S p(N)
$$

with boundaries (open strings):

described by WZW model on G at level k

$$
\begin{aligned}
S_{\Sigma} & =\frac{k}{4 \pi} \int_{\Sigma} \operatorname{tr}\left(\partial_{+} g \partial_{-} g^{-1}\right)+\int_{\Sigma} B+\int_{\partial \Sigma} A \\
& H=\frac{k}{12 \pi} \operatorname{tr}\left(g^{-1} d g\right)^{3}=d B
\end{aligned}
$$

nontrivial B field
\hookrightarrow expect non-commutative D-branes

(B)CFT results:

for simplest $=\underline{\text { untwisted D-branes: }}$
boundary conditions preserve one copy

$$
\widehat{\mathfrak{g}}_{V} \subset \widehat{\mathfrak{g}}_{L} \times \widehat{\mathfrak{g}}_{R}
$$

of the bulk symmetries (ALA).

$$
\left(\widehat{\mathfrak{g}}_{V}=\text { "unbroken" symmetry algebra of }(\mathrm{B}) \mathrm{CFT}\right)
$$

\rightarrow Cardy boundary states:
one for each primary field λ in the theory:

$$
\lambda \in P_{k}^{+}=\left\{\lambda \in P^{+} ; \lambda \cdot \theta \leq k\right\} ; \quad \theta=\text { highest root }
$$

$=$ integrable reps of $\widehat{\mathfrak{g}}_{V}$.
geometrical picture:
e.g. by scattering of closed strings
(Felder, Fuchs, Fröhlich, Schweigert; ...)
untwisted D-branes $=$ conjugacy classes in G

$$
\mathcal{C}(t)=\left\{g t g^{-1} ; \quad g \in G\right\}
$$

Result:

$$
D_{\lambda}=\mathcal{C}\left(t_{\lambda}\right), \quad t_{\lambda}=q^{2\left(H_{\lambda}+H_{\rho}\right)}
$$

for $\lambda \in P_{k}^{+}$
... finite set of stable D-branes
geometrical picture:

$$
\mathcal{C}(t)=\left\{g t g^{-1} ; \quad g \in G\right\} \quad \cong G / K_{t}
$$

$$
K_{t}=\{g \in G:[g, t]=0\} \ldots \text { stabilizer }
$$

Symmetries: for untwisted branes:
geometric: $G_{V} \subset G_{L} \times G_{R}$
algebraic: $\quad \widehat{\mathfrak{g}}_{V} \subset \widehat{\mathfrak{g}}_{L} \times \widehat{\mathfrak{g}}_{R} \quad$ (ALA at level k)
Fact: \exists close relation $\widehat{\mathfrak{g}} \leftrightarrow U_{q}(\mathfrak{g})$
(= Drinfeld-Jimbo quantized univ. enveloping algebra) for

$$
q=e^{\frac{i \pi}{k+g}}
$$

representation theory is the same

Further results:

Position of D_{λ} in G :
conveniently measured by

$$
s_{n}=\operatorname{Tr}\left(\mathcal{C}\left(t_{\lambda}\right)^{n}\right)=\operatorname{Tr}\left(t_{\lambda}^{n}\right)=\sum_{\nu \in V_{N}} q^{2 n(\rho+\lambda) \cdot \nu}
$$

$$
n=1,2, \ldots, \operatorname{rank}(G) .
$$

alternatively: characteristic polynomial

$$
P_{\lambda}(t)=\prod_{\nu \in V_{N}}\left(t-q^{2(\lambda+\rho) \cdot \nu}\right) .
$$

Energy of D_{λ} :

$$
E_{\lambda}=\operatorname{dim}_{q}\left(V_{\lambda}\right)=\prod_{\alpha>0} \frac{\sin \left(\pi \frac{\alpha \cdot(\lambda+\rho)}{k+N}\right)}{\sin \left(\pi \frac{\alpha \cdot \rho}{k+N}\right)}
$$

$V_{\lambda} \ldots$ highest-weight representation of \mathfrak{g}
on other hand: D-branes can be interpreted as bound states of $D 0$-branes
leading contribution in $1 / k$ (then $S U(2)$ becomes flat):
\exists description in terms of matrix models
\hookrightarrow fuzzy spheres
Goal: effective description of these D-branes for all k.

