PERIOD RELATIONS FOR CUSP FORMS OF GSp$_4$

HARALD GROBNER AND RONNIE SEBASTIAN

Abstract. Let F be a totally real number field and let π be a cuspidal automorphic representations of GSp$_4(\mathbb{A}_F)$, which contributes irreducibly to coherent cohomology. If π has a Bessel model, we may attach a period $p(\pi)$ to this datum. In the present paper, which is part I in a series of two, we establish a relation of these Bessel-periods $p(\pi)$ and all of its twists $p(\pi \otimes \xi)$ under arbitrary algebraic Hecke characters ξ. In our appendix we show that (g,K)-cohomological cusp forms of GSp$_4(\mathbb{A}_F)$ all qualify to be of the above type - providing a large source of examples. We expect that these period relations for GSp$_4(\mathbb{A}_F)$ will allow a conceptual, fine treatment of rationality relations of special values of the spin L-function, which we hope to report on in part II of this paper.

1. Introduction

1.1. Generalizing Euler’s classical theorem on the values $\zeta(2k)$ of the Euler-Riemann ζ-function at positive even integers $s = 2k$, Deligne has stated a far-reaching conjecture about the behaviour of motivic L-functions $L(s,M)$ at their critical points $s = k \in \mathbb{Z}$. Deligne’s conjectured formula expresses the critical L-values in question up to multiplication by elements in a number-field $E(M)$, depending on the motive M, in terms of certain geometric period-invariants $c^+(M)$, as well as certain explicit integral powers $(2\pi i)^{d(k)}$, [Del79, Conj. 2.8]:

$$L(k, M) \in (2\pi i)^{d(k)}c^{(-1)^k}(M) \cdot E(M).$$

2010 Mathematics Subject Classification. Primary: 11F67; Secondary: 11F41, 11F70, 11F75, 22E55.

H.G. is supported by the Austrian Science Fund (FWF), START-prize Y966-N35 and stand-alone-research project P 25974-N25. R.S. was partly supported by a DST INSPIRE grant. This is a version of an article, which appeared in Forum Math.
It is important to notice that, stated this way, Deligne’s conjecture entails the following relation of the periods attached to the motive M and its twist $M(k)$,

$$c^\pm(M(k)) = (2\pi i)^{d(k)} c^\pm(-1)^k(M).$$

proved by Deligne in [Del79, equation (5.1.8)].

Apart from particular cases Deligne’s conjecture is still wide open. However, even when such a precise relation between periods $c^\pm(M)$ and critical values of $L(s, M)$ is unknown, it is still an important task to investigate period-relations of the above type: Inspired by Deligne’s result, relating the periods of M and $M(k)$, Blasius [Bla97] and Panchishkin [Pan94] have formulated precise expectations of how Deligne’s periods transfer under twisting by Artin motives, and – using the conjectured dictionary between motives and automorphic representations – Harris has established period-relations for motives coming from cuspidal automorphic representations from unitary groups [MHar97].

Matching the spirit of the latter approach, it is the automorphic side, where most of the recent results on period-relations have been achieved. Lacking the well-shaped rigidity of the motivic world, automorphic periods allow more freedom in the choice of their definition\footnote{This freedom happens at a price of uncertainty: The question whether or not automorphic periods are periods (in the sense of Kontsevich-Zagier [Kon-Zag01]) seems almost as hard to decide as showing Deligne’s conjecture in the respective case.}; As a general principle, automorphic periods are defined by a comparison of two rational structures: One on a space of cohomology and one of a certain model-space of the given automorphic representation π. While the rational structure on the first space is of geometric origin, the rational structure on the latter space is defined by reference to the uniqueness of the chosen model. Finally, in order to actually compare the two rational structures one has to make a choice of an embedding of the model space at hand into the given cohomological realization of π: One possible technique to make this choice of an embedding is by fixing a cohomological vector at infinity.

Following this principle, in [Rag-Sha08] Raghuram-Shahidi have used the Whittaker model of a cuspidal automorphic representation π of $\text{GL}_n(\mathbb{A}_F)$, F any number field, the space of (g, K)-cohomology in lowest degree and a choice of a cohomological vector at infinity, w_∞, in order to define Whittaker-periods $p(\pi) = p(\pi, w_\infty)$ attached to this datum. Inspired by Blasius’ results mentioned above, they then derive a theorem on period-relations between $p(\pi)$ and $p(\pi \otimes \chi)$ for an algebraic Hecke character χ: As predicted, up to multiplication by an element in the rationality field $\mathbb{Q}(W(\pi), \chi)$ of the Whittaker model $W(\pi)$ and χ, $p(\pi)$ and $p(\pi \otimes \chi)$ differ only by a certain power of the Gauß sum G_{π}. In [Gro-Rag14], Raghuram and the first mentioned author of the present article achieved period-relations for Shalika-periods $\omega(\pi)$ and $\omega(\pi \otimes \chi)$. These periods are defined by reference to the Shalika model of a cuspidal automorphic representation π of $\text{GL}_{2n}(\mathbb{A}_F)$, F a totally real number field, the space of (g, K)-cohomology in highest degree and a chosen cohomological vector at infinity, denoted $[\pi_\infty]^\ast$. Again, $\omega(\pi)$ and $\omega(\pi \otimes \chi)$ only differ by a
PERIOD RELATIONS FOR CUSP FORMS OF GSp$_4$

certain power of the Gauß sum $\mathcal{G}(\chi_f)$ up to multiplication by an element in the rationality field $\mathbb{Q}(S(\pi), \chi)$ of the Shalika model $S(\pi)$ and χ.

1.2. The present paper continues this series of results, but focuses on a completely new aspect of the theory: In this article, we describe the relation of what we call Bessel-periods: These are periods $p(\pi)$ for cuspidal automorphic representations π of $\text{GSp}_4(A_F)$, F any totally real number field, which contribute irreducibly to coherent cohomology and allow a Bessel model. We refer to Def. 3.3.11 for their precise definition and only mention here that they also depend on the choice of a (p, K)-cohomological vector $\phi_{p, \infty}$.

For an arbitrary algebraic Hecke character ξ, let $\pi \otimes \xi = \xi(\mu(\cdot)) \cdot \pi$ be the cuspidal automorphic representation obtained by multiplying the functions in π by the composite of ξ with the symplectic similitude character μ. Our main result on the relation of our Bessel-periods $p(\pi) = p(\pi, \phi_{p, \infty})$ and $p(\pi \otimes \xi) = p(\pi \otimes \xi, \phi_{p \otimes \xi, \infty})$ reads as follows

Theorem. Let π be a cuspidal automorphic representation of $\text{GSp}_4(A_F)$ which contributes irreducibly to coherent cohomology and allows a Bessel model $B(\pi)$, see §3.1 and §3.2. Let ξ be any algebraic Hecke character of A_F^*. Then there are periods $p(\pi) = p(\pi, \phi_{p, \infty})$ and $p(\pi \otimes \xi) = p(\pi \otimes \xi, \phi_{p \otimes \xi, \infty})$, which satisfy the following relation

$$p(\pi \otimes \xi) \sim p(\pi) \cdot \mathcal{G}(\xi_f),$$

where “\sim” means up to multiplication by a non-zero element in a finite extension of the rationality-field $\mathbb{Q}(B(\pi), \xi)$ of $B(\pi)$ and ξ and $\mathcal{G}(\xi_f)$ denotes the Gauß-sum of ξ_f, cf. §2.1.3.

We would like to point out that for cuspidal representations π admitting a cuspidal Langlands-transfer to $\text{GL}_4(A_F)$, our theorem is compatible with the results obtained in [Gro-Rag14], see Rem. 4.3.4, and – modulo the conjectural translation of cuspidal algebraic representations into motives – expected to be compatible with the conjectures of Blasius and Panchishkin, mentioned above. We refer to our Prop. 3.3.12 and Thm. 4.3.3 for further details concerning the construction of our periods $p(\pi)$ and $p(\pi \otimes \xi)$ as well as for the various dependencies in their relation.

In our appendix we enlarge the focus of the present paper: While it is its main motivation to provide a large class of candidate-representations π for our main theorem above by showing that all (g, K)-cohomological cuspidal representations give rise to non-trivial cohomology classes in coherent cohomology, we also establish a general reference for the relation of (g, K)- and (p, K)-cohomology for all connected reductive groups G over \mathbb{Q}.

We hope that our main theorem on period-relations will allow the conceptual treatment of questions of rationality of the special values of L-functions attached to π as above. Exploring the precise relation between $p(\pi)$ and such L-values is work in progress and will eventually amount to a generalization as well as refinement of the main result of Harris in [MHar04] (obtained over $F = \mathbb{Q}$). We hope to be able to report on this subject in the forthcoming part II of this paper.

Acknowledgements: Both authors would like to thank A. Raghuram for suggesting to work on this project. Thanks are also due to him for useful discussions. We are also grateful to the anonymous
referee for her/his careful reading and numerous, very helpful suggestions, which improved the presentation of the present article.

2. Basic notation and conventions

2.1. Number fields and algebraic characters.

2.1.1. Unless otherwise stated, \(F \) will be a totally real number field of degree \(d = [F : \mathbb{Q}] \) with ring of integers \(\mathcal{O} \). For any place \(v \) we write \(F_v \) for the topological completion of \(F \) at \(v \). Let \(S_\infty \) be the set of archimedean places of \(F \). If \(v \notin S_\infty \), we let \(\mathcal{O}_v \) be the local ring of integers of \(F_v \) with unique maximal ideal \(\wp_v \). Moreover, \(\mathbb{A} \) denotes the ring of adeles of \(F \) and \(\mathbb{A}_F \) its finite part. We use the local and global normalized absolute values and denote each of them by \(\cdot \). Further, \(\mathcal{D}_F \) stands for the absolute different of \(F \), that is, \(\mathcal{D}_F^{-1} = \{ x \in F : Tr_{F/Q}(x\mathcal{O}) < \mathbb{Z} \} \).

2.1.2. We fix a non-trivial, additive character \(\psi : F\backslash \mathbb{A} \to \mathbb{C}^* \) following Tate’s thesis, see [Gro-Rag14] §2.7. In particular, \(\psi = \otimes_v \psi_v \) takes values in the subgroup \(\mu_\infty \) of \(\mathbb{C}^* \) consisting of all roots of unity and if we factor the different \(\mathcal{D}_F = \prod_v \psi_v^{\mathcal{D}_F} \), with the product running over all prime ideals \(\wp \) of \(\mathcal{O} \), then \(\psi_v^{\mathcal{D}_F} \) is the conductor of the character \(\psi_v \) at \(v \notin S_\infty \).

