Exercises for the "PS Advanced Topics in global Number Theory" – Session on the 24th of April

Recall that a function $\psi : (a, b) \to \mathbb{R}$ on an open interval $-\infty \le a < b \le \infty$ is called *convex*, if it satisfies the inequality

$$\psi((1-\lambda)x + \lambda y) \le (1-\lambda)\psi(x) + \lambda\psi(y)$$

for all $x, y \in (a, b)$ and $0 \le \lambda \le 1$.

Exc. 21) Show that a differentiable function is convex, if and only if a < s < t < b implies $\psi'(s) \le \psi'(t)$ and deduce that the exponential $\psi(x) = e^x$ is convex on $\mathbb{R} = (-\infty, \infty)$.

Exc. 22) Is every convex function continuous? If so, prove it. If not, provide a counterexample.

Exc. 23) Let *X* be a measured space with positive measure $d\mu$. Assume that $\int_X d\mu = 1$. i.e., *X* has volume equal to 1 with respect to $d\mu$. Show that, if $f \in \mathcal{L}^1(X)$ is real-valued, such that $f(X) \subseteq (a, b)$ for an open interval $-\infty \leq a < b \leq \infty$, and if $\psi : (a, b) \to \mathbb{C}$ is a convex function, then $\psi \left(\int_X f(x) d\mu \right) \leq \int_X \psi(f(x)) d\mu$.

Exc. 24) Person A claims: " $(\mathbb{R}, +)$ and $(\mathbb{R}^2, +)$ are isomorphic as additive, abstract groups, but not as topological groups."

Person B contradicts: " $If(\mathbb{R}, +)$ and $(\mathbb{R}^2, +)$ were isomorphic as additive, abstract groups, then they would also be isomorphic as real vector spaces, hence this is wrong. But they are homeomorphic, since there are continuous space-filling curves."

Who (if any) of the two persons is right? And why?

Hope, you will enjoy these exercises!