Functions on a D-brane

determined by
OPE $=$ algebra of boundary vertex op's in WZW model Space of harmonics on classical $\mathcal{C}(t)$ (under adjoint): recall $\mathcal{C}(t) \cong G / K_{t}$:

$$
\operatorname{Fun}(\mathcal{C}(t)) \cong \bigoplus_{\mu \in P^{+}} N_{t}^{\mu} V_{\mu}
$$

$N_{t}^{\mu}=$ mult $_{\mu^{+}}^{\left(K_{t}\right)}=$ dim. of K_{t}-invariant subspace of $V_{\mu^{+}}$ for $S U(2)$:

$$
\operatorname{Fun}\left(S^{2}\right) \cong \bigoplus_{L \in \mathbb{N}}\left\{Y_{m}^{L}\right\}
$$

Space of harmonics on D-brane D_{λ} (boundary primaries):

$$
\operatorname{Fun}\left(D_{\lambda}\right) \cong \bigoplus_{\mu \in P^{+}}^{\max _{k}(\mu)} \hat{N}_{\lambda}^{\mu} V_{\mu} .
$$

where $\max _{k}(\mu)$... some cutoff in μ

$$
\hat{N}_{\lambda}^{\mu}=\hat{N}_{\lambda \lambda+}^{\mu} \quad \ldots \text { fusion rules of } \widehat{\mathfrak{g}} \text { or } U_{q}(\mathfrak{g})
$$

can show: $\hat{N}_{\lambda}^{\mu} \approx N_{t_{\lambda}}^{\mu}$
$\underline{\text { Algebra of harmonics on } D \text {-brand } D_{\lambda}}$ (OPE)
for $S U(2)$:

$$
\begin{aligned}
Y_{i}^{I}(x) Y_{j}^{J}\left(x^{\prime}\right) & \sim \sum_{K, k}\left(x-x^{\prime}\right)^{h_{I}+h_{J}-h_{K}} . \\
\cdot & \underbrace{\left[\begin{array}{ccc}
I & J & K \\
i & j & k
\end{array}\right]}_{\text {Clebsch }} \underbrace{\left\{\begin{array}{ccc}
I & J & K \\
\lambda & \lambda & \lambda
\end{array}\right\}_{q}}_{6 j(q)} Y_{k}^{K}\left(x^{\prime}\right)
\end{aligned}
$$

$x, x^{\prime} \ldots$ boundary of worldsheet
$Y_{i}^{I} \ldots$ boundary primaries \cong harmonics on the crane $h_{I}=\frac{I(I+1)}{k+2} \ldots$ conformal weights
for general G : analogous; involves
fusion matrices $=$ generalized $6 j-$ symbols of $U_{q}(\mathfrak{g})$

$$
q=e^{\frac{i \pi}{k+g}}
$$

simplify:

- omit world-sheet dependence x, x^{\prime}
(exact for $k \rightarrow \infty$)
\rightarrow quasi-associative algebra
(Alekseev, Recknagel,Schomerus)
- Drinfeld - twist \Rightarrow associative
\hookrightarrow effective algebra

$$
Y_{i}^{I} Y_{j}^{J}=\sum_{K, k}\left[\begin{array}{ccc}
I & J & K \\
i & j & k
\end{array}\right]_{q}\left\{\begin{array}{ccc}
I & J & K \\
\lambda & \lambda & \lambda
\end{array}\right\}_{q} Y_{k}^{K}
$$