2.1.3. Let \(\chi = \chi_\infty \otimes \chi_f \) be any algebraic Hecke character of \(\mathbb{A} \). We define the Gauß sum of its finite part \(\chi_f \), following Weil [Wei67, VII, Sect. 7]: Let \(\mathfrak{c}_\chi \) stand for the conductor ideal of \(\chi_f \) and let \(y = (y_v)_{v \notin S_\infty} \in \mathbb{A}_F^\times \) be chosen such that \(\text{ord}_v(y_v) = -\text{ord}_v(\mathfrak{c}_\chi) - \text{ord}_v(\mathcal{D}_F) \). The Gauß sum of \(\chi_f \) is now defined as \(\mathcal{G}(\chi_f, \psi_f, y) = \prod_{v \notin S_\infty} \mathcal{G}(\chi_v, \psi_v, y_v) \), where the local Gauß sum \(\mathcal{G}(\chi_v, \psi_v, y_v) \) is defined as

\[
\mathcal{G}(\chi_v, \psi_v, y_v) = \int_{\mathcal{O}_v^\times} \chi_v(u_v)^{-1} \psi_v(y_vu_v)
\]

For almost all \(v \), we have \(\mathcal{G}(\chi_v, \psi_v, y_v) = 1 \), and for all \(v \) we have \(\mathcal{G}(\chi_v, \psi_v, y_v) \neq 0 \). (See, for example, Godement [God70, Eq. 1.22].) Note that, unlike in [Wei67], we do not normalize the Gauß sum to make it have absolute value one. Suppressing the dependence on \(\psi \) and \(y \), we denote \(\mathcal{G}(\chi_f, \psi_f, y) \) simply by \(\mathcal{G}(\chi_f) \).

2.2. The symplectic similitude group and its variants.

2.2.1. Algebraic groups and varieties. Let \(I_n \) be the \(n \times n \)-identity matrix and let

\[
J_4 := \begin{pmatrix} 0 & I_2 \\ -I_2 & 0 \end{pmatrix}.
\]

Unless otherwise stated, in this paper, we let

\[
G := \text{GSp}_4 := \{ g \in \text{GL}_4 | ^tgJ_4g = \mu(g)J_4 \},
\]

the \(F \)-split symplectic similitude group of degree 4. The kernel of the character \(\mu : \text{GSp}_4 \to \text{GL}_4 \) is the \(F \)-split symplectic group \(\text{GSp}^{ss} = \text{Sp}_4 \). We let \(\theta : G \to G \) be the Cartan involution on \(G \) being defined by \(\theta(g) := ^tg^{-1} = \mu(g)^{-1}J_4gJ_4^{-1} \).
Let \(R_{\mathbb{K}/\mathbb{F}} \) stand for Weil’s restriction of scalars from \(\mathbb{K} \) to \(\mathbb{F} \). We consider the homomorphism \(h : R_{\mathbb{C}/\mathbb{R}}(GL_1) \to R_{\mathbb{F}/\mathbb{Q}}(G) \times \mathbb{Q} \mathbb{R} \) which maps \(x + iy \in \mathbb{C}^* \) to \(d \) identical copies of the matrix

\[
\begin{pmatrix}
xI_2 & yI_2 \\
-yI_2 & xI_2
\end{pmatrix}.
\]

The \(R_{\mathbb{F}/\mathbb{Q}}(G)(\mathbb{R}) \)-conjugacy class \(X \) of \(h \) is diffeomorphic to the \(d \) disjoint unions of the Siegel upper and lower half space of genus 2. The pair \((R_{\mathbb{F}/\mathbb{Q}}(G), X) \) (hence) a Shimura datum in the sense of [MHar85], 1.1. See also Sect. A.1.

2.2.2. Real Lie groups. We will abbreviate \(G_\infty := \prod_{v \in S_\infty} G(F_v) \) (respectively, \(G_\infty^{ss} := \prod_{v \in S_\infty} G^{ss}(F_v) \)). Lie algebras of real Lie groups are denoted by the same letter, but in lower case gothics.

The connected component of the identity of the group of fixed points of \(\theta \) in \(G_\infty \) is isomorphic to \(d \) copies of \(U(2) \), the compact unitary group, and defines a maximal compact subgroup \(K_\infty^{ss} \) of \(G_\infty^{ss} \). We let \(K_\infty \) be the product of \(K_\infty^{ss} \) (being identified with \(U(2)^d \)) and the center \(Z_{G,\infty} \) of \(G_\infty \) (being identified with \((\mathbb{R}^* I_4)^d \)). The group \(K_\infty \) is isomorphic to the centralizer of a fixed point \(h \in X \). With these identifications, we have \(U(2) \cap \mathbb{R}^* = \{ \pm I_4 \} \), so \(K_\infty = Z_{G,\infty}^2 \times K_\infty^{ss} \cong (\mathbb{R}_{>0} \times U(2))^d \).

Much confusion is avoided, if the reader bears in mind that this group \(K_\infty \) does not contain a maximal compact subgroup of \(G_\infty \) (which has \(|\pi_0(G_\infty)| = 2^d \) connected components), but rather the connected component of the identity of such a group. As a consequence, the \((g_\infty, K_\infty) \)-module of \(K_\infty \)-finite vectors in the archimedean component of a given automorphic representation is in general not irreducible (but decomposes as the direct sum of at most \(2^d \) irreducible \((g_\infty, K_\infty) \)-modules).

2.3. \((p_h, K_\infty) \)-cohomology and coherent cohomology.

2.3.1. Relative Lie algebra cohomology. The Lie algebra \(\mathfrak{k}_\infty \) of \(K_\infty \) operates by the adjoint action on \(g_{\infty, \mathbb{C}} := g_\infty \otimes \mathbb{C} \) and we obtain a \(\mathfrak{k}_\infty \)-invariant decomposition

\[
(2.3.1) \quad g_{\infty, \mathbb{C}} = p_+ \oplus \mathfrak{k}_\infty \otimes \mathbb{C} \oplus p_-.
\]

Here, \(p_- \) (resp. \(p_+ \)) is the holomorphic (resp. anti-holomorphic) tangent space of \(X \) at \(h \). We let

\[
p_h := \mathfrak{k}_\infty \otimes \mathbb{C} \oplus p_+.
\]

This is a parabolic subalgebra of \(g_{\infty, \mathbb{C}} \) with Levi subalgebra \(\mathfrak{k}_\infty \otimes \mathbb{C} \) and nilpotent, even abelian, radical \(p_+ \). Observe that \(p_h \) lies somewhat “skew” to the real structure of \(g_{\infty, \mathbb{C}} = g_\infty \oplus i g_\infty \) as \(p_h \cap g_\infty = \mathfrak{k}_\infty \).

For us, a \(g_\infty \)-module \(V \) (on a complex locally convex vector space), which is also a representation of \(K_\infty \), is called a \((g_\infty, K_\infty) \)-module, if it is a \((g_\infty^{ss}, K_\infty^{ss}) \)-module in the sense of Borel-Wallach [Bor-Wal00], §0.2, by restriction.

The \((p_h, K_\infty) \)-cohomology of a \((g_\infty, K_\infty) \)-module \(V \) is the cohomology of the complex

\[
C^q(p_h, K_\infty, V) := \text{Hom}_{K_\infty}(\Lambda^q(p_h/\mathfrak{k}_\infty \otimes \mathbb{C}), V) \cong \text{Hom}_{K_\infty}(\Lambda^q p_+, V),
\]

with the usual derivatives, cf. [MHar90] (4.1.3) and [Bor-Wal00] §I.1.1. Following [MHar90] §4.1.1, we say that a \((g_\infty, K_\infty) \)-module \(V \) is \((p_h, K_\infty) \)-cohomological, if there is an irreducible
finite-dimensional K_{∞}-module V_τ such that $H^q(p_h, K_{\infty}, V \otimes V_\tau) \neq 0$ for some degree q. We will furthermore assume that the representation V_τ is algebraic, that is, the C-linear extension of V_τ to a $t_{\infty, C}$-module extends to a representation of the algebraic group $K_{\infty, C}$ (defined as the Levi subgroup of the unique parabolic complex algebraic subgroup $\mathcal{P}_h(C)$ of $G(C)$ with Lie algebra p_h).

2.3.2. Coherent sheaf cohomology. In this subsection we briefly summarize the discussion in [MHar90, §1.2], which the reader is referred to for more details. Define

$$M(G, X)_C := G(F) \setminus (X \times G(\mathbb{A}_f)).$$

If $K \subset G(\mathbb{A}_f)$ is a neat, open compact subgroup, then

$$KM := M(G, X)_C / K = G(F) \setminus (X \times G(\mathbb{A}_f))/K$$

is a smooth quasi-projective variety. For suitable compactifying data, denoted Σ, there is a smooth toroidal compactification of KM, denoted KM_Σ, with boundary a snc divisor, denoted Z_Σ. All these varieties are defined over the reflex field $E(G, X)$.

Let V_τ be an algebraic irreducible finite-dimensional K_{∞}-module, one obtains an automorphic vector bundle $K[\mathcal{Y}_\tau]$ on the quasi-projective variety KM. This vector bundle has a canonical extension to KM_Σ, denoted $K[\mathcal{Y}_\tau]_\Sigma^{can}$, and a subcanonical extension, defined as $K[\mathcal{Y}_\tau]_\Sigma^{sub} := K[\mathcal{Y}_\tau]_\Sigma^{can}(-Z_\Sigma)$. Since V_τ was chosen algebraic, these bundles are defined over a finite extension $E = E(\tau)$ of the reflex field $E(G, X)$, which can be computed explicitly, [Del71] Prop. 3.8.

It is proved in [MHar90] that the cohomology $H^*(KM_\Sigma, K[\mathcal{Y}_\tau]_\Sigma^{can})$ and $H^*(KM_\Sigma, K[\mathcal{Y}_\tau]_\Sigma^{sub})$ are independent of the toroidal compactification. Thus, we may drop the Σ from the notation and define

$$H^q([\mathcal{Y}_\tau]^{can}) := \varinjlim_K H^*(KM, K[\mathcal{Y}_\tau]^{can})$$

and

$$H^q([\mathcal{Y}_\tau]^{sub}) := \varinjlim_K H^*(KM, K[\mathcal{Y}_\tau]^{sub}).$$

These are admissible $G(\mathbb{A}_f)$-modules, defined over the field of definition $E = E(\tau)$ of $[\mathcal{Y}_\tau]$ (in the sense of Waldspurger [Wal85], I.1), see [MHar90] Prop. 2.8. This also applies to the image $H^q([\mathcal{Y}_\tau])$ of the natural map $H^q([\mathcal{Y}_\tau]^{can}) \rightarrow H^q([\mathcal{Y}_\tau]^{sub})$.

2.3.3. Automorphic coherent cohomology. Given an irreducible, algebraic representation V_τ of K_{∞} as above, let χ^{-1}_τ be the restriction to $Z^0_{G_{\infty}}$ of its central character $Z^0_{K_{\infty}} \rightarrow \mathbb{C}^*$. Observe that $Z^0_{G_{\infty}}$ appears as a direct factor in G_{∞}, so by abuse of notation, χ^{-1}_τ also defines a character of the group G_{∞} (and even $G(\mathbb{A})$). We let $\mathcal{A}(2)(G, \chi_\tau)$ be the space of all automorphic forms $f : G(\mathbb{A}) \rightarrow \mathbb{C}$, which are square-integrable modulo χ^{-1}_τ, i.e.,

$$\int_{Z^0_{G_{\infty}}G(F) \setminus G(\mathbb{A})} |\chi^{-1}_\tau(g)f(g)|^2 dg < \infty.$$

As $(\mathfrak{g}_{\infty}, K_{\infty}, G(\mathbb{A}_f))$-module, it decomposes as a countable direct sum,

$$(2.3.2) \quad \mathcal{A}(2)(G, \chi_\tau) = \bigoplus_{\pi \in \pi_{m(2)}(\tau)} \pi^{m(2)}(\pi)$$

over all (equivalence classes of) irreducible $(\mathfrak{g}_{\infty}, K_{\infty}, G(\mathbb{A}_f))$-modules π, each appearing with finite multiplicity $0 \leq m(2)(\pi) < \infty$. Let $\mathcal{A}_0(G, \chi_\tau)$ be the subspace of cuspidal
automorphic forms in \(\mathcal{A}_2(G, \chi_\tau) \). It inherits from (2.3.2) a direct sum decomposition
\[\mathcal{A}_0(G, \chi_\tau) = \bigoplus \pi_{m_0(\pi)}, \] where clearly \(0 \leq m_0(\pi) \leq m(2)(\pi) \).

