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1. Introduction

It has been one of the most exciting and challenging tasks for humanity to understand the
nature of the Universe. Modern astronomy revealed us the existence of myriad of Galaxies
and that each of them are comprised of billions of stars. Our chronological perception
of the Universe depends crucially on the history of Galaxies and thus on the evolution
and age of stars. Moreover, the vast progress in modern astrophysics has led us to the
common belief that the synthesis of almost all chemical elements is supposed to take place
inside the stars. We may therefore indeed call ourself ’Children of the Universe’ as it is
mentioned in the beautiful poem Desiderata1 and which has been set to music by many
composers. Furthermore, the study of stellar structure and evolution will provide us with
a deeper insight into the physical properties of the matter prevailing in stars by comparing
theoretical models with observations. However, stellar models are not well constrained
by the usual observational quantities such as apparent brightness and surface values of
gravity, temperature and composition. In particular, the present state of stellar modelling
suggests that there is still an uncertainty of a factor of at least 2 in the rate of heavy
element production, for example.

To obtain a better understanding of the physical processes in stellar interiors we need
additional observational informations about the inner structure of stars at different stages
of evolution. Interestingly, in the nineteenth century, Auguste Comte2 argued that hu-
manity would never gain the knowledge of the internal structure of the stars. Because
they are so far beyond our earthly grasp, these celestial worlds would forever remain un-
fathomable and mysterious. In spite of this strong pronouncement, stars with periodically
varying luminosity, which were already discovered in the sixteenth century3, have inspired
astronomers to investigate this phenomena in more detail; this has led to a relatively small,
but highly important, area of modern stellar astrophysics: the study of pulsating stars.
At the beginning of this century, astronomers have been able to understand the observed
variations in such stars, the so called classical pulsating variables, in terms of periodic
expansions and contractions of the stellar matter itself and that the observed pulsation
period corresponds to the fundamental radial mode. Moreover, the pulsation period can
be defined by means of the basic stellar parameters and essentially provides an estimate
of the star’s mean density, an intrinsic property, which may not have been obtained from
the usual observational quantities. Some of those classical pulsating variables, such as the
double-mode Cepheids, are pulsating in two different modes, and then the stellar mass can
be determined as one more item of information from the pulsations in addition to the mean
density. Thus the amount of information derived from the pulsation increases with the
observed pulsating modes in the star. Obviously, the observed amplitudes of these classical
pulsating variables are large, a property which has led to their early detection. With the
rapid progress in observation techniques, low amplitude pulsations were discovered in the
Sun in the early sixties and were identified, a few years later, as global non-radial oscil-
lations with high spherical harmonic degree l and with many thousands of periods (this

1 “...you are a child of the Universe, no less than the trees and the stars...”;
the text was found in the Church of St. Paul in Baltimore in 1692.

2 French philosopher (1798-1857), from his notes about Cours de philosophie positive (1830-1842).
3 the Mira oCeti in 1596 by Fabricius (Ledoux & Walraven 1958)



2 1. Introduction

particular new discipline in astrophysics has been given the name helioseismology). The
richness of non-radial modes compared with radial pulsation has made it possible to mea-
sure properties of the solar interior with unprecedent detail providing an excellent check of
the theory of solar structure and evolution. Since the Sun represents only one particular
star with a relatively simple structure, the possibility of a seismological approach to stars
in general is a very powerful potential tool to obtain similar information about the internal
structure of other stars and represents the new field of asteroseismology.

In addition to the observed frequencies, measurements of amplitudes, line widths (or
damping rates) and phases between various types of oscillations provide important infor-
mation about the underlying mechanism responsible for the excitation of the observed
pulsations. The excitation mechanisms for various types of pulsating stars are of different
physical nature. Solar-type stars and red giants, for example, exhibit very huge convec-
tively unstable surface layers. These layers are believed to be responsible for driving the
pulsation to the comparatively small amplitudes in the very broad frequency-domain, as
observed in the Sun.

It is the main subject of this thesis to investigate the properties of solar-like oscillations.
In particular the theoretical estimates of damping rates and pulsation amplitudes of main-
sequence stars with masses of (0.9 − 2.0)M� could aid the selection process of solar-type
stars to observe. Moreover, if one day unambiguous amplitude measurements of solar-
like oscillations in other stars will be available, the data may help constrain and improve
prescriptions for convection. Of particular interest will be a better understanding of the
physics describing the interaction between pulsation with the turbulent velocity field as
considered in the present computations by means of a non-local, time-dependent mixing-
length theory.

1.1. Overview

In the following I shall give a brief overview of the fundamental mechanisms of stability
relevant for the star’s equilibrium state and the basic properties of stellar pulsations. As
important, however, is the mechanism of convective heat transport and its interaction
with the oscillations for the stability analyses of solar-type stars and for classical pulsation
variables with relatively low surface temperatures. Thus in Section 2 various formulations
of turbulent flow and their assumptions are reviewed as they are implemented in many of
todays available stellar evolution codes and in particular in the computations used in this
thesis. Section 3 investigates the physical processes which are responsible for pulsational
damping and driving in stars with distinctive convection zones in the outer layers as well
as their influence upon the oscillation frequencies. In addition, theoretical damping rates
and their dependence on pulsation frequency and model parameters are discussed. The
results of the theoretical amplitude predictions for velocity and luminosity variations are
presented in Section 4 for stars evolving along the main-sequence. Also discussed are
overstable modes, as observed in the classical pulsating variables of δ Scuti stars, and
their dependence on the control parameters used in stellar evolution theory. Section 5
considers amplitude ratios and phases between various types of oscillations in the solar
atmosphere by comparing model results with observations. Finally, implementation details
of the model computations are addressed in the Appendix.
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1.2. A Short Historical Review on Helioseismology

The epoch-making discovery of the five-minute oscillations in the Sun was reported more
than thirty years ago by Leighton, Noyes & Simon (1962). They observed periodic Doppler
velocity signals obtained from spectroheliograms recorded simultaneously in the red and
blue wings of spectral lines. Since then many attempts have been made to explain the
observed oscillations. The correct nature of the oscillations was first proposed by Ulrich
(1970a) and Leibacher & Stein (1971), who suggested that the oscillations are acoustic
modes trapped in the outer layers of the Sun. The observational confirmation for this
physical picture was given first by Deubner (1975). He demonstrated that the power in
the five-minute oscillations of high-degree modes (l >∼ 200) are indeed concentrated along
slanted ridges (showing modes with like radial order n) when plotted as function of the
horizontal spatial wavelength, and the temporal frequency, ν, representing the so-called
diagnostic diagram.

It became evident that the observed frequencies of the oscillations can be used as
a diagnostic tool of the Sun’s interior, which led to the first tentative comparisons of
measured frequencies with those of solar models (e.g. Scuflaire et al. 1975; Christensen-
Dalsgaard & Gough 1976). The definite confirmation that solar oscillations are normal
modes of the whole Sun was demonstrated by Claverie et al. (1979) who observed low
degree modes (l <∼ 3) in the integrated sunlight of whole-disk Doppler measurements.
The individual modes in the observed power spectrum were resolved by Grec, Fossat &
Pomerantz (1980) obtained from about 120 hours of continuous time-series measurements
at the geographical South Pole.

The gap between low-degree and high-degree oscillation measurements was filled by Du-
vall & Harvey (1983, 1984) with observations of intermediate degree modes (3 <∼ l <∼ 200).
These measurements provided data accurate enough for individual mode identifications of
radial and low-degree oscillations and for crude estimates of line widths, as obtained from
fitting line-profile functions to the individually resolved modes in the power spectrum.
More thorough measurements of line widths and amplitudes were reported by Libbrecht
(1988) and Libbrecht & Woodard (1991) for low-degree l modes and by Elsworth et al.
(1990) for the l = 0 mode.

A major progress in obtaining high-precision data was accomplished with the estab-
lishment of networks of observing stations, suitably placed around the world. Such net-
works enable us to obtain continuous observations over very long periods, which are in
particular required for accurate measurements of mode properties at relatively low fre-
quencies. Several of such networks have been established (e.g. Pallé 1996). One of it,
the GONG4 project, involves six observing sites and became operational in October 1995.
Additional high quality data of low-order and high-degree modes are expected from the
GOLF5 (Gabriel et al. 1991) and SOI-MDI6 (Scherrer, Hoeksama & Bush 1991) instrument,
respectively, mounted on the SOHO7 spacecraft, which was launched in December 1995.

4 Global Oscillation Network Group
5 Global Oscillations at Low Frequency
6 Solar Oscillations Investigation-Michelson Doppler Imager
7 SOlar and Heliospheric Observatory
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1.3. Stability and Oscillation of Stars

This section gives a short overview of the fundamental mechanisms of stability relevant for
stars and a brief discussion of the physical properties of solar and stellar oscillations. A
more complete and detailed discussion of the theory of stellar pulsations may be found in
the monographs of Cox (1980) and Unno et al. (1989). Recent reviews on solar and stellar
oscillations are given for example by Gough & Toomre (1991), Christensen-Dalsgaard &
Berthomieu (1991) and Christensen-Dalsgaard (1996).

1.3.1. Stellar stability

During its life a star experiences different stages of evolution at which small perturbations
applied to its equilibrium state may grow or decay rapidly in time compared to the evo-
lutionary changes of the star’s characterizing parameters (e.g. its chemical composition).
The equilibrium state of a star is determined by three fundamental stability criteria: the dy-
namical stability, the thermal (secular) stability and the vibrational (pulsational) stability.
Dynamical stability is governed by gravitational forces working against the pressure forces
of the gas in the absence of any heat exchange. Thus dynamical stability is maintained if
the pressure gradient increases more rapidly during an accidental compression of the star
than the gravitational forces, leading to an oscillatory motion. Convectively unstable layers
in a star, for example, represent local dynamical instability against non-radial perturba-
tions, where buoyancy is the responsible mechanism for driving the motion. Indeed, there
is a close relation between convective motion, which can be described by a superposition of
Fourier modes in the theory of linear stability (e.g. Ledoux, Schwarzschild & Spiegel 1960),
and non-radial oscillations of gravity modes in convectively stable layers (see below).

Non-adiabatic effects influence thermal and vibrational stability, which are usually
determined by a much longer time scale relative to the dynamical time scale. Thus the
latter two types of stability are reasonably defined only in a dynamically stable system. The
state of thermal stability is closely connected with the virial theorem (e.g. Collins 1978),
which relates the gravitational and thermal properties of the star. An arbitrary small heat
excess in an ideal gas sphere leads to an expansion of the sphere. However, more energy
is needed by this expansion process than was originally available by the heat excess and
has therefore to be taken from the internal energy of the gas. This leads to a decrease
of the temperature and thermal stability is obtained. In degenerate matter an excess of
thermal energy, such as through the ignition of helium in a degenerate core, leads to a
thermal runaway, known as the flash phenomenon (helium flash). Such a thermal runaway
is also observed in non-degenerated shell sources, where the hydrostatic adjustment to a
heat excess in a thin shell provides only a negligible change in the pressure promoting a
further temperature increase.

In a dynamically stable system an induced perturbation results in an oscillatory motion
around the equilibrium configuration, as already stated before. Heat exchange with the
surroundings alters the kinetic energy of this oscillatory motion and thus its amplitude.
If the amplitude grows in time, the oscillation of a system is said to be overstable or
pulsationally (vibrationally) unstable and to be damped if the amplitude declines with
time. The investigations of the physical processes responsible for damping and driving of
these oscillations in stars with convective outer layers are the main subject of this thesis.
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1.3.2. Basic theory of solar-like oscillations

The patterns of the velocity field as observed on the solar surface result from the inter-
ference between ∼ 107 resonant global oscillation modes. Each of these modes can be
interpreted as a resonant standing wave whose oppositely directed traveling constituents
propagate in a well defined resonant cavity beneath the photosphere. Outside these reso-
nant cavities the modes tunnel through evanescent regions such as the visible atmosphere
where they can be observed. The amplitudes of the observed oscillations are rather small
and may therefore be described by a linear theory. Thus assuming further spherical sym-
metry and a time-independent background state, the modes can be written as the product
of a function describing the spatial variation by means of a radial function and spherical
harmonics, and a sinusoidal function of time t with frequency ω. For a linearly damped or
excited mode the velocity field can be written as

Vnlm = V̂nlm Re
{[
ξr,nl (r)ar + ξh,nl (r)

(
∂

∂θ
aθ +

∂

sin θ ∂ϕ
aϕ

)]
Y m

l (θ, ϕ) e−iωnlt

}
, (1.1)

where Re{} denotes the real part of a complex function, θ and ϕ are the co-latitude and
longitude, Y m

l (θ, ϕ) is a spherical harmonic of degree l and azimuthal orderm, ξr and ξh are
the radial and horizontal displacement eigenfunctions, and ar, aθ and aϕ are unit vectors
in r-, θ-, and ϕ- directions. The spherical degree l can be interpreted as the total number
of nodes around the surface, whereas the number of nodes along the equator is given by m
and along the meridian by l−m. Since we assumed spherical symmetry, the physics of the
oscillations must be independent of the choice of the axis θ = 0, and thus the eigenfunctions
ξr and ξh and the complex eigenfrequency ω are independent of, but degenerate by (2l+1)-
folds in m. The complex eigenfrequency ω is written as ω = ωr + iη, where ωr and η are
real. The damping or growing rate η can be interpreted as a characteristic time, |η|−1, the
so-called mode lifetime, at which the mode amplitude changes its value by a factor e.

Non-radial modes are governed by two physical processes which can act as restoring
forces for the oscillations: gas pressure and buoyancy. Waves whose restoring force is
predominantly the gas pressure are acoustic or pressure waves with normal modes called p
modes. These acoustic waves propagate in well defined spherical shells (resonant cavities).
The upper boundary of such a cavity is located near the surface, where an incident wave is
reflected back downward by the steep density gradient there. Above a certain frequency,
the so-called acoustical cut-off frequency, ωco (Lamb 1909), the wavelength of the incident
sound wave becomes smaller than the length-scale associated with density changes of the
background medium, and the wave propagates outward into the atmosphere. Thus p modes
with frequencies above ωco are no longer trapped inside the star. The lower boundary or
turning point of trapped acoustic waves depends on their cyclic frequency ν = ω/2π and
degree l. Purely radial modes penetrate to the centre, whereas non-radial modes are
reflected upward at a point where the waves are propagating horizontally. This comes
about because the deeper portions of the wavefronts are traveling at a faster sound speed
c ∝ √

T (and the temperature T increases with depth), causing a downward propagating
wave to be progressively refracted around until it is once more headed upward. The lower
turning point rt can be derived from the dispersion relation for a sound wave and occurs
a the depth rt = c(rt)L/ω, where L =

√
l(l + 1). Thus modes with like ν/L penetrate to

like depths. The period of a trapped sound wave is determined by its travel time between
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the turning points, and this is controlled by the varying sound speed c at which that wave
propagates. The observed cyclic frequency ν of p modes therefore provides a mean measure
of c within the depth range of the cavity.

Resonant cavities also exist for internal gravity waves. The restoring force of gravity
waves is predominantly buoyancy, acting on the density perturbation, and whose normal
modes are therefore called g modes. The boundaries of the region where gravity waves can
propagate are determined by the local buoyancy (or Brunt-Väisälä) frequency N . This is
the adiabatic frequency at which a displaced fluid element would oscillate vertically with-
out displacing its environment horizontally and which remains in pressure balance with the
background fluid. In other words, the shape of this fictitious fluid element would be that
of an infinitely thin needle. In reality, however, matter has to be pushed sideways accom-
panied by a pressure perturbation to provide place for the vertically moving fluid element,
which results in a reduction of its oscillation frequency. Moreover, buoyancy can therefore
not be a restoring force for purely radial oscillation. The buoyancy frequency is positive
in convectively (dynamically) stable zones and imaginary in regions where buoyancy acts
to enhance the motion of the displaced fluid parcel, forcing it away from equilibrium. For
this case |N | is approximately the reciprocal turn-over time of a convectively unstable fluid
element. Thus the upper and lower reflection points of trapped g modes are defined only in
purely radiative regions and at a depth where their oscillation frequencies are less then the
local buoyancy frequency N . The travel time of a g mode within the resonant cavity and
thus its oscillation period depend on the variation of N with depth. In convection zones
g modes are evanescent and their amplitudes decay more rapidly with increasing degree
l. Thus only modes with low degree are likely to be detectable in the observable layers of
stars with distinctive outer convection zones.

The measured frequencies of p modes and g modes of different degree l provide us
with detailed information about the variation of c and N over different regions in the
star. For the solar case several thousands of p modes have been identified and measured
with a relative standard deviation of less than 5 × 10−6 and from which the sound speed
variation has been determined with an accuracy of better than 0.5% (e.g. Basu et al.
1996). From the observed power spectrum one may obtain yet more information than
just the absolute values of the frequencies. The visible peaks in a seismic spectra appear
to be almost uniformly spaced, and can be identified as a sequence of l = 1 p modes
alternating with closely spaced double peaks arising from l = 2 and l = 0 p modes.
From asymptotic theory applied to the frequency set (e.g. Tassoul 1980) one can obtain
two parameters describing the so-called large separation of the cyclic frequency νn,l of
modes of like degree l and adjacent order n and the small frequency separation of the
closely spaced peaks which measures νn,0 − νn−1,2. These seismic parameters essentially
provide information about the gross structure of the star and about the inhomogeneities
in the core due to the changes in the mean molecular weight with depth and in particular
with age. Obviously, these parameters may help to determine mass and age of solar-
type stars (Christensen-Dalsgaard 1988), and are also the most likely obtained parameters
from full-disk measurements in integrated light. Observations in light integrated over the
stellar disk, as it has to be done for distant stars, provide only information of low degree
modes (modes with l >∼ 4 are canceled out in full-disk measurements). It is, however,
the vast number of stars which provides a powerful potential for testing stellar evolution
theory by means of a statistical approach (e.g. Fridlund et al. 1995).
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2. Convection

2.1. Introduction

The temperature in a star is determined by the balance of energy and its gradient depends
on the details how energy is transported through out the stellar interior. Red giants and
solar-like stars exhibit in the outer layers a substantial convectively unstable zone, where
hot elements of gas rise and cold elements sink, dominating the energy transport.

Thermal heat transport is governed by turbulent motion of the underlying fluid or gas.
To determine the average of vertical velocity, temperature and momentum fluctuations,
the full turbulent flow is needed. This is up today not a tractable theoretical problem
without the introduction of some hypothetical assumptions in order to close the system of
equations describing the turbulent flow. Such closure models can be classified basically into
four categories: the algebraic model including the mixing-length approach (e.g. Prandtl
1925), the one-equation model, which uses a modified turbulent kinetic energy equation
along with a prescribed mixing-length (e.g. Rodi 1976, Ljuboja & Rodi 1981), the two-
equation model like the so-called k − εk model with k standing for the turbulent kinetic
energy and εk representing the turbulent viscous dissipation (Jones & Launder 1972), and
finally the Reynolds stress model, using transport equations for the Reynolds shear stresses
(e.g. Rotta 1951; Launder et al. 1975).

Theories based on the mixing-length formalism (Prandtl 1925) still represent the main
method used for computing the stratification of convection zones in stellar models. How-
ever, through the advent of more sophisticated model prescription of turbulence, Canuto
& Mazzitelli (1991) recently introduced an alternative convection formulation based on
the Eddy-Damped Quasi-Normal Markovian approximation to turbulence (Orszag 1977).
This approximation is characterized as a two-equation model and is sometimes referred to
as two-point closure, since it is dealing with correlations in two different points of space, or
two different wave numbers k and k′ in the Fourier space. Although two-equation models
have a reasonable degree of flexibility, they are restricted by the assumption of a scalar
turbulent viscosity and the assumption that the stresses are proportional to the rate of
mean strain. The above mentioned Reynolds stress models are free of these restrictions and
were recently discussed by Canuto (1992, 1993) for the application in stellar convection.

The present unprecedented computer revolution enables us to perform fully hydrody-
namical simulation of the large scales of turbulent flow (Large Eddy Simulation) of solar
near-surface convection (e.g., Stein & Nordlund 1989, Kim et al. 1995). Such numerical
simulations represent a fruitful tool for investigating the accuracy and hence the field of
application of phenomenological prescription of convection like the mixing-length approach.

In this Section I try to emphasize the different approximations and simplifications
inherent in the mixing-length formalism and its various guises from the fluid dynamics point
of view, starting off the continuity- and Navier-Stokes equations. An overview of Gough’s
time-dependent formulation by means of a local and non-local mixing-length prescription
(Spiegel 1963, Gough 1976) will be given in the subsequent paragraphs with reference
to Balmforth (1990), followed by a short discussion of other formulations of convection
relevant for stellar models.
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2.2. Local mixing-length theory

The simplest closure model of turbulence is the early one of Boussinesq (1877), who sug-
gested that turbulent flow could be considered as having an enhanced viscosity, a turbulent
(or eddy) viscosity νt. Boussinesq assumed νt to be constant, in which case the equations
of mean motion become identical in structure with those for a laminar flow. This assump-
tion however, will break down describing appropriate the turbulent fluctuations at the
boundary layers, where they must be zero, and hence also νt.

The simplest turbulence model able to account for the variability of the turbulent
mixing with the use of only one empirical constant is the mixing-length idea, introduced
independently by Taylor (1915) and Prandtl (1925). Based on Boussinesq’s approach
and considering the turbulent fluid decomposed into so called eddies, parcels or elements
(“Flüssigkeitsballen”), Prandtl obtained for the case of shear flow by dimensional reason-
ing an expression for the turbulent viscosity or exchange coefficient of momentum (“Aus-
tauschkoeffizient”). This expression is in the form of a product of the velocity fluctuation
perpendicular (transverse) to the mean motion of the turbulent flow and the mixing-length
�. The latter length � is characterized by the distance in the transverse direction which
must be covered by a fluid parcel traveling with its original mean velocity in order to make
the difference between its velocity and the velocity in the new laminar equal to the mean
transverse fluctuation in the turbulent flow. Inherent in this physical picture is the major
assumption, that the momentum of the turbulent parcel is assumed to be constant along
the travel-distance �, which is analogous to neglecting the streamwise pressure forces and
viscous stresses. Prandtl’s concept of a mixing-length may be compared, up to a certain
point, with the mean free path in the kinetic theory of gases. A somewhat different re-
sult was obtained by Taylor (1932) who assumed that the rotation (vorticity) during the
transverse motion of the parcel remains constant, yielding a mixing-length which is larger
by a factor

√
2 compared with Prandtl’s momentum-transfer theory.

Neglecting rotation and magnetic fields, thermal heat transport in stars corresponds
to the case of free convection where there is no externally imposed velocity scale as in
shear flow. Hence, it is necessary to consider the dynamics of the turbulent elements in
greater detail. The imbalance between buoyancy forces, pressure gradients and non-linear
advection processes causes the turbulent elements to accelerate during their existence.
Ignoring different combinations of these processes and approximating the remaining terms
in different ways, various phenomenological models can be established. In the astrophysical
community basically two physical pictures have emerged which were first applied to stellar
convection by Biermann (1932, 1937, 1943) and Siedentopf (1933, 1935).

The first interprets turbulent flow by direct analogy with kinetic gas theory, where one
imagines the fluid parcel to accelerate from rest followed by an instantaneously breakup
after the element have traveled approximately one mixing-length. Within this picture the
evolution of the fluid properties carried by the turbulent parcels can be approximated by
linear growth rates. The nonlinearities that occur in the equations governing the turbulent
fluctuations are assumed to be taken into account by the instantaneously breakup of the
element (Spiegel 1963, Gough 1977).

In the second physical picture the turbulent element is considered as a convective
cell, having a characteristic vertical length of �. It evolves out of some chaotic state
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and loses its kinetic energy, working against turbulent drag, after having turned over a
distance of about one mixing-length. In this picture the fluid element maintains exact
balance between buoyancy force and turbulent drag by continuous exchange of momentum
with other elements and its surrounding (Prandtl 1932). Thus the acceleration terms
are neglected (i.e. the inertia is unimportant) and the non-linear advection terms (i.e.
momentum exchange) are approximated appropriately (e.g. Kraichnan 1962, Unno 1967).

If the mixing-length represents both the element size and the mean-free path the two
pictures are complementary in envelopes that do not pulsate. However in a time-dependent
theory additional information is required how the initial state of a convective element
depends on conditions at the time of its creation. Hence, the different versions of mixing-
length theories yield different formulae for the turbulent heat and momentum fluxes when
applied to pulsating stars (Unno 1967, Gough 1977).