$$
=S_{q, \lambda}^{2} \ldots \text { q-deformed fuzzy sphere }
$$

associative!
cutoffs: $K \leq \min (I+J, k-I-J, \lambda, k-\lambda)$
generalizes to other groups G.
involves fusion matrices of $\hat{\mathfrak{g}} \cong 6 j$ - symbols of $U_{q}(\mathfrak{g})$.
can be interpreted as non-commutative algebra of functions on the brane.
nice for ONE brane, BUT:
want a global picture of branes on the group G explicit NC algebra of functions on branes, group G (cp. $\quad\left[x_{i}, x_{j}\right]=i \theta_{i j}$ for flat branes)
guidelines:

- OPE
- \exists analog of $G_{V} \subset G_{L} \times G_{R}$ covariance
- $U_{q}\left(\mathfrak{g}_{V}\right) \sim \hat{\mathfrak{g}}_{V}$ on branes
approach: "educated guess" \& compare with CFT

Quantized algebra of functions on G

Let $\quad M=M_{j}^{i} \quad$.. NC coordinate functions on G Reflection equation: Kulish; Majid

$$
\begin{aligned}
R_{21} M_{1} R_{12} M_{2} & =M_{2} R_{21} M_{1} R_{12} \\
\operatorname{det}_{q}(M) & =1
\end{aligned}
$$

where $R_{12}=R_{k l}^{i j} \ldots$ " R - matrix" of $U_{q}(\mathfrak{g})$.
(\& other constraints for $S O(N), U S P(N)$)
generates

$$
\mathcal{G} \sim \operatorname{Fun}_{q}(G) \quad \text {... quantized functions on } G
$$

explicitly:

$$
R_{a}^{k}{ }_{a}{ }^{i}{ }_{b} M_{c}^{b} R^{c}{ }_{j}{ }^{a}{ }_{d} M_{l}^{d}=M_{a}^{k} R^{a}{ }_{b}{ }^{i}{ }_{c} M_{d}^{c} R^{d}{ }_{j}{ }^{b}{ }_{l} .
$$

$$
\text { for } q \rightarrow 1 \text { (i.e. } k \rightarrow \infty):
$$

$$
\left[M_{j}^{i}, M_{l}^{k}\right]=0
$$

(also: $\exists *$ - structure)

Symmetries

want: analog of action of $G_{V} \subset G_{L} \times G_{R}$ on G this classical group of motions does not act on \mathcal{G}.

However: \exists analogous (co)actions of (FRT)-quantum group of left and right motions

$$
G_{L}^{q} \times G_{R}^{q}
$$

which (co)acts on \mathcal{G}.
$G_{L}^{q} \times G_{R}^{q}=$ quasitriangular Hopf algebra generated by matrices $l=l_{j}^{i}, \quad r=r_{j}^{i}$ satisfying

$$
\begin{aligned}
l_{2} r_{1} R_{12} & =R_{12} r_{1} l_{2}, r_{2} r_{1} R_{12}=R_{12} r_{1} r_{2} \\
\Delta(r) & =r \otimes r, \Delta(l)=l \otimes l \\
r S(r) & =1=l S(l), \quad \ldots
\end{aligned}
$$

... FRT quantum groups

(quantized functions on $G_{L} \times G_{R}$)

(co)action on \mathcal{G} (\mathcal{G}... module algebra):

$$
\begin{aligned}
M & \rightarrow l^{-1} M r, \\
M_{j}^{i} & \rightarrow\left(l^{-1}\right)_{k}^{i} M_{l}^{k} r_{j}^{l}
\end{aligned}
$$

is CONSISTENT.
vector "subgroup":
$v=v_{j}^{i}$ generates (FRT)-quantum "sub" group

$$
G_{V}^{q} \subset G_{L}^{q} \times G_{R}^{q}
$$

which acts by

$$
M \rightarrow v^{-1} M v
$$

More precisely (dual):
\mathcal{G} is module-algebra under the quantum group

$$
U_{q}\left(\mathfrak{g}_{L}\right) \Perp_{R} U_{q}\left(\mathfrak{g}_{R}\right) \quad \supset \quad U_{q}\left(\mathfrak{g}_{V}\right)
$$