There is the following commutative diagram of admissible \(G(\mathbb{A}) \)-modules, cf. [MHar90, Prop. 3.6, Thm. 5.3]
\[
\begin{array}{ccc}
H^q(p_h, K_\infty, \mathcal{A}_0(G, \chi_\tau) \otimes V_\tau) & \xrightarrow{\alpha} & H^q(p_h, K_\infty, \mathcal{A}_2(G, \chi_\tau) \otimes V_\tau) \\
\downarrow{\gamma} & & \downarrow{\beta} \\
H^q([\mathcal{Y}_\tau]^{\text{sub}}) & \xrightarrow{\gamma} & H^q([\mathcal{Y}_\tau]^{\text{can}})
\end{array}
\]
with \(\ker(\gamma \circ \alpha) = \{0\} \) and \(\operatorname{Im}(\beta) \supseteq \operatorname{Im}(\iota) \). In particular, \(H^q([\mathcal{Y}_\tau]) \) inherits from (2.3.2) the structure of a semisimple \(G(\mathbb{A}) \)-module: For each of its isotypic components \(H^q([\mathcal{Y}_\tau](\pi_f)) \), the representation \(\pi_f \) appears as the finite part of an irreducible automorphic subrepresentation of \(\mathcal{A}_2(G, \chi_\tau) \).

3. Bessel models and Bessel periods for GSp\(_4\)

3.1. The "Bessel subgroup" \(R \). Let \(P = M \cdot U \) be the Siegel parabolic subgroup of \(G \). Explicitly, its unipotent radical is the abelian group
\[U = \left\{ \begin{pmatrix} I_2 & X \\ 0 & I_2 \end{pmatrix} \mid X \in M_2 \text{ and } X' = X \right\} \]
and its Levi factor
\[M = \left\{ \begin{pmatrix} g & 0 \\ 0 & x^{y^{-1}} \end{pmatrix} \mid g \in \text{GL}_2 \text{ and } x \in \text{GL}_1 \right\} \cong \text{GL}_2 \times \text{GL}_1. \]

A symmetric matrix \(\beta \in M_2(F) \) will be called non-degenerate if \(\det(\beta) \neq 0 \). For such a \(\beta \) there is a linear form \(\ell_\beta \) on \(U \) given by
\[\ell_\beta \left(\begin{pmatrix} I_2 & u \\ 0 & I_2 \end{pmatrix} \right) = \text{Tr}(\beta u). \]

The group \(M \) acts on \(U \) by conjugation and so on the space of linear forms. Let \(D_\beta \subset M \) denote the connected component of the identity of the stabilizer of \(\ell_\beta \) under the conjugation action. It has the following explicit description: Let
\[\beta = \begin{pmatrix} a & b \\ \frac{b}{2} & c \end{pmatrix} \quad \text{and} \quad \delta = \begin{pmatrix} \frac{b}{2} & c \\ -a & -\frac{b}{2} \end{pmatrix} \]
and let \(d := b^2 - 4ac \neq 0 \). One checks easily that \(\delta^2 = \frac{d}{4}I_2 \). Denote by \(F(\delta) := F \oplus F\delta \) the semisimple quadratic subalgebra of \(M_2(F) \) over \(F \), obtained from \(F \) by adjoining \(\delta \). Then there is an isomorphism of algebraic groups \(R_{F(\delta)/F}(\text{GL}_1) \sim D_\beta \subset M \), given by
\[(x + y\delta) \mapsto \begin{pmatrix} x + y\delta & 0 \\ 0 & x - y\delta \end{pmatrix}. \]
In order to simplify notation, from now on we suppress the dependence of \(D_\beta \) on \(\beta \). Finally we get an algebraic subgroup \(R := DU \subset P \subset G \) over \(F \). Observe that \(D \cap U = \{e\} \) and so to give a character of \(R \) it suffices to give characters of \(D \) and \(U \). For more details the reader may consult [PS97, Section 2] and [Fur93, Section 1.1].
3.2. Definition of Bessel Models. Let ψ be the non-trivial additive character from §2.1. Fix a non-degenerate symmetric matrix $\beta \in M_2(F)$ and consider the character ψ_β of $U(F)\backslash U(\mathbb{A})$ defined by $\psi_\beta(u) := \psi(\text{Tr}(\beta u))$. Let ν be an algebraic character of $D(F)\backslash D(\mathbb{A})$, i.e., ν_f takes values in \mathbb{Q}_p^\times. Combining these two gives rise to an algebraic character of $R(\mathbb{A})$ defined by $\alpha_{\nu,\beta}(du) := \nu(d) \cdot \psi_\beta(u)$.

Let (π, V) be a cuspidal automorphic representation of $G(\mathbb{A})$. For convenience we will not distinguish between a cuspidal automorphic representation, its smooth Fréchet-space completion of moderate growth and its (non-smooth) Hilbert space completion associated with the L^2-spectrum. Assume that there is a pair (ν, β) as above and a cusp form $\varphi \in V$ such that

$$(3.2.1) \quad B_{\varphi}(g) := \int_{Z(\mathbb{A})R(F)\backslash R(\mathbb{A})} \varphi(rg)\alpha_{\nu,\beta}(r)^{-1} dr \neq 0,$$

for some invariant Haar measure dr on $R(\mathbb{A})$. Obviously, in order for the integrand to be well-defined mod $Z(\mathbb{A})$, this entails the assertion that $\nu(z) = \omega_\pi(z)$ for all $z \in Z(\mathbb{A})$, where ω_π denotes the central character of π. By the irreducibility of π, B_{φ} being non-zero for some $\varphi \in V$ is equivalent to the assumption that the map

$$V \to \text{Ind}^{G(\mathbb{A})}_{R(\mathbb{A})} \alpha_{\nu,\beta}, \quad \varphi \mapsto B_{\varphi}$$

is a $G(\mathbb{A})$-equivariant inclusion. We shall denote the image of V by $B_\beta^{\nu}(\pi)$ and call it a (ν, β)-Bessel model of the representation π. With (π, V) as above, given a place v of F and the irreducible admissible representation (π_v, V_v) of $G(F_v)$, suppose there is a pair (ν_v, β) and a nonzero $G(F_v)$-equivariant map

$$B : V_v \to \text{Ind}^{G(F_v)}_{R(F_v)} \alpha_{\nu_v,\beta},$$

then we say that π_v has a (ν_v, β)-Bessel model $B_\beta^{\nu_v}(\pi_v)$. Clearly, if a global Bessel model exists, then one also gets local Bessel models by restriction, in particular $B_\beta^{\nu}(\pi_f)$ is well-defined in this case. The space $\text{Hom}_{R(F)}(\pi_v, \alpha_{\nu_v,\beta})$ is at most one dimensional, see [PS07, Thm. 3.1] and [Pra-Tak11], Thm. 1. It follows that if (π, V) is as above and has a global Bessel model, then the space $\text{Hom}_{R(F)}(\pi_f, \alpha_{\nu_f,\beta})$ is exactly one dimensional, i.e., $B_\beta^{\nu_f}(\pi_f)$ is unique.

3.3. Definition of the Cohomological Bessel-periods. In this and the next section we work with an irreducible cuspidal automorphic representation (π, V) of $G(\mathbb{A})$ which satisfies the following assumptions:

1. (π, V) has a (ν, β)-Bessel model. (I.e., the map B defined in equation (3.2.1) is nonzero.)
2. (π_∞, V_∞) is (p_h, K_∞)-cohomological in degree q with respect to the coefficient module V_τ (recall that V_τ is an irreducible finite-dimensional K_∞-module), §2.3.
3. The isotypical component $H^q([F_\tau])(\pi_f)$ is an irreducible $G(\mathbb{A}_f)$ representation.

Remark 3.3.1. (1) Condition (3) is clearly the strongest assumption on (π, V) as it somehow imitates a Multiplicity One and a Strong Multiplicity One result for parts of the square-integrable automorphic spectrum of $G(\mathbb{A})$. It is hence a legitimate question whether or not such cusp forms exist. Invoking our Thm. A.2.1 from our
appendix below, it looks very plausible however that Ikeda and Yamana just recently constructed a whole family of cuspidal automorphic representations of $G(\mathbb{A})$, which satisfy (1) - (3). We refer to their Thm. 1.2 in [Ike-Yam15].

(2) Note that condition (3) forces the (p_h, K_∞)-cohomology $H^q(p_h, K_\infty, V \otimes V_r)$ to be one dimensional and also forces that there is a canonical isomorphism of irreducible $G(\mathbb{A}_f)$-modules $H^q(p_h, K_\infty, V \otimes V_r) \cong H^q([\mathcal{Y}_r])(\pi_f)$, see §2.3.3.

(3) In principle the degree of cohomology q, mentioned in our conditions above, may be any integer between 0 and $\dim \mathbb{C}(p_h/t_{\infty,C})$, i.e., there is no implicit restriction on the range of possible, valid degrees, which may appear in our three conditions. If π_∞ has non-trivial (g_∞, K_∞)-cohomology (with respect to some algebraic irreducible finite-dimensional G_∞-module V_λ, say) in a degree $q' - a$ condition which is in general strictly stronger than our condition (ii) above, see our Thm. A.2.1 – then π_∞ will always be (p_h, K_∞)-cohomological with respect to an irreducible K_∞-submodule of $V_\lambda \otimes \Lambda^b p^+$ in degree $q'' - b$. For p_- the nilradical of the parabolic subalgebra of g_∞, C opposite to p_h and some $b \geq 0$. In particular, if π_∞ is even in the discrete series of G_∞, then the possible degrees of non-trivial (p_h, K_∞)-cohomology of π_∞ are bounded above by $3d$, cf. [Bor-Wal00], I, Thm. 5.4 and [MHar90], Thm. 4.6.2, but may very well be any integer between 0 and 3d.

We will make use of the following intermediate

Proposition 3.3.2. Let G be a group and let (ρ, V) be a complex representation of G. Suppose this representation is defined over a field $L \subset \mathbb{C}$, that is, there is a L-subspace $V^0 \subset V$ which is invariant under G and the natural map $V^0 \otimes_L \mathbb{C} \to V$ is an isomorphism of complex G-representations. Let H be a subgroup of G with an L-valued character $\chi : H \to L^* \subset \mathbb{C}^*$ such that $\dim \mathbb{C} \text{Hom}_H(\rho, \chi) = 1$. Let $l \neq 0$ be an element of $\text{Hom}_H(\rho, \chi)$, then there is a scalar $p(l) \in \mathbb{C}^*$ such that $(l/p(l))(V^0) \subset L$.