In the above discussed models, the overturning fluid parcels were still considered to
travel adiabatically. Öpik (1950) suggested to treat radiative heat-exchange between the
element and the background fluid in a similar way as for the momentum exchange. Based
on this assumptions Vitense (1953) and Böhm-Vitense (1958) established a mixing-length
description which is still widely used for calculating the convective heat flux in stellar
models.

For simplicity, we shall already now introduce the first assumptions describing turbu-
lent convective motion . We assume the considered layer to be plane parallel, with infinite
horizontal extent. The fluctuations in the gravitational acceleration g arising from the
motion will be neglected, so that g is a function only of height. Additionally, magnetic
fields, rotation and the energy generation due to nuclear reactions will be neglected. With
respect to inertial rectangular co-ordinates (x1, x2, x3), the fluid dynamic equations for
studying convective motion are

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 , (2.1)

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= ρgi − ∂p

∂xi
+
∂τij
∂xj

, (2.2)

ρ

[
∂

∂t

(
U +

u2

2

)
+ ui

∂

∂xi

(
U +

u2

2

)]
= ρuigi − ∂

∂xi
(Fr,i + pui − uiτij) , (2.3)

where ρ is the density, ui the velocity, p the gas plus radiation pressure, U the internal
energy by unit mass, Fr,i the combined heat flux by conduction and radiation and gi =
(0, 0,−g). The viscous stress tensor τij for a Newtonian fluid may be written in the form
(Batchelor 1967)

τij = µ

[(
∂ui

∂xj
+
∂uj

∂xi

)
− 2

3
∂uk

∂xk
δij

]
, (2.4)

where µ is the coefficient of molecular shear viscosity or just the dynamic viscosity, and δij
is the Kronecker delta. Following Reynold’s approach, each flow variable of the turbulent



10 2. Convection

motion may be separated into its average and fluctuating part, as indicated here for the
velocity field

ui = ui + u′i , (2.5)

where the overbar should ideally represent an ensemble average (or moment) of the particu-
lar field variable, but it is computationally more convenient to use averages over horizontal
surfaces. For constructing the mean-flow equations the following identities (Reynold’s rules
of averages) may be useful where a = a+ a′ and b = b+ b′ represent fluctuating quantities

a+ b = a+ b , ab = ab+ a′b′ ,
∂a

∂x
=

∂a

∂x
, a′ = b′ = 0 . (2.6)

Applying these rules first on the continuity equation (2.1) we obtain for the mean and
fluctuating parts

∂ρ

∂t
+

∂

∂xi

(
ρui + ρ′u′i

)
= 0 , (2.7)

∂ρ′

∂t
+

∂

∂xi

(
ρ′ui + ρu′i + ρ′u′i

)
= 0 . (2.8)

Defining the viscous stress tensor for a Newtonian fluid, and since Stokesian fluid is es-
sentially non-elastic, we may apply the anelastic approximation (Gough 1969) to the fluid
equations, which renders the equations (2.7) and (2.8) into

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 , (2.9)

and

∂

∂xi

(
ρu′i
)

= 0 . (2.10)

Additional to the last two equations, the anelastic approximation treats the thermody-
namic fluctuating quantities as perturbations of the mean ones, linearizing the equations
in the fluctuating parts and neglecting the pressure fluctuations except in the momentum
equation. This is equivalent to filter out high-frequency phenomena such as sound waves,
expressed by the suppression of the time derivative of the density fluctuation in the con-
tinuity equation Eq. (2.8). This approximation is certainly not valid in the upper layers
of the convective domain, where there is a substantial superadiabatic region in solar-type
stars and red giants and where the Mach numbers of the convective motions may become
considerable. Or expressed in terms of time scales, when the turnover-time of a fluid parcel
becomes such small, that it is comparable with the time-scale associated with the local
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speed of sound of the background fluid. Through the generation of sound waves kinetic en-
ergy from the turbulent motion will be converted into acoustic radiation hence, neglecting
this mechanism will overestimate the predicted convective velocities and the resulting tem-
perature profile will become too flat. Within this approximation the mean-fluid equations
for the velocity and total energy may be written as

Dui

Dt
= gi − 1

ρ

∂p

∂xi
− ∂

∂xj
u′iu

′
j +

1
ρ

∂τij
∂xj

, (2.11)

and

ρ
D

Dt

(
U +

1
2
u′2
)

= − ∂Fr,i

∂xi
− ∂

∂xi

(
(ρh)′ u′i +

1
2

(ρu′2)′ u′i − u′iτij
)

− p
∂ui

∂xi
+
(
τij − ρu′iu

′
j

)∂ui

∂xj
, (2.12)

where

D

Dt
=

∂

∂t
+ ui

∂

∂xi
, (2.13)

and h = U+p/ρ is the specific enthalpy. The second term of the right hand side of equation
(2.12) represents the sum of the gradients of the specific enthalpy flux, the turbulent energy
flux and the flux of kinetic energy due to molecular viscosity. For stars the estimations of
the Reynolds number suggest a value in the order of 1010 (e.g. Spiegel 1966), which implies
a very small molecular viscosity. It is therefore usual to neglect in the computations all
the terms which become small due to the vanishing molecular shear viscosity. However,
some terms including the molecular viscosity may remain finite, as shown below for the
dissipation of turbulent kinetic energy. For equation (2.12) this means the neglect of u′iτij
and of the viscous stress tensor τij compared to the turbulent energy flux and Reynolds
stress, respectively.

The second-order moment u′2/2 is the mean specific turbulent energy and represents
a new field variable, demanding an additional equation for it. This equation, the trans-
fer equation for the kinetic energy, may be obtained by taking the scalar product of the
momentum equation (2.11) with the velocity u′i and then taking the average of the result.
This expression exhibits a term describing the rate of dissipation of turbulent kinetic en-
ergy, ε, including the molecular kinetic shear viscosity ν = µ/ρ, and must not be neglected
in order to maintain energy conservation (Canuto 1993). In particular, this quantity ε may
be defined as the trace (contraction) of the expression (e.g. White 1991)

εij = 2ν
(
∂u′i
∂xk

)(
∂u′j
∂xk

)
, (2.14)

and which will not vanish even for ν approaching to zero. This comes about, because
the mean-square vorticity, which is proportional to (∂u′i/∂xj)2, varies inversely as the
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molecular kinetic shear viscosity under almost all circumstances. Therefore ε is essentially
independent of viscosity and remains finite for ν → 0. This effect hinges on the property
that most of the turbulent effects and energy are associated with the largest, energy-bearing
eddies, which decay first by cascading to smaller eddies before converting to thermal energy.
The energy which is fed into the system is conserved during its distribution to the whole
spectrum of eddies by the non-linear fluctuation interactions and the viscosity describes
the scale at which the dissipation into heat takes place.

Similar as for the Reynolds stresses, the energy dissipation term ε has to be modelled
by introducing proper assumptions. In one-equation models for instance (e.g. Taylor &
Gent, 1974), ε is estimated in terms of an energy dissipation length scalar �ε, as

ε ≡
(
u′2
)3/2

�ε
, (2.15)

representing a local approximation and which has been considered in stellar convection by,
e.g. Shaviv & Chitre (1968) and Xiong (1986). They assumed �ε = �/D, where � represents
the usual mixing length and D, being a constant in the order of unity, a drag coefficient.

In stellar model calculations it is usual to neglect the mechanical (kinetic) flux in the
treatment of the total energy flux viz., the mechanical part arising from the momentum
equation is subtracted from the total energy equation (2.3), which renders indistinguishable
from the thermal energy equation

ρcp
∂T

∂t
− δ

∂p

∂t
+ ρui

(
∂h

∂xi
− 1
ρ

∂p

∂xi

)
= −∂Fr,i

∂xi
+ τij

∂ui

∂xk
, (2.16)

where the following thermodynamic relation has been used

ρcp dU − p

ρ
dρ = ρ dh− dp = ρcp dT − δ dp , (2.17)

and cp represents the specific heat at constant pressure. The thermodynamic quantity δ is
defined as

δ (ρ, T ) = −
(
∂ ln ρ
∂ lnT

)
p

. (2.18)

In the anelastic approximation the mean density may vary as function of time and space as
shown by the equations (2.9) and (2.10). An even simpler approximation with ρ variable
is the incompressible approximation in which the velocity divergence (i.e. expansion or
contraction of a parcel having constant mass) is set to zero or according to Eq. (2.1):
∂ρ/∂t + ui∂ρ/∂ui = 0. Boussinesq (1903) assumed that in thermal convection the only
density variations which have to be taken into account are the one which are responsible
for the differential buoyancy forces driving the convective motion. Thus, he neglected
density fluctuations in the continuity and momentum equations except when they were



2.2 Local mixing-length theory 13

coupled to the gravitational acceleration and considered the mean density to be constant
as well. This approximation can be justified only when the vertical dimension of the fluid,
represented in the mixing-length approach by the mixing-length �, is much less than the
pressure and density scale heights of the considered layer and the amplitudes of the motion-
induced variations in density and pressure are much smaller than the static one (Spiegel
& Veronis 1960). The latter approximation combined with the anelastic approximation
constitutes the so called Boussinesq approximation which is used in almost all attempts
to model stellar convection and particular in the mixing-length approach. Using again
Reynold’s separation Ansatz, the mean- and fluctuating fluid equations in the Boussinesq
approximation for a Newtonian Fluid with a constant uniform dynamic viscosity µ may
be written as

∂ui

∂xi
= 0 , (2.19)

∂u′i
∂xi

= 0 , (2.20)

Dui

Dt
= gi − 1

ρ

∂p

∂xi
− ∂

∂xj
u′iu

′
j , (2.21)

Du′i
Dt

=
ρ′

ρ
gi − 1

ρ

∂p′

∂xi
− ∂

∂xj

(
u′iu

′
j − u′iu

′
j

)
− u′j

∂ui

∂xj
+ ν

∂2u′i
∂x2

j

, (2.22)

DT

Dt
− δ

ρ cp

Dp

Dt
= − 1

ρ cp

∂

∂xi

(
Fr,i + ρ cpu′iT ′

)
+

ε

cp
, (2.23)

DT ′

Dt
= − ∂

∂xi

(
u′iT

′ − u′iT ′
)

+ u′iβ − 1
ρ cp

∂F ′
r,i

∂xi
+
ν

cp

[(
∂u′i
∂xj

)2

−
(
∂u′i
∂xj

)2
]
, (2.24)

where

β = − 1
cp

(
dh

dx3
− 1
ρ

dp

dx3

)
≈ −

(
dT

dx3
− δ

ρ cp

dp

dx3

)
, (2.25)

and the perturbations in cp and δ have been neglected.

The viscous stress tensor, Eq. (2.4), has been retained in the derivation of these equa-
tions in order to demonstrate which additional terms should be taken into account for main-
taining energy conservation even in the limit of a vanishing kinematic viscosity (Canuto
1993). These additional terms (last term on the right hand side of (2.22), (2.23) and (2.24)),
which describe the dissipation of momentum and energy by molecular processes, remain
finite in this limit since they are also proportional to the divergence of the mean-squared
vorticity, as already discussed before.
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In modelling stellar convection, using the mixing-length approach, it is usually as-
sumed, that ε and terms including the molecular shear viscosity can be neglected. Beside
the fact, that this is a violation of the energy conservation, as discussed before, the excess
of energy through the neglect of this sink will be used up by other processes leading to an
overestimation of the turbulent heat and momentum fluxes (similar as in the case of the
anelastic approximation where the generation of acoustic radiation is neglected).

In turbulent thermal convection we do not have a mean horizontal velocity, hence
ui = 0. Moreover, we may adopt the widely held belief that under stationary external
conditions the mean quantities are also stationary, at least in turbulent convection. Thus,
the mean-fluid equations (2.21) and (2.23) are simplified to

d

dz
(pg + pt) = −gρ , (2.26)

and

d

dz

(
Fr,z + Fc,z

)
= 0 , (2.27)

where z is the vertical co-ordinate (z = x3), pg the gas plus radiation pressure (was p so
far) and Fr,z the vertical component of the radiative and conductive energy flux. With w
representing the vertical velocity fluctuation (w = u′3) the convective momentum and heat
fluxes may be approximated as

pt ≡ ρw2 ≈ ρw2 , (2.28)

and

Fc,z ≡ ρh′w ≈ ρ cpwT ′ , (2.29)

where the mean thermodynamical state variables are considered to be constant over the
scale � of motion, in accordance with the Bousinesq approximation. Moreover, in a local
mixing-length theory the superadiabatic lapse-rate, Eq. (2.25) in the fluctuating thermal
energy equation is treated as though it were constant either, which is certainly violated
in the upper layers of the convection zone, where β varies on a scale much shorter than
�. However all these approximations enables one to compute the turbulent fluxes solely in
terms of the mean quantities, describing a particular level in the stratified envelope, for
which the theory is called local. The equations for the fluctuations become then

∂u′i
∂t

+
∂

∂xj

(
u′iu

′
j − u′iu

′
j

)
= −1

ρ

∂p′g
∂xi

− gi
δ

T
T ′ , (2.30)

and
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∂T ′

∂t
+

∂

∂xi

(
u′iT

′ − u′iT ′
)
− βw = − 1

ρ cp

∂F ′
r,i

∂xi
, (2.31)

where we used the Boussinesq equation of state

ρ′

ρ
= −δT

′

T
. (2.32)

The non-linear advection terms in the right hand sides of equations (2.30) and (2.31)
have to be modelled. According to Prandtl’s mixing-length theory the Reynolds stresses
are modelled as

−ρu′iu′j ≈ ρνt
dw

dz
, (2.33)

with

νt = w� , (2.34)

Prandtl’s (1925) definition for the turbulent viscosity νt. Thus, the non-linear advection
terms can be written in the form (e.g. Unno 1967)

∂

∂xj

(
u′iu

′
j − u′iu

′
j

)
≈ νt

d2w

dz2
≈ 2w2

�
, (2.35)

and

∂

∂xi

(
u′iT

′ − u′iT ′
)
≈ κt

d2w

dz2
≈ 2wT ′

�
, (2.36)

where

κt =
νt

Prt
, (2.37)

represents an eddy diffusivity accounting for the turbulent heat exchange, proposed first
by Öpik (1950), which may be determined using νt and the turbulent Prandtl number Prt
of nearly unity (Launder 1978). Additionally, we replaced the spatial derivatives of the
fluctuating quantities by �−1, i.e. ∂2/∂x2

i ≈ �−2 (Kraichnan 1962). A typical parcel at
any instant might have travelled say half the distance � at which the typical values for the
velocity and temperature fluctuations are taken into account in the equations (2.35) and
(2.36), which yields the additional factor 2.
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For simplicity overbars for mean quantities are omitted from now on. In the physical
picture of continuous turbulent exchange of heat and momentum the time derivatives in
(2.30) and (2.31) are ignored and the non-linear terms are replaced by the appropriate
mixing-length models, Eq. (2.35) and Eq. (2.36). Ignoring further the coupling between
vertical and horizontal motion by neglecting the pressure fluctuations in the momentum
equation the expression for the convective velocity and temperature fluctuation may be
written as

w2 =
1
2
g
δ�

T
T ′ , (2.38)

and

T ′ =
1
2

(
β − κ

�2
T ′

w

)
� . (2.39)

For the radiative transfer we applied the diffusion approximation

Fr = −KdT/dz , (2.40)

where K = ρcpκ, κ is the thermal diffusivity. Thus the momentum flux may be estimated
as

pt ≈ 1
4
ρ
gδ

T
�2β . (2.41)

The expression for the turbulent heat flux is generally more involved but becomes quite
simple in the two extremes, when convection is either very efficient or very inefficient.
In the former limit this is equivalent for a pure adiabatically motion of the fluid parcels,
hence, the thermal diffusion term in equation (2.39) may be neglected. In this limit, the
convective heat flux may be approximated as

Fc ≈ 1
4
ρcp

(
gδ

T

)1/2

�2β3/2 . (2.42)

The numerical factors (1/4) depend on the geometry of the considered fluid parcel and
on possible introduction of additional factors of order unity to account for the coupling
between vertical and horizontal motion as well as for imperfect correlation in terms with
second order moments (e.g. wT ′). Thus these factors may differ between the different
physical pictures and derivation of the fluxes in the various guises of mixing-length pre-
scriptions.

In the second phenomenological picture the non-linear advection terms are neglected
during the fluid element’s life-time and are to be taken into account by its instantaneous
disruption after it has travelled through a distance �. Thus, the time-dependence of the
velocity and temperature fluctuations are retained and the equations become
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∂w

∂t
= g

δ

T
T ′ , (2.43)

and

∂T ′

∂t
− βw = − κ

�2
T ′ . (2.44)

Assuming the coefficients in these equations to be constant not only over the distance �
but also in time, the fluctuating quantities may be solved as function of time, using the
Ansatz w and T ′ ∝ exp(σt), where σ is in general a complex quantity, depending on the
induced boundary conditions. The real part of it, Re(σ) describes the growth (or decay)
of convection and hence, is to be known as the convective growth rate. The characteristic
equation may then be written as

σ2 +
κ

l2
σ − gδ

T
β = 0 . (2.45)

The last term in (2.45) represents the well known characteristic frequency in the theory of
pulsating stars and other fields: the Brunt-Väisälä frequency N defined as

N2 ≡ − δ

T
gβ . (2.46)

For the case of convective instability, N2 < 0 and the quantity 1/|N | may be interpreted
as a free fall time under reduced gravity (�βδ/T )g, viz. representing a time scale for
the convective dynamics. The coefficient of the second term of (2.45) indistinguishable
accounts for the radiative cooling time. Thus the square of the ratio of these time-scales
will give us a measure of the convective efficacy

S = −N
2�4

κ2
=

g (δ/T )β�4

κ2
, (2.47)

which may be interpreted in terms of parameters common in fluid mechanics as the product
of the Prandtl number and locally defined Rayleigh number. The convective heat flux in
the two asymptotic limits may be easily estimated in terms of the growth rate σ. The
solutions of the fluctuating velocity and temperature for a fluid parcel having travelled
half the mixing-length are

w =
1
2
σ� , (2.48)

and
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T ′ =
1
2
σ2

|N2|β� . (2.49)

For the limit of efficient convection with S � 1, the solution of (2.45) for the growth rate
yields σ = |N |, i.e., dominated by the buoyancy time scale. Thus the convective heat flux
becomes with the help of equation (2.29)

Fc =
1
4
ρcpS

1/2κβ , (2.50)

which is identical to the result (2.42) obtained from the phenomenologically picture oper-
ating with continuously momentum-exchange. For the case of inefficient convection, where
S � 1, the convective growth rate is dominated by the thermal diffusion time and we
obtain from (2.45), using equation (2.47), an expression for σ = |N |S1/2. The convective
heat flux becomes in this limit

Fc =
1
4
ρcpS

2κβ . (2.51)

As Gough and Weiss (1976) indicate, every formulation of local mixing-length theory is
an interpolation formula between the two limits of efficient and inefficient convection. The
transition between these two limits occurs in solar-type stars in a very thin layer on the
top of the bulk of the convection zone, where the temperature gradient is substantially
superadiabatic.

Although conceptually the two phenomenological models are rather different, their
mathematical representations for non-pulsating stars are identical. Moreover, Gough and
Weiss pointed out, that the various guises of local mixing-length prescriptions (e.g. Öpik
1950; Vitense 1953; Henyey, Vardya; Bodenheimer 1965; Ulrich 1970b) are essentially
similar with appropriate calibrations of the various parameters inherent in these theories.

2.3. Gough’s local mixing-length formulation

In this section a brief discussion of a specific mixing-length model introduced by Gough
(1965, 1976) should be given, since this is the basis for the generalization to the time-
dependent theory (Gough 1977) and a non-local prescription (Gough 1976), which have
been applied to our model calculations.

2.3.1. Theory in a static envelope

In the upper parts of the convection zone, the convective fluid parcels may become optically
thin. Moreover, radiative equilibrium is no longer sustained in the region, where there is
the transition from convective to radiative heat transport and hence the treatment of
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radiation through the diffusion approximation is no longer valid. Vitense (1953) studied
the case when fluid parcels are optically thin by adjusting proper numerical constants
such, that the optically thick and and thin formulae gave same results at unit optical
thickness. A more accurate transition between these two limits may be obtained by using
the Eddington approximation to radiative transfer (Unno & Spiegel 1966) which was also
applied by Gough (1977) in his local mixing-length prescriptions.

Based on the physical concept of linear growth rates the basic equations of the fluc-
tuating quantities for a spherical symmetric star and of the Eddington approximation to
radiative transfer may be written in the following form

∇ · u′ = 0 , (2.52)

∂u′

∂t
= −1

ρ
∇p′g + g

δT ′

T
r̂ , (2.53)

∂T ′

∂t
= − 1

ρ cp
∇ · F′

r + βw , (2.54)

∇ ·F′
r = 4πκρ

[
B′ − J ′ + (κT − δ) (B − J)

T ′

T

]
, (2.55)

∇J ′ = −3κρ

4π

[
Fr

′ + (κT − δ)Fr,r
T ′

T
r̂
]
, (2.56)

where r̂ is the unit-vector in radial direction, Fr,r the radial component of the radiative flux,
B the integrated Planck function, J the mean intensity and κ the Rosseland-mean opacity
with its logarithmic derivative κT = (d ln κ/d lnT )pg. The pressure fluctuations are only
present in the momentum equation. Thus they have no significance to the thermodynamic
structure and may be eliminated by taking the double curl of equation (2.53)

∂

∂t
∇2w − gδ

T
∇2

hT
′ = 0 , (2.57)

where

∇2
h =

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂ϕ2
. (2.58)

Equation (2.57) together with (2.54) describe the linear stability problem and admit sep-
arable solutions (Chandrasekhar 1961) with horizontal variations of u′ and T ′ satisfying
the planform f(θ, ϕ)

∇2
h f = −k2

h f f2 = 1 . (2.59)
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Thus the fluctuating quantities may be expanded as

u′ = −k−2
h ∂rW∇hf +W f r̂ , (2.60)

T ′ = f Θ , (2.61)

where the separation constant kh represents the horizontal wavenumber of the motion and
W and Θ are sinusoidal in r and functions of time. With the advent of the horizontal
wavenumber we cannot longer assume that there is only one single length scale associated
with the fluid parcel, which brings its shape into play. This coupling between vertical and
horizontal motion is due to the inclusion of the pressure fluctuations in the momentum
equation, diverting the vertical motion into horizontal flow and thus reducing the efficacy
with which the motion might otherwise have released potential energy gained by the buoy-
ancy forces. Perhaps this might be explained in an even more obvious way in the physical
picture of a convective cell. The vertical motion in such a convective cell, typically up near
the central axis, is governed by buoyancy, however the horizontal flow, across the top of
the cell to its edge, experiences only damping forces due to dissipative processes without
any compensation. Hence, in both pictures the horizontal motion is considerably wasteful.
The simplest way to account for this effect without changing the functional form of the
equation of motion, is to introduce an additional parameter which effectively increases
the inertia of the vertically moving fluid. This parameter, the shape factor Φ, may be
expressed in view of equation (2.60) as

Φ = 1 +
k2

v

k2
h

, (2.62)

where the vertical wave number will be associated with the vertical scale of a fluid parcel
of size �, expressed as

kv ≡ π/� . (2.63)

In this view, convective motion becomes most efficient for parcels with a geometry of tall
thin needles, where Φ → 1. Similar argumentation may be applied for the definition
of the Brunt Väisälä frequency N , Eq. (2.46), which is the frequency of a convectively
stable, oscillating fluid parcel with vanishing horizontal extent, i.e. kh → ∞ (Christensen-
Dalsgaard 1994), thus representing the highest frequency of gravity modes.

The differential equation for the horizontal structure of the convective fluctuations
(2.60) and (2.61) can be solved with subject to proper periodic boundary conditions in
the domain described by the planform f(θ, ϕ) being a spherical surface (Spiegel 1963).
Thus the horizontal wavenumber kh can take any value from an infinite discrete set of
eigenvalues. Assuming the eigenvalue spectrum to be dense for relatively high harmonics
and since the motion is unlikely to be coherent over the whole spherical surface, it might
be a reasonable approximation to consider Φ as continuous. Within this approximation,
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Gough (1977) has chosen a value for kh that maximizes the convective velocity at fixed
kv. This is equivalent to selecting the most rapidly growing mode in the theory of linear
stability (Spiegel 1963). Another possibility might be to chose the mode that maximizes
the convective heat flux (Balmforth & Gough 1990a), or to describe the total heat flux by
averaging over an ensemble of different eddies, determined with the help of a distribution
function for the eddy-shape Φ. With the latter method, Balmforth (1989) obtained in the
limit of efficient convection (S � 1) a maximal value for Φ of 5/3.