(quasitriangular Hopf algebras)

$\underline{U_{q}\left(\mathfrak{g}_{L}\right) \boldsymbol{\Perp}_{R} U_{q}\left(\mathfrak{g}_{R}\right):}$

... require $U_{q}\left(\mathfrak{g}_{V}\right)-\operatorname{sub}($ Hopf $)$ algebra.
"standard" $U_{q}\left(\mathfrak{g}_{L} \times \mathfrak{g}_{R}\right)=U_{q}\left(\mathfrak{g}_{L}\right) \otimes U_{q}\left(\mathfrak{g}_{R}\right)$.
\exists natural embedding of the "vector" (sub)algebra

$$
\begin{aligned}
& U_{q}\left(\mathfrak{g}_{V}\right) \rightarrow U_{q}\left(\mathfrak{g}_{L}\right) \otimes U_{q}\left(\mathfrak{g}_{R}\right): \\
& d: u \mapsto\left(u_{1} \otimes u_{2}\right)=\Delta(u)=\text { coproduct of } U_{q}(\mathfrak{g})
\end{aligned}
$$

is not compatible with standard coproduct of $U_{q}\left(\mathfrak{g}_{L} \times \mathfrak{g}_{R}\right): \quad \Delta \circ d \neq(d \otimes d) \circ \Delta$

Solution to this problem: twisting:
Consider the modified coproduct

$$
\begin{aligned}
\Delta_{\mathcal{R}}: U_{q}^{L} \otimes U_{q}^{R} & \rightarrow\left(U_{q}^{L} \otimes U_{q}^{R}\right) \otimes\left(U_{q}^{L} \otimes U_{q}^{R}\right), \\
u^{L} \otimes u^{R} & \mapsto \mathcal{R}_{23}^{-1}\left(u_{1}^{L} \otimes u_{1}^{R}\right) \otimes\left(u_{2}^{L} \otimes u_{2}^{R}\right) \mathcal{R}_{23}
\end{aligned}
$$

satisfies $\Delta_{\mathcal{R}} \circ d=(d \otimes d) \circ \Delta$
universal R - matrix:

$$
\mathcal{R}_{I I}=\mathcal{R}_{41}^{-1} \mathcal{R}_{13} \mathcal{R}_{24} \mathcal{R}_{23}
$$

... defines a quantum group, i.e. a quasitriangular Hopf algebra

subspaces (branes):

classically:

$$
\iota: \quad D \hookrightarrow G
$$

dualizing:

$$
\iota^{*}: \quad \mathcal{G} \rightarrow \mathcal{D} \cong \mathcal{G} / \text { Ker } \iota^{*}
$$

How to find $\operatorname{Ker} \iota^{*}=$ relations?
fact:

$$
\operatorname{Tr}_{q}\left(M^{n}\right) \equiv \operatorname{Tr}\left(M^{n} q^{-2 \rho}\right) \in \mathcal{G}
$$

are

- central in $\mathcal{G} \Rightarrow$ take values $\in \mathbb{C}$ on irreps of \mathcal{G}
- invariant under $U_{q}\left(\mathfrak{g}_{V}\right): \quad M \rightarrow v^{-1} M v$
- constant on (untwisted) branes $(q=1)$: measure position of $\mathcal{C}(t) \subset G$
therefore:

$$
D:=\mathcal{G} /{ }_{\left(T r_{q}\left(M^{n}\right)-c_{n}\right)}
$$

c_{n} can be calculated on IRREPS of \mathcal{G}
$\hookrightarrow \quad D$-branes are given by irreps of \mathcal{G}

irreps of \mathcal{G} :