Proof. Let $\{\lambda_i\}_{i \in I}$ be a basis for \mathbb{C} over L. The restriction of l to V^0 is a L-linear and H-equivariant map $V^0 \to \bigoplus_{i \in I} L \cdot \lambda_i$, where the H action on the right is via its action on $L \cdot \lambda_i$ by χ. Let $l_i : V^0 \to L$ denote the coefficient of the i^{th} basis vector, so that $l(v) = \bigoplus_{i \in I} l_i(v) \cdot \lambda_i$. Since $l \neq 0$ there is an $i \in I$ such that the projection $l_i : V^0 \to L$ is nonzero. It is clear that l_i is H-equivariant, L-linear and after tensoring with \mathbb{C} gives a nonzero element $l_i \otimes 1 \in \text{Hom}_H(\rho, \chi)$. Since $\text{Hom}_H(\rho, \chi)$ is one dimensional we see that $l_i \otimes 1 = a l_i$ for some scalar $a \in \mathbb{C}^*$. It is also clear that $l_i \otimes 1(V^0) \subset L$, and so the proposition is proved by taking $p(l) := 1/a$.

3.3.1. The first intertwining ℓ_π. There is a finite extension E' of the field of definition $E := E(\tau)$ of $[\mathcal{Y}_r]$, such that the $G(\mathbb{A}_f)$-representation $H^q([\mathcal{Y}_r])(\pi_f)$ is defined over E' and is compatible with the E' structure on $H^q([\mathcal{Y}_r]).$ This is well-known and follows from the semisimplicity of the $G(\mathbb{A}_f)$-module $H^q([\mathcal{Y}_r])$. Denote this E'-structure by $H^q([\mathcal{Y}_r])(\pi_f)_{E'}$. By the one-dimensionality of the space of Bessel functionals, as remarked earlier, applying Prop. 3.3.2 with $\rho = H^q([\mathcal{Y}_r])(\pi_f)$, $H = R(\mathbb{A}_f)$, $\chi = \alpha_{\nu_f, \beta}$ and $L = \overline{Q}$, we get that there is a nonzero $\ell_\pi \in \text{Hom}_{G(\mathbb{A}_f)}(H^q([\mathcal{Y}_r])(\pi_f), \text{Ind}_{R(\mathbb{A}_f)}^{G(\mathbb{A}_f)}(\alpha_{\nu_f, \beta}))$ such that $\ell_\pi(H^q([\mathcal{Y}_r])(\pi_f)_{E'}) \subset C^\infty(G(\mathbb{A}_f), \overline{Q})$. Let $Q(\nu_f)$ denote the subfield of \mathbb{C} generated by the image of ν_f. Next we modify ℓ_π so that the image $\ell_\pi(H^q([\mathcal{Y}_r])(\pi_f)_{E'})$ is contained in $C^\infty(G(\mathbb{A}_f), E'Q(\nu_f))$.

To this end, consider the following composite of maps

\[
\begin{array}{cccc}
\text{Aut}(\mathbb{C}) & \rightarrow & \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) & \rightarrow & \text{Gal}(\mathbb{Q}(\mu_\infty)/\mathbb{Q}) & \rightarrow & \hat{\mathbb{Z}}^* & \cong & \Pi_p \mathbb{Z}_p^* & \subset & \Pi_p \Pi_v \mathbb{O}_v^* \\
\sigma & \mapsto & \sigma|_{\bar{\mathbb{Q}}} & \mapsto & \sigma|_{\mathbb{Q}(\mu_\infty)} & \mapsto & t_\sigma & \mapsto & \Pi_p \Pi_v t_v
\end{array}
\]

Denote by \(T_\sigma\) the matrix \(\text{diag}(t_\sigma^{-1}, t_\sigma^{-1}, 1, 1) \in G(\mathbb{A}_f)\). For \(\sigma \in \text{Aut}(\mathbb{C}/\mathbb{Q}(\nu_f))\) define

\[
\tilde{\sigma} : \text{Ind}_{R(\mathbb{A}_f)}^{G(\mathbb{A}_f)} \alpha_{\nu_f, \beta} \rightarrow \text{Ind}_{R(\mathbb{A}_f)}^{G(\mathbb{A}_f)} \alpha_{\nu_f, \beta}
\]

by

\[
\tilde{\sigma}(b)(g) := \sigma(b(T_\sigma g)).
\]

One easily checks that this is a \(\sigma\)-linear isomorphism of \(G(\mathbb{A}_f)\)-representations (using the fact that \(\sigma(\psi(t_\sigma^{-1}s)) = \psi(s)\) and \(\sigma \circ \nu_f = \nu_f\)). Now suppose that \(\sigma \in \text{Aut}(\mathbb{C}/E^0\mathbb{Q}(\nu_f))\).

Consider the arrows in the (not necessarily commutative) diagram

\[
\begin{array}{ccc}
\hat{\mathbb{H}}^q(\langle Y_\tau \rangle)(\pi_f)_{E^0 \otimes E^0} \mathbb{C} & \xrightarrow{\ell_{\pi}} & \text{Ind}_{R(\mathbb{A}_f)}^{G(\mathbb{A}_f)} \alpha_{\nu_f, \beta} \\
(1 \otimes \sigma) & \downarrow & (\tilde{\sigma} & \downarrow & \sigma)
\end{array}
\]

The map \(\tilde{\sigma}^{-1} \circ \ell_{\pi} \circ (1 \otimes \sigma)\) is a nonzero map of \(G(\mathbb{A}_f)\)-representations from \(\hat{\mathbb{H}}^q(\langle Y_\tau \rangle)(\pi_f)\) to \(\text{Ind}_{R(\mathbb{A}_f)}^{G(\mathbb{A}_f)} \alpha_{\nu_f, \beta}\). As the space of such maps is one dimensional it follows that \(\ell_{\pi} \circ (1 \otimes \sigma) = \sigma(a) \cdot (\tilde{\sigma} \circ \ell_{\pi})\) for some scalar \(a = a_\sigma \in \mathbb{C}^*\), depending on \(\sigma\). Let \(0 \neq v^0 \in \hat{\mathbb{H}}^q(\langle Y_\tau \rangle)(\pi_f)_{E^0}\) and let \(g \in G(\mathbb{A}_f)\) be such that \(\ell_{\pi}(v^0)(g) \neq 0\) (such a \(g\) exists by the irreducibility of \(\hat{\mathbb{H}}^q(\langle Y_\tau \rangle)(\pi_f)\)). Then evaluating the equality at \(v^0\) and \(g\) we get

\[
\ell_{\pi}(v^0)(g) = \sigma(a) \cdot (\tilde{\sigma} \circ \ell_{\pi})(v^0)(g) = \sigma(a) \cdot \sigma(\ell_{\pi}(v^0)(T_\sigma g)).
\]

As \(\ell_{\pi}(v^0)\) maps \(G(\mathbb{A}_f)\) into \(\bar{\mathbb{Q}}\), this shows that \(\sigma(a)\), and hence also \(a\), is in \(\bar{\mathbb{Q}}^*\).

Definition 3.3.3. Recall that \(\mathcal{B}''_\beta'(\pi_f) = \ell_{\pi}(\hat{\mathbb{H}}^q(\langle Y_\tau \rangle)(\pi_f))\) by uniqueness of Bessel-models and let \(\mathcal{B}''_\beta'(\pi_f)_{\bar{\mathbb{Q}}} := \ell_{\pi}(\hat{\mathbb{H}}^q(\langle Y_\tau \rangle)(\pi_f)_{\bar{\mathbb{Q}}})\).

As \(a \in \bar{\mathbb{Q}}^*\), we get that \(\tilde{\tau}\) takes \(\mathcal{B}''_\beta'(\pi_f)_{\bar{\mathbb{Q}}}\) to itself. For \(\sigma \in \text{Aut}(\bar{\mathbb{Q}}/E^0\mathbb{Q}(\nu_f))\), we infer from the previous diagram the following (not necessarily commutative) square

\[
\begin{array}{ccc}
\hat{\mathbb{H}}^q(\langle Y_\tau \rangle)(\pi_f)_{E^0 \otimes E^0} \bar{\mathbb{Q}} & \xrightarrow{\ell_{\pi}} & \mathcal{B}''_\beta'(\pi_f)_{\bar{\mathbb{Q}}} \\
(1 \otimes \sigma) & \downarrow & (\tilde{\tau} & \downarrow & \sigma)
\end{array}
\]

As already observed above, there is a scalar \(a_\sigma \in \bar{\mathbb{Q}}^*\) such that

\[
\ell_{\pi} \circ (1 \otimes \sigma) = a_\sigma \tilde{\tau} \circ \ell_{\pi}.
\]
One checks easily that the a_σ satisfy the cocycle condition. Since $H^1(\text{Gal}(\bar{Q}/E'(Q(\nu_f)), \bar{Q}^*)) = 0$, there is hence a $b \in \bar{Q}^*$ such that for all $\sigma \in \text{Aut}(\bar{Q}/E'(Q(\nu_f)))$

(3.3.5) \[b \ell_\pi \circ (1 \otimes \sigma) = \hat{\sigma} \circ b \ell_\pi. \]

In other words, $b \in \bar{Q}^*$ is independent of σ (whereas the a_σ were). Note that b may be modified by any element of $(E'(Q(\nu_f)))^*$. The following diagram is hence commutative for all $\sigma \in \text{Aut}(\bar{Q}/E'(Q(\nu_f)))$.

(3.3.6) \[
\begin{array}{ccc}
\hat{H}^q([\mu_f])(\pi_f)_{E' \otimes E'} \bar{Q} & \xrightarrow{b \ell_\pi} & \mathcal{B}_{\beta}^{\prime \prime}(\pi_f)_{\bar{Q}} \\
(1 \otimes \sigma) & \downarrow & \\
\hat{H}^q([\mu_f])(\pi_f)_{E' \otimes E'} \bar{Q} & \xrightarrow{b \ell_\pi} & \mathcal{B}_{\beta}^{\prime \prime}(\pi_f)_{\bar{Q}}
\end{array}
\]

which finally defines the desired, uniform adjustment of ℓ_π announced above.

Remark 3.3.7. The above defines a rational structure on the Bessel model over the number field $E'(Q(\nu_f))$. The idea underlying our definition of the automorphism $\hat{\sigma}$ using the matrix T_σ can be found in [GHar83, pp. 78–80] and [Mah05, p. 594]. It has been pursued in [Rag-Sha08] for Whittaker models of cuspidal automorphic representations of GL_n over general number fields and in [Gro-Rag14] for Shalika models of cuspidal automorphic representations of GL_{2n} over totally real fields.

3.3.2. The second intertwining $B^{\phi_{\pi,\infty}}$. Next we define another map in the space

$$\text{Hom}_{G(K_\infty)}(\hat{H}^q([\mu_f])(\pi_f), \text{Ind}_{R(K_\infty)}^{G(K_\infty)} \alpha_{\nu_f,\beta}).$$

To this end, recall that the vector space $H^q(p_\infty, K_\infty, V_\sigma \otimes V_\tau)$ is naturally isomorphic to $\text{Hom}_{K_\infty}(\wedge^q p_\infty \otimes V_\tau^*, V_\sigma)$, cf. [MHar90] Prop. 4.5. Because of our assumptions on (π, V), there are the following canonical isomorphisms

(3.3.8) \[
\text{Hom}_{K_\infty}(\wedge^q p_\infty \otimes V_\tau^*, V) \cong H^q(p_\infty, K_\infty, V \otimes V_\tau) \\
\cong \hat{H}^q([\mu_f])(\pi_f).
\]

Definition 3.3.9. Denote the inverse of the composite of all the above arrows by Ψ_π.