In order to account for the optical thin and thick limit in the treatment of the radiative
heat loss of the fluid parcels, one may obtain for the radiative flux in the general Eddington
approximation (Unno & Spiegel 1966) an expression of the form

∇ ·Fr
′ = φKk2Θ , (2.64)

where

φ =
[1 + 1/4 (κT − δ) (1 − J/B)]

[1 + ΦΣ/ (Φ − 1)]
, Σ =

1
3

π2

(ρκ�)2
, (2.65)

providing a smooth transition between these two limits, K = 4arcT
3/(3ρκ) is the radiative

conductivity and

k2 = k2
h + k2

v . (2.66)

The fluctuating equations (2.53) and (2.54) may now be reduced to

Φ
∂W

∂t
=

gδ

T
Θ , (2.67)

(
∂

∂t
+
φK

ρcp
k2

)
Θ = βW , (2.68)

where the vertical derivatives have been replaced by ikv. Assuming again that the solutions
of W and Θ to be proportional to exp(σt), the characteristic equation for the convective
growth rate may be written as

σ2 +
φK

ρcp
k2σ − gδβ

ΦT
= 0 . (2.69)

This expression is essentially equation (2.45), when the thermal diffusion κ is multiplied
by the factor φ, accounting for the partial optical transparency and dividing the square of
the Brunt Väisälä frequency by the shape factor Φ, thus reducing N accordingly through
the virtual increase of the inertia of the fluid parcel. Its solutions yields
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σ = η−1S−1/2

(
gδβ

ΦT

)1/2 [(
1 + η2S

)1/2 − 1
]
, S =

g (δ/T )βl4

(φK/ρcp)
2 , (2.70)

where η = 2π−2Φ−3/2(Φ − 1) represents a geometrical factor.

In order to construct the expressions for the turbulent fluxes, we should perhaps have
the following specific model in mind. The growth of the fluid parcels can be considered
to be linear, at least initially, whereas non-linear processes may become important at the
end of the parcel’s lifetime and eventually responsible for its breakup. If however, this
final stage of the parcel’s existence is treated as occurring instantaneously, then we may
approximate the entire evolution of the parcel by its linear growth rate, and use some
mathematical device to account for the non-linear destruction of the fluid parcel. Such a
mathematical device can be established in terms of an eddy survival probability P(r, t, t0),
where t0 is the time at which the eddy was created. Depending on the cause what may
break up an eddy, different probabilities can be derived (Gough 1978). Here we may follow
Spiegel’s (1963) idea, where the probability of disruption of an eddy that is displaced by
a distance dx along its trajectory of length � is dx/�. Thus the probability that the eddy
will survive until a time t, can be set to

P (r, t, t0) = exp
[
−
∫ t

t0

W (t′; t0) dt′

�

]
. (2.71)

Assuming that the initial conditions, or convective fluctuations at the parcel’s creation
time, do not significantly contribute to the final heat flux, the time dependence of W and
Θ may be described only by the linear growth rates

W = Ŵ0 exp [σ (t− t0)] , Θ = Θ̂0 exp [σ (t− t0)] , (2.72)

hence, the probability may be approximated as

P (r, t, t0) = exp

[
−Ŵ0e

σ(t−t0)

σ�

]
, (2.73)

where Ŵ0 and Θ̂0 are determined by the equations (2.67) and (2.68), respectively.

The turbulent fluxes may be constructed in terms of the probability of survival by the
following integral expressions

Fc = nmcp

∫ t

−∞
WΘPdt0 , (2.74)

pt = nm

∫ t

−∞
W 2Pdt0 , (2.75)
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where n is the creation rate per unit volume of the convective eddies, each having a mass
m. In a statistically steady state, where as many eddies are created as destroyed, the
following relation holds

nm

∫ t

−∞
Pdt0 = ρ . (2.76)

Since the initial conditions of the eddies are unimportant, i.e. the amplitudes of W0 and
Θ0 are small compared to the average values of W and Θ, and exp(στ) � 1, τ being the
mean lifetime of the eddy. Using equation (2.73), the eddy creation rate gives

nm = ρτ−1 = ρσχ , (2.77)

where χ is a numerical constant, which can be calibrated with the expressions for the
fluxes, obtained by solving the equations Eq. (2.67) and (2.68), yielding χ = 1/2. Hence,
the fluxes can be approximated by

Fc =
1
4
ρcpΦT�2

gδ
σ3 , (2.78)

pt =
1
4
ρ�2σ2 . (2.79)

2.3.2. Time-dependent theory

The next paragraphs provide a short overview of Gough’s (1977) prescription of a time-
dependent mixing-length theory. In the derivation of the mean- and fluctuating fluid
equations in the Boussinesq approximation, equations (2.19)–(2.24), we assumed that the
horizontal mean quantities of ρ, cp and δ, appearing as coefficients, are independent of time,
thus describing a static atmosphere. In order to study the coupling between convection and
a pulsating atmosphere one has also to consider the time-dependence of these quantities
(note however, that ρ is independent of height in the Boussinesq approximation). Thus
the linearized equations for the convective fluctuations in a pulsating atmosphere become

[
∂

∂t
− 1

Φ
∂ ln

(
r2ρ
)

∂t

]
W − gδ

ΦT
Θ = 0 , (2.80)

[
∂

∂t
+ (cpT − δ)

∂ lnT
∂t

− δT ∇ad
∂ ln p
∂t

]
Θ − βW +

φK

ρcp
k2Θ = 0 , (2.81)

where cpT and δT are the logarithmic derivatives with respect to temperature of cp and δ,
and
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∇ad = δpg/ (ρcpT ) . (2.82)

In a static atmosphere the evolution process of a convective element is described by the
linear growth rate, and the element itself is characterized by its wave number k, Eq. (2.66),
and thus by the constant values of the mixing-length �, Eq. (2.63), and shape-parameter
Φ, Eq. (2.62), at each point in the atmosphere. These latter parameters, however, are no
longer constant in a pulsating atmosphere, because of the locally changing environment.
The eddies are advected by the pulsating flow, and in a Lagrangian frame moving with
the pulsation they deform as they grow. Thus the evolution of the convective elements
becomes influenced by the temporal behaviour of the atmosphere. In the mixing-length
prescription by Unno (1967), the time dependence of the fluctuating quantities W and
Θ was taken to be proportional to exp(−iωt), where ω denotes the complex pulsation
frequency, and hence, were independent from the initial conditions at the time t0 the
element was created. However, if we apply the time-dependent equations (2.80) and (2.81)
to a static mean-atmosphere, one may obtain an estimation for the time taken to achieve
a steady state (i.e. constant velocity fluctuation), which turns out to be in the order of
the characteristic life-time of a convective element. In a moving atmosphere therefore, the
phase between pulsation and the turbulent perturbations at the instant t0 substantially
influences the stability of pulsation. The dependence on the initial conditions at t0 can
be taken into account by linearizing the variation of the atmosphere about its equilibrium
state, denoting the instant t0, which provides an expression for the wave number as function
of the pulsation frequency ω in the form

kh = kh,0

(
1 + kh,10e

−iωt0 + kh,11e
−iωt

)
, (2.83)

kv = kv,0

(
1 + kv,10e

−iωt0 + kv,11e
−iωt

)
, (2.84)

where kh,0 and kv,0 are the wave numbers characterizing a convective element in a static
atmosphere, and kh,10, kh,11, kv,10, kv,11 take the time-dependence upon the pulsation into
account.

Combining the equations (2.80) and (2.81) and linearizing the result, provide us a
differential equation of second order for the evolving velocity fluctuations with coefficients
depending on kh and kv. The coupling of this equation with the pulsation is achieved by
expressing these coefficients in the form, such as given here for the shape parameter Φ
using Eq. (2.62), (2.83) and (2.84)

Φ = Φ0

(
1 + Φ10e

−iωt0 + Φ11e
−iωt

)
, (2.85)

which represents the influence of the pulsating atmosphere on the shape of the eddy. The
resulting expression becomes, to first order in pulsational perturbations
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∂2W

∂t2
+ 2κφk2

(
1 + κ10e

−iωt0 + κ11e
−iωt

) ∂W
∂t

+
N2

Φ
(
1 + 2µ10e

−iωt0 + 2µ11e
−iωt

)
W = 0 ,

(2.86)

where the coefficients are given in the Appendix B according to Gough (1977). This
equation can be solved exactly and may be written for the convective elements travelled
about one mixing-length approximately as

W = W0

[
1 +W10e

−iωt0 +W11e
−iωt + σ (t− t0)W12e

−iωt0
]
, (2.87)

where W0 ≈ Ŵ0 exp[σ(t − t0)] represents the evolving convective velocity fluctuation in
a static atmosphere as given by equation (2.72). A similar expression results for the
convective temperature fluctuation Θ. Thus the pulsationally induced perturbations of
the convective fluxes may be obtained, with the help of Eq. (2.71), by substituting these
solutions into the integral expressions (2.74) and (2.75) which become to first order in the
relative perturbations

δFc

Fc,0
=

δρ

ρ0
+
δcp
cp,0

+W11 + Θ11 +W21 + (W10 + Θ10) F + (W12 + Θ12) FG + H , (2.88)

δpt

pt,0
=

δρ

ρ0
+ 2W11 +W21 + 2 (W10F +W12FG ) + H , (2.89)

and for the linearized perturbation of the shape parameter Φ one obtains

δΦ
Φ0

= Φ11 − Φ10F , (2.90)

where δX is the perturbation to the quantity X in a Lagrangian frame of reference arising
from the pulsations. The subscript zero denotes the value in the static equilibrium model.
The coefficients W1i, Θ1i and W12, as well as the functional expressions F ,G and H
are reproduced in the Appendix B according to Baker & Gough (1979). The expressions
F ,G and H account for a statistical averaging of the convective fluctuations at the in-
stant t0 in form of a quadratic distribution function, because mixing-length theory only
provides information about the turbulent spectrum at one particular scale. Thus those
terms in the equations (2.88) and (2.89), which include these expressions significantly in-
fluence the phases between the convective fluctuations and the pulsating environment of
the background fluid and hence, the pulsational stability of a star.

The local nature inherent in this time-dependent theory leads to another serious failure
when applied to the problem of solving the linearized pulsation equations. It fails to
treat properly the convective dynamics across extensive eddies. In deeper parts of the
convection zone, where the stratification is almost adiabatic, convective heat transport is
very efficient, thus radiative diffusion becomes unimportant and the perturbation of the
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heat flux is dominated by the advection of the temperature fluctuations. Moreover, in
this limit the convective elements grow very slowly compared to the pulsationally induced
changes of the local stratification, i.e. ω/σ � 1, and local theory predicts

δFc

Fc,0
∼ δΘ

Θ0
∼ −iσ

ω

δβ

β0
, (2.91)

hence, the perturbation of the heat flux is described by means of a diffusion equation with
an imaginary diffusivity (Baker & Gough 1979). This gives rise to rapid spatial oscillations
of the eigenfunctions, introducing a resolution problem which is particularly severe in layers
where the stratification is very close to being adiabatic. This and the other drawbacks of a
local theory, discussed before, may be obliterated by using the more advanced and superior
non-local theory that we shall discuss next.

2.4. Non-local mixing-length theory

One of the major assumptions in the above described local mixing-length theory is, that
the characteristic length scale � must be shorter than any scale length associated with the
structure of the star. This condition is violated, however, for solar-like stars and red giants
where evolution calculations reveal a typical value for the mixing-length parameter

α = �/Hp , (2.92)

of the order of unity, where Hp is the pressure scale height. This implies that fluid prop-
erties vary over the extent of a convective element and the super-adiabatic gradient can
vary on a scale much shorter than �.

The non-local theory takes some account of the finite size of a convective element
and averages the representative value of a variable throughout the eddy. Spiegel (1963)
proposed a non-local description based on the concept of an eddy phase space and derived
an equation for the convective flux which is familiar in radiative transfer theory. The
solution of this transfer equation yields an integral expression which would convert the
usual ordinary differential equations of stellar model calculations into integro-differential
equations. An approximate solution can be found by taking the moments of the transfer
equation and using the Eddington approximation to close the system of moment equations
at second order (Gough 1976). The next paragraphs shall give a short discussion about
the derivation of the non-local convective fluxes.

2.4.1. Non-local theory in a stationary atmosphere

In the generalized mixing-length theory proposed by Spiegel (1963), the turbulent convec-
tive elements are described by a distribution function ψ(xi, ui, t) representing the number
density of elements within an ensemble in the six-dimensional phase space (xi, ui), where
ui is the velocity vector of an eddy at the position xi. The conservation of the eddies
within the ensemble gives rise to an equation for the evolution of ψ
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∂ψ

∂t
+

∂

∂xi
(uiψ) +

∂

∂ui
(u̇iψ) = q − uψ

�
, (2.93)

where the dot denotes the derivative with respect to time. The source term q describes
the local creation of convective elements, whereas the last term on the right hand side
accounts for their annihilation after having travelled a distance of one mixing-length.

In the static mean atmosphere the eddy-ensemble is described by a statistically steady-
state distribution function with vanishing time-derivative and the conservation equation
in a plane parallel geometry becomes

µ
dΨ
dz

+
Ψ
�

=
Q

�
, (2.94)

where Ψ = uψ and µ = cos θ, with θ being the angle between the vertical co-ordinate z
and the direction of line along fluid element trajectories. The non-linear term ∂(u̇iψ)/∂ui

in equation (2.93) describes the driving of the elements through buoyancy and pressure
forces, and has been absorbed into the source function Q, which changes equation (2.94)
into a form like the radiative transfer equation in a gray atmosphere. Thus the equation
can be formally solved for Ψ as function of Q (e.g. Chandrasekhar 1950), where the first
moment, obtained by multiplying Eq. (2.94) by h′� and integrating with respect to µ, can
be interpreted as the convective heat flux written as

Fc =
∫ 1

−1
|h′|Ψµ dµ =

∫ ∞

0
|h′|Q (ξ0)E2 (|ξ0 − ξ|) dξ0 , (2.95)

where E2 denotes the second exponential integral and we assumed symmetry for upward
and downward moving elements (according to Boussinesq approximation) each having a
specific enthalpy fluctuation of h′. The vertical displacement of an element from its initial
position has been redefined by the more natural variable

dξ = −dz
�
. (2.96)

There is still to define the source function |h′|Q(ξ0) for which Spiegel chooses in the
limit for small mixing-lengths to set it equal to the convective heat flux Fc(ξ0), as it would
be computed in a purely local way, i.e. as given in equation (2.78). Thus we still have
in this formulation inherent the approximation that the mixing length have to be small
compared to any scale length in the star. The convective heat flux is proportional to the
cube of the eddy growth rate σ, and σ is proportional to the superadiabatic lapserate β
[cf. Eq. (2.70)]. In order to account for the case where the trajectories of the eddies are
in the order or larger than the local scale height of the envelope, Spiegel used variational
calculations to suggest that β in equation Eq. (2.70) should be replaced by its average
value
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B (z) =
2
�

∫ z+�/2

z−�/2
β (z0) cos2

[π
�

(z0 − z)
]
dz0 , (2.97)

We are now faced with integral expressions, which would convert the ordinary differen-
tial equations of stellar structure into integro-differential equations, increasing considerably
the numerical treatment. Fortunately an approximate solution of equation (2.94) for Ψ and
thus for the convective fluxes may be obtained by taking moments of the transfer equation
and using the Eddington approximation to close the system of equations at second order
(Gough 1976). This yields the solution

1
a2

d2Fc

dξ2
= Fc − Fc , (2.98)

when using for the source function |h′|Q = Fc and for the additional parameter a =
√

3.
The exact solution of this equation is

Fc (ξ) =
∫ ∞

−∞
Fc (ξ0)K (ξ, ξ0) dξ0 , (2.99)

where the kernel K is given by

K (ξ, ξ0) =
1
2
a exp (a|ξ − ξ0|) . (2.100)

Thus the approximation Eq. (2.98) is equivalent to replacing the kernel E2(|ξ0 − ξ|) in
Eq. (2.95) by the simpler form of equation (2.100). This suggests, however, a different
value for the coefficient a, which can be determined by demanding that terms in the
Taylor expansions about ξ of K and E2 differ only at fourth order, which yields a =

√
2.

The expression for the averaged superadiabatic lapsrate B, Eq. (2.97), may be obtained
in a similar way. The integration limits can be formally set to ±∞, if contributions to
B from beyond the trajectory of the eddy are assumed to vanish. By approximating the
kernel, which may be written as 2 cos2[π(ξ0 − ξ)], by K, one obtains

1
b2
d2B

dξ2
= B − β , (2.101)

where b � √
61 using the Taylor-expansion technique described above.

The momentum flux of the eddies within the ensemble can be treated using exactly
the same approach as for the convective heat flux, where one obtains a similar expression
for the turbulent pressure written as

1
a2

d2Pt

dξ2
= Pt − pt . (2.102)
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The non-local equations discussed above were derived in the physical picture in which
the convective elements are accelerated from rest and whose evolutions along their tra-
jectories are described by linear growth rates, as already discussed in the local theory.
Obviously the non-local equations may also be discussed in the view of the second picture,
where the eddies are regarded as cells with the size of one mixing-length and centered at
some fixed height, again, similar as in the local treatment of mixing length theory. This
is the picture in which Gough (1976) discussed the derivation of the non-local equations,
which corresponds to treating the finite extent of the eddy and the non-local transfer of
heat and momentum across it by using the averaging idea which had led to the equation
for B described above. The integral expression Eq. (2.97) may then be interpreted such
that an eddy centered at z0 samples B over the range determined by the extend of the
eddy, i.e. (z0 − �/2, z0 + �/2). Moreover, the averaged convective fluxes Fc and Pt are
constructed not only by eddies located at z0 = z, but by all the eddies centered between
z0 − �/2 and z0 + �/2. Hence the two additionally parameters a and b (three, if the ker-
nels for the convective heat flux and turbulent pressure are treated differently) control the
spatial coherence of the ensemble of eddies contributing to the total heat and momentum
flux (a), and the degree to which the turbulent fluxes are coupled to the local stratification
(b). Theory suggests values for these parameters, but the quoted values are approximate
and to some extent these parameters are free. These parameters control the degree of
“nonlocality” of convection, where low values imply highly non-local solutions and in the
limit a, b → ∞, the system of equations reduces to the local theory. Balmforth (1992a)
explored the effect of a and b on the turbulent fluxes in the solar case very thoroughly and
Tooth and Gough (1989) have looked at laboratory convection and attempted to calibrate
a and b.

In Fig. 2.1 the temperature gradient ∇ = d lnT/d ln p for an equilibrium model of a
1.3 M� ZAMS star is depicted. The envelope was computed according to the procedure
discussed in Section 3.4.4, using the values a2 = b2 = 300 for the non-local solution (solid
line). In order to compare two envelope models, constructed by using different prescription
for convection, the equilibria must be defined exactly on the same adiabat below the upper
superadiabatic boundary layers, upon the bulk of the convection zone is described on. Once
the equilibrium model is constructed according to the non-local formulation the local model
is found by a proper matching procedure. Specifying the same surface boundary conditions
in both models the local model is iterated to the non-local solution at a particular radius
defined just above the superadiabatic layers at the bottom of the convection zone, where
the temperature gradient becomes almost identical to the adiabatic one (see right panel of
Fig. 2.1). At this radius the pressure and temperature have to be continuous and therefore
we need to vary two parameters in the iteration process of the local model, such as the
local mixing-length parameters αc and hydrogen mass fraction X . This procedure enables
us to compare models, constructed with the local and non-local formulation of convection,
which differ most in the upper layers.

The non-local theory predicts a smaller temperature gradient in the upper superadi-
abatic regions than the local theory does. A smaller value of the non-local parameter a
enhances the contribution from eddies located at different layers to the turbulent heat
flux, thus reducing the temperature gradient. Moreover, the non-local gradient is slightly
pushed inwards and depicts a pronounced temperature inversion at log p = 4.93. Such an
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Figure 2.1: Temperature gradient ∇ = d lnT/d ln p for a 1.3 M� ZAMS equilibrium
model envelope, depicted at the upper (left) and lower (right) boundary of the convection
zone. The solid line gives the solution according to the non-local mixing-length theory
assuming the convection parameters αc = 2.0, a2 = b2 = 300; the dotted line depicts the
results for the local theory, which has been matched to the same adiabat of the non-local
solution at the bottom of the convection zone by varying the mixing-length parameter αc

and abundance of hydrogen X of the local solution from αc = 2.0 and X = 0.7 to the new
values αc = 1.964 and X = 0.7033, respectively.

inversion results from the decoupling of the turbulent fluxes from the local stratification,
controlled by the non-local parameter b. With decreasing value of b, sudden changes in the
local structure, e.g. in the ionization zones, are no longer diminished by the response of
the turbulent heat flux. This may result in an increase of the steepness of the temperature
gradient and thus the temperature inversion amplifies.

In Fig. 2.2 the temperature gradients are portrayed for a non-local model envelope,
computed with the parameters a2 = 900, b2 = 2000, and the corresponding local model,
which again, has been fitted to the non-local solution. Clearly, one can see, that for larger
values of a and b the non-local temperature gradient becomes more similar to the local
solution. Furthermore, an increase of the non-local parameters a and b reduces the extent
of the convection zone, which is similar to a decrease of the mixing-length parameter αc.
This comes about because reducing αc means a smaller size of the convective eddies and
thus convection becomes less efficient.

2.4.2. Time-dependent, non-local theory

In order to derive expressions for the pulsationally induced perturbations of the non-local
turbulent fluxes, the time derivative in equation (2.93) has to be taken into account. One
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Figure 2.2: Temperature gradient ∇ for the same model as in Fig. 2.1, but using a2 =
900, b2 = 2000 for the non-local solution (solid line). The matching of the model envelope
constructed with the local mixing-length theory (dashed line) was obtained with the new
parameters αc = 1.895 and X = 0.7038.

can then proceed as in the static atmosphere and take moments of this equation to derive
an expression for the convective flux. This expression may be linearized which provides
a differential form for the perturbations to the turbulent fluxes including the term of the
time-dependent source function Q. The time-dependence of Q, as introduced in the static
discussion, can be described as the instantaneous creation of elements, whereas the term
∂ψ/∂t in equation (2.93) accounts for the phase delay between the source function and the
response of the distribution function ψ. In the local prescription of Gough, the distortion
of the mean eddy size between creation and annihilation with the mean environment is
accounted for appropriately and thus also the phase lag between the deformation of the
mean environment and the response of the turbulent fluxes. Hence, the phase lag due to
the ∂ψ/∂t term is already taken into account by the source function Q, when it is set to
Gough’s locally computed turbulent fluxes. Thus equation (2.93) becomes essentially the
form of Eq. (2.94) and the perturbations to the turbulent fluxes are obtained by perturbing
the equations (2.98), (2.101) and (2.102) to first order which gives

1
ε2

∂

∂ξ

[
∂

∂ξ
(δT ) − ∂

∂ ln p0

(
δp

p0

)
∂T

∂ξ

]
= δT − δT + (T − T )

∂

∂ ln p0

(
δp

p0

)
, (2.103)

where T is either of Fc, Pt or B, and T is the corresponding source function or β. The
Lagrangian perturbations to the pressure and the quantity T are represented by δp and
δT , respectively, and the parameter ε is either a or b. The corresponding perturbation to
the local quantities T are taken according to Gough’s local, time-dependent formulation
of convection, as discussed above.
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2.5. Other formulations of convection

The previous chapters revealed us some of the complexity of the stochastic nature of
turbulent flow. It constrains one to find appropriate models for the generation of turbulence
through the Reynolds stresses, which extract energy from the mean flow in the case of
shear flow or from the work done by buoyancy in the case of thermal convection, as well
as for the transfer of energy by turbulence itself and for the dissipation of energy into
heat by molecular processes. Inherent in all these models is the need of information, how
energy is distributed amongst the different scales of turbulence, viz. the turbulent energy
spectrum. The width of the turbulent spectrum depends on the molecular viscosity; in
particular the ratio between the largest and smallest size of the eddies which constitute
the spectrum is ∼ Re3/4, hence, for the solar case with a Reynolds number Re ≈ 1010, this
ratio is about 107. The mixing-length idea accounts only for one particular scale described
by the length �, which represents the vertical extend or the travel distance of the most
energy-bearing eddies. Thus, it is the mixing-length theory which describes the beginning
of the turbulent cascade and thus neglecting the influence of the dynamics by the small
scale turbulence. One possibility to account for the momentum and heat exchange by the
small scale turbulence is by introducing an additional (enhanced) scalar eddy diffusivity
νe, assuming that the small scale dynamics is isotropic. Such an eddy diffusivity can be
described by an one-equation model suggested by Prandtl and Kolmogorov in the 1940s,
where νe is proportional to the square root of the turbulent energy u′iu

′
i/2 and may be

related to the velocity and length scales of the large eddies (Gough 1976) by

νe =
1
2

(
u′iu

′
i

)1/2
/k′ = ε (uiui)

1/2 k−1 =
ε�

π
(Φ − 1)1/2

(
w2
)1/2

, (2.104)

where k′ denotes for the local wave number of small scale turbulence and ε is of order
unity and depends on the turbulent spectrum. In accordance to the way we constructed
the turbulent fluxes, Eq. (2.78) and Eq. (2.79), we may write (w2)1/2 = σ�/2. Taking the
diffusivity to be the same for both momentum and heat (i.e. Prt = 1 in equation (2.37)),
the convective linear growth rate may be expressed as

2σ = − (κ̃+ ν̃) k2 +
[
(κ̃+ ν̃)2 k4 + 4

gδβ

ΦT

]1/2

, (2.105)

where κ̃ = κ+ νe and ν̃ = νe, which is essentially equation (2.70) multiplied by the factor
[1 + επΦ(Φ − 1)−1/2/2] and may be used to construct the turbulent fluxes according to
Eq. (2.78) and Eq. (2.79). Including the enhanced diffusivity in Eq. (2.105) increases σ,
and thus the turbulent fluxes become larger compared to the case, without the inclusion
of νe. However, the modelling of the turbulent energy spectrum by means of an enhanced
diffusivity as given by equation (2.104) reflects only a crude approximation, where models
based on two-point closer theories may be more promising.
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2.5.1. The Canuto-Mazzitelli prescription of convection

Recently, Canuto and Mazzitelli (1991, hereafter CM) proposed a model for convection
which takes account for the full turbulent spectrum computed according to the Eddy
Damped Quasi-Normal Markovian (EDQNM) model (Orszag 1977). This model is based
on a statistical description of turbulence by means of an improved theory of the Quasi-
Normal approximation by Millionschikov (1941). In this approximation the higher mo-
ments n (n > 2) of a non-gaussian random function (like the turbulent velocity field) with
known second-order moments can be computed under the assumption that this function
would be a gaussian one. The difference between the actual n − th order moment of the
function and the corresponding gaussian value is called the n− th order cumulant. In the
EDQNM model the fourth-order cumulants are approximated by a linear damping term, in
order to achieve positiveness of the resulting energy spectrum for homogeneous turbulence.