Fact: \exists algebra map

$$
\begin{aligned}
\mathcal{G} & \rightarrow U_{q}(\mathfrak{g}), \\
M_{j}^{i} & \rightarrow L^{+} S L^{-}
\end{aligned}
$$

where $L^{+}=(i d \otimes \pi)(\mathcal{R}), \quad S L^{-}=(\pi \otimes i d)(\mathcal{R})$

$$
\mathcal{R} \in U_{q}(\mathfrak{g}) \otimes U_{q}(\mathfrak{g}) \ldots \text { universal R-" matrix" }
$$

\hookrightarrow need irreps of $U_{q}(\mathfrak{g})$ for $q=e^{\frac{i \pi}{k+g^{V}}}$
simplest irreps: highest weight reps

$$
V_{\lambda}, \quad \lambda \in P_{k}^{+}
$$

why $\lambda \in P_{k}^{+}$?

- then V_{λ} are unitary reps of $U_{q}(\mathfrak{g})$
$(\Rightarrow$ get $*$ - representation of $\mathcal{G})$
- $\operatorname{dim}_{q}\left(V_{\lambda}\right)>0$
- correspond precisely to integrable reps of ALA $\hat{\mathfrak{g}}$ at level k
there are other reps, but they are "ill-behaved" (?)
claim:

quantized D-branes on G

are given by

$$
D_{\lambda}:=\mathcal{G} /\left(\operatorname{Tr}_{q}\left(M^{n}\right)-c_{n}(\lambda)\right) \cong \pi_{\lambda}\left(U_{q}(\mathfrak{g})\right) \cong \operatorname{Mat}\left(V_{\lambda}\right)
$$

for $\lambda \in P_{k}^{+}$
justify it by comparing with CFT results

1) Position $=$ values of Casimirs

$$
c_{n}(\lambda)=\operatorname{Tr}_{q}\left(M^{n}\right) \text { on } D_{\lambda} \quad \text { for } n=1,2, \ldots, \operatorname{rank}(G)
$$

result:

$$
\begin{aligned}
c_{1}(\lambda) & =\operatorname{Tr}\left(q^{2\left(H_{\rho}+H_{\lambda}\right)}\right)=\sum_{\left\{\nu \in V_{N}\right\}} q^{2((\lambda+\rho) \cdot \nu)}, \\
c_{n}(\lambda) & =\sum_{\left\{\nu \in V_{N} ; \lambda+\nu \in P_{k}^{+}\right\}} q^{2 n\left((\lambda+\rho) \cdot \nu-\lambda_{N} \cdot \rho\right)} \frac{\operatorname{dim}_{q}\left(V_{\lambda+\nu}\right)}{\operatorname{dim}_{q}\left(V_{\lambda}\right)} \\
& \approx s_{n}=\operatorname{Tr}\left(q^{2 n\left(H_{\rho}+H_{\lambda}\right)}\right)
\end{aligned}
$$

exact agreement for $n=1$, approximate for $n>1$
\exists also characteristic equation:

$$
P_{\lambda}(M)=\prod_{\nu \in V_{N}}\left(M-q^{2(\lambda+\rho) \cdot \nu-2 \lambda_{N} \cdot \rho}\right)=0 .
$$

as classically (almost, up to shift $\lambda_{N} \cdot \rho$)
2) Energy of $D_{\lambda}=$ quantum dimension of D_{λ} :

$$
E_{\lambda}=\operatorname{dim}_{q}\left(V_{\lambda}\right)=\operatorname{Tr}_{q}(1)=\prod_{\alpha>0} \frac{\sin \left(\pi \frac{\alpha \cdot(\lambda+\rho))}{k+g^{\vee}}\right)}{\sin \left(\pi \frac{\alpha \cdot \rho}{k+g^{\vee}}\right)}
$$