The finite dimensional K_∞-representation $\wedge^q p_\infty \otimes V_\tau^*$ breaks up as a direct sum of irreducible representations. Since $\text{Hom}_{K_\infty}(\wedge^q p_\infty \otimes V_\tau^*, V_\sigma)$ is one dimensional, it follows that there is an irreducible representation W of K_∞, such that W occurs in $\wedge^q p_\infty \otimes V_\tau^*$ with multiplicity one and $\text{Hom}_{K_\infty}(W, V_\sigma) = \text{Hom}_{K_\infty}(\wedge^q p_\infty \otimes V_\tau^*, V_\sigma)$. Fix a lowest weight vector $\phi_{\pi,\infty} \in W \subset \wedge^q p_\infty \otimes V_\tau^*$ (this choice is unique up to \mathbb{C}^\ast). Define a map $B^{\phi_{\pi,\infty}}$

(3.3.10) \[
\hat{H}^q([\mu_f])(\pi_f) \xrightarrow{\Psi_\pi} \text{Hom}_{K_\infty}(\wedge^q p_\infty \otimes V_\tau^*, V) \xrightarrow{\text{Ind}_{R(K_\infty)}^{G(K_\infty)} \alpha_{\nu_f,\beta}}
\]

given by

$$x \mapsto B^{\phi_{\pi,\infty}}(x) := B_{\Psi_\pi}(x)(\phi_{\pi,\infty}),$$

where B is as in equation (3.2.1). A priori $B_{\Psi_\pi}(x)(\phi_{\pi,\infty})$ is an element of $\text{Ind}_{R(K_\infty)}^{G(K_\infty)} \alpha_{\nu_f,\beta}$, but clearly every element in this space gives rise to an element in $\text{Ind}_{R(K_\infty)}^{G(K_\infty)} \alpha_{\nu_f,\beta}$, by restricting a function on $G(K_\ast)$ to $G(K_\infty)$.
Definition 3.3.11 (Bessel-periods). The two linear maps \(b_\ell \) and \(B^{\phi_{\ell,\infty}} \) differ by a non-zero complex number. Define \(p(\pi, \phi_{\pi,\infty}) \in \mathbb{C}^* \) to be this scalar, that is, \(b_\ell = p(\pi, \phi_{\pi,\infty})B^{\phi_{\ell,\infty}} \). This period is a non-zero complex number, uniquely defined up to multiplication by elements of \((\mathcal{E}^0\mathbb{Q}(\nu_f))^* \).

Proposition 3.3.12. The period \(p(\pi, \phi_{\pi,\infty}) \) has the property that it makes the following diagram commute for every \(\sigma \in \text{Aut}(\mathbb{C}/\mathcal{E}^0\mathbb{Q}(\nu_f)) \).

\[
\begin{array}{ccc}
B^{\nu_f}_{\beta}(\pi_f) & \xrightarrow{(B^{\phi_{\ell,\infty}})^{1/p(\pi, \phi_{\pi,\infty})}} & H^q([\mathcal{V}_\tau])(\pi_f)_{E'} \otimes_{E'} \mathbb{C} \\
\downarrow{\tilde{\sigma}} & & \downarrow{(1 \otimes \sigma)} \\
B^{\nu_f}_{\beta}(\pi_f) & \xrightarrow{(B^{\phi_{\ell,\infty}})^{1/p(\pi, \phi_{\pi,\infty})}} & \tilde{H}^q([\mathcal{V}'_\tau])(\pi_f)_{E'} \otimes_{E'} \mathbb{C}
\end{array}
\]

Proof. This is clear from equation (3.3.6) (note that \((B^{\phi_{\ell,\infty}})^{1/p(\pi, \phi_{\pi,\infty})} = (b_\ell)^{-1}\)).

4. Period relations for cusp forms of \(\text{GSp}_4 \)

4.1. Twisting by algebraic Hecke characters. Let \((\pi, V)\) be a cuspidal automorphic representation of \(G(\mathbb{A}) \) and let \(\xi \) be an algebraic Hecke character \(\xi : \text{GL}_1(\mathbb{A}) \rightarrow \mathbb{C}^* \). Then \(\xi = | \cdot |^m \cdot \xi^o \), where \(m \in \mathbb{Z} \) and \(\xi^o \) is a character of finite order. For \(\varphi \in V \), we define a new cuspidal automorphic form \(\varphi_\xi : G(\mathbb{A}) \rightarrow \mathbb{C} \) by \(\varphi_\xi(g) := \varphi(g) \cdot \xi(\mu(g)) \) and we denote by \((\pi_\xi, V_\xi)\) the corresponding cuspidal automorphic representation of \(G(\mathbb{A}) \). Next, let \(\nu \) be an algebraic character of \(D(\mathbb{A}) \) as in Sect. 3.2. We will consider the new algebraic character \(\nu_\xi \) of \(D(\mathbb{A}) \) defined by \(\nu_\xi(d) := \nu(d) \cdot \xi(\mu(d)) \).

Lemma 4.1.1. If \((\pi, V)\) has a \((\nu, \beta)\)-Bessel model, then \((\pi_\xi, V_\xi)\) has a \((\nu_\xi, \beta)\)-Bessel model. If \((\pi, V)\) is \((p, K_\infty)\)-cohomological with respect to \(V_\tau \), then \((\pi_\xi, V_\xi)\) is \((p, K_\infty)\)-cohomological with respect to \(V_{\tau(m)} := V_\tau \otimes \mu^{-m} \).

Proof. A direct calculation shows that \(B_{\varphi_\xi}(g) = B_{\varphi}(g) \cdot \xi(\mu(g)) \) from which the first claim follows. The second claim is obvious.

Corollary 4.1.2. If \((\pi, V)\) satisfies the assumptions (1) - (3) of Sect. 3.3 with respect to \((\nu, \beta)\), the degree \(q \) and the coefficient module \(V_\tau \), then \((\pi_\xi, V_\xi)\) satisfies the assumptions (1) - (3) of Sect. 3.3 with respect to \((\nu_\xi, \beta)\), the same degree \(q \) and the coefficient module \(V_{\tau(m)} \).

Proof. This is clear by Lemma 4.1.1 and the semisimplicity of the \(G(\mathbb{A})\)-modules \(\tilde{H}^q([\mathcal{V}_\tau]) \) and \(\tilde{H}^q([\mathcal{V}_{\tau(m)}]) \).

Recall the (fixed) lowest weight vector \(\phi_{\pi,\infty} \in \wedge^q p_+ \otimes V^* \) from Sect. 3.3 above. The identity map defines an isomorphism of vector spaces \(1_\xi : \wedge^q p_+ \otimes V_\tau^* \xrightarrow{} \wedge^q p_+ \otimes V_{\tau(m)}^* \), mapping lowest weight vectors onto lowest weight vectors, and we denote by \(\phi_{\pi_\xi,\infty} = 1_\xi(\phi_{\pi,\infty}) \) the image of \(\phi_{\pi,\infty} \) in \(\wedge^q p_+ \otimes V_{\tau(m)}^* \). Clearly, the assignment \(\varphi \mapsto \varphi_\xi \) defines an isomorphism of vector spaces \(V \xrightarrow{} V_\xi \), whence we finally obtain a linear bijection \(\mathcal{H}_\xi : \text{Hom}_{K_\infty}(\wedge^q p_+ \otimes V^*, V) \xrightarrow{} \text{Hom}_{K_\infty}(\wedge^q p_+ \otimes V_{\tau(m)}^*, V_\xi) \).

Similarly, \(B_\varphi \mapsto B_{\varphi_\xi} \) defines a linear isomorphism of the finite part of the corresponding Bessel models \(\mathcal{B}_\xi : B^{\nu_f}_{\beta}(\pi_f) \xrightarrow{} B^{\nu_f}_{\beta}(\pi_{\xi,f}) \) by restriction. Putting all of these maps into
one diagram and observing that \(B_{\varphi_\xi}(g) = B_\varphi(g) : \xi(\mu(g)) \), we finally obtain a commutative square of linear bijections

\[
\begin{array}{ccc}
B_\beta^{\nu_f}(\pi_f) & \xrightarrow{(B^\phi_{g,\infty})^{-1}} & \tilde{H}^q([\mathcal{Y}_{\tau}](\pi_f) \\
\varphi_\xi & & \varphi_\xi \\
B_\beta^{\nu_f}(\pi_{\xi,f}) & \xrightarrow{(B^\phi_{g,\xi\infty})^{-1}} & \tilde{H}^q([\mathcal{Y}_{\tau(m)}](\pi_{\xi,f})
\end{array}
\]

where the horizontal arrows are given by the Bessel-map \(h \mapsto B_{\mathcal{H}(\phi_{g,\infty})} \) (resp. \(h' \mapsto B_{\mathcal{H}'(\phi_{g,\xi\infty})} \)).

Definition 4.1.3. Define \(\mathcal{C}_\xi := \Psi_{\pi_\xi}^{-1} \circ \mathcal{H}_\xi \circ \Psi_\pi \).

The following proposition is a direct consequence of our discussion above:

Proposition 4.1.4. There is a commutative square of linear isomorphisms,

\[
\begin{array}{ccc}
B_\beta^{\nu_f}(\pi_f) & \xrightarrow{(B^\phi_{g,\infty})^{-1}} & \tilde{H}^q([\mathcal{Y}_{\tau}](\pi_f) \\
\varphi_\xi & & \varphi_\xi \\
B_\beta^{\nu_f}(\pi_{\xi,f}) & \xrightarrow{(B^\phi_{g,\xi\infty})^{-1}} & \tilde{H}^q([\mathcal{Y}_{\tau(m)}](\pi_{\xi,f})
\end{array}
\]

where \(B^\phi_{g,\infty} \) and \(B^\phi_{g,\xi\infty} \) are the unnormalized period-maps from 3.3.10.

4.2. Rationality of \(\mathcal{C}_\xi \)

A cohomology class \(v \in H^q([\mathcal{Y}_{\tau}]^{\text{sub}}) \) is represented by a smooth map \(\varphi : G(\mathbb{A}) \rightarrow V^q_\mathbb{A} \) which satisfies various conditions. The element \(\mathcal{C}_\xi(v) \) is then represented by the smooth map \(\varphi_\xi : G(\mathbb{A}) \rightarrow V^q_{\tau(m)} \), where \(\varphi_\xi(g) := \varphi(g)\xi(\mu(g)) \). In this subsection we will show that if \(v \) is \(L \)-rational, \(L \) any subfield of \(\mathbb{C} \) containing \(E/\mathbb{Q}(\xi_f) \), then so is \(\mathcal{C}_\xi(v) \). The crucial point to be checked here is, that the “purely transcendental” definition of \(\mathcal{C}_\xi \), based on a manipulation of smooth forms, is compatible with the given rational structures on cohomology, which are defined by reference to much simpler, algebraic properties of coherent sheaf cohomology.