The convective heat flux may be expressed in terms of the turbulent kinetic energy per
unit mass, E(k), as (e.g. Yamaguchi 1963)

Fc = φKβ∆
(
η2S

)
, ∆

(
η2S

)
=

ρcpT

gδKβ

∫ ∞

0
2σ (k)E (k) dk , (2.106)

where we neglected terms including the molecular viscosity in the integrand. In the CM
model the function ∆, describing the energy spectrum as function of the convective efficacy
η2S, is provided as an analytical fit to the corresponding results, obtained by computing
the spectrum according to the EDQNM approximation.

In the local mixing-length theory σ describes the convective evolution only for those
eddies which are characterized by the wavenumber k� = π/�. Moreover, the spectrum of
the kinetic energy is only described at this particular scale and may be approximated by
the delta function δ̄(k−k�). Thus the function ∆ can be displayed in Gough’s formulation
of the local mixing-length theory as

∆�

(
η2S

)
=

ρcpT

gδKβ

∫ ∞

0
2σ (k�)E�δ̄ (1 − k/k�) dk =

1
4
Φ1/2η−3S−1

[(
1 + η2S

)1/2 − 1
]3
,

(2.107)

using the equations (2.70) and (2.78).

We are now in the situation to compare the convective heat flux, obtained according to
the mixing-length approach, with the true flux as given by Eq. (2.106). The linear growth
σ(k�) can be written in terms of characteristic time scales [cf. Eq. (2.105) with νe = 0] as

2σ� = − 1
τκ

{[
1 +

(
τκ
τN

)2
]1/2

− 1
}
, (2.108)

where
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τκ =
1

φκk2
�

, and τN =
(
gδβ

ΦT

)−1/2

, (2.109)

represent the characteristic time scales for radiative cooling and buoyancy [cf. Eq. (2.46)],
respectively.

In the limit of efficient convection τN � τκ, and σ(k�) ≈ τN , thus it becomes indepen-
dent of k�. The differences between the integral expressions for ∆ and ∆� are therefore
solely governed by the kinetic energy spectrum. The reduced energy spectrum in the
mixing-length approach, i.e. neglecting the contribution from small-scale eddies to the
expression of ∆�, leads to the result that

F �
c � Fc if η2S � 1 , (2.110)

where F �
c = Kβ∆� is the convective flux predicted by the mixing-length theory. If

however, convection becomes inefficient, τN � τκ, and σ(k�) � τ−1
κ (τκ/τN )2 ∼ k−2

� . Thus
in the wavelength-domain, where the growth rate σ(k) decreases with k2, the corresponding
value of σ(k�) remains larger. The value for ∆� therefore dominates over ∆ when calculated
according to equation (2.106) providing the relation

F �
c � Fc if η2S � 1 . (2.111)

In the above comparison the CM-model predicts a considerably larger temperature gradient
in the superadiabatic layers than the mixing-length approach does (Monteiro, Christensen-
Dalsgaard & Thompson 1994, 1996).

The expressions (2.110) and (2.111) can be interpreted as a clockwise rotation of F �
c (S)

in the ‘efficiency space’ S−Fc, with respect to the solution of Fc when calculated according
to equation (2.106). In mixing-length theory the parameter αc [cf. equation (2.92)] selects
the proper adiabat on which the bulk of the convection zone is defined on, in order to
obtain the correct radius of a star in stellar evolution calculations. Thus the parameter
αc acts only as a translation parameter and has therefore no influence on the necessarily
rotational adjustment of the heat flux in the S − Fc space.

In the CM model the authors define the mixing-length � at each layer equal to the
distance from the top of the convection zone and therefore removing any free parameter
from the expressions for the convective heat flux. However, evolution calculations for a
1M� star with the CM model reveal a too large radius for the Sun (e.g. Christensen-
Dalsgaard, Monteiro & Thompson 1995) and moreover, hydrodynamical simulations of
turbulent compressible convection (e.g. Chan & Sofia 1987) provide some support that �
is proportional to the local pressure scale height at all depths. It is therefore still an open
question how the characteristic scale lengths should be taken into account and further
investigations seem to be necessary.



2.5 Other formulations of convection 35

2.5.2. Reynolds stress models

The convection models discussed so far are only applicable to the case when turbulence
is homogeneous. There have been made some attempts to extend the EDQNM model for
moderately inhomogeneous turbulence (e.g. Burden 1991), however, the Reynolds stress
approach allow a reasonable degree of flexibility and can, in principle, account for effects
such as buoyancy, curvature and rotation in inhomogeneous turbulence without ad hoc
adjustments.

In the context of stellar convection, inhomogeneous turbulence becomes important
when effects such as overshooting should be taken into account. Canuto (1992) introduced a
turbulent convection model by means of the Reynolds stress approach using the Boussinesq
approximation and extended this model for the general non-Boussinesq case very recently
(Canuto 1993). Here I just give a brief review about the basic method of Reynolds stress
models and about the closure procedures as Canuto has applied them in his prescription.

As proposed first by Keller & Friedmann (1924) the Reynolds stresses can be deter-
mined from a transport equation. In the Boussinesq approximation this transport equation
is obtained by first multiplying equation (2.22) by u′j to obtain Eq. (2.22a), interchang-
ing the indices i and j in Eq. (2.22a) to obtain Eq. (2.22b), followed by a summation of
Eq. (2.22a) and Eq. (2.22b). By taking the average of this result the transport equation
becomes

∂Rij

∂t
+
∂u′iu

′
ju

′
k

∂xk
= −

(
gi
δ

T
u′jT ′ + gj

δ

T
u′iT ′

)
− 1
ρ

(
u′i
∂p′

∂xj
+ u′j

∂p′

∂xi

)
+ ν

∂2Rij

∂x2
k

− εij ,

(2.112)

where Rij = u′iu
′
j denotes the Reynolds stress tensor and we neglected terms including the

mean flow ui. The third term on the r.h.s represents diffusion of turbulence by molecular
viscosity and is usually neglected, whereas εij [cf. Eq. (2.14)] must be taken into account,
as already discussed before, and has to be modelled by another transport equation. The
second term on the l.h.s, a triple-correlation tensor, is usually interpreted as a diffusive
flux of the Reynolds stress generated by the action of the stress itself (sometimes called
the turbulence self-diffusion term). It is this term which gives rise to the well known
closure problem in the statistical description of turbulence. An additional equation may
be established to describe this triple-correlation tensor, which will contain fourth-order
moments and so on. To describe the whole problem similar transport equations have
to be established for the remaining second-order moments, appearing in the fluctuating
equations (2.22) and (2.24) (i.e. u′iT ′, T ′2 and u′iu

′
i).

It was common to approximate the third order moments in a similar way as in the
second-order closure, i.e. by means of a turbulent viscosity multiplied by the gradient
of the characteristic second-order moment (down-gradient- or diffusion approximation).
However, such down-gradient approximations imply many shortcomings and one should
instead consider the full expressions for the third-order moments (Finger & Schmidt 1986)
applying proper approximations for the fourth-order correlations. Assuming the fourth-
order moments to be gaussian random variables and replacing the correlations for the
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pressure by third-order damping terms, one can express the third-order correlations by
the second-order moments (Hanjalic & Launder 1976). This approximation is physically
equivalent to the EDQNM model discussed before. Thus one obtains a set of linear al-
gebraic equations for the third-order moments which can be solved analytically and the
whole turbulent convection problem is described by five coupled differential equations for
the second-order moments which are solved numerically (Canuto 1992, 1993).
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3. Damping and excitation of solar-type p modes

3.1. Introduction

The stability of solar-like p modes depends mainly on the interaction of acoustic modes with
radiation and convection in the atmosphere. So far, two theories, thermal overstability and
stochastic excitation by turbulent convection seem to be the most plausible explanations
for solar-type p mode pulsation. In both mechanisms the energy flow from radiation and
convection into and out of the p modes is taking place very near the surface.

The mechanism of thermal overstability can arise from the disturbance of the local
equilibrium due to pulsation, by exchanging heat between stellar matter, the turbulent
energy and the radiation field. If the pulsation is supported by the energy arising from the
perturbation of the divergence of the radiation flux, we know from the more well-known
theory of variable stars (e.g. Cepheids), that this kind of driving, the κ -mechanism,
takes place predominantly in the ionization zones just below the photosphere. Solar-like
stars, however, exhibit distinctive surface convection zones and the ionization layers lie
well within these convectively unstable domains where the total energy flux is carried pre-
dominantly by the turbulent heat flux. The energy exchange with turbulent convection
depends strongly on the convective Mach number which becomes largest in the superficial
boundary layers, where there is the transition from convective to radiative energy trans-
port. Thus the stability is governed by the perturbations in the radiative and turbulent
fluxes (heat and momentum), demanding for a proper theory for convection, which in-
cludes non-adiabatic effects arising from the interaction of the turbulent velocity field with
the pulsation. These non-adiabatic effects can lead to overstability and may therefore con-
stitute one conceivable explanation of the excitation of solar-like oscillation (Ulrich 1970a;
Antia, Chitre & Gough 1988). By solving the non-adiabatic equations for non-radial oscil-
lations of a solar envelope, Ando & Osaki (1975) found that many of the solar p modes were
overstable and that the highest growth-rates occurred for those modes having frequencies
of about 5 minutes. Their results looked encouraging for the thermal overstability mech-
anism. However, they completely neglected the perturbations in the turbulent fluxes and
therefore underestimated the damping rates severely. Moreover, if solar-like p modes were
really overstable, some non-linear mechanisms must limit the amplitudes to the low values
that are observed in the solar case. The only mechanism proposed to far which could
perhaps limit the growth of overstable modes is non-linear mode coupling, as considered
by Kumar & Goldreich (1989). For oscillations with such small amplitudes (δR/R � 10−8

for solar-like oscillations, R being the radius of the star, whereas the corresponding value
of a Cepheid variable star is δR/R � 10−1), it is likely that only the lowest order coupling
is of importance, viz. three-mode coupling, which has been studied in an analytical way
by Kumar and Goldreich. Their results however, suggest, if all modes were overstable,
their growth cannot be limited within the observed amplitudes through the mechanism of
non-linear coupling. Thus the theory of stochastic excitation may be more favorable than
the model of thermal overstability.

Stochastic excitation by turbulent convection results when intrinsically stable modes
are forced by the emission of acoustical radiation generated by turbulent multipole sources
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(e.g. Unno 1964). The acoustic noise generated by convection in the star’s resonant cavity
may result in the excitation of p modes (Goldreich & Keeley 1977b), and emits radiation
in a broad-band in frequency. The radiation which is trapped inside the star’s cavity,
can also be re-absorbed by the turbulence which will tend to limit the amplitudes of p
modes. The amplitudes are then determined by the balance between the excitation rate
and the damping rate and are expected to be rather low. Thus the turbulent excitation
model predicts not only the right order of magnitude for the p mode amplitudes, but it
also explains the observation that millions of modes are excited simultaneously.

Beside the demand of a time-dependent theory for convection to treat properly the lin-
ear stability problem of solar-type pulsation, the theoretical calculations are complicated
still further by the fact that the acoustic modes depend crucially upon the treatment of
radiative transfer. This is particular true for high-order modes, since the point at which
waves are reflected back towards the interior gradually moves outwards with increasing
frequencies and the thermal perturbation to the modes becomes progressively more in-
fluenced by the radiative relaxation of the atmosphere. Moreover, radiative equilibrium
in no longer maintained in the transition region between radiative and convective energy
transport. Thus approximating the radiative transfer equation by the diffusion equation
will be inappropriate and would lead to an underestimation of the atmospheric damping
due to radiative losses (Ando & Osaki 1975, Christensen-Dalsgaard & Frandsen 1983a).

Balmforth (1992a) introduced improved routines using Gough’s (1976, 1977) non-local,
time-dependent mixing-length theory for convection (cf. Section 2.4) and the Eddington
approximation to radiative transfer (Unno & Spiegel 1966) in both, the equilibrium and
pulsation model. He calculated damping rates for the solar envelope and found all modes
stable. The results presented here have been obtained with Balmforth’s programme, for
which the implementation details are discussed in Section 3.4.1.

3.2. Damping rates

3.2.1. Observations of line widths in the Sun

Assuming that solar p modes were stable, the intrinsic damping rate of the modes can be
obtained from measurements of the pulsation line widths. The line widths are obtained
by fitting Lorentzian profile functions (see below) to the spectral peaks of the observed
power spectrum. Recent observations (Toutin & Fröhlich 1992; Elsworth 1995a,b; Goode &
Strous 1996) support the hypothesis that solar acoustic modes are intrinsically damped, but
excited stochastically by convection. These measurements, however, usually suffer from a
rather poor signal-to-noise ratio and the demand of continuous observations over very long
periods, in particular for modes of low frequencies. Further complications in the observed
power spectrum of solar pulsations still arise from non-linear effects (Dziembowski 1988),
mode beating of closely spaced modes (e.g. Christensen-Dalsgaard & Gough 1982) and
from effects caused by deformation of the Sun (e.g. Kuhn 1996). Thus the measurements
of line widths are of complicated nature and depend on the observing details, the mode
re-excitation (e.g. Jefferies et al. 1988) and the basic mode lifetime.
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The power spectrum for which all modes are stable, can be described by an ensemble
of intrinsically damped, stochastically driven, simple harmonic oscillators. The power
spectrum of a damped harmonic oscillator excited by random forces f(t) is approximately
Lorentzian and its amplitude a(t) is proportional to the ratio between the power put into
the mode and its damping rate (e.g. Batchelor 1956). If the random function f(t) is
independent from a(t) (viz. harmonic), the oscillator satisfies the equation

d2a

dt2
+ 2η

da

dt
+ ω2a = f (t) , (3.1)

where η is the damping rate, ω is the natural frequency of the mode and the spectrum of
the forcing function f(t) is assumed to be nearly white (or Gaussian). Since one particular
p mode is excited by many convectively unstable elements, the latter assumption can be
justified by the Central Limit Theorem (e.g. Reif 1985). It implies that f(t) approaches
a gaussian forcing in the limit of infinite convectively unstable elements, independent of
their individual stochastic forcing function. By taking the Fourier transform of equation
(3.1) and neglecting transients arising from the initial conditions on the amplitude a, we
obtain

A (Ω) =
F (Ω)

ω2 − Ω2 + i2ηΩ
, (3.2)

where A(Ω) and F (Ω) are the transforms of a(t) and f(t). The limited observation time
from a single site additionally blurs the required frequency resolution and should be taken
into account in this analysis. Thus the mean power spectrum Pa(Ω) = < |A|2 > of a time
series lasting from t = 0 to t = T is given by

Pa (Ω) =
2Pf (Ω)

(ω2 − Ω2)2 + 4η2Ω2

×
{
ηT +

∆Ω2 − η2

∆Ω2 + η2
+

e−ηT

∆Ω2 + η2

[(
η2 − ∆Ω2

)
cos ∆ΩT − 2η∆Ω sin ∆ΩT

]}
(3.3)

where Pf (Ω) =< |F (Ω)|2 > represents the average power spectrum of the forcing and
∆Ω = ω − Ω. The expression for the power spectrum may be simplified if the harmonic
oscillator is excited only once (Christensen-Dalsgaard 1989), yielding

P (Ω) =
eηT sin2 [(Ω − ω)T/2] + 1/4

(
eηT − 1

)2
(Ω − ω)2 + η2

a2 . (3.4)

Assuming a damped oscillation with η < 0, in the limit |ηT | � 1 the power spectrum
reduces to

P (Ω) = 1/4a2T 2sinc2 [(Ω − ω)T/2] , (3.5)
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Figure 3.1: Mean power spectrum of a once excited damped harmonic oscillator [see
equation (3.4)] illustrating the combined effects of damping η and finite observing time
T . The abscissa is the frequency separation between frequency and the natural frequency
of the oscillator, in units of 1/T . The ordinate represents the normalized power and the
curves are depicted for different values of |ηT |. With increasing |ηT |, the curves transform
smoothly from sinc2-profiles to Lorentz-profiles.

where sinc x = (sin x)/x, thus we do get a sinc2-profile. In this limit the half width at half
maximum (HWHM) in ω of the observed peak is given by 2.89 T−1.

In the other limit with |ηT | � 1, the first term in the numerator of equation (3.4) can
be neglected and we obtain

P (Ω) =
1
4

a2

(Ω − ω)2 + η2
, (3.6)

which represents a Lorentz-profile with a HWHM of η. The transition between these two
limits is displayed in Fig. 3.1 for which the HWHM≈ η+ T−1. Thus for |ηT | � 5 the line
profile is essentially purely Lorentzian.

The average power spectrum for a stochastically excited damped harmonic oscillator
[see equation (3.3)] becomes in the limit |ηT | � 1

Pa (Ω) =
Pf (Ω)

(ω2 − Ω2)2 + 4η2Ω2
≈ 1

4ω2

Pf (Ω)

(ω − Ω)2 + η2
∝ PL (Ω)Pf (Ω) , (3.7)

provided |η| � ω and the average power spectrum Pf (Ω) of the forcing varies slowly with
ω. PL = 1/[(ω−Ω)2 + η2] represents a Lorentzian profile with a HWHM= η. An example
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Figure 3.2: Power spectra of a randomly excited
spectral line. PL depicts a pure Lorentzian profile
for the solar p mode with degree l = 20 and radial
order n = 11 (ν = 2529.378 µHz, η = 1.25 µHz).
Pf represents a stochastic source spectrum and Pa

is the product of the Lorentzian and the source
spectrum [see equation (3.7)]. The sampling rate is
0.03 µHz (adopted from Kosovichev 1995).

of the power spectra of PL, Pf and Pa for a particular oscillation mode are depicted in
Fig. 3.2. Taking the integral of equation (3.7) one obtains the result

∫ ∞

0
Pa (Ω) dΩ ≈ 1

|η|
π

4
Pf (ω)
ω2

. (3.8)

Thus, as already stated before, the power in a particular oscillation mode is proportional
to the power of the forcing at the oscillation frequency and inversely proportional to the
linear damping rate. Moreover, the lower the damping rates η become, the longer have to
be the observing time T , in order to obtain accurate line width measurements by means
of fitting Lorentzian profiles to the spectral peaks in the observed power spectrum.

3.2.2. Physical effects contributing to line widths

Various physical processes are responsible for stabilizing the p modes. Beside the non-
adiabatic effects, such as radiative damping, contributions arising from dynamical effects
may be of similar importance. Basically the damping rates of oscillation can be divided into
two parts: contributions that are caused through processes governed by the momentum
equation and effects described by the energy (thermal) equation. Moreover, each of them
can be still further divided according to their physical meaning as it is illustrated in
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Figure 3.3: Physical processes contributing to the damping rate η.

Fig. 3.3. In particular, the dynamical damping rate consists of those due to scattering, due
to turbulent viscous dissipation, due to leakage of waves into the upper atmosphere, as well
as redistribution of pulsation energy between modes by non-linear interaction (coupling).
On the other hand, the thermal damping is due to the non-adiabatic effects and can be
divided into contributions associated to radiative damping and to the interaction between
acoustic modes with convection through the modulation of the turbulent heat flux by the
oscillations.

Turbulent convection as it is modelled by means of a mixing-length theory is treated
as though it were horizontally homogeneous. However the superficial layers exhibit a
reasonable inhomogeneous structure on a scale comparable to the vertical length-scale of
high-order p modes (e.g. Bogdan 1989). Such modes therefore experience a substantial
amount of incoherent scattering at these layers and hence their line widths become in-
creased. Murray (1993) and Goldreich & Murray (1994) analyzed the effects of scattering
of a linear acoustic wave by a turbulent velocity field. They obtained the expression

ηscatt ∝ ω

π (n+ 1)
Mt

2 , (3.9)

where Mt = u/c represents the Mach number of the turbulence at the top of the acoustic
cavity. The authors assumed that the bulk of the scattering comes from this depth of the
convection zone, where the product of the p mode wave-vector and the characteristic scale
of the energy-bearing eddies is in the order of unity. In order to get an estimate of the
total scattering line width, contributions from all modes, between phonons are exchanged
by scattering, have to be taken into account. Thus one has to take the sum over all modes
including the f mode8, which contribute to the total scattering line width of a particular

8 The f mode (fundamental mode) appears to be a surface gravity mode with n = 0 (like surface waves
on a pond) whose restoring force is buoyancy and its frequency increases slowly with increasing degree l.
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radial or non-radial p mode. They concluded, that scattering acts as a source of damping
for low degree p modes, and a source of excitation for high degree p modes and the f mode.

Non-linear mode coupling is one mechanism which could perhaps halt the growth of
overstable modes. Kumar & Goldreich (1989) investigated what sort of non-linear mech-
anism might arrest the growth of linearly overstable modes. Since the mode amplitudes
are very small, it is very likely that only the lowest order coupling, namely the three-mode
coupling, is important for solar-like pulsation. Their calculations reveal that strongest
coupling of p modes occur with the f modes, although there is some much weaker coupling
between p modes alone. The energy equation for a p mode can be written approximately
as (Kumar & Goldreich 1989)

dEp

d t
= αEp − βEpEf , (3.10)

where Ep and Ef represent the kinetic energy of a p mode and f mode respectively, and
α > 0 and β > 0. The equation for a f mode is approximately

dEf

d t
= αfEf − βfEfEf , (3.11)

indicating that f modes are independent of the energy of p modes and couple most strongly
to other f modes. Thus, three-mode coupling drain energy from p modes that is linear
in Ep and the calculations of Kumar and Goldreich reveal that it occurs at a rate that
is less then the energy gained from the assumed overstability. Although mode coupling
do provide a contribution to the line widths, it is unimportant compared to other effects
discussed here.

Discontinuities in the density and its gradient, such as that encountered in the tran-
sition between a chromosphere and a corona as well as near the photosphere and the
ionization zones of the abundant elements give rise to reflection of acoustic waves. How-
ever part of the wave energy tunnel through the potential energy barrier at those outer
turning points and such leakage provides a contribution to the total damping rates. Balm-
forth & Gough (1990b) investigated this leakage using a complete description of the outer
boundary condition derived by matching the pulsation to an outwardly propagating, adi-
abatic wave in an isothermal atmosphere which was applied at the temperature minimum
(e.g. Baker & Kippenhahn 1965). The authors concluded that the enhancement to the
damping rate due to leakage of wave energy is insignificant in comparison to the observed
line widths.