3) Harmonics on D_{λ} under (co) action of G_{V}^{q}
assume $\lambda \leq \frac{k}{2}$ for simplicity

$$
D_{\lambda} \cong \operatorname{Mat}\left(V_{\lambda}\right)=V_{\lambda} \otimes V_{\lambda}^{*} \cong \oplus_{\mu} N_{\lambda \lambda+}^{\mu} V_{\mu}
$$

can show:

$$
N_{\lambda \lambda+}^{\mu}=\operatorname{mult}_{\mu^{+}}^{\left(K_{\lambda}\right)}=N_{t_{\lambda}^{\prime}}^{\mu}
$$

hence

$$
D_{\lambda} \cong \mathcal{F}\left(\mathcal{C}\left(t_{\lambda}^{\prime}\right)\right)
$$

up to some cutoff in μ, where $t_{\lambda}^{\prime}=q^{2 H_{\lambda}}$.
all cutoffs match exactly with string theory, due to

$$
q=e^{\frac{i \pi}{k+g}}
$$

\exists degenerate branes with smaller dimensions than "regular" ones, if λ has nontrivial stabilizer group K_{λ}. e.g. fuzzy $\mathbb{C} P_{q}^{N}, \ldots$
(for $\lambda>\frac{k}{2}$ use "truncated tensor product")
most detailed information:
4) Algebra of functions: (e.g. for $S U(2)$)
decompose D_{λ} into harmonics Y_{i}^{I} under G_{V}^{q}
They satisfy the algebra

$$
Y_{i}^{I} Y_{j}^{J}=\sum_{K, k}\left[\begin{array}{ccc}
I & J & K \\
i & j & k
\end{array}\right]_{q}\left\{\begin{array}{ccc}
I & J & K \\
\lambda & \lambda & \lambda
\end{array}\right\}_{q} Y_{k}^{K}
$$

matches with (twisted) OPE

Derivation:

$(\lambda=N / 2)$

Example: $G=S U(2)$

$M=x^{i} \sigma_{i}+x^{0} \sigma_{0}=\left(\begin{array}{cc}x^{4}-i x^{0} & -i q^{-3 / 2} \sqrt{[2]} x^{+} \\ i q^{-1 / 2} \sqrt{[2]} x^{-} & x^{4}+i q^{-2} x^{0}\end{array}\right)$
x^{i}... NC generators
Reflection equation \& constraint:

$$
\begin{gathered}
{\left[x^{4}, x^{k}\right]=0, \quad \epsilon_{\epsilon j}^{k} x^{i} x^{j}=i\left(q-q^{-1}\right) x^{4} x^{k}} \\
\operatorname{det}_{q}(M)=\left(x^{4}\right)^{2}+g_{i j} x^{i} x^{j}=1 .
\end{gathered}
$$

Note: $\epsilon_{i j}^{k}, g_{i j} \ldots q$-deformed
Casimir:

$$
c_{1}=\operatorname{tr}_{q}(M)=[2] x^{4}
$$

realization in $U_{q}(s u(2))$:
$M=\left(\begin{array}{ll}q^{H} & q^{-\frac{1}{2}}\left(q-q^{-1}\right) q^{H / 2} X^{-} \\ q^{-\frac{1}{2}}\left(q-q^{-1}\right) X^{+} q^{H / 2} & q^{-H}+q^{-1}\left(q-q^{-1}\right)^{2} X^{+} X^{-}\end{array}\right)$
take irreps $V_{\lambda}=\mathbb{C}^{n+1}, \quad n=0,1, \ldots, k$:
one finds

$$
x^{4}=\cos \left(\frac{(n+1) \pi}{k+2}\right) / \cos \left(\frac{\pi}{k+2}\right)
$$

$$
n=0,1, \ldots, k
$$

$\Rightarrow \quad D_{\lambda}=q$-deformed fuzzy sphere $S_{q, \lambda}^{2}$ with radius