Recall the space \(X \) from §2.2 and let \(D \) be a connected component of \(X \). Let \(G^+_\infty \subset G_\infty \) denote the stabilizer of \(D \) and for any subgroup \(S \subset G_\infty \) define \(S^+ = S \cap G^+ \), in particular, we may take \(S = G(F) \). The group \(G^s_\infty \) acts transitively on \(D \). Let \(K \subset G(\mathbb{A}_f) \) be an open compact subgroup. Let \(\{ \gamma \} \) be a set of coset representatives for \(G(F)^+ \setminus G(\mathbb{A}_f)/K \). Recall that (see equations (1.2.1) in [MHar90])

\[
K M = M(G, X)_\zeta / K = \prod_{\{ \gamma \}} M_{\Gamma(\gamma)}
\]

where \(\Gamma(\gamma) = G(F)^+ \cap \gamma K \gamma^{-1} \) and \(M_{\Gamma(\gamma)} := \Gamma(\gamma) \setminus D \). For \(\gamma \in G(\mathbb{A}_f) \) as above, let \(\Gamma(\gamma) \gamma K \subset G(\mathbb{A}_f) \) denote the subset consisting of elements of the type \(g^\gamma k \) with \(g \in \Gamma(\gamma) \) and \(k \in K \). Note that \(\Gamma(\gamma) \) acts on \(D \times \Gamma(\gamma) \gamma K \) diagonally. With this action one checks easily that

\[
(4.2.1) \quad \Gamma(\gamma) \setminus D = \Gamma(\gamma) \setminus (G^s_\infty/K^s_\infty \times \Gamma(\gamma) \gamma K) / K.
\]
Choose a collection of rational boundary components Σ appropriately so that $K M_{\Sigma}$ is a smooth projective variety and $K M_{\Sigma} \setminus K M$ is a divisor with normal crossings, all defined over a field L as in [MHar90, 1.2.3.3]. Then one has (see equation (1.2.4.1) in [MHar90])

$$K M_{\Sigma} = \prod_{\{\gamma\}} M_{\Gamma(\gamma), \Sigma(\gamma)}. \nonumber$$

So, [MHar90, Prop. 2.4] yields

$$H^q([\mathcal{Y}_\tau]_{\text{sub}})_L^K = H^q(\prod_{\{\gamma\}} M_{\Gamma(\gamma), \Sigma(\gamma)}, [\mathcal{Y}_\tau]_{\text{sub}})_L = \left(\prod_{\{\gamma\}} H^q(M_{\Gamma(\gamma), \Sigma(\gamma)}, [\mathcal{Y}_\tau]_{\text{sub}}) \right)_L. \tag{4.2.2} \nonumber$$

Proposition 4.2.3. Let L be any subfield of \mathbb{C} containing $E^q(\xi_f)$ and $v \in H^q([\mathcal{Y}_\tau])_{f}^{\pi_f}$. Then $\mathcal{C}_\xi(v) \in H^q([\mathcal{Y}_\tau])_{f}^{\pi_f}$.

Proof. Let $v \in H^q([\mathcal{Y}_\tau])_{f}^{\pi_f}$. Then there is an open compact subgroup $K \subset G(\mathbb{A}_f)$ such that v is invariant under K and, making K even smaller, such that $\xi_f(\mu(K)) = 1$ is trivial. According to the decomposition (4.2.2), we may write $v = (v_\gamma) \in \left(\prod_{\{\gamma\}} H^q(M_{\Gamma(\gamma), \Sigma(\gamma)}, [\mathcal{Y}_\tau]_{\text{sub}}) \right)_L$. The class $v \in H^q([\mathcal{Y}_\tau]_{\text{sub}})_L^K$ is represented by a smooth map

$$\varphi : G(\mathbb{A}) \to V^q_\gamma.$$

From equation (4.2.1) it follows that the restriction of φ to the subset $G^{ss}_{\infty} \times \Gamma(\gamma) \gamma K$ determines the smooth section of the smooth vector bundle on $M_{\Gamma(\gamma), \Sigma(\gamma)}$ associated to the representation V^q_γ of K_∞, which represents the class $v_\gamma \in H^q(M_{\Gamma(\gamma), \Sigma(\gamma)}, [\mathcal{Y}_\tau]_{\text{sub}})$. Consider the new function

$$\varphi_\xi : G(\mathbb{A}) \to V^q_{\tau(m)}$$

defined by $\varphi_\xi(g) := \varphi(g) \xi(\mu(g))$. It represents the class $\mathcal{C}_\xi(v)$. On the subset $G^{ss}_{\infty} \times \Gamma(\gamma) \gamma K$ we have

$$\varphi_\xi(g) = \varphi(g) \xi(\mu(g)) = \varphi(g) \xi_f(\mu(\gamma)),$$

since $\mu = 1$ on G^{ss}_{∞} and $\xi_f(\mu(K)) = \xi_f(\mu(\Gamma(\gamma))) = 1$.

Twisting by $\xi(\mu(\cdot))$ on differential forms defines a complex-linear map

$$\begin{align*}
H^q([\mathcal{Y}_\tau]_{\text{sub}})_L^K & \longrightarrow H^q([\mathcal{Y}_\tau]_{\text{sub}})_L^K \\
\prod_{\{\gamma\}} H^q(M_{\Gamma(\gamma), \Sigma(\gamma)}, [\mathcal{Y}_\tau]_{\text{sub}}) & \longrightarrow \prod_{\{\gamma\}} H^q(M_{\Gamma(\gamma), \Sigma(\gamma)}, [\mathcal{Y}_\tau]_{\text{sub}})
\end{align*}$$

It is easy to see that the bundles $[\mathcal{Y}_\tau]$ and $[\mathcal{Y}_\tau(m)]$ on the space $M_{\Gamma(\gamma)}$ are identical. For example, in the notation of [MHar90, §2.1], both these are already identical on $G(\mathbb{C})/\mathcal{P}_h(\mathbb{C})$ as this is identical with $G^{ss}(\mathbb{C})/G^{ss}(\mathbb{C}) \cap \mathcal{P}_h(\mathbb{C})$, and both the representations τ and $\tau(m)$ agree on $G^{ss}(\mathbb{C}) \cap \mathcal{P}_h(\mathbb{C})$. Consequently, the subcanonical extensions $[\mathcal{Y}_\tau]_{\text{sub}}$ and $[\mathcal{Y}_\tau(m)]_{\text{sub}}$ to the space $M_{\Gamma(\gamma), \Sigma(\gamma)}$ are identical. The computation in the preceding paragraph shows that the horizontal arrow takes the vector v_γ to $\xi_f(\mu(\gamma))v_\gamma$. Thus, since $\mathbb{Q}(\xi_f) = \mathbb{Q}(\text{Im}(\xi_f)) \subseteq L$, the effect of this map on cohomology is rational over the field L. \hfill \square
Remark 4.2.4. We would like to point out that the argument of the above proposition can be adopted to give an alternative proof of [Rag-Sha08, Prop. 4.5], (which is based on a rather involved argument) which is a key ingredient of their main theorem [Rag-Sha08, Thm. 4.1], as well as of [Gro-Rag14, Thm. 5.2.1].

4.3. Period relations. Before we prove the main result of this paper, we need one last ingredient. In accordance with the above notation, let \(L := E'/\mathbb{Q}(\nu_f, \xi_f) \), \(\sigma \in \text{Aut}(\mathbb{C}/L) \) and consider the following (not necessarily commutative) square

\[
\begin{array}{c}
\mathcal{B}_\beta^{\nu_f}(\pi_f) \xrightarrow{\mathcal{B}_\xi} \mathcal{B}_\beta^{\nu_{\xi_f}}(\pi_{\xi_f}) \\
\downarrow \hat{\sigma} \quad \downarrow \hat{\sigma}
\end{array}
\]

By a direct calculation one easily checks that

\[
\hat{\sigma} \circ \mathcal{B}_\xi = \xi_f(\iota_{\sigma}^{-1}) \cdot (\mathcal{B}_\xi \circ \hat{\sigma}),
\]

(where we used that \(\sigma \) fixes \(\xi_f \)). Moreover, our definition of the Gauß-sum \(\mathcal{G}(\xi_f) \) of \(\xi_f \), \S 2.1.3, involving our concretely chosen additive character \(\psi \), \S 2.1.2, implies by a simple calculation (see [Rag-Sha07, Lem. 2.3.4], or [Gro-Har16, Proof of Thm. 3.9, p. 24]) that

\[
\xi_f(\iota_{\sigma}^{-1}) = \frac{\mathcal{G}(\xi_f)}{\sigma(\mathcal{G}(\xi_f))}.
\]

This yields the following result about the algebraic behaviour of \(\mathcal{B}_\xi \):

Proposition 4.3.2. For all algebraic Hecke characters \(\xi \) of \(\text{GL}_1(\mathbb{A}) \) and for all \(\sigma \in \text{Aut}(\mathbb{C}/L) \),

\[
\hat{\sigma} \circ \mathcal{B}_\xi = \frac{\mathcal{G}(\xi_f)}{\sigma(\mathcal{G}(\xi_f))} \cdot (\mathcal{B}_\xi \circ \hat{\sigma}).
\]

We are now ready to prove

Theorem 4.3.3 (Period relations for Bessel periods). Let \((\pi, V)\) be a cuspidal automorphic representation of \(G(\mathbb{A}) \) which satisfies the assumptions (1)-(3) of Sect. 3.3. Let \(\xi \) be any algebraic Hecke character of \(\text{GL}_1(\mathbb{A}) \). Then the periods \(p(\pi, \phi_{\pi, \infty}) \) and \(p(\pi_\xi, \phi_{\pi_\xi, \infty}) \) satisfy the following relation

\[
p(\pi_\xi, \phi_{\pi_\xi, \infty}) \sim (E'/\mathbb{Q}(\nu_f, \xi_f))^* \cdot p(\pi, \phi_{\pi, \infty}) \cdot \mathcal{G}(\xi_f),
\]

where “\(\sim (E'/\mathbb{Q}(\nu_f, \xi_f))^* \)” means up to multiplication by a non-zero number in \(E'/\mathbb{Q}(\nu_f, \xi_f) \).

Proof. Start from a non-zero vector \(v^0 \in \mathcal{H}^q([Y_{\tau}])(\pi_f)_{E'}. \) From Prop. 3.3.12 it follows that \(B_{\phi_{\pi, \infty}}(p(\pi, \phi_{\pi, \infty})v^0) \in \mathcal{B}_\beta^{\nu_f}(\pi_f) \) is invariant under \(\hat{\sigma} \) for all \(\sigma \in \text{Aut}(\mathbb{C}/E'/\mathbb{Q}(\nu_f)) \). We get from Prop. 4.3.2 that \(\mathcal{G}(\xi_f) \mathcal{B}_\xi(B_{\phi_{\pi, \infty}}(p(\pi, \phi_{\pi, \infty})v^0)) \) is invariant under \(\hat{\sigma} \) for all \(\sigma \in \text{Aut}(\mathbb{C}/E'/\mathbb{Q}(\nu_f, \xi_f)) \), so by the bijectivity and linearity of \(B_{\phi_{\pi, \infty}}, \mathcal{B}_\xi \) and \(B_{\phi_{\pi_\xi, \infty}} \) and Prop. 3.3.12 again,

\[
0 \neq \frac{\mathcal{G}(\xi_f)p(\pi, \phi_{\pi, \infty})}{p(\pi_\xi, \phi_{\pi_\xi, \infty})}(B_{\phi_{\pi_\xi, \infty}}^{-1}(\mathcal{B}_\xi(B_{\phi_{\pi, \infty}}(v^0)))) \in \mathcal{H}^q([Y_{\tau}])(\pi_\xi, f)_{E'/\mathbb{Q}(\nu_f, \xi_f)}.
\]

To complete the proof of the theorem it suffices to show that

\[
(B_{\phi_{\pi_\xi, \infty}}^{-1}(\mathcal{B}_\xi(B_{\phi_{\pi, \infty}}(v^0)))) \in \mathcal{H}^q([Y_{\tau}])(\pi_\xi, f)_{E'/\mathbb{Q}(\nu_f, \xi_f)}.
\]
But this is clear since by definition
\[(B^{\phi_{\pi, \infty}})^{-1}(B^{\theta_{\pi, \infty}}(v^0))) = \mathcal{G}_\xi(v^0)\]
and from Prop. 4.2.3 it follows that \(\mathcal{G}_\xi(v^0)\) is in \(\tilde{H}^q([\nu_r])(\pi_{\xi, f})_{E^\nu}(\nu_f, \xi_f)\).