Vibrational stability is influenced further by the exchange of energy between pulsation
and the turbulent velocity field. In the time-dependent mixing-length theory the driving
and damping of pulsation due to its coupling with convection can be associated to thermal
effects arising from the pulsationally perturbed convective heat flux and due to dynamical
effects generated by the fluctuating Reynolds stresses (see below). Mixing-length theory,
however, accounts only for the large-scale eddies of the turbulent cascade, thus neglecting
momentum and heat exchange by the eddies lying farther down the turbulent spectrum.
As discussed in Section 2.5, dissipative effects associated to the small-scale turbulence
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can by modelled by means of an enhanced turbulent viscosity. One possible form of the
enhanced turbulent viscosity νe was given by equation (2.104) and according to Ledoux &
Walraven (1958) the associated damping contribution can be written in the form

ην =
ω2

3Ek

∫
M�

νe

∣∣∣∣r ∂∂r
(
δr

r

)∣∣∣∣
2

dm , (3.12)

where δr/r represents the relative radius displacement in a Lagrangian frame of reference
and the kinetic energy Ek is given by equation (3.51). Balmforth (1992a) computed the
damping contributions of small-scale turbulence according to equation (2.104) for the solar
case and concluded that ην is negligible compared to the total damping rate. A different
form of νe was introduced by Goldreich & Keeley (1977a), who derived an expression in
which eddies with turnover times close to the pulsation period contribute most to the
viscous damping. However, their expression for νe provide similar results as equation
(2.104) and thus one substantially underestimates the stabilizing influence of the dynamical
effects of convection when modelled only by a turbulent viscosity.

Non-adiabatic processes like the conventional κ-mechanism or radiative damping are
responsible for both the driving and damping of pulsation. The κ-effect works upon the
principle of the modulation of the radiative energy flux. If the stellar matter is in a
particular state of ionization the opacity becomes increased during a local compressive
perturbation. Usually an increase of the temperature decreases the abundance of absorb-
ing material like partially ionized atoms, and the opacity, κ, decreases. However, in the
hydrogen and helium ionization zones there is a temperature range where an increase in the
temperature produces an opacity increase. This is mostly caused by the energy increase
of the photons with increasing temperature, moving into the photon energy range that
hydrogen and helium can absorb effectively. This increase of the opacity with compression
and the natural temperature increase that goes with the compression, causes the stellar
matter to absorb a greater amount of heat from the incident energy flux than would be
the case if the star were undisturbed. In the subsequent expansion, the extra heat stored
in these layers is converted into mechanical work, which drives the pulsation.
On the other hand temperature variations in different layers of the star cause an additional
heat exchange between these regions. Thus rapid radiative relaxation, which becomes im-
portant for high-order modes, contribute significantly to the damping (radiative damp-
ing). One property of modes with increasing order is that the point of reflection where
their component wave is headed back into the interior gradually moves further out into
the atmosphere. Thus the mode amplitude is quite large there, making radiative effects
more important. The rate at which radiative damping in the atmosphere takes place, can
be described by the expression (e.g. Unno & Spiegel 1966)

ωR =
ar c κT 4

p δ
ρ , (3.13)

where ar denotes the radiation density constant. The radiative relaxation rate ωR de-
creases with height in the atmosphere, due to the rapid decrease of the temperature and
density. Although the detailed structure of the temperature stratification in a static at-
mosphere has no significant influence on the resulting damping rates (Balmforth 1992a)
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it determines the photospheric conditions and thus the details of the stellar interior of
the equilibrium model (Ando & Osaki 1975). Such a fundamental change in the model
however, substantially affects the stability properties. Moreover, this demands a more
accurate treatment of the radiative transport then just employing the diffusion approxi-
mation. Christensen-Dalsgaard & Frandsen (1983a) have shown that the use of the grey
Eddington approximation to radiative transfer, when applied correctly, does not introduce
a too large error in the calculation of the damping rates. Moreover, these authors have
demonstrated that in a pulsating atmosphere the departures from radiative equilibrium in
the mean state must not be neglected in the stability calculations. In the upper part of the
convection zone, where there is a transition from convective to radiative energy transport,
the radiative equilibrium is no longer maintained, thus the mean intensity J is no longer
equal to the Planck function B. In particular, by perturbing the equations describing the
radiation field in the Eddington approximation [cf. equation (A.14)] one obtains

δ

(
1
ρ
∇ · Fr

)
= 4πκ

[
δB − δJ +

δκ

κ
(B0 − J0)

]
, (3.14)

where δX represents the perturbation of the quantity X in a Lagrangian frame of reference
and the subscript “0” denotes the equilibrium quantities. The last term in (3.14) describes
the departure from the mean state and was neglected in many stability calculations, such
as the one by Ando and Osaki (1975, 1977).

The above discussed κ-effect is believed to be the major excitation mechanism in classi-
cal pulsating stars which exhibit surface temperatures in a very narrow temperature-band,
the so called instability strip (cf. Section 4.3.2). In these stars, such as the Cepheids, the
ionization zones of hydrogen and helium do lie predominantly in radiative region. How-
ever, in solar-type stars the zones of ionization lie well inside the convection zone. Thus
the κ-mechanism provides only a small contribution to the driving, whereas the modula-
tion of the turbulent fluxes by the pulsations seems to be the responsible mechanism for
the detailed driving and damping of solar-type acoustic modes. This demands for a time-
dependent theory of convection, such as the one we have discussed in Section 2.3.2. The
coupling between the oscillations and convection takes two principal forms: first, thermal
(non-adiabatic) effects due to modulation of the convective heat flux by the pulsation [cf.
equation (2.88)], which contribute to the total damping rates by an amount of ηconv, and
second, dynamical effects of convection attributed to the turbulent pressure fluctuations
[cf. equation (2.89)], causing additional damping by the value ηt. Inherent in equa-
tion (2.88) are terms describing the opacity fluctuation δκ [see equations (B.1)-(B.3) and
(B.14)-(B.16) in the Appendix B]. Mathematically, the appearance of the opacity pertur-
bation, as it is found in the radiative diffusion equation (3.14), describes the conventional
κ-mechanism. However, in the perturbed convective heat flux, δκ is related to the way that
radiative diffusion damps convective temperature fluctuations, and this can also influence
pulsational stability. The latter effect together with the conventional κ-mechanism consti-
tute the generalized κ-effect which was discussed in more detail by Balmforth (1992a).

It was first reported by Baker and Gough (1979) that the dynamical effects arising
from the turbulent momentum flux perturbations contribute significantly to the damping.
Moreover, Balmforth & Gough (1990a) and Balmforth (1992a) showed that solar acoustic
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Figure 3.4: Theoretical damping rates for the Sun, using different physical prescriptions
in the calculations for η (details are discussed in the text). The filled dots represent the
measured line widths by Libbrecht (1988).

p modes become overstable without the inclusion of the physics describing ηt. Detailed
analyses reveal (cf. Section 3.4.5) that damping is much enhanced by the phase difference
between the turbulent pressure perturbation δpt and the density perturbation δρ; it is
only at the highest frequencies that the contribution to damping of solar p modes from
gas pressure exceeds that from the turbulent pressure.

The vibrational stability of the Sun has already been investigated by many authors:
Ulrich (1970b); Ando & Osaki (1975, 1977); Goldreich & Keeley (1977a); Gough (1980);
Christensen-Dalsgaard & Frandsen (1983a); Antia, Chitre & Narasimha (1982); Kidman
& Cox(1984); Antia, Chitre & Gough (1988); Christensen-Dalsgaard, Gough & Libbrecht
(1989); Balmforth & Gough (1990a); Balmforth (1992a) as well as Goldreich & Murray
(1994). Results of computed damping rates of some of the above mentioned authors are
depicted in Fig. 3.4 together with observational line widths by Libbrecht (1988). Goldre-
ich & Keeley (1977a) treated the modal growth rates by a turbulent viscosity ην , whereas
Gough (1980) used the diffusion approximation for radiation, but described the effects of
convection according to his local, time-dependent mixing-length theory (cf. Section 2.3.2),
thus considering contributions from ηt and ηconv to the total growth rate η. Christensen-
Dalsgaard & Frandsen (1983a) used the grey Eddington approximation for radiative trans-
fer including the term B0 − J0, however they neglected the perturbation of the divergence
of the convective heat flux. Kidman and Cox (1984) used the diffusion approximation
for radiation and also neglected the perturbation in the convective heat flux. They found
damping rates quite close to those obtained by Christensen-Dalsgaard & Frandsen (1983a).
Goldreich & Murray (1994) calculated scattering line widths for modes with degree l = 0
including the contributions from the first 30 p modes and the f mode.
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3.3. Stochastic Excitation

The results of the previous chapter supports the assumption that solar-type acoustic pulsa-
tions are intrinsically damped in the linear stability analysis. In that case external sources
must be sought for their excitation and the emission of acoustical radiation by turbulent
convective flows is perhaps the correct driving mechanism for solar-type p modes. Acous-
tical radiation by turbulent multipole sources in the context of stellar aerodynamics were
considered by Unno & Kato (1962), Moore & Spiegel (1964), Unno (1964), Stein (1967),
Goldreich & Keeley (1977b), Osaki (1990), Balmforth (1992c), Musielak et al. (1994) and
Goldreich, Murray & Kumar (1994). In the following I shall review the basic physics of
sound generation by means of the so-called Lighthill mechanism and its application in the
theory of stochastic excitation of solar-type p modes which will enable us to estimate the
energy injection into a particular mode as function of depth in the model envelope.

3.3.1. Lighthill mechanism and lower order acoustical sources

Lighthill (1952, 1954) considered in his pioneering work on aerodynamic sound generation
an unbounded region of space in which there is a fluctuating fluid flow. He proposed
the acoustic sources of sound to be the difference between the exact laws of fluid motion
and the linearized acoustical approximations, thus it is the nonlinearities that generate
the sound. In Section 2 we introduced the basic fluid-dynamic equations for studying
convective motion. We take the divergence of the momentum equation (2.2) and subtract
it from the time derivative of the continuity equation as expressed in Eq. (2.1). Then we
subtract c20∇2ρ from both sides to yield the result

∂2ρ′

∂t2
− c20∇2ρ′ =

∂2Tij

∂xi∂xj
− ∂Fi

∂xi
, (3.15)

since ρ′ = ρ− ρ, and ρ is time invariant, denoting the mean density in the distant acoustic
field, with

Tij = ρuiuj +
(
p′ − c20ρ

′) δij − τij , (3.16)

and

Fi = ρ′gi . (3.17)

Equation (3.15) represents the inhomogeneous wave equation in a static atmosphere. The
quantity c0 denotes the speed of sound in the radiation field and may be quite different
from that in the turbulence. The turbulent field is described by convective eddies which
advect heat from the deeper layers in the envelope and thus the eddy region exhibit a larger
speed of sound than the background fluid. Lighthill considered a fluid with uniform mean
density and a speed of sound to be constant at c0, for which the source term in equation
(3.15) reduces to the simple expression ρuiuj . In this case, it is the fluctuating Reynolds
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stress that generate sound in exactly the same way as would a distribution of quadrupoles,
as demonstrated next. A linear non-homogeneous equation, such as the wave equation
(3.15), can be solved in terms of the Green function of the problem. This function is the
solution of the equation with the inhomogeneity concentrated at a point, in both space
and time. Thus it is defined by

(
∂2

∂t2
− c20∇2

)
G (x, t) = δ (x) δ (t) , (3.18)

with

G (x, t) =
1

4πc20

δ (x − c0t)
|x| , (3.19)

in the three space dimensions x. For low turbulent Mach numbers Mt = u/c0 the acoustic
source field, which is typical of the eddy size �, is called compact relative to the emit-
ted wavelength �/Mt, and the retarded time differences �/c0 over the eddy length � are
negligible on the eddy time scale �/u. In this limit of Mt � 1 the solution of the wave
equation with the inhomogeneous source term ∂2Tij/∂xi∂xj is obtained by integrating the
convolution product of the Green function (3.19) with the source term which yields (e.g.
Crighton et al. 1992)

ρ′ (x, t) =
1

4πc40x

(xixj

x2

) ∂2

∂t2

∫
Tij

(
y, t− x

c0

)
dy . (3.20)

With the following assumptions

Tij ≈ ρuiuj ,
∂

∂t
≈ u

�
, and

∫
dy ≈ �3 (3.21)

we obtain an estimated solution of Eq. (3.20) in the form

ρ′ (x, t) ≈ 1
c40x

(u
l

)2
ρu2�3 = ρ

(
�

x

)
Mt

4 , (3.22)

which represents the central result of Lighthill’s basic theory. A convenient statistical
measure of the radiation is the magnitude of the intensity vector I, which is proportional
to the mean square density fluctuation

I =
c30
ρ
< ρ′2 > , (3.23)

and thus the total acoustic power, PQ, radiated from the flow, which is the integral of the
intensity over a large spherical surface, becomes for a quadrupole source



3.3 Stochastic Excitation 49

PQ ∝ x2I ∝ ρu3�2Mt
5 . (3.24)

The term ρu3�2 = ρu2�3/(�/u) represents a measure of the rate of kinetic energy decay of
the eddy through viscous action, this being equal to the energy supply rate in a steadily
maintained flow. Thus we may define an acoustic efficiency as the ratio of sound power to
sound supply which varies in the case of quadrupole radiation as Mt

5. Moreover, equation
(3.24) tells us, that the radiated power of a quadrupole source is proportional to the eight
power of the eddy’s convective velocity u.

The above discussed quadrupole emission due to the fluctuations of the Reynolds
stresses represents the main acoustic source for homogeneous isotropic turbulence. In
a star’s atmosphere however, the turbulence is a function of depth, and therefore inho-
mogeneous. Furthermore, detailed numerical hydrodynamical simulations of convective
turbulence (e.g. Stein & Nordlund 1991; Trampedach 1996) suggest an asymmetrical be-
haviour of the convective velocities in the up- and down-stream flow. The upward slower
moving and spatially larger streams are surrounded by the much faster moving and colder
down-streams. Thus the turbulent flow exhibits regions of quite different temperatures
which can have a significant effect on both sound speed and density. Consequently we may
expect these differences to affect the results obtained so far through making the second
term of Lighthill’s stress tensor Tij , Eq. (3.16), dominant. For a perfect gas the equation
of state may be written in the form

∂ρ′

∂t
=

1
c2l

∂p′

∂t
− ρ

cp

∂s′

∂t
, (3.25)

where cl = (Γ1p/ρ)1/2 represents the local sound speed, cp is the specific heat at constant
pressure and s′ denotes the fluctuations of the entropy. The second term in equation (3.16)
therefore becomes

∂

∂t

(
p′ − c20ρ

′) =
(

1 − c20
c2l

)
∂p′

∂t
+
ρc20
cp

∂s′

∂t
. (3.26)

The first term on the right hand side of equation (3.26) was considered by Lighthill (1954)
in a homogeneous flow, who showed that it was unlikely to dominate the Reynolds stress
term. However under the conditions which are prevalent in a star’s atmosphere, it might
become important due to the local changes in the density and sound speed. In particular
it can be shown (e.g. Crighton et al. 1992) that this term contributes to the acoustical
source term by

ρ′ =
1

4πc40x
∂2

∂t2

∫ (
1 − c20

c2l

)
p

(
y, t− x

c0

)
dy , (3.27)

which can be estimated with dp = c2l dρ, ρ ∼ ρu2 and with equation (3.21) as
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ρ′ ∼ ρ

(
l

x

)(
1 − c20

c2l

)2

Mt
4 . (3.28)

Thus it represents a quadrupole field whose strength is a function of the inhomogeneities of
the sound speed. Recently, Kosovichev (1996) demonstrated a new technique for observing
such horizontal inhomogeneities in the speed of sound.

The last term in equation (3.26) accounts for the gain and loss of specific entropy in
the turbulent flow. These entropy fluctuations contribute to the acoustical sources by an
amount of

ρ′ =
1

4πc20x
ρl

cp

∫
∂2s′

∂t2

(
y, t− x

c0

)
dy , (3.29)

whose estimated value yields

ρ′ ∼ ρl

(
l

x

) (
s′

cp

)
Mt

2 , (3.30)

where ρl denotes the arithmetic mean of the density mixture in the turbulent flow. The
acoustic density field is proportional to the square of the turbulent Mach number and
hence represents a monopole field.

The entropy changes give rise to an additional source in a stratified atmosphere, ex-
pressed by the last term in the wave equation (3.15). This term can be written for an
atmosphere under constant gravity as

∂Fi

∂xi
= gi

∂

∂xi

(
p′

c2l
− ρ′s′

cp

)
, (3.31)

where we used the adiabatic equation of state in the form [cf. Eq. (3.25)]

p′

p
− Γ1ρ

′

ρ
=

s′

cv
. (3.32)

The first term on the right hand side of equation (3.31) represents a linear term and thus
has to be put on the left side of the wave equation, which describes the wave propagation
term. For the sake of simplicity we neglect this linear term in order to use the Green
function as expressed in equation (3.19) for an estimate of the contribution arising from
the remaining non-linear term of equation (3.31). This term, which is similar to the
expression in Goldreich & Kumar’s (1990) discussion, may then be written as

ρ′ ≈ − 1
4πc20x

ρl

cp

∂

∂xi

∫
∂

∂t

(
uis

′)(y, t− x

c0

)
dy ≈ ρl

(
l

x

)(
s′

cp

)
Mt

3 . (3.33)
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The acoustic source field varies with the third power of the turbulent Mach number and
represents therefore a dipole field.

We conclude that quadrupole emission due to the Reynolds stresses and inhomo-
geneities in the temperature produce equal and opposite forces on opposite sides of a fluid
element leading to the distortion of its surface without changing the volume or, in other
words, that kinetic energy is converted into acoustic energy by forcing the rates of momen-
tum flux across fixed surfaces to vary. The monopole and dipole sources, arising from the
entropy fluctuations, describe the conversion of kinetic energy into acoustic energy resulting
from forcing the volume and the momentum in a fixed region of space to fluctuate, respec-
tively, where the latter is produced by variations of the buoyancy (gravitational force).

3.3.2. Acoustical emission in a pulsating atmosphere

The discussion so far was carried out in a static atmosphere. In a pulsating atmosphere
the full pulsation-convection gas dynamic equations have to be derived from the fluid-
dynamic equations where the fluid velocity includes both turbulent and pulsating motion.
This demands the use of a time-dependent theory for convection and in a complete theory
the non-linear acoustical source terms, exciting the pulsation, would naturally follow from
these equations. However, time-dependent convection theories available to date, as the
one we introduced in Section 2.3.2, impose the anelastic approximation (cf. Section 2.2)
which neglect non-linear terms including the density fluctuations and therefore filter out
any generation of sound waves. Thus one is left with a procedure in which the dynamical
convective effects are inserted solely in the pulsation equations which however is only
consistent in an isothermal atmosphere. Moreover, if the turbulent stresses (turbulent
pressure) are regarded as second order effects, a conventional theory for convection, like
the mixing-length theory, may be used to describe the dynamical convective effects, and
the estimation of the turbulent velocity. Moreover, the velocity field can be mathematically
strictly decomposed into a large-scale pulsation and the turbulent velocity field only for
radial pulsation and only in the Boussinesq approximation (Gough 1977).

Balmforth (1992c) reviewed the theory of acoustical excitation in a pulsating atmo-
sphere according to the procedure outlined above. In the derivation of the inhomogeneous
wave equation, additional linear components emerge describing the dynamical and ther-
mal coupling of convective and pulsating motions. The dynamical term can be regarded,
analogous to the fluctuation of the momentum flux of the time-dependent convection the-
ory, as an additional viscous stress term [cf. equation (2.104)]. Thus it can be con-
sidered as a damping term arising from dissipation through ‘eddy viscosity’, modelling
the eddy dynamics of the whole turbulent energy spectrum. The thermal term can be
related to the work integral arising from non-adiabatic effects and is to be thought of
as linear in the pulsation eigenfunction. Such an interpretation of these terms enables
us to replace them by an expression proportional to the modal damping rate η (Balm-
forth 1992c). The remaining non-linear source terms are then composed of expressions
arising from the action of the Reynolds stresses and the turbulent entropy fluctuations,
respectively. The wave equation may then be solved by rewriting it in terms of the pul-
sational displacement δr(r, t), and expanding δr(r, t) in terms of the normal, adiabatic
eigenfunctions, ξ(r) exp(−ωrt), satisfying the relation
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δr (r, t) = Aω (t) ξ (r) e−ωrt . (3.34)

The quantity Aω(t) describes the instantaneous, finite, mode amplitude, determined by
the balance between damping and driving, and is assumed to vary slowly compared to
the cyclic frequency ωr. As a result we obtain an expression for the time evolution of
the mode amplitude, which can be integrated in time in order to obtain the expectation
value < |Aω| >. In this derivation, however, one has to solve a fourth-order correlation
function of the convective velocity and entropy fluctuations, representing the well known
closure problem in the statistical description of turbulence (cf. Section 2.5.2). Approximate
solutions of this correlation function were discussed by Stein (1967) and Musielak et al.
(1994) assuming an incompressible, isotropic, and homogeneous turbulence spectrum and
that this energy spectrum may be separated into a wavenumber and a frequency dependent
part. An even more simpler form of this correlation function was obtained by Goldreich &
Keeley (1977b) which was also employed by Balmforth. The energy in a particular mode,
Eω, is related to the instantaneous mode amplitude Aω by

Eω =
P

2η
=

1
2
< |Aω|2 > ω2

r I , (3.35)

where P denotes the noise generation rate due to the acoustical multipole sources, and the
mode inertia

I =
∫

M�

ξ2 (m,ωr) dm . (3.36)

The treatment of the lower order multipole sources due to the entropy fluctuations needs a
more detailed consideration. First, it is assumed that the background state can be regarded
approximately as homentropic and thus the entropy fluctuations are described entirely by
the mixing-length estimate for the entropy perturbation

s′ ≈ δs = − �
2
ds

dr
, (3.37)

associated with an energy-bearing eddy. Here s denotes the background entropy, whose
gradient is a function of the mixing-length parameter αc (cf. Section 2.5.1). With this
assumption the correlation < s′s′ > may then approximated by the method of Goldreich
& Keeley (1977b). The evaluation of this correlation function becomes unclear when the
homentropic assumption were not taken into account. Several more terms would emerge
describing both the convective velocity and pulsational displacement, where the latter
term should then be placed in the wave propagation term and the correlation < us′ >
would require further assumptions. Secondly, the explicit form of the non-linear source
functions depends upon the field variable. It was shown by Balmforth (1992c) that the
source terms are quite different when employing different expression for the dependent
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variable in the inhomogeneous wave equation and that the decompositions of all terms
into linear, dynamical coupling terms and non-linear excitation terms can become quite
ambiguous. This ambiguity results from the lack of a complete description of the turbulent
eddy dynamics, in which the time-dependent turbulent flow and its acoustical emission is
evaluated simultaneously.

The anisotropy of a stratified atmosphere gives rise to destructive interference between
the monopole and dipole source function (Goldreich & Kumar 1990; Osaki 1990). This
cancellation effect depends on the symmetry between the rising and falling eddies, where
two dipoles sit side by side and the entropy perturbation of these two dipoles cancel each
other, resulting in a quadrupole radiation. However at the top of the convection zone
this symmetry may break down and the emitted radiation by the dipoles may become
effectively at these layers. Moreover, the typical frequency of quadrupole radiation is twice
as high than the acoustical emission through the dipoles and may therefore occur in the
propagating zone radiating more effectively than the dipole emission (Osaki 1990). The
symmetry between the rising and falling eddies, however, is an artifact of the mixing-length
theory due to the inclusion of the Boussinesq approximation. As already mentioned above,
detailed hydrodynamical simulations in the Sun suggest up to three times larger convective
velocities of the down-stream flow compared to the velocities of the up-flow. Indeed, Stein
& Nordlund (1991) have found that excitation due to the entropy fluctuation may exceed
the amplitudes emitted through the fluctuations of the Reynolds stresses by an order of
magnitude, which was also found by an analytical approach by Goldreich, Murray & Kumar
(1994).