$$
r_{n}^{2}=g_{i j} x^{i} x^{j} \approx \sin ^{2}\left(\frac{n \pi}{k+2}\right) \quad \text { for large } k
$$

however: $r_{0}=r_{k}=0!(D 0$ - branes $)$

everything is invariant under $n \rightarrow k-n$

Energy: assume one-brane configuration $S_{q, n}^{2}$
\mathcal{G} acts on \mathbb{C}^{n+1}. observe
$\operatorname{dim}_{q}\left(\mathbb{C}^{n+1}\right)=\operatorname{tr}_{q}(\mathbf{1})=[n+1]_{q}=\frac{1}{\sin \left(\frac{\pi}{k+2}\right)} \sin \left(\frac{n+1}{k+2} \pi\right)$
agrees precisely with BCFT (and DBI) result.

Example: $G=S U(N)$

fuzzy $\mathbb{C} P_{q, n}^{N-1} \cong$ degenerate brane
\cong quantized conjugacy class through $q^{2\left(H_{n \Lambda_{1}}\right)}$

$$
\begin{gathered}
M=x^{\alpha} \lambda_{\alpha}=\sum_{a} x^{a} \lambda_{a}+x^{0} \lambda_{0} \\
c_{1}=\operatorname{tr}_{q}(M)=x^{0} \quad \text { central, const. on branes }
\end{gathered}
$$

acting on $V_{n \Lambda_{1}}$:

$$
f_{a b}^{c} x^{a} x^{b}=\alpha x^{0} x^{c}=\alpha c_{1} x^{c}, \quad d_{a b}^{c} x^{a} x^{b}=\beta_{n} x^{c}
$$

for suitable α, β_{n}
Harmonics:

$$
D_{n \Lambda_{1}} \cong \oplus_{n} V_{(n, 0, \ldots, 0, n)}
$$

up to some cutoff

Gauge theory on $S_{q, N}^{2}$

Algebra of functions:

$$
\begin{gather*}
\left(\varepsilon_{q}\right)_{k}^{i j} x_{i} x_{j}=\Lambda_{q, N} x_{k}, \tag{q,N}\\
\left(g_{q}\right)^{i j} x_{i} x_{j}=R^{2} .
\end{gather*}
$$

$\Lambda_{q, N}=R \frac{[2]_{q} N+1}{\sqrt{[N]_{q}[N+2]_{q}}}, \quad[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}$.
$\left(\varepsilon_{q}\right)_{k}^{i j} \ldots q$-Clebsch-Gordan coeff.
$\left(g_{q}\right)^{i j} \ldots q$-invariant tensor
$S_{q, N}^{2}$ is same algebra $\operatorname{Mat}(N+1, \mathbb{C})$ as S_{N}^{2},
but: $S_{q, N}^{2}$ is $U_{q}(s u(2))$ - module algebra
i.e. \exists different additional structure (rotations, ...),

$$
S_{q, N}^{2}=(1) \oplus(3) \oplus \ldots \oplus(2 N+1)
$$

under q-adjoint action of $U_{q}(s u(2))$

Invariant integral of functions $f \in S_{q, N}^{2}$:

$$
\int u \triangleright_{q} f=\varepsilon(u) \int f, \quad u \in U_{q}(s u(2))
$$

is given by

$$
\int f(x):=\frac{1}{C_{N}} \operatorname{Tr}_{q} f=\frac{1}{C_{N}} \operatorname{Tr}\left(f q^{-H}\right)
$$

furthermore:

- Covariant differential \star - calculus:
- frame θ^{a} of one-forms, $a=1,2,3$!

$$
\Theta:=x \cdot \theta\left(=\lambda_{a} \theta^{a}\right), \quad \text { singlet }
$$

satisfies $d f:=[\Theta, f] \in \Omega^{1}, \quad f \in S_{q, N}^{2}$
$-\exists n$-forms: $\operatorname{dim}\left(\Omega^{n}\right)=(1,3,3,1)$

- Hodge-star $*_{H}\left(\theta^{a}\right)=-\varepsilon_{c b}^{a} \theta^{b} \theta^{c}$
- Stokes theorem, etc.