\[\square\]

Remark 4.3.4 (Compatibility with lifting to \(GL_4(\mathbb{A}_F)\)). Assume that \(\pi\) from Thm. 4.3.3 admits a Langlands functorial lifting to a cuspidal automorphic representation \(Lift(\pi) =: \Pi\) on \(GL_4(\mathbb{A}_F)\) through the tautological representation of the attached dual groups
\[L^GSp^2_4 = GSp_4(\mathbb{C}) \hookrightarrow LGL^2_4 = GL_4(\mathbb{C}).\]

(For generic representations \(\pi\), for instance, such a lift – known to Jacquet, Piatetski-Shapiro and Shalika for quite some time – together with a criterion of cuspidality of \(\Pi\) has finally been established by Asgari–Shahidi in [Asg-Sha06].) Inspecting the Satake parameters of local representations \(\pi_v\) at unramified places \(v \notin S_{\infty}\), cf. e.g., [Asg-Sha06], (1) & (2), one easily finds the global identity
\[Lift(\pi_\xi) = \Pi \otimes \xi(\det)\]
for all algebraic Hecke characters \(\xi\). We remark that since \(\pi_\xi = \pi \otimes \xi(\mu)\) by definition, and \(\mu^2 = \det\), this incorporates the following necessary relation of central characters
\[(4.3.5) \quad \omega^2_{\pi_\xi} = (\omega_{\pi} \cdot \xi(\mu))^2 = \omega_{\Pi} \cdot \xi(\det) = \omega_{\Pi \otimes \xi(\det)} = \omega_{Lift(\pi_\xi)}\]
as demanded by [Asg-Sha06], Thm. 2.4.

In view of Prop. 3.1.4 of [Gro-Rag14], \(Lift(\pi) = \Pi\) has a \((\omega_{\pi}, \psi)\)-Shalika model and more generally all its twists \(Lift(\pi_\xi) = \Pi \otimes \xi(\det)\) have a \((\omega_{\pi_\xi}, \psi)\)-Shalika model. Due to (4.3.5) this is consistent with Lem. 5.1.1, ibidem.

As a consequence of this fundamental match, for those \(\pi\), which are even \((g_{\infty}, K_{\infty})\)-cohomological (a condition which implies that \(\pi\) is \((p_h, K_{\infty})\)-cohomological, see Thm. A.2.1 below, and that its lift \(Lift(\pi) = \Pi\) is \((g_{4}(\mathbb{R})^d, (\mathbb{R}^+SO(4))^d)\)-cohomological), the results of [Gro-Rag14] are compatible with the situation at hand: Indeed, writing
\[\xi^2 = (\xi(\det))^{1/2} = (\omega_{\Pi \otimes \xi(\det)} \cdot \omega_{\Pi}^{-1})^{1/2} = (\omega_{Lift(\pi_\xi)} \cdot \omega_{Lift(\pi)}^{-1})^{1/2}\]
and analogously
\[\xi = (\xi^2)^{1/2} = (\xi(\mu))^{1/2} = (\omega_{\pi_\xi} \cdot \omega_{\pi}^{-1})^{1/2}\]
the main result on period relations for Shalika periods, see [Gro-Rag14], Thm. 5.2.1, and our main result on period relations of Bessel periods, Thm. 4.3.3 above, compare to each other as two \((i)\) & \((ii)\) compatible results on twisting the respective period with the Gauß-sum of the (well-defined) square-root of the quotient of central characters:

\[\begin{align*}
(i) \quad & \omega^{\xi}({Lift(\pi_\xi)_f}) \sim_Q(Lift(\pi_\xi)_{\omega_{\pi}, \xi})^* \mathcal{G}((\omega_{Lift(\pi_\xi)} \cdot \omega_{Lift(\pi)}^{-1})^{1/2}) \omega^{\xi}(Lift(\pi)_f) \\
(ii) \quad & p(\pi_\xi, \phi_{\pi_\xi, \infty}) \sim (E^\nu(\omega_{\pi, \xi}))^* \mathcal{G}((\omega_{\pi_\xi} \cdot \omega_{\pi}^{-1})^{1/2}) p(\pi, \phi_{\pi, \infty}).
\end{align*}\]
APPENDIX A. General aspects in the automorphic theory of the cohomology of Shimura varieties

A.1. Two relative Lie algebra cohomology theories related to Shimura varieties.

In this appendix, we let \((G, X)\) be the datum defining a Shimura variety in the sense made precise in Harris, [MHar85] 1.1. For the sake of completeness, we recall that this means that \(G\) is a connected reductive linear algebraic group over \(\mathbb{Q}\) and \(X\) is a \(G(\mathbb{R})\)-conjugacy class of homomorphisms \(h : R_{C/\mathbb{R}}(GL_1) \rightarrow G \times \mathbb{Q} \mathbb{R}\), such that

1. The Hodge structure on the Lie algebra \(\mathfrak{g}_{\mathbb{Q}}\) of \(G\) given by \(Ad \circ h\) is of type \((0, 0) + (1, -1) + (-1, 1)\).
2. The automorphism \(Ad(h)\) induces a Cartan involution on \(G^{ss}(\mathbb{R})\), \(G^{ss}\) being the derived group of \(G\). The \(\mathbb{R}\)-group \(G^{ss} \times \mathbb{Q} \mathbb{R}\) has no anisotropic factors over \(\mathbb{Q}\).
3. The weight map \(h \circ w : GL_1 \times \mathbb{Q} \mathbb{R} \rightarrow G \times \mathbb{Q} \mathbb{R}\), where \(w : GL_1 \times \mathbb{Q} \mathbb{R} \rightarrow R_{C/\mathbb{R}}(GL_1)\) is the canonical co-norm map, is defined over \(\mathbb{Q}\).
4. For a maximal \(\mathbb{Q}\)-split torus \(Z' \subset Z_G\), the quotient \(Z_G(\mathbb{R})/Z'(\mathbb{R})\) is compact.

With these assumptions, \(X\) is the finite disjoint union of Hermitian symmetric spaces of the form \(G^{ss}(\mathbb{R})^0/K^{ss}\), where \(K^{ss}\) is a maximal connected compact subgroup of \(G^{ss}(\mathbb{R})\). We let \(K\) be the centralizer of a fixed point \(h \in X\) in \(G(\mathbb{R})\). It contains the product of \(K^{ss}\) and \(Z_G(\mathbb{R})\). Let \(\mathfrak{t}\) be the Lie algebra of \(K\). It operates by the adjoint action on \(\mathfrak{g}_{\mathbb{C}}\) and we obtain a \(\mathfrak{t}\)-invariant decomposition

\[
\mathfrak{g}_{\mathbb{C}} = \mathfrak{p}_+ \oplus \mathfrak{t}_{\mathbb{C}} \oplus \mathfrak{p}_-.
\]

Here, \(\mathfrak{p}_-\) (resp. \(\mathfrak{p}_+\)) is the holomorphic (resp. anti-holomorphic) tangent space of \(X\) at \(h\).

We let

\[
\mathfrak{p}_h := \mathfrak{t}_{\mathbb{C}} \oplus \mathfrak{p}_+.
\]

This is a parabolic subalgebra of \(\mathfrak{g}_{\mathbb{C}}\) with Levi subalgebra \(\mathfrak{t}_{\mathbb{C}}\) and nilpotent, even abelian, radical \(\mathfrak{p}_+\). Observe that \(\mathfrak{p}_h\) lies somewhat “skew” to the real structure of \(\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \oplus i\mathfrak{g}\) as \(\mathfrak{p}_h \cap \mathfrak{g} = \mathfrak{t}\).

For us, a \(\mathfrak{g}\)-module \(V\), which is also a representation of \(K\), is called a \((\mathfrak{g}, K)\)-module, if it is a \((\mathfrak{g}^{ss}, K^{ss})\)-module in the sense of Borel-Wallach [Bor-Wal00], §0.2, by restriction. Mainly to set notation and for the sake of precision, we will now rapidly recall the definition of two relative Lie algebra cohomology theories.

The relative Lie algebra cohomology \(H^q(\mathfrak{g}, \mathfrak{t}, V)\) of \(V\) was defined in [Bor-Wal00] I, 1.2. In the same reference, in I, 5.1, also the \((\mathfrak{g}, K)\)-cohomology of \(V\) was defined. It is the cohomology \(H^q(\mathfrak{g}, K, V)\) of the complex

\[
C^q(\mathfrak{g}, K, V) := \text{Hom}_K(\Lambda^q(\mathfrak{g}_{\mathbb{C}}/\mathfrak{t}_{\mathbb{C}}), V) \cong \text{Hom}_K(\Lambda^q(\mathfrak{p}_+ \oplus \mathfrak{p}_-), V)
\]

\[
df(X_0, \ldots, X_q) := \sum_{i=0}^{q} (-1)^i X_i \cdot f(X_0, \ldots, \hat{X}_i, \ldots, X_q)
\]

\[
+ \sum_{i<j} (-1)^{i+j} f([X_i, X_j], X_0, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_q).
\]
If K is connected, then $H^0(\mathfrak{g}, \mathfrak{k}, V) = H^0(\mathfrak{g}, K, V)$. We recall that an irreducible representation V_λ of the real Lie group $G(\mathbb{R})$ on a finite-dimensional complex vector space is called \textit{algebraic}, if the (extended) action of the complex Lie group $G(\mathbb{C})$ on V_λ is a representation of the linear algebraic group $G \times_{\mathbb{Q}} \mathbb{C}$ over \mathbb{C}. Finally, we say that a (\mathfrak{g}, K)-module V is (\mathfrak{g}, K)-\textit{cohomological}, if there is an irreducible finite-dimensional algebraic $G(\mathbb{R})$-module V_λ such that $H^q(\mathfrak{g}, K, V \otimes V_\lambda) \neq 0$ for some degree q.

The (\mathfrak{p}_h, K)-cohomology of a (\mathfrak{g}, K)-module V is the cohomology of the complex

$$C^0(\mathfrak{p}_h, K, V) := \text{Hom}_K(\Lambda^0(\mathfrak{p}_h/\mathfrak{t}_C), V) \cong \text{Hom}_K(\Lambda^0\mathfrak{p}_+, V),$$

with df defined as above. Following [MHar90], we say that a (\mathfrak{g}, K)-module V is (\mathfrak{p}_h, K)-\textit{cohomological}, if there is an irreducible finite-dimensional K-module V_τ such that the space $H^q(\mathfrak{p}_h, K, V \otimes V_\tau) \neq 0$ for some degree q.