The ambiguity in the derivation of the lower order multipole sources due to the entropy
fluctuations and the incomplete theory of the mixing-length prescription for convection
have led Balmforth (1992c) to neglect these terms from the acoustical source functions.
He derived an expression for the quadrupole emission through the action of the Reynolds
stresses of the form

PQ =
π1/2

8I

∫
M∗

(
dξ (m,ωr)

dr

)2

ρ�30u
4
0τ0S (m,ωr) dm , (3.38)

where �0,u0,τ0 are the length, velocity and correlation time-scale respectively of the most
energetic eddies, determined by the mixing-length theory. The function S(m,ω) accounts
for the turbulent spectrum, which approximately describes the contribution from eddies
with different sizes to the noise generation rate PQ (i.e. how the energy is distributed
throughout the turbulent cascade). We have chosen a spectrum based on Spiegel (1962),
since this choice leads to a theoretical oscillation power spectrum similar to the envelope
of solar oscillations (cf. Section 4.2).

Examples for the differential quadrupole emission, as given by the integrand of equa-
tion (3.38), are depicted in Fig. 3.5 and Fig. 3.6 for the Sun and a 1.45M� ZAMS star,
respectively. With increasing frequency the maximum value of the ‘differential emission’
becomes manifested in the superadiabatic layers. For higher mass stars the amplitude of
the ‘differential emission’ increases quite severely due to its strong dependence on the tur-
bulent Mach number Mt [cf. Eq. (3.24)], which becomes larger with mass and may exhibit
values up to ∼ 0.6 for an 1.6M� star (see Fig. 4.8).
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Figure 3.5: Acoustical emission due to the Reynolds stresses as function of depth and
frequency for the Sun. The plot depicts the quantity |ρ�30u4

0(dξ/dr)
2S (dm/d ln p)| [cf.

Eq. (3.38)], assuming the turbulent energy spectrum according to Spiegel (1962). For the
mixing-length parameters the values αc = 2.0, a2 = 900, b2 = 2000 have been used.

Figure 3.6: Differential emission for a 1.45M� ZAMS star as given by the quantity in
Fig. 3.5 using the same turbulent energy spectrum and convection parameters.
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3.4. Results

3.4.1. Computation Details

The basic model calculations are as described by Balmforth (1992a), and consider tur-
bulent pressure in the equilibrium model envelope assuming a mesh of 800 points. The
integration is carried out inwards, starting at an optical depth of τ = 10−4 and ending
at a radius fraction of 0.2, using initially the local mixing-length theory and the diffusion
approximation to radiative transfer to complete a trial solution. The entire envelope is
then re-integrated using the equations appropriate to the non-local mixing-length theory
and the Eddington approximation to radiative transfer (cf. Appendix A.1). For the eddy
shape parameter Φ a constant value of 5/3 has been employed. In the non-local theory
the meaning of this parameter becomes somewhat clouded, since we have assumed that
the source function Q for the turbulent fluxes [cf. equation (2.94)] is isotropic. However,
in order to be consistent with this assumption, we should have set Φ = 3 instead. Nev-
ertheless, the shape of the eddies and the isotropy of the evolution of buoyancy force are
different effects, and so it appears that the least ambiguous step one can do is to set Φ
to a constant. The atmosphere is treated with grey radiation and is assumed to be plane
parallel. The temperature gradient is corrected by using a spatially varying Eddington fac-
tor (Auer & Mihalas 1970) derived from a model C of Vernazza, Avrett & Loeser (1981).
For the opacities the OPAL tables (Iglesias, Rogers & Wilson 1992) and the Kurucz ta-
bles (Kurucz 1991) for low temperatures have been used assuming the abundances to be
X = 0.7, Z = 0.02. Interpolation in these tables is carried out using the minimum-norm
method as described in the Appendix C.2.3. The equation of state included a detailed
treatment of the ionization of C, N, and O, and a treatment of the first ionization of
the next seven most abundant elements (Christensen-Dalsgaard 1982), as well as pressure
ionization by the method of Eggleton, Faulkner & Flannery (1973).

In the pulsation model the boundary conditions used are essentially those of Baker
& Kippenhahn (1965), but supplemented by the conditions on the variables of the non-
local mixing-length theory. The outer boundary conditions are applied at the temperature
minimum; at the base of the model envelopes the conditions of adiabaticity and vanishing
displacement were imposed (cf. Appendix A.2). According to Libbrecht et al. (1986) the
oscillation properties of low-degree modes depend little on degree l. Thus the calculations
are based on the analysis of radial pulsations.

The equations, as given in the Appendix A, are solved with a second-order Newton-
Raphson-Kantorovich algorithm (Baker, Moore & Spiegel 1971; Cash & Moore 1980).
With this algorithm the eigenfunctions and eigenvalues can be computed simultaneously
which, however, increases the order of the system by one. Furthermore, one has to provide
a proper trial solution, which can be obtained by solving first the adiabatic pulsation
equations and then apply the quasi-adiabatic approximation to the non-adiabatic system.
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3.4.2. Non-adiabatic effects

In Section 3.2.2 we discussed some of the physical effects responsible for the energy ex-
change between mass elements during oscillations. These effects are coupled to each other
in a rather complicated way (such as the constituents in the generalized κ-mechanism)
and it is therefore not always a straightforward task to isolate each mechanism in order
to get a measure of the degree of the energy leakage associated to each individual effect.
As already discussed in Fig. 3.3 the energy flow into and out of a particular mode can be
basically divided into contributions arising from the momentum equations and into effects
associated with the entropy perturbation or nonadiabaticity. The nonadiabaticity of stellar
oscillations is described by the perturbed energy conservation equation, derived from the
first law of thermodynamics, and may be expressed for radial modes in the absence of any
nuclear reactions and to first order as

T
∂

∂t
(δs) = − ∂

∂m
(δL) , (3.39)

where δL denotes the Lagrangian perturbation of the total luminosity (radiative plus con-
vective). Its spatial dependence describes the energy gain (loss) due to the excess (deficient)
energy outflow. The detailed energy equation is derived in the Appendix A [cf. equation
(A.75)] and provides a proper measure of the degree of nonadiabaticity of the form

Υ =
(
δpg

pg0
∇ad − δT

T

)(∣∣∣∣δpg

pg0

∣∣∣∣+
∣∣∣∣δTT

∣∣∣∣
)−1

, (3.40)

where pg denotes the gas pressure and ∇ad the temperature gradient of a fluid element
when it experiences a purely adiabatic expansion or contraction [cf. equation (2.82)]. The
non-adiabatic effects cause the temperature variations δT to fluctuate out of phase with the
gas pressure variations δpg. In particular the Lagrangian perturbation of the temperature,
as it is derived in the Appendix A [cf. equation (A.87)], can be written as

δT

T0
=
[
4 + i

ω

ωR

+ (1 − J0/B0) κT

]−1

×
{
δJ

B0
+

1
4πκ0B0

∂

∂m
(δLc) +

[
i
ω

ωR

∇ad − (1 − J0/B0) κp

]
δpg

pg0

}
, (3.41)

where the ω/ωR terms account for the radiative damping contribution, terms with (1 −
J0/B0) arise from the mean departure from the radiative equilibrium (κT and κp are
the partial logarithmic derivatives of the opacity with respect to temperature and gas
pressure), and the term with ∂/∂m(δLc) together with δJ/B0 account for the generalized
κ-mechanism (Lc being the convective luminosity).

The departure from adiabaticity, as defined in equation (3.40) is depicted as function
of radius and frequency for the Sun and for a 1.4M� ZAMS star in Fig. 3.7 and Fig. 3.8,
respectively. Also illustrated is the locus of the function Υ in the complex plane as the
depth varies throughout the envelope. The non-adiabatic eigenfunctions were solved with
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Figure 3.7: Degree of nonadiabaticity Υ, as defined by equation (3.40), versus radius
and function of frequency for the Sun. The locus of the function Υ (bottom) is plotted
in the complex plane as the depth varies throughout the envelope. The non-local model
computations assumed the convection parameters a2 = b2 = 300 and αc = 2.0. The
symbols mark for each individual mode similar depths in the star’s envelope.
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Figure 3.8: Degree of nonadiabaticity, Υ, as defined by equation (3.40), of function of
radius and frequency for a 1.4M� ZAMS star. The locus of the function Υ is plotted in the
complex plane as the depth varies throughout the envelope (bottom). The non-local model
computations assumed the convection parameters a2 = 900, b2 = 2000 and αc = 2.0. The
symbols mark for each individual mode similar depths in the star’s envelope.
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the inclusion of the perturbations in the turbulent pressure δpt. This has some effect on the
non-adiabatic processes due to the change of the shape of the modal eigenfunctions (see also
Section 4.3.2). The largest deviation from adiabaticity is predicted predominantly in the
superadiabatic boundary layers, indicated by the temperature gradient ∇ = d ln p/d lnT ,
and in the lower parts of the atmosphere. With increasing height in the atmosphere the
density declines very rapidly and heat diffusion becomes very inefficient. The degree of
nonadiabaticity is still further depressed by the rapid decrease of the opacity in these atmo-
spheric layers. Moreover, the increase of the radiative relaxation-time [cf. equation (3.13)]
promotes high-order modes to become progressively adiabatic again. In the superadia-
batic boundary layer coupling between oscillation and convection becomes strongest and
non-adiabatic effects, such as the generalized κ-mechanism, are enforced. Thus the con-
vective temperature fluctuation oscillates out of phase with the density perturbation and
consequently the heat flux feeds back into driving the pulsation. This forced oscillation in
the superadiabatic layer is responsible for driving the perturbations of the thermodynamic
quantities into the lower parts of the convection zone, which can be seen quite obviously
for the 1.4M� star. At a particular pulsation frequency, which is close to the natural
rate of thermal adjustment of the superadiabatic layer, the coupling and thus the forced
oscillation becomes promoted even further leading to an increase of the nonadiabaticity.
This effect is demonstrated in the plot of the locus of the function Υ for the mode with
radial order n = 16, for both the Sun and the 1.4M� ZAMS star (the location of the
superadiabatic layers are indicated by the triangle symbol).

3.4.3. The influence of non-adiabatic effects and turbulent pressure upon
solar oscillation frequencies

One method to test the various theories for convection is the comparison of theoretical
pulsations frequencies with observations. Todays observation techniques of solar acoustic
frequencies have reached an accuracy which allows one to interpret the differences be-
tween observed and computed eigenfrequencies to stem solely from the incomplete physics
describing the equilibrium and pulsation models. Effects due to opacity and the equa-
tion of state in the equilibrium model upon adiabatic and non-adiabatic eigenfrequencies
have been investigated by several authors (Guzik & Cox 1993; Guenther 1994; Tripathy
& Christensen-Dalsgaard 1996; Antia & Basu 1996). In particular the increase of low-
temperature opacities and the use of more sophisticated thermodynamics have reduced
the discrepancy between computed and observed frequency values (e.g. Christensen-
Dalsgaard & Däppen 1992; Guzik et al. 1996). However for modes having frequencies
larger than ∼ 2 mHz, computed adiabatic eigenfrequencies of a ‘standard’ solar model
(e.g. Christensen-Dalsgaard et al. 1996) using the Böhm-Vitense (1954) local mixing-
length theory for convection still exhibit values with up to ∼ 20 µHz too large relative
to the observations. In Fig. 3.9a such a comparison between computed adiabatic frequen-
cies of the ‘standard’ solar model and results from the BISON9 (Elsworth et al. 1994)
and BBSO10 (Libbrecht et al. 1990) observations is shown. For frequencies with a degree

9 Birmingham Solar Oscillation Network
10 Big Bear Solar Observatory



60 3. Damping and excitation of solar-type p modes

a) b)

Figure 3.9: Panel a) Frequency residuals between observed and computed adiabatic fre-
quencies of the ‘standard’ solar model, scaled by Qnl = Inl/I0(νnl), where I0(νnl) is the
inertia of the radial modes, interpolated to the frequency ν. The symbols denote different
mode degree: + for 0 ≤ l ≤ 500, ♦ for 500 ≤ l ≤ 1000, and � for l > 1000.
Panel b) Adiabatic frequency residuals between ‘standard’ Solar model using the local
mixing-length theory and the CM-theory for convection (diamonds) and an averaged hy-
drodynamical simulation (pluses) (adopted from Rosenthal et al. 1995).

l � 500, the exhibited differences are to be assumed arising essentially from uncertainties
in the model physics describing the superficial layers in the solar atmosphere (Rosenthal
et al. 1995; Rosenthal 1996; Christensen-Dalsgaard & Thompson 1996). These upper lay-
ers however are dominated by the physics describing the interaction of convection and
radiation and thus the shape of the eigenfunctions for high-order modes become crucially
dependent upon the treatment of these effects.

As discussed in Section 2.5.1 the CM-theory for convection predicts a much steeper
superadiabatic temperature gradient relative to the standard mixing-length theory. The
first adiabatic exponent

Γ1 =
(
∂ ln pg

∂ ln ρ

)
s

, (3.42)

where pg denotes the gas pressure and s the entropy, exhibits therefore a much steeper
depression in the hydrogen ionization zone, which results in a decrease of the adiabatic
frequencies for high-order modes. Calculations of adiabatic frequency differences between
the ‘standard’ solar model and a model constructed with the Canuto & Mazzitelli convec-
tion theory were performed by Rosenthal et al. (1995) and are depicted in Fig. 3.9b. In
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these calculations however, turbulent pressure was not considered in the equilibrium and
pulsation model.

The influence of the turbulent pressure and its pulsationally induced perturbation
upon adiabatic and non-adiabatic pulsation frequencies were first investigated by Gough
(1984), using the local time-dependent mixing-length prescription for convection (cf. Sec-
tion 2.3.2), however using a simplified analytical approximation of the eigenfunctions in
the atmosphere. Balmforth (1992b) studied these effects in a more consistent way and
by means of the more sophisticated non-local time-dependent mixing-length theory (cf.
Section 2.4.2). Both authors concluded that the correction of the stratification of the
superadiabatic boundary layers due to the inclusion of the mean turbulent pressure sub-
stantially decreases the adiabatic frequency residuals. The effects of the turbulent pressure
fluctuations as well as nonadiabaticity, however, tend to increase the pulsation frequencies,
although by a much smaller value. Similar results of the influence of the mean turbulent
pressure on the adiabatic eigenfrequencies have been obtained by Rosenthal et al. (1995)
based on a hydrodynamical simulation of the outer 2% of the solar radius (Stein & Nord-
lund 1991), matched continuously in the sound speed to a model envelope calculated in the
usual fashion as is the ‘standard’ solar model. These frequency residuals are represented
in Fig. 3.9b.

If turbulent pressure is considered in the model calculations, additional care must be given
in solving the adiabatic pulsation equations. The first adiabatic exponent Γ1, as defined

Figure 3.10: Phases of the turbulent, ϕ(δpt), and gas pressure, ϕ(δpg), fluctuations
relative to the phases of the displacement versus the total pressure in the solar atmosphere
for the acoustical radial mode of order n = 16. The solid line displays the norm of
the turbulent pressure eigenfunction. Calculations were carried out solving the pulsation
equations describing the time-dependent non-local mixing-length theory and using the
parameters αc = 1.99 and a2 = b2 = 300 in the mean envelope.
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by equation (3.42), is expressed by means of the thermo-dynamical gas pressure pg. Thus
in the presence of turbulent pressure pt, such that the total pressure p = pg + pt satisfies
the hydrostatic equilibrium, Γ1 would experience a modification of the form

Γ̃1 =
(
∂ ln p
∂ ln ρ

)
s

=
1
p

[(
∂pg

∂ ln ρ

)
s

+
(
∂pt

∂ ln ρ

)
s

]
, (3.43)

and the Lagrangian perturbation in the total pressure has to satisfy the equation

δp

p0
=

δpg

p0
+
δpt

p0
= Γ̃1

δρ

ρ0
, (3.44)

where the zero subscripts denote the equilibrium values. However calculations solving the
fully non-adiabatic pulsation equations with the inclusion of the turbulent pressure fluc-
tuations δpt reveal, that the phase of δpt is approximately 90◦ out of phase with the other
terms in the momentum equation [cf. equation (A.57)], as portrayed in Fig. 3.10. The
phase of δpg, however, is rather small which may allow us to consider pg to respond adia-
batically. Thus we may conclude, that δpt in equation (3.44) contributes predominantly to
the imaginary part of the eigenfrequency, viz. the damping rates, as discussed in more de-
tail in Section 3.2.2, and may therefore be neglected in the calculation of the real adiabatic
eigenfrequencies. These results were also confirmed through hydrodynamical simulations
by Rosenthal et al. (1995). The modified Γ1, as defined by equation (3.43), may then be
rewritten as

Γ̃1 =
pg

p
Γ1 , (3.45)

and the only change in the adiabatic momentum equation is the replacement of Γ1 by Γ̃1.

The comparison between models computed with different convection theories requires
a more involved consideration. In order to isolate the effects in the superadiabatic layers
arising from the different prescription of convection, all the models should exhibit the
same structure in their deeper layers and thus have to match in their cores. The same
structure in the core is obtained by requiring the models to lie on the same adiabat near the
bottom of the convection zone (CZ) as well as to exhibit the same depth of the CZ. In the
model calculations performed here with the local and non-local mixing-length theory the
matching procedure was carried out by specifying the same surface boundary conditions
in both models and iterating the local solution to the non-local one by varying the mixing
length parameter αc and chemical composition X such, that temperature and pressure
match exactly near the bottom of, but still inside, the CZ. At this fitting point, the non-
local model is then extended by the local solution down to a radius fraction of 0.2 R�,
where R� denotes the Sun’s radius defined at the point where the temperature is equal to
the effective temperature Teff . By doing so, we avoid the unphysical superadiabaticity of
the non-local solution at the bottom of the CZ (see for instance Fig. 2.1). Moreover the
depth of the CZ in both equilibrium models is ensured to be the same and exhibits a value
of 0.287R� (according to the value measured accurately by helioseismology, Christensen-
Dalsgaard, Gough & Thompson 1991) relative to R� when the mixing-length parameters
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Figure 3.11: Relative differences of the temperature gradient as function of depth be-
tween the model computed with the non-local mixing-length theory (∇NL) using αc = 1.99,
a2 = b2 = 300 and the corresponding matched model calculated with the local prescription
for convection (∇L) found by the fitting process discussed in the text.

αc = 1.99 and a2 = b2 = 300 are employed in the non-local model computation. The
relative differences of the temperature gradient between the local and non-local model are
displayed in Fig. 3.11.

The radial oscillation frequencies were computed for the following models:

L.a Using the local mixing-length theory as discussed in Section 2.3 without
turbulent pressure in the mean envelope. Frequencies were computed in
the adiabatic approximation.

NL.a Using the non-local theory for convection (cf. Section 2.4) including tur-
bulent pressure in the mean model. Frequencies were calculated in the
adiabatic approximation neglecting the turbulent pressure fluctuations.

NL.na Using the time-dependent non-local convection theory (cf. Section 2.4.2) in-
cluding turbulent pressure in the mean model. Frequencies were computed
by solving the fully non-adiabatic pulsation equations with the inclusion of
the Lagrangian turbulent pressure perturbation.

The model envelopes were integrated on a grid with 3200 mesh-points starting at an
optical depth of τ = 10−4 and solving the equations appropriate to the local and non-local
mixing-length theories, as outlined in the Sections 2.3 and 2.4, respectively. The non-local
model is constructed using the Eddington approximation to radiative transfer, whereas the
local model assumes diffusion approximation. This particular difference however generates
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only a small fraction of the frequency residuals (Balmforth 1992b). Further details on the
computations will be given in Section 3.4.1.

The results are portrayed in Fig. 3.12. The adiabatic frequencies are depressed for
values larger than about 2 mHz if turbulent pressure is taken into account in the mean en-
velope. Compared to the results obtained by Balmforth (1992b) however, our calculations
for NL.a-L.a predict a larger maximum deficit of ∼ 15 µHz, whereas Balmforth found a
value of about 10 µHz. This discrepancy may be explained through the different imple-
mentation of the adiabatic momentum equation, for which Balmforth used the unmodified
value for Γ1, as defined by equation (3.42). Turbulent pressure however approximately
modifies Γ1 such, as expressed by Γ̃1 in equation (3.45), that it becomes more depressed
in the ionization zones, which results in a further decrease of the adiabatic frequencies.
It is perhaps interestingly to notice, that the effect of turbulent pressure on Γ̃1 has a
superficial similarity to the change of Γ1 in the CM-theory, caused by the substantially
steeper predicted superadiabatic gradient, relative to the local mixing-length theory. The
dashed line in Fig. 3.12 displays the residuals of the radial pulsation frequencies arising
from nonadiabaticity and the Lagrangian perturbation of the turbulent pressure (NL.na-
NL.a) , predicting frequency shifts of the opposite sense to the observed discrepancy with
a maximum value of about 9 µHz. Balmforth obtained values with the same sign however
with a maximum of ∼ 2 µHz in the frequency shifts affected by these processes. This is
probably due to the fact, that Balmforth considered a different approach in the matching

Figure 3.12: Frequency differences calculated from non-local mixing-length theory rel-
ative to the local mixing-length theory. The solid line displays the adiabatic frequency
residuals if turbulent pressure is considered in the mean model. The dashed line demon-
strates the effects due to nonadiabaticity and δpt, and the dash-dotted line portrays the
residuals if all the effects are taken into account.
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procedure between the local and non-local model. In particular he iterated the local so-
lution to the non-local model by varying the luminosity and effective temperature, which
results in different surface boundary conditions, and presumedly does no longer reflect a
consistent acoustical comparison between the models. From our results the overall change
in the frequencies (NL.na-L.a) imply a moderate downshift in the order of 5 µHz, repre-
sented by the dash-dotted curve in Fig. 3.12, suggesting that the inclusion of non-adiabatic
effects and turbulent pressure fluctuations nearly cancel the effects of the modification of
the superadiabatic layers in the equilibrium envelope due to the mean turbulent pressure.

With our calculations we could confirm the results obtained by the other authors dis-
cussed before when turbulent pressure is taken into account. The introduction of turbulent
pressure in the mean model means that there is an additional dynamical pressure gradient
that can oppose the acceleration of convective elements. This lowers the effectiveness of
convective heat transfer in the superadiabatic boundary layers and results in a steeper
temperature gradient. Similar to the results predicted by the CM-model, this causes a
more pronounced depression of Γ̃1 in the superficial layers reducing the discrepancy to the
observed frequencies. Effects due to processes damping the oscillations suggest to increase
the pulsation frequencies over the value it would have if these effects were absent, obliter-
ating almost the frequency shifts arising from the mean turbulent pressure. However, the
non-local mixing-length formulation represents an incomplete theory of turbulent convec-
tion and underestimates the damping rates compared to the measured line widths at high
frequencies (cf. Section 3.4.4). Thus nonadiabaticity and effects through the turbulent
pressure fluctuations are modelled only approximately and the predicted frequency shifts
due to these processes should therefore be regarded as a preliminary assessment. Moreover,
hydrodynamical convection model results suggest that our non-local calculations underes-
timate the change in the equilibrium structure (cf. Fig. 3.9b). Thus if we were to combine
the frequency shifts predicted by the hydrodynamical simulations with the non-adiabatic
corrections to the pulsation frequencies from the non-local calculations, then the resulting
mode frequencies will be close to the observational data. Such an interpretation how-
ever, must be considered with great care, since it involves combining the results of two
completely different theories of convection.

3.4.4. Theoretical damping rates in solar-type stars

The imaginary part of the complex eigenfrequency ω = ωr + i ωi, as obtained from solving
the fully non-adiabatic pulsation equations, represents the damping rate and which we
define as η = −ωi. We first computed damping rates for the solar case, similar to Balmforth
(1992a), using however, the OPAL tables for the opacities, and depicted the results for
different values of αc and non-local parameters a and b in Fig. 3.13 together with the
observed line widths by Libbrecht (1988). As Balmforth (1992a) already reported, all
modes are found to be stable and agree tolerable with the observation for frequencies
between 2 mHz and 4 mHz. Below and above this frequency domain, the theoretical
damping rates predict less stable modes than observations would suggest. Contributions
to the damping rates arising from incoherent scattering, as discussed above, may increase
the theoretical damping rates considerable at low and high frequencies, which are not
modelled yet in our calculations.
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Figure 3.13: Damping rates η for the Sun as function of frequency and different mixing-
length parameters. The filled dots represent the measured line widths of Libbrecht (1988).