Gauge fields

(abelian)

consider 1-forms

$$
B=B_{a} \theta^{a}=\theta^{a} B_{a} \quad \in \Omega^{1}
$$

form $S_{q, N}^{2}$ - (bi)module.
Note: have 3 components $a=1,2,3$!
$\Rightarrow \exists$ fluctuations in radial direction, radial component of gauge field is scalar field.
"curvature":

$$
F:=B^{2}-*_{H} B=\left(B_{a} B_{b}+B_{c} \varepsilon_{b a}^{c}\right) \theta^{a} \theta^{b}
$$

why?

1. good limit $q=1$: if gauge transformations $B \rightarrow U^{-1} B U$, then $F \rightarrow U^{-1} F U$
2. consider

$$
B=\Theta+A, \quad B_{a}=\lambda_{a}+A_{a} \quad\left(\lambda_{a} \approx[N] x_{a}\right)
$$

(assume $\langle A\rangle=0, B$ fluctuates around $B_{0}=\Theta$).
Then

$$
\begin{aligned}
F & =d A+A^{2} \\
& =\left(\lambda_{a} A_{b}+A_{a} \lambda_{b}+A_{a} A_{b}+A_{c} \varepsilon_{b a}^{c}\right) \theta^{a} \theta^{b}
\end{aligned}
$$

actions:

just polynomials in B, no explicit derivative terms. simplest possible forms:

$$
\begin{aligned}
& S_{2}=\int B *_{H} B=\int B_{a} B_{b} g^{b a}, \\
& S_{3}=\int B^{3}=\int B_{a} B_{b} B_{c} \varepsilon^{c b a}
\end{aligned}
$$

Linear combination

$$
S_{C S}:=\frac{1}{3} S_{3}-\frac{1}{2} S_{2}=C_{N}+\int A d A+\frac{2}{3} A^{3}
$$

is the unique linear combination which contains no linear terms in A. "Chern-Simons"

4th order terms:

$$
S_{4}=\int B^{2} *_{H} B^{2}, \quad(\text { and } 2 \text { others })
$$

Let

$$
S_{Y M}=\int F *_{H} F .
$$

Note: for $q \rightarrow 1$, recover actions of Alekseev, Recknagel, Schomerus for string-induced field theory on D-branes in $S U(2)$.
separate A in scalar and "tangential" components:

$$
A_{a}=\frac{x_{a}}{R} \phi+A_{a}^{t}, \quad x_{a} A_{b}^{t} g^{a b}=0,
$$

find for $N \rightarrow \infty$ e.g.

$$
\begin{array}{rl}
S_{Y M}=-\int_{S^{2}} & 2 F_{a b}^{t} F_{a b}^{t}+\frac{2}{R^{2}} \varepsilon_{a b}^{n} x_{n} \phi F^{t a b} \\
& +\frac{1}{R^{2}}\left(\phi^{2}+\left[\lambda_{a}, \phi\right]\left[\lambda^{a}, \phi\right]\right)
\end{array}
$$

However:

want "global" theory on group manifold, not just one brane
(work in progress)

Summary

- (untwisted) D - branes on group manifolds are very well described by $U_{q}(\mathfrak{g})$ - covariant quantum algebras
- symmetry pattern $G_{V} \subset G_{L} \times G_{R}$ "quantized"
- precise agreement with CFT results for
- positions
- energy
- harmonics (number and algebra)
\exists degenerate branes
in particular, find (q)-fuzzy $\mathbb{C} P^{N}, \ldots$
- works for any k, not just leading $1 / k$
discrete, finite, explicit mathematical structure
Open problems:
- strings induce gauge theory on these q-deformed spaces (work in progress)
- other branes ? ...