\subsection*{A.2. A general result on the relation of (\mathfrak{g}, K)-cohomology and (\mathfrak{p}_h, K)-cohomology.}

We denote by C_G (resp. C_K) the collection of all equivalence classes of irreducible algebraic representations of $G(\mathbb{R})$ (resp. irreducible finite-dimensional representations of K). We assume to have fixed a Cartan subalgebra \mathfrak{t}_C of \mathfrak{t}_C and a set of positive roots $\Delta^+(\mathfrak{t}_C, \mathfrak{t}_C)$. Because of (A.1.1), \mathfrak{t}_C is a Cartan subalgebra of \mathfrak{g}_C, too, and we assume that $\Delta^+(\mathfrak{g}_C, \mathfrak{t}_C)$ is a choice of positive roots for \mathfrak{g}_C with respect to \mathfrak{t}_C, extending the given choice $\Delta^+(\mathfrak{t}_C, \mathfrak{t}_C)$ for \mathfrak{t}_C. We assume that \mathfrak{p}_h is a standard parabolic subalgebra of \mathfrak{g}_C with respect to $\Delta^+(\mathfrak{g}_C, \mathfrak{t}_C)$, i.e., all roots in \mathfrak{p}_+ are positive (which also explains the notation). Clearly, $\mathfrak{p}_h := \mathfrak{t}_C \oplus \mathfrak{p}_-$ is the parabolic subalgebra of \mathfrak{g}_C with respect to $\Delta^+(\mathfrak{g}_C, \mathfrak{t}_C)$, which is opposite to \mathfrak{p}_h. If $V_\lambda \in C_G$, then V_λ is determined by its highest weight λ with respect to $\Delta^+(\mathfrak{g}_C, \mathfrak{t}_C)$. Similarly, if $V_\tau \in C_K$, then V_τ is determined by its highest weight τ with respect to $\Delta^+(\mathfrak{t}_C, \mathfrak{t}_C)$. Let $\rho := \frac{1}{2} \sum_{\alpha \in \Delta^+(\mathfrak{g}_C, \mathfrak{t}_C)} \alpha$ (resp. $\rho_\mathfrak{c} := \frac{1}{2} \sum_{\alpha \in \Delta^+(\mathfrak{t}_C, \mathfrak{t}_C)} \alpha$) be the half-sum of roots in $\Delta^+(\mathfrak{g}_C, \mathfrak{t}_C)$ (resp. $\Delta^+(\mathfrak{t}_C, \mathfrak{t}_C)$) and let W (respectively $W_\mathfrak{t}$) be the Weyl group of \mathfrak{g}_C (respectively \mathfrak{t}_C) with respect to \mathfrak{t}_C. Then, the infinitesimal characters χ_{V_λ} (resp. χ_{V_τ}) of V_λ (resp. V_τ) are determined by $\lambda + \rho$ (resp. $\tau + \rho_\mathfrak{c}$) up to the action of W (resp. $W_\mathfrak{t}$). We will use the notation $\chi_{V_\lambda} = \chi_{\lambda + \rho}$ and $\chi_{V_\tau} = \chi_{\tau + \rho_\mathfrak{c}}$. Recall that there is the obvious surjection

$$\xi : \text{Hom}(Z(\mathfrak{t}_C), \mathbb{C}) \to \text{Hom}(Z(\mathfrak{g}_C), \mathbb{C}),$$

cf. [MHar90], p. 31, mapping χ_λ onto $\xi(\chi_\lambda) = \chi_{\lambda + \rho_\mathfrak{c}}$. Here, $Z(\mathfrak{t}_C)$ (resp. $Z(\mathfrak{g}_C)$) denotes the centre of the universal enveloping algebra of \mathfrak{t}_C (resp. \mathfrak{g}_C) and $\rho_\mathfrak{c} = \rho - \rho_\mathfrak{c}$ is the half-sum of non-compact roots in $\Delta^+(\mathfrak{g}_C, \mathfrak{t}_C)$ (i.e., the roots appearing in \mathfrak{p}_+). This is the main result of our appendix:

\textbf{Theorem A.2.1.} Let V be an irreducible unitary (\mathfrak{g}, K)-module and let $V_\lambda \in C_G$. If V is (\mathfrak{g}, K)-cohomological with respect to V_λ in degree q, then V is (\mathfrak{p}_h, K)-cohomological in some degree $a \leq q$.

\textit{Proof.} Let V and V_λ be as in the statement of the proposition and assume that V is (\mathfrak{g}, K)-cohomological with respect to V_λ. Hence,

$$\text{Hom}_K(\Lambda^a(\mathfrak{p}_+ \oplus \mathfrak{p}_-), V \otimes V_\lambda) \neq 0$$
for some degree q. As
\[
\text{Hom}_K(\Lambda^q(p_+ \oplus p_-), V \otimes V_\lambda) \cong \bigoplus_{a+b=q} \text{Hom}_K(\Lambda^a p_+ \otimes \Lambda^b p_-, V \otimes V_\lambda),
\]
there are $0 \leq a, b \leq q$ such that $a + b = q$ and
\[
\text{Hom}_K(\Lambda^a p_+ \otimes \Lambda^b p_-, V \otimes V_\lambda) \cong \text{Hom}_K(\Lambda^a p_+, V \otimes (V_\lambda \otimes \Lambda^b p_-^*)) \neq 0.
\]
Observe that there is an isomorphism of K-representations $V_\lambda \otimes \Lambda^b p_-^* \cong H^b(p_-, V_\lambda)$. We may hence use Kostant’s description of the K-module $H^b(p_-, V_\lambda)$: To this end, we identify p_- as the nilpotent radical of the parabolic subalgebra $\mathfrak{p}_h \subset \mathfrak{g}_C$ opposite to \mathfrak{p}_h. Let W^p be the set of Weyl group elements w for which $w^{-1}(\alpha) \in \Delta^+(\mathfrak{g}_C, t_C)$ for all $\alpha \in \Delta^+(t_C, t_C)$. Going over to the opposite ordering of roots, we obtain the set of Kostant representatives for \mathfrak{p}_h as $w_G W^p = w_G W^p$. Here, w_G denotes the longest element of W. Therefore, [Kos61], Thm. 5.14, implies that, there is an isomorphism of K-modules
\[
H^b(p_-, \lambda) \cong \bigoplus_{w \in W^p} V_w(\ell(w)(\lambda) + \rho),
\]
where w_c is the longest element in the Weyl group W_t of K, τ the half-sum of positive roots with respect to the opposite ordering in $\Delta(\mathfrak{g}_C, t_C)$ (whence equal to $\tau = w_G(\rho) = -\rho$) and V_τ denotes the irreducible K-representation of highest weight τ with respect to $\Delta^+(t_C, t_C)$. A simple calculation using [Bor-Wal00, V, 1.4] hence implies that as K-modules
\[
(A.2.2) \quad H^b(p_-, \lambda) \cong \bigoplus_{w \in W^p} V_w(\lambda + \rho + w_c(\rho)).
\]
Abbreviate $b' := \text{dim}_K(p_-) - b$, $\tau_w := w(\lambda + \rho) + w_c(\rho)$ and let V_{τ_w} be the corresponding irreducible K-representation appearing in (A.2.2). Hence, by what we have seen above, we have proved that there are $0 \leq a, b \leq q$ such that $a + b = q$ and
\[
0 \neq \text{Hom}_K(\Lambda^a p_+, V \otimes (V_\lambda \otimes \Lambda^b p_-^*)) \cong \bigoplus_{w \in W^p} \text{Hom}_K(\Lambda^a p_+, V \otimes V_{\tau_w}).
\]
Hence, there is a $w \in W^p$ of length $\ell(w) = b'$, such that
\[
\text{Hom}_K(\Lambda^a p_+, V \otimes V_{\tau_w}) \neq 0.
\]
Fix such a Kostant representative $w \in W^p$. The infinitesimal character of the contragredient $V_{\tau_w}^\vee$ is given by
\[
\chi V_{\tau_w}^\vee = \chi - w_c(\tau_w) + \rho_c = \chi - w_c w(\lambda + \rho) - \rho + \rho_c = \chi - w_c w(\lambda + \rho) - \rho_n,
\]
and hence maps by the surjection ξ onto the infinitesimal character of the contragredient of the algebraic $G(\mathbb{R})$-representation V_λ^\vee:
\[
(A.2.3) \quad \xi(\chi V_{\tau_w}^\vee) = \chi(-w_c w(\lambda + \rho) - \rho_n + \rho_c) = \chi - w_c w(\lambda + \rho) = \chi - \lambda - \rho = \chi V_\lambda^\vee.
\]
Let C_θ be the Casimir operator in $Z(\mathfrak{g}_C)$. Then, as by assumption V is (\mathfrak{g}, K)-cohomological with respect to V_λ, the infinitesimal character χ_V of V and the infinitesimal character χ_{V_λ}
of V^λ_τ agree on G as a consequence of [Bor-Wal00, I, Thm. 5.3.(ii)]. In particular, (A.2.3) implies that

$$\chi_V(G) = \xi(\chi_{V^\lambda_\tau}(G)).$$

The analogue of Kuga’s formula for (p_h, K)-cohomology, established as Thm. 4.1 in [Oka-Oze67] (see also [MHar90, Prop. 4.4.3]), hence implies verbatim as in the proof of [Bor-Wal00, II, Prop. 3.1.(b)] that

$$\text{Hom}_K(\Lambda^a p_+, V \otimes V^\lambda_\tau) = H^a(p_h, K, V \otimes V^\lambda_\tau).$$

So, by our above discussion, we finally obtain

$$H^a(p_h, K, V \otimes V^\lambda_\tau) \neq 0.$$

Thus, V is (p_h, K)-cohomological in degree $a \leq q$ with respect to some irreducible K-summand V^λ_τ of $V \otimes \Lambda^b p^*_\tau$. Q.E.D.

We conclude this appendix by the following

Corollary A.2.4. Let V be an irreducible unitary (\mathfrak{g}, K)-module and let $V^\lambda_\tau \subset G$. The degrees q, where V^λ_τ is (\mathfrak{g}, K)-cohomological with respect to V^λ_τ, are all of the same parity.

Proof. Using the Künneth rule, [Bor-Wal00] I.1.3, and [Vog-Zuc84], Thm. 5.5, it is enough to show this for the trivial (\mathfrak{g}, K)-module $V = 1$ and the trivial coefficient system $V^\lambda_\tau = \mathbb{C}$ of $G(\mathbb{R})$. It is clear that $V = 1$ has non-trivial (\mathfrak{g}, K)-cohomology with respect to $V^\lambda_\tau = \mathbb{C}$ in degree $q = 0$. Hence, we have to show that all degrees q, where $H^q(\mathfrak{g}, K, 1 \otimes \mathbb{C}) \neq 0$, are even. Let q be any such degree. Then, we have seen in the proof of Prop. A.2.1, that there are a, b such that $q = a + b$ and

$$\text{Hom}_K(\Lambda^a p_+, \Lambda^b p^*_\tau) \neq 0.$$

In other words, the K-representations $\Lambda^a p_+$ and $\Lambda^b p^*_\tau \cong \Lambda^b p_+$ share an irreducible K-type. For any r, we have

$$\Lambda^r p_+ \cong \bigoplus_{i_1, \ldots, i_r} g_{\alpha_{i_1}, \ldots, \alpha_{i_r}}^{i_1, \ldots, i_r},$$

where $g_{\alpha_{i_1}, \ldots, \alpha_{i_r}}^{i_1, \ldots, i_r}$ is the one-dimensional root eigenspace of g_C of the non-compact, positive root α_{i_1}. Hence, for $\Lambda^a p_+$ and $\Lambda^b p_+$ to have an irreducible K-type in common, we have to have $a = b$, whence, $q = 2a$ is even as predicted.

References

Harald Grobner: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria.
E-mail address: harald.grobner@univie.ac.at

Ronnie Sebastian: Department of Mathematics, Indian Institute of Technology, Powai, Mumbai-400076, India.
E-mail address: ronnie@math.iitb.ac.in