The theoretical damping rates are most sensitive to the mixing-length parameter αc

near the plateau (or depression) at ∼ 2.6 mHz. At low frequencies the modes are less
sensitive to the structure of the upper superadiabatic boundary layers, sampling these
layers with less detail than high-order modes, and thus become almost independent of αc.
At high frequency the damping rates are mainly determined by radiative damping which
occurs preferentially in the atmospheric layers and thus again become less sensitive to αc.
For the intermediate frequency range, the explanation is slightly more involved. Mixing-
length theory provides for the convective growth rate of an eddy characterized by � the
expression [cf. equation (2.48)]

σ = 2
(
w2
)1/2

/� , (3.46)

which enables us to define a characteristic frequency ν� = σ/2π = (w2)1/2/π� for the
convective element. This frequency peaks in the superadiabatic boundary layer with a
typical value of ∼ 2.5 mHz. Therefore one may expect a resonant interaction between
pulsation and the convective turn-over time of the eddies in the superadiabatic boundary
layers at this characteristic frequency, which is close to the region where the damping rates
display the depression. Moreover, the superadiabatic boundary layer is relatively thin
and exhibits a clearly defined thermal adjustment time, whose value depends critically
upon the details of convection and is in the order of 2.8 mHz (Balmforth 1992a). Thus
there occurs a thermodynamic resonance between pulsation and the disturbance of the
stratification that it generates. At this frequency non-adiabatic effects are largest and
result in a destabilization of the modes provided by the gas pressure perturbation in the
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Figure 3.14: Damping rates for an evolving 1M� star as function of frequency. The
evolution steps are indicated by the hydrogen mass fraction in the core (Xc) For the
mixing-length parameters the values αc = 1.8, a2 = b2 = 600 have been used.

superadiabatic layers. Reducing αc increases ν� and shortens the thermal adjustment time
of the superadiabatic layer shifting the depression in η to higher frequencies. Furthermore,
the turbulent eddies become less efficient to reduce local temperature gradients which leads
to an increase of the superadiabaticity. Non-local motion is therefore amplified which
deepens the depression in the damping rates.

In Fig. 3.14 damping rates are depicted for an evolving 1M� star. The models were
generated by specifying the mass, luminosity and effective temperature. These parameters
were taken from full evolution sequences by Christensen-Dalsgaard (1993). The individ-
ual evolution steps are displayed by the hydrogen mass fraction in the core (Xc). With
increasing age the damping rates become larger particular for low and high-order modes.
For intermediate modes the depression in the damping rate increases as the star evolves,
due to the decreasing density in the atmospheric layers. The surface density ρs may be
written as function of the surface gravity geff and effective temperature Teff in the form
(Christensen-Dalsgaard 1995)

ρs ∝ [(r + 1) geff ]1/(r+1) T
−(s+1)/(r+1)
eff , (3.47)

where the parameters r and s describe the exponential dependence of the opacity on density
and temperature according to the approximation

κ = κ0ρ
rT s . (3.48)
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Figure 3.15: Damping rates for an evolving 1.45M� star as function of frequency. The
evolution steps are indicated by the hydrogen mass fraction in the core (Xc) For the
mixing-length parameters the values αc = 2.0, a2 = 900, b2 = 2000 have been used.

Figure 3.16: Damping rates as function of frequency for ZAMS models. For the mixing-
length parameters the values αc = 2.0, a2 = 900, b2 = 2000 have been used.
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The superadiabatic boundary layer becomes manifested in the hydrogen ionization zone,
where the opacity is described mainly by the contribution of the negative hydrogen ions
(H−). Hence the opacity increases with temperature and the parameter s is therefore
positive. In particular for sun-like stars one obtains for the parameters r and s in the
hydrogen ionization zone the values ∼ 0.4 and ∼ 10, respectively. As the star evolves its
radius becomes larger and thus the surface gravity decreases. Moreover, for young stars
with a mass of ∼ 1M� the surface temperature Teff increases with age and the density
in the atmosphere declines. The superadiabatic gradient increases by approximately 24%
along the main-sequence of a 1M� star promoting the depression in the damping rates.

A similar behaviour of the damping rates is obtained for more massive stars as indicated
for an evolving 1.45M� star depicted in Fig. 3.15. The depression in the damping rates is
already pronounced at the ZAMS, since the surface gravity and thus the surface density
decline rapidly with increasing mass. This may be seen even more obviously in Fig. 3.16,
where damping rates are depicted for stars along the ZAMS.

Goldreich & Kumar (1991) derived a simplified equation for the damping rates ac-
counting for the effects of radiative damping and convective dynamics. They treated ra-
dial modes in the quasi-adiabatic approximation (cf. Section A.2.2) assuming the standard
mixing-length theory for convection (e.g. Böhm-Vitense 1958) and obtained the expression

η =
L

c2tMω

(
ωr

ωco

)2

, (3.49)

where ct denotes the sound speed at the top of the convection zone, ωco is the acoustical
cut-off frequency in an isothermal atmosphere [cf. equation (A.65)] and Mω is the mode
mass of the radial mode with the pulsation frequency ωr. The mode mass is defined such,
that it represents the coefficient of proportionality between the mode’s kinetic energy and
the root mean square value of its surface velocity Vrms. Thus the mode mass may be
expressed by the kinetic mode energy Ek as

Mω =
2Ek

ω2
rR

2


, (3.50)

with

Ek =
1
2
ω2

r

∫ M�

mb

|δr (m,ω) |2 dm , (3.51)

and where R
 and M
 represent radius and mass of the star and mb denotes the mass at
the bottom boundary of the envelope. The mode energy, as defined by equation (3.51) is
displayed as function of frequency in Fig. 3.17 for model envelopes of the Sun, a 1.25M�
and a 1.45M� ZAMS star, using the adiabatic and non-adiabatic eigenfunctions for the
displacement δr, respectively. The non-adiabatic solutions were obtained from using the
equations appropriate to the non-local, time-dependent theory assuming the convection
parameters a2 = b2 = 300 for the solar model and a2 = 900, b2 = 2000 for the ZAMS
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Figure 3.17: Mode energy, as defined by equation (3.51), versus frequency for the Sun, a
1.25M� and a 1.45M� ZAMS star. The results are obtained from computations assuming
adiabatic and non-adiabatic eigenfunctions using the equations appropriate to the non-
local mixing-length theory in the latter case. The solutions are indicated by different line
styles.

models. The mixing-length parameter was chosen to be αc = 2.0 for all model compu-
tations. For modes with cyclic frequencies ν >∼ 1.5 mHz the adiabatic solutions suggest
different values for Ek relative to the non-adiabatic results, demonstrating the fact, that
non-adiabatic effects become relevant at these frequencies. Moreover, at low frequencies
the mode energy declines with increasing mass of the star, leading to an increase of the
damping rates as expressed by equation (3.49).

With the help of equations (3.50), (A.65) and the continuity equation (A.2) the expression
(3.49) can be rewritten as

η =
1
4π

(2HptR
)
2 L

2Ek

(
ω2

r

c2t

)2

, (3.52)

whereHpt represents the pressure scale height at the top of the convection zone. In Fig. 3.18
the damping rates according to the analytical expression (3.52), assuming adiabatically and
non-adiabatically computed displacement eigenfunctions, are displayed together with the
results obtained from solving the fully non-adiabatic pulsation equations appropriate to
the non-local mixing-length theory (indicated by the symbols). For frequencies less than
half the acoustical cut-off frequency ωco, the results suggest a fair agreement between the
analytical and modelled damping rates. An interesting feature is the bend in the analytical
solution for the 1.45M� star near the frequency ν ≈ 1.85 mHz. Since this property appears
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Figure 3.18: Theoretical damping rates as function of frequency for the Sun, a 1.25M�
and a 1.45M� ZAMS star. The curves display the solutions according to the analyti-
cal expression (3.52), assuming the adiabatically and non-adiabatically computed kinetic
mode energy. The line styles are similar to those used in Fig. 3.17. The symbols show
the results of the corresponding models, obtained from solving the fully non-adiabatic
pulsation equations using the non-local, time-dependent mixing-length theory.

to be present also in the solution obtained with the adiabatically computed displacement
eigenfunction, it may be associated with the stratification of the equilibrium structure (e.g.
mean turbulent pressure). The analytical expression (3.49), as obtained from Goldreich &
Kumar (1991), may therefore be used for estimating damping rates of low-order modes by
means of adiabatic eigenfunctions.

3.4.5. Work Integrals

In Section 3.4.2 we discussed the degree of nonadiabaticity as function of depth in the
star’s envelope. In particular we measured the amplitude of the local entropy perturbation
as defined by

δs

cp
=

δT

T0
−∇ad

δpg

pg0
. (3.53)

The information of the local entropy perturbation alone, however, provides yet no infor-
mation about the damping or excitation of the mode. Instead one has to study the net
rate of gain of heat in order to obtain the growth or decay of the pulsation amplitudes
in time. Since vibrational instability is characterized by the existence of a periodicity in
the temporal behaviour of the perturbations, a reasonably useful criteria for this kind of
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instability will be the sign of the total energy change over one pulsation period assuming
that the system returns precisely to its original state at the end of the period. This is the
definition of the so-called work integral W , which is obtained by integrating the energy
equation (3.39) over one period of oscillation. This integral, however, will vanish in the
linear approximation and thus has to be solved to second order. It was demonstrated first
by Eddington (1926), that the second order quantity W can still be solved in terms of
first order solutions of the pulsation equations. In particular, it is the assumption of exact
periodicity, or more precisely quasi-periodicity11, which provides the relations∮

1 period

δs dt ≈ 0 , and
∮

1 period

δT dt ≈ 0 , (3.54)

and the differential work integral becomes to second order

dW = dm

∮
1 period

δT
∂

∂t
(δs) dt , (3.55)

for a star with zero pressure at its surface. Basically, equation (3.55) resembles the en-
ergy production of a Carnot-type heat engine and the mass shell dm drives (damps) the
pulsation if dW > 0 (dW < 0). The work integral represents a very useful diagnostic tool
for investigating the location of the layers in which damping and driving take place. So
far only contributions arising from the non-adiabatic effects have been considered. Baker
& Gough (1979) derived the appropriate work integrals for non-adiabatic pulsation when
also turbulent pressure is taken into account. Basically the contribution to the total in-
tegral can be divided into two terms: the first accounts for the effects of the gas pressure
fluctuation (Wg), and the second considers the contribution arising from the fluctuating
momentum flux (Wt). These integral expressions may be derived from the equations of
motion and the thermal energy conservation equation and may be written as

Wg (m) = π

∫ M�

mb

Im (δpg
∗ δρ)

dm

ρ2
, (3.56)

Wt (m) = π

∫ M�

mb

Im (δpt
∗ δρ)

dm

ρ2

+ π

∫ M�

mb

{
(3 − Φ)

[
Im (δr ∗ δpt) − pt

ρ
Im (δr ∗ δρ)

]
− pt Im (δr ∗ δΦ)

}
dm

ρr
, (3.57)

obeying the equality (Baker & Gough 1979)

4πEk

ωr
= Wg (M
) +Wt (M
) + F , (3.58)

11 viz. the quasi-adiabatic approximation, which assumes the adiabatic eigenfunctions for the evaluation
of the mode stability.
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Figure 3.19: Accumulated work integrals (in units of 1030 erg) for the Sun and for
selected modes in the relevant frequency spectrum. The upper panel portrays the con-
tribution arising from the gas pressure perturbation, the lower from the perturbation of
the Reynolds stresses δpt. The extents of the zones of convection (CZ) and of ionization
of H and He, from 5% to 95% ionization, are similarly indicated. For the mixing-length
parameters the values αc = 1.8, a2 = 600, b2 = 600 have been used.
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and where the term F is given by

F =
[
4π2r2 Im (δp ∗ δr)]M�

mb
. (3.59)

The second term in Wt results from the anisotropy of the Reynolds stresses and can be
neglected compared to the isotropic component. The spatial dependence of integrated work
integrals for the Sun and a 1.45M� ZAMS star are illustrated in Fig. 3.19 and Fig. 3.20 for
modes spanning the relevant frequency spectrum. In regions where the accumulated work
increases with radius, the modes are damped, and where it declines pulsation is locally
excited.

At low-order the contribution to both terms of the work integral stems from nearly all
depths of the convection zone and becomes concentrated towards the upper layers as fre-
quency increases. In these upper layers, Wg exhibits strong spatial oscillations arising from
the thermodynamic resonance between pulsation and the modulation of the convective heat
flux which extracts energy from the mechanical motion. In the superficial layers of the
convection zone, where there is the peak in the superadiabatic gradient, the accumulated
work arising from the gas pressure perturbation experiences a severe destabilization. This
negative contribution to Wg becomes substantial for moderate and higher-order modes and
is the solely reason for the dip in the damping rates discussed before. In the outer layers
of the atmosphere radiative damping contributes positive to Wg. Interestingly, although
the degree of nonadiabaticity declines with increasing frequency in these superficial atmo-
spheric layers [cf. Fig. 3.7], the Wg component of the total work integral becomes larger.
This comes about because the phase between the temperature and entropy perturbation,
or between density and gas pressure fluctuations, increases with height in the atmosphere.
Moreover, the point at which waves are reflected back towards the interior gradually moves
further out for modes with increasing frequency and thus radiative damping is further am-
plified for these oscillations. With increasing mass radiative damping in the upper layers
becomes less dominant due to the decreasing surface density, as we already noticed in
Section 3.4.4. Thus Wg becomes almost constant in the upper layers as portrayed for the
1.45M� ZAMS model.

The contribution from the turbulent pressure fluctuation appears to stabilize the pul-
sation substantially which results from the phase difference between the fluctuating mo-
mentum flux and the density perturbation. The locations of the damping zones are found
to be in the adjacent turbulent layers below the superadiabatic region.

In Fig. 3.21 the accumulated work for the four lowest-order modes of a 1.5M� ZAMS
star are depicted. The calculations suggest the first three modes to be overstable. The
contribution from the turbulent pressure fluctuation promotes the destabilization of the
first two modes. The negative contributions arising from the gas pressure perturbation
stem predominantly from the HeII ionization zones as one would expect for a δ Scuti star
(see also Section 4.3.2). When the radial order increases through 4, the perturbations in
the Reynolds stresses stabilize the modes in the HeI ionization zone and pulsation becomes
damped.
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Figure 3.20: Accumulated work integrals (in units of 1030 erg) for a 1.45M� ZAMS
star for selected modes in the relevant frequency spectrum. The upper panel portrays the
contribution arising from the gas pressure perturbation, the lower from the perturbation
of the Reynolds stresses δpt. The extents of the zones of convection (CZ) and of ionization
of H and He, from 5% to 95% ionization, are similarly indicated. For the mixing-length
parameters the values αc = 2.0, a2 = 900, b2 = 2000 have been used.
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Figure 3.21: Accumulated work (in units of 1030 erg) for a 1.5M� ZAMS star for the
first four modes. The upper panel portrays the contribution arising from the gas pressure
perturbation, the lower from the perturbation of the Reynolds stresses δpt. The extents of
the zones of convection (CZ) and of ionization of H and He, from 5% to 95% ionization, are
similarly indicated. For the mixing-length parameters the values αc = 2.0, a2 = 900, b2 =
2000 have been used.
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4. Amplitudes and overstable modes in other stars

4.1. Introduction

Observational data of oscillation properties in stars other than the Sun provide important
informations for testing evolution theory for distant stars and constitute the foundation for
the research in the field of asteroseismology. A comprehensive definition of asteroseismol-
ogy was given by Däppen et al. (1988) and recent reviews on this topic were represented
by Brown & Gilliland (1994) and Brown (1996). For instance, the mean value of the differ-
ences between frequencies of modes of like angular degree l and varying radial order n (e.g.
Gough & Novotny 1991), i.e. the large separation ∆, carry information on the gross struc-
ture of the star and principally depend on M/R3 and thus provide information about the
mean density. The mean value of frequency splitting between modes with like order and
varying degree, i.e. the small separation δ, depends strongly on the variation of the sound
speed in the core and thus to the amount of helium that has been produced by the nuclear
reactions. It is therefore a measure of the age of the star (e.g. Christensen-Dalsgaard
1988). These seismic parameters therefore represent an important tool in asteroseismic
calibrations and were discussed in detail by Gough (1995), for example. Additional, mode
lifetimes (damping rates) and the variation of the oscillation amplitude with stellar param-
eters would be of intrinsic interest in connection with the determination of the excitation
mechanism for solar-like oscillations. Moreover, they would provide statistical properties
of convection in the region where pulsations are excited, most probably in the superficial
layers of the convection zone.

A crucial problem with the detection of oscillations in solar-type stars, however, is
their very small amplitudes in the order of 1 m/s. Observed in disk-integrated light, ve-
locity variations in the surface of the Sun are predicted to have values <∼ 25 cm/s (Grec
et al. 1983; Isaak et al. 1989; Libbrecht & Woodard 1991). To detect similar variations
in distant stars is therefore an extremely challenging task, requiring that observations be
made with the utmost precision. So far three observing methods have been developed to
detect such oscillations. Velocity amplitudes can be found from periodic Doppler shifts
of spectral lines (e.g. Kennelley 1995). By means of this method the mostly successful
results were the prediction of the upper limit to the oscillation amplitudes in some of the
brightest stars (e.g. Brown & Gilliland 1990; Brown et al. 1991). The second method is to
look for periodic brightness fluctuations using photometry to deliver information about the
luminosity amplitudes. The latter method, when used with area detectors such as CCDs,
does have a clear advantage over spectroscopic techniques allowing more easily to observe
large ensembles of stars simultaneously and thus improving the precision of ground-based
observations (e.g. Gilliland 1995). Christensen-Dalsgaard (1986, 1988) has demonstrated,
that the mass and age of late-type main-sequence stars could be determined from ∆ and
δ, if only the composition and mixing-length parameter αc were known; thus a relative
comparison of an ensemble of cluster stars having the same age and chemical composition,
and for which CCD-photometry is perhaps the most appropriate ground-based method,
may therefore provide additional constraints on the control parameters of stellar evolution
theory (e.g. Brown et al. 1994). Using differential CCD photometry with seven 4m-class
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telescopes, Gilliland et al. (1993) predicted the upper limits of luminosity amplitudes of
possible oscillations in twelve stars in M67. Recently Kjeldsen et al. (1995) introduced a
new observing technique for measuring stellar oscillations and reported the possible detec-
tion of solar-like oscillation in the sub-giant η Boo (see Section 4.2.3). This new method
measures the temperature fluctuations induced by the stellar oscillations via their effects
on the equivalent-width of the Balmer lines (a detailed discussion was given by Bedding
et al. 1996). Differential CCD photometry, on the other hand, measures these temper-
ature fluctuations via changes in the stellar luminosity. The equivalent-width method,
although constrained for observing only isolated stars, is insensitive to atmospheric scintil-
lation, yielding a substantial improvement in signal to noise relative to the other methods
discussed above.

The limitations of ground-based observation techniques in asteroseismology were ad-
dressed by Frandsen (1992) and recently by Gilliland (1995), who suggested that seismology
as used to explore the Sun can only be applied to distant stars by observing them from
space. The elimination of atmospheric noise and the possibility of obtaining continuous
data sequences during long observing periods will provide information of much higher qual-
ity than any ground-based method will do. To date, one asteroseismological space project
is in preparation. Supported by the French space agency, CNES, the COROT12 project
shall provide frequency measurements of stellar oscillations with a precision better than
0.1% as well as mode amplitudes and lifetimes of these oscillations for up to 7 solar-type
and F-type stars (Catala et al. 1995). Recently COROT has been selected, and is planned
to get launched in 2003.

When preparing an observing campaign, a helpful fact in the choosing process for target
stars is to have a good prediction for the amplitude of the signal one is trying to observe.
To date, the only predictions of amplitudes of solar-like oscillations in other stars using the-
oretical model calculations have been made by Christensen-Dalsgaard & Frandsen (1983b).
They obtained velocity and luminosity amplitudes by means of the equipartition between
the energy of an oscillation mode and the kinetic energy in one convective eddy having the
same turnover-time as the period of the oscillation. This simplified excitation mechanism
was first proposed by Goldreich & Keeley (1977b) who used this method to estimate ampli-
tudes for the solar case. In the calculations of Christensen-Dalsgaard & Frandsen (1983b),
radial eigenfunctions of model envelopes were found by solving the equations of linear non-
adiabatic oscillation, neglecting turbulent pressure and the Lagrangian perturbation to the
convective heat flux. They found velocity and luminosity amplitudes to increase with age
of the model and with increasing mass along the main-sequence. For an 1.5 M� ZAMS
star of spectral type F0, the predicted velocity amplitude was ten times larger than those
found in the Sun. Here we investigate the oscillation properties of main-sequence stars by
means of the non-local, time-dependent mixing-length theory (cf. Section 2.4), delimiting
the region in the HR diagram for stars with stable modes. The estimation of the velocity
and luminosity amplitudes are determined by the balance of damping and driving in stable
stars, as discussed in the Section 3.2 and 3.3, respectively.

In a subsequent section we shall discuss the selection of overstable modes and their
dependence on stellar parameters for stars being in their main-sequence phase and having

12 COnvection and ROTation
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a mass up to 2 M�. Due to the inclusion of the turbulent pressure and its pulsationally
induced fluctuation in the model calculations, the red edge of the instability strip could
be well reproduced, as it was first shown by Baker & Gough (1979) for RR-Lyrae stars.
Moreover, the dependence of the instability-strip of classical variables upon the chemical
composition and the mixing-length parameter αc shall be demonstrated for an evolving
1.7 M� δ Scuti star.

4.2. Amplitudes

With the computation of the damping rate η as discussed in Section 3.4.4, and with the
estimation of the noise generation rate PQ according to equation (3.38), we are able to
obtain an expression for the velocity amplitudes. Using equation (3.35), the root-mean-
square velocity at a particular level in the atmosphere may then be written as

Vs = ξs

√
E
I

= ξs

√
1
2
PQ

ηI
, (4.1)

where ξs = ξ(Rs) denotes the displacement at the radius r = Rs. The velocity ampli-
tudes are computed using the adiabatic displacement eigenfunctions ξ, which allowed us
to expand the velocity field in terms of ξ [cf. equation (3.34)]. The amplitude of the
displacement ξ increases quite substantially in the outer region of the atmosphere, where
the density declines very rapidly. Thus care has to be taken at which atmospheric level
the velocity amplitudes are computed. Observations are mainly performed in the neutral
potassium line, which is formed at a height of h=200 km relative to the point where the
temperature is equal the effective temperature [cf. Section 5.2].

Although Musielak et al. (1994) concluded that there is little effect upon the emerg-
ing acoustic energy spectrum if assuming various forms for the turbulent spectrum, we
found noticeable effect upon the resulting oscillation power spectrum. Following Balm-
forth (1992c) we employed in equation (3.38) for the function

S (m,ω) =
∫ ∞

0

(
u (k)
u0

)3(
k

k0

)−5

exp
[
−ωτ0/

(
2
ku (k)
k0u0

)]2

d (k/k0) , (4.2)

two different turbulent spectra E(k) according to Kolmogorov (e.g. Stein 1968) and Spiegel
(1962), where k represents the wavenumber describing the eddy with velocity

u (k)2 =
∫ 2k

k
E (k) dk , (4.3)

and where k0 is the wavenumber at the peak of the spectrum.
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Figure 4.1: Mean velocity amplitudes for the Sun using various convection parameters
and turbulent spectra. The curves labeled with ‘KoS’ are computed assuming the Kol-
mogorov spectrum, as given by equation (4.4). The plots indicated by the label ‘SpS’ were
obtained using the turbulent spectrum according to Spiegel (1962), given by equation (4.5).
The filled dots indicate the measured amplitudes by Libbrecht (1988).

The Kolmogorov spectrum was implemented as

E (k) =
u2

0

k0

(
k

k0

)−5/3

for k ≥ k0 =
2π
�0
, (4.4)

and the spectrum according to Spiegel in the form

E (k) =
9u2

0

k0

(
k

k0

)−5/3
{

1 −
(
k

k0

)−8/3

− 4π
7k0�0

[
1 −

(
k

k0

)−14/3
]}2

, (4.5)

where the value for k0 = π/�0 was chosen.

4.2.1. Amplitudes of the Sun

In Fig. 4.1 the mean velocity amplitudes for the Sun, calculated at a height h=200 km for
various convection parameters and assuming the Kolmogorov and the Spiegel turbulent
spectrum, respectively, are depicted together with observations by Libbrecht (1988). There
is a substantial difference in the magnitude of the amplitudes between models computed
with the Kolmogorov (dashed line) and Spiegel (solid line) turbulent spectrum, where the
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latter agrees fairly well with Libbrecht’s observations. These residuals are mainly due to
the different treatment of the scaling of the energy-bearing eddies, described by the various
forms of the wavenumber k0 and hence correlation time τ0 = 1/(k0u0). The rather abrupt
cut-off at k = k0 in the Kolmogorov (e.g. Stein 1968) spectrum resembles only crudely
the dynamic scaling of the energy-bearing eddies, since Kolmogorov scaling applies strictly
only for the inertial subrange eddies. This may result in a too low prediction of the acoustic
energy rate and thus oscillation amplitudes.
Decreasing the non-local mixing-length parameters a and b (cf. Section 2.4) leads to larger
predicted amplitudes (dotted curve). Smaller values for a and b increase the degree of “non-
locality” of convection and the velocities of the eddies become larger, increasing the acous-
tic generation rate. This is equivalent to an increase of the mixing-length parameter αc,
resulting in a more efficient convection due to the larger extend of the convective elements.

As stated before, the velocity amplitudes were obtained by expanding the velocity field
in terms of adiabatic displacement eigenfunctions, in order to calculate the instantaneous
mode amplitude. The imaginary part of the non-adiabatic displacement eigenfunctions
exhibits very small values relative to the value of its real part. Thus the differences in the
velocity amplitudes, when using the adiabatic instead of the non-adiabatic displacement
eigenfunctions are negligible relative to the uncertainties inherent in modelling the theory
of stochastic excitation. For the estimation of the luminosity amplitudes, however, non-
adiabatic eigenfunctions of the relative luminosity fluctuations, δL/L0, have to be taken
into account, which appear to have substantial phase-shifts relative to the displacement
(cf. Section 5.2). A simplified explanation why the phases of luminosity variations are
substantially larger than the phases of the displacement may be given under the assumption
for purely radiative envelopes: The no longer negligible imaginary part of δL/L0 stems

Figure 4.2: Mean luminosity amplitudes for the Sun assuming different convection pa-
rameters and energy-spectra for the turbulent cascade, similar as in Fig. 4.1.
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Table 4.1: Theoretical mean velocity and luminosity amplitudes calculated at the height
h = 200km as well as damping rates,η, as function of frequency for solar oscillations. The
results were obtained for a model envelope assuming the convection parameter αc = 1.8
and a2 = b2 = 600 as well as the Spiegel spectrum for the calculations of the acoustical
noise generation rate.

n ν [mHz] Vs [cm/s] δL/L0 [ppm] η [µHz]

1 0.269 0.145 0.00185 2.88E-07
2 0.432 0.184 0.00495 4.12E-06
3 0.580 0.273 0.0100 2.54E-05
4 0.734 0.403 0.0184 0.000115
5 0.886 0.578 0.0310 0.000398
6 1.039 0.820 0.0511 0.00121
7 1.192 1.138 0.0817 0.00327
8 1.344 1.601 0.132 0.00858
9 1.495 2.266 0.214 0.0219

10 1.642 3.105 0.334 0.0505
11 1.788 4.027 0.491 0.101
12 1.934 4.967 0.679 0.177
13 2.081 6.060 0.921 0.293
14 2.227 7.425 1.237 0.466
15 2.372 8.890 1.589 0.674
16 2.517 10.196 1.963 0.869
17 2.663 11.847 2.459 0.944
18 2.810 14.472 2.931 0.886
19 2.958 16.623 2.986 0.930
20 3.106 17.039 2.695 1.156
21 3.255 16.497 2.406 1.467
22 3.405 15.843 2.242 1.784
23 3.556 15.354 2.177 2.080
24 3.708 14.976 2.155 2.345
25 3.861 14.645 2.143 2.584
26 4.014 14.316 2.123 2.806
27 4.168 13.967 2.088 3.033
28 4.323 13.581 2.035 3.295
29 4.478 13.036 1.949 3.636
30 4.633 12.372 1.847 4.067
31 4.789 11.783 1.736 4.523
32 4.946 10.968 1.545 5.206
33 5.102 9.553 1.302 6.686
34 5.260 8.093 1.168 8.986
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directly from the non-adiabatic effects expressed by the energy equation (A.75). The
temperature fluctuations are found by integrating δL/L0 [cf. equation (A.74)], yielding
a smaller phase of δT/T0. Finally, in order to obtain the solution for the displacement
eigenfunctions, the temperature fluctuations have to be integrated once more, resulting in
the negligible phases of ξ. The relative luminosity amplitudes may be obtained from the
velocity amplitudes by the linear relation

δL

L0
=

δr

Rs

δL/L0

δr/r0
, (4.6)

where

δr

Rs
=

Vs

ωr Rs
, (4.7)

represents the relative displacement derived from the estimated velocity amplitude at the
surface specified by the radius Rs. Results of luminosity variations for the Sun according
to equation (4.6) are displayed in Fig. 4.2 using the Spiegel (solid line) and Kolmogorov
(dashed line) turbulent spectra, respectively. Similar to the velocity amplitudes, the re-
sults of the luminosity amplitudes exhibit their maximum value near 3mHz. Assuming the
Spiegel spectrum and the non-local parameters a2 = b2 = 300 (dotted line), the predicted
maximum value of 4.6 ppm is close to the observation of 4.7 ppm by Woodard & Hudson
(1983a,b). However, it should be stated here that no unambiguous agreement has been
found so far on the observed luminosity amplitude of solar 5 min oscillations. The cor-
rected values (Kjeldsen & Bedding 1995) of the observations by Toutin & Fröhlich (1992)
predict smaller amplitudes of ∼ 3.6 ppm, which would suggest larger values for the model
parameters a and b, or smaller values for αc. Although the theory gives some agreement
with the observed amplitudes and line widths of solar oscillations, the calculated ampli-
tudes appear too large at low and high frequencies, due to the underestimation of the
computed damping rates at these frequencies (cf. Section 3.4.4). The computed values
of both the velocity and luminosity amplitudes as well as the theoretical damping rates
as function of frequency for the Sun assuming the Spiegel spectrum and mixing-length
parameters αc = 1.8 and a2 = b2 = 600 are summarized in table Table 4.1.

4.2.2. Amplitudes of solar-type oscillations

The mean velocity and luminosity amplitudes as function of frequency for an evolving 1M�
star are displayed in Fig. 4.3 and Fig. 4.4, respectively, using the same model parameters
as in Table 4.1. Similar to the damping rates, as demonstrated in Fig. 3.14, the oscillation
amplitudes become larger with age exhibiting a maximum value of Vs = 46 cm/s and
δL/L0 = 10ppm at the end of the hydrogen core-burning phase. Thus the acoustic noise
generation rate PQ increases more steeply with age than the damping rates do, which is
an effect due to the strong dependence of PQ upon the convective velocity. In Fig. 4.5 and
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Figure 4.3: Mean velocity amplitudes as function of frequency for an evolving 1M� star
assuming the same model parameters as in Table 4.1. The evolution steps are indicated
by the hydrogen mass fraction in the core (Xc).

Figure 4.4: Luminosity amplitudes as function of frequency for an evolving 1M� star
assuming the same model parameters as in Table 4.1. The evolution steps are indicated
by the hydrogen mass fraction in the core (Xc).
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Figure 4.5: Mean velocity amplitudes as function of frequency for an evolving 1.45M�
star computed at a height h = 200km and assuming the convective parameters αc = 2.0
and a2 = 900, b2 = 2000. The acoustic noise generation rate was obtained with Spiegel’s
turbulence spectrum. The evolution steps are indicated by the hydrogen mass fraction in
the core (Xc).

Figure 4.6: Luminosity amplitudes as function of frequency for an evolving 1.45M� star
assuming the same model parameters as in Fig. 4.5.



86 4. Amplitudes and overstable modes in other stars

Fig. 4.6 the amplitudes are depicted for an evolving 1.45M� star. The amplitudes increase
less steeply with age relative to the evolving 1M� star, indicating that the convective
properties become less sensitive to age for more massive stars. At the end of the hydrogen
core-burning phase the theory predicts maximum values of ∼ 200 cm/s and ∼ 100 ppm for
the velocity and luminosity oscillation amplitudes, respectively. These maximum values
coincide with the sharp depression in the damping rates (see Fig. 3.15), where the pulsation
period is close to the thermal adjustment time of the superadiabatic boundary layer (cf.
Section 3.4.2). For models at the end of the main-sequence, the calculations suggest a
substantially pronounced dip in the damping rates at these frequencies, which is perhaps
an artifact of the incomplete theory of the time-dependent mixing-length formulation.
Thus the oscillation amplitudes may exhibit values too large in their maximum which
implies a need to interpret these results with some care.

For moderate mass stars along the ZAMS where all modes have been found to be
stable the luminosity amplitudes are depicted in Fig. 4.7. For the calculations the same
convection parameters were assumed as indicated in Fig. 4.5 and the corresponding damp-
ing rates are depicted in Fig. 3.16. Up to a maximum value of ∼ 40 ppm the amplitudes
increase monotonously for stars with M ≤ 1.45M�. For models with M >∼ 1.6M�,
however, amplitudes of stochastically excited modes decrease again as shown for a 2M�
ZAMS star, displaying a maximum amplitude of ∼ 0.02 ppm. The dependence of the am-
plitude variations upon mass or more precisely upon luminosity may be explained by the
strong dependence of the acoustic noise generation rate on the convective velocity u. For
quadrupole emission the radiated acoustic intensity is a function of the eight power of u,

Figure 4.7: Luminosity amplitudes as function of frequency for ZAMS stars assuming the
convection parameters of Fig. 4.5. The amplitudes increase with mass for M ≤ 1.45M�.
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Figure 4.8: Maximimum values of Mach number, turbulent pressure fraction (Pt/P ) and
convective velocities (vcon) as function of model mass along the ZAMS.

as given by equation (3.24). The dependence of the maximum values of the convective
velocities and turbulent Mach number upon model mass along the ZAMS is illustrated in
Fig. 4.8. Using the convection parameters as given in Fig. 4.5 the calculations predict the
largest convective velocities for models with a mass of ∼ 1.6M�. The 2M� ZAMS star
exhibits two very thin convection zones in the outer part of the envelope and the theory
predicts a maximum turbulent Mach number Mt < 0.1; thus the amplitudes of solar-like
oscillations become very small relative to the Sun.

For models being on their main-sequence and for those where all the modes are pre-
dicted to be stable, the computed maximum velocity and luminosity amplitudes of stochas-
tically excited modes are depicted as contour plots in Fig. 4.9 and Fig. 4.10, respectively.
The 166 models (indicated by the diamond symbols) were generated by specifying the
mass, luminosity and effective temperature provided from full evolution sequences, as ob-
tained by Christensen-Dalsgaard (1993), and assuming the convective parameters from
Fig. 4.5. For more massive stars the maximum amplitudes exhibit sharp peaks in their
frequency spectrum due to the steep depression in their damping rates (cf. Fig. 3.15). In
the contour plots we therefore applied a one-dimensional median filter on the amplitudes
in order to smooth the peaks at the maximum values. The low-temperature border of
the contour-lines indicates merely the point where the model’s hydrogen mass fraction
Xc <∼ 10−10 in the core and beyond no further calculations were carried out. In accordance
with the discussion outlined before, the amplitudes increase quite steeply with luminosity
in particular for stars with a mass M >∼ 1.4M�. The largest amplitudes are predicted
for a 1.5M� model of spectral type F1, which appears to have a maximum luminosity
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amplitude of ∼ 16 times larger than those found in the Sun. In both plots the contour-
lines of the amplitudes are nearly perpendicular to the evolutionary tracks of models with
M <∼ 1.25M� and appear to become parallel with increasing mass, implying that the
convective velocity field becomes less dependent on age for more massive stars. Moreover,
amplitudes of stochastically excited modes depend crucially upon the models luminosity
and are nearly independent of the effective temperature for stars with L <∼ 3L�. This
fact is demonstrated more obviously in Fig. 4.11 for the luminosity amplitudes. However,
the ratios between luminosity and velocity amplitudes, ∆L/∆Vs, appear to be nearly
insensitive to the luminosity for stars with values up to ∼ 4L�, and depend mainly on
the model’s effective temperature, as indicated in Fig. 4.12. Recently, Kjeldsen & Bedding
(1995) derived an expression for ∆L/∆Vs as function of fundamental stellar parameters.
By calibrating their result to observational data the authors obtained the following relation

∆L
∆Vs

=
1022.529
Teff [K]

ppm/cm s−1 , (4.8)

proposing that the amplitude ratios are inverse proportional to the model’s effective tem-
perature, as depicted in Fig. 4.12 by the long-dashed line. This is in contradiction to
our results, which may be explained by the various simplifications assumed in Kjeldsen &
Bedding’s derivation, such as considering purely radiative models in the adiabatic approx-
imation. The amplitude ratio for the Sun, obtained according to our calculations, shows
a value of 0.16ppm/cms−1, as indicated by its symbol in Fig. 4.12. Compared to the cal-
ibrated value of Kjeldsen & Bedding, the theory, assuming the convection parameters of
Fig. 4.5, predicts a too small value. The dependence of the amplitude ratio upon frequency
and height in the atmosphere for models computed with different convection parameters
will be discussed in more detail in Section 5.

Based on the model calculation results of Christensen-Dalsgaard & Frandsen (1983b),
Kjeldsen & Bedding (1995) proposed a scaling relationship for solar-type velocity ampli-
tudes as function of control parameters used in stellar evolution theory. In particular they
obtained the relation

V

V�
∼ L/L�
M/M�

, (4.9)

suggesting that the velocity amplitudes scale directly with the light-to-mass ratio L/M of
the star. In Fig. 4.13 the velocity amplitudes versus the light-to-mass ratio are depicted
for model calculations assuming the convection parameters of Fig. 4.5. For models with
values L/M >∼ 3 amplitudes start to deviate from the predicted relation (4.9), as indicated
by the dashed line.
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Figure 4.11: Luminosity amplitudes as function of effective temperature and model
luminosity. The computations assumed model parameters as given in Fig. 4.5. The value
for the Sun is indicated by its symbol.

Figure 4.12: Amplitude ratios as function of effective temperature and model luminosity.
The computations assumed model parameters as given in Fig. 4.5. The location of the
Sun is indicated by its symbol.
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Figure 4.13: Theoretical velocity amplitudes as function of light-to-mass ratio for stochas-
tically excited oscillations in 166 models (indicated by the filled dots) calculated with the
convection parameters as given in Fig. 4.5. The solid line represents a linear polynomial
fit to the amplitude results. The amplitudes are displayed relative to the value found in
the Sun.

Applying a linear regression fit to the theoretical amplitude estimations, the computations
suggest the relation

V

V�
∼
(
L/L�
M/M�

)1.2

. (4.10)

Equation (4.10) and Fig. 4.12 may be used for tentative estimations of the velocity and
luminosity amplitudes of solar-type oscillations in main-sequence stars. A complete list of
the median smoothed maximum values of amplitudes in the 166 calculated models is given
in Table 4.2.
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Table 4.2: Estimated maximum values of median smoothed velocity and luminosity
amplitudes for stochastically excited modes in solar-type stars. The models are charac-
terized by mass, luminosity, effective temperature and hydrogen abundance in the core,
as obtained from full evolution sequences (Christensen-Dalsgaard 1993). The results were
obtained for model envelopes assuming the convection parameter αc = 2.0, a2 = 900, b2 =
2000 and the Spiegel spectrum for the calculations of the acoustical noise generation rate.

M/M� L/L� Teff [K] Xc Vs [cm/s] δL/L0 [ppm]

0.90 1.394 5494.1 1.0E-10 28.30 4.10
0.95 0.552 5435.0 0.70 8.93 1.87
0.95 0.570 5455.0 0.66 9.34 1.90
0.95 0.589 5475.0 0.62 9.75 1.94
0.95 0.609 5493.9 0.58 10.18 1.97
0.95 0.629 5512.2 0.55 10.61 2.02
0.95 0.648 5529.5 0.51 11.02 2.06
0.95 0.802 5630.3 0.30 14.23 2.33
0.95 0.940 5680.9 0.15 17.16 2.56
0.95 0.987 5690.0 0.10 18.15 2.70
0.95 1.040 5695.1 0.050 19.21 2.84
0.95 1.093 5698.1 0.015 20.33 3.02
0.95 1.196 5702.1 0.0011 22.67 3.35
0.95 1.274 5700.0 0.00012 24.28 3.57
0.95 1.341 5694.0 1.4E-05 25.67 3.76
0.95 1.399 5681.7 1.0E-10 27.08 3.94
0.95 1.528 5655.8 1.0E-10 29.86 4.31
0.95 1.615 5624.1 1.0E-10 31.70 4.55
0.95 1.804 5491.1 1.0E-10 34.81 4.88
1.00 0.707 5620.4 0.70 11.01 1.95
1.00 0.731 5639.6 0.65 11.46 1.99
1.00 0.831 5706.0 0.51 13.33 2.17
1.00 0.926 5754.1 0.39 15.20 2.36
1.00 1.000 5777.5 0.37 16.65 2.51
1.00 1.012 5785.8 0.30 16.85 2.57
1.00 1.115 5810.3 0.19 18.81 2.90
1.00 1.196 5818.1 0.10 20.66 3.14
1.00 1.237 5817.9 0.056 21.42 3.26
1.00 1.321 5818.1 0.0097 23.08 3.54
1.00 1.420 5818.1 0.0010 24.97 3.85
1.00 1.502 5814.4 0.00013 26.95 4.17
1.00 1.588 5806.6 1.3E-05 28.52 4.42
1.00 1.676 5794.0 1.0E-10 30.21 4.78
1.00 2.202 5493.8 1.0E-10 39.95 5.47
1.05 0.895 5791.8 0.70 13.19 2.11
1.05 0.952 5823.4 0.62 14.21 2.22
1.05 1.039 5863.3 0.52 15.80 2.46
1.05 1.151 5902.6 0.40 17.84 2.81
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Table 4.2 continued....

M/M� L/L� Teff [K] Xc Vs [cm/s] δL/L0 [ppm]

1.05 1.247 5925.4 0.30 19.58 3.19
1.05 1.336 5937.6 0.21 21.50 3.52
1.05 1.425 5938.0 0.10 23.21 3.82
1.05 1.550 5932.4 0.011 25.42 4.21
1.05 1.665 5930.4 0.0011 27.44 4.83
1.05 1.767 5924.9 0.00013 29.83 5.12
1.05 1.875 5914.9 1.0E-05 31.63 5.37
1.05 1.955 5904.4 1.3E-06 32.92 5.57
1.05 2.195 5855.0 1.0E-10 37.79 6.54
1.10 1.122 5953.1 0.70 15.82 2.54
1.10 1.213 5988.2 0.60 16.90 2.87
1.10 1.322 6022.6 0.50 18.92 3.30
1.10 1.416 6044.0 0.40 20.46 3.62
1.10 1.515 6058.4 0.30 22.40 4.05
1.10 1.689 6051.1 0.20 25.66 4.90
1.10 1.779 6014.5 0.15 26.74 4.88
1.10 1.821 5990.2 0.10 27.23 4.87
1.10 1.880 5985.5 0.050 28.58 5.16
1.10 2.056 6046.0 0.010 32.18 6.11
1.10 2.156 6049.4 0.0012 34.31 6.82
1.10 2.245 6028.6 0.00013 35.17 7.17
1.10 2.344 6006.9 1.0E-05 36.28 7.23
1.10 2.424 5991.2 1.1E-06 37.67 7.35
1.10 2.717 5919.6 1.1E-10 42.57 8.28
1.15 1.393 6108.4 0.70 19.30 3.54
1.15 1.518 6143.5 0.60 21.49 4.20
1.15 1.642 6169.1 0.50 23.43 4.76
1.15 1.774 6184.7 0.40 25.55 5.38
1.15 1.954 6176.0 0.30 29.35 5.99
1.15 2.106 6113.3 0.20 31.07 6.59
1.15 2.187 6039.4 0.10 31.79 6.06
1.15 2.247 6024.7 0.050 33.28 6.32
1.15 2.452 6095.4 0.011 37.09 7.55
1.15 2.701 6162.8 0.0011 41.63 9.20
1.15 2.757 6147.3 0.00019 42.13 9.21
1.15 2.827 6121.2 1.9E-05 42.75 9.53
1.15 2.898 6095.8 1.7E-06 43.40 9.84
1.15 3.227 6002.5 1.0E-10 48.82 10.09
1.20 1.712 6261.4 0.70 23.55 4.96
1.20 1.868 6293.6 0.60 26.19 5.81
1.20 2.014 6312.1 0.50 28.51 6.52
1.20 2.206 6312.4 0.40 31.27 7.41
1.20 2.389 6269.5 0.30 34.52 8.26
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Table 4.2 continued....

M/M� L/L� Teff [K] Xc Vs [cm/s] δL/L0 [ppm]

1.20 2.520 6184.6 0.20 35.40 8.06
1.20 2.594 6095.3 0.10 35.90 7.72
1.20 2.659 6073.2 0.050 37.66 7.64
1.20 2.897 6148.0 0.010 41.69 9.27
1.20 3.199 6250.9 0.0025 47.88 12.08
1.20 3.365 6252.6 0.00013 49.80 13.17
1.20 3.430 6224.8 1.1E-05 49.85 12.69
1.20 3.478 6202.3 1.5E-06 50.38 12.15
1.20 3.867 6067.3 1.0E-10 54.75 12.36
1.25 2.081 6413.1 0.70 30.02 6.87
1.25 2.272 6440.5 0.60 33.29 7.90
1.25 2.470 6449.2 0.50 36.43 9.21
1.25 2.684 6432.8 0.40 38.66 10.47
1.25 2.869 6352.2 0.30 40.85 10.23
1.25 2.990 6250.3 0.20 40.31 9.62
1.25 3.059 6150.1 0.10 40.71 9.56
1.25 3.129 6121.8 0.050 42.23 9.20
1.25 3.425 6207.1 0.010 47.50 11.92
1.25 3.938 6364.7 0.0010 59.71 15.99
1.25 4.054 6347.2 0.00013 60.66 16.33
1.25 4.093 6331.9 1.8E-05 60.51 16.42
1.25 4.174 6294.8 1.1E-06 60.74 16.85
1.25 4.483 6164.5 1.0E-10 62.42 16.29
1.30 2.505 6571.6 0.70 40.23 9.56
1.30 2.734 6592.1 0.60 44.38 11.19
1.30 2.969 6584.7 0.50 47.53 12.94
1.30 3.205 6533.7 0.40 48.09 13.00
1.30 3.399 6438.8 0.30 48.52 13.35
1.30 3.515 6322.9 0.20 46.69 12.85
1.30 3.586 6209.0 0.10 46.08 11.43
1.30 3.663 6175.4 0.050 47.40 11.78
1.30 4.004 6264.2 0.010 53.79 13.85
1.30 4.433 6426.6 0.0017 66.30 19.75
1.30 4.838 6431.6 1.6E-05 73.85 22.37
1.30 4.901 6407.5 1.9E-06 73.99 21.34
1.30 5.283 6235.8 1.0E-10 72.55 19.34
1.35 2.984 6731.5 0.70 38.68 14.38
1.35 3.508 6717.8 0.50 48.09 18.72
1.35 3.784 6638.5 0.40 48.80 18.57
1.35 3.990 6522.8 0.30 46.17 17.66
1.35 4.111 6392.4 0.20 43.60 16.77
1.35 4.149 6325.4 0.15 41.70 15.82
1.35 4.187 6263.5 0.10 40.41 15.90
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Table 4.2 continued....

M/M� L/L� Teff [K] Xc Vs [cm/s] δL/L0 [ppm]

1.35 4.365 6224.2 0.030 42.24 15.17
1.35 4.794 6358.6 0.0067 50.09 20.87
1.35 5.555 6562.4 0.00018 77.85 31.38
1.35 5.749 6494.5 2.9E-06 74.89 29.09
1.35 6.172 6320.5 1.0E-10 67.95 27.80
1.40 3.522 6904.5 0.70 70.04 20.44
1.40 3.832 6901.7 0.60 79.00 22.96
1.40 4.141 6851.7 0.50 73.43 26.70
1.40 4.427 6750.3 0.40 69.69 26.04
1.40 4.646 6615.2 0.30 59.35 24.23
1.40 4.772 6470.5 0.20 51.99 21.69
1.40 4.817 6392.2 0.15 49.32 18.98
1.40 4.857 6327.2 0.10 46.57 18.84
1.40 4.891 6298.3 0.075 46.43 19.21
1.40 4.952 6283.6 0.050 46.79 19.06
1.40 5.058 6292.7 0.030 48.46 19.52
1.40 5.399 6380.7 0.010 56.29 22.87
1.40 5.814 6501.1 0.0035 72.71 27.81
1.45 4.122 7086.9 0.70 104.98 39.34
1.45 4.822 6991.9 0.50 110.85 37.24
1.45 5.138 6866.5 0.40 96.44 34.37
1.45 5.371 6712.0 0.30 80.38 28.93
1.45 5.516 6547.6 0.20 63.12 25.24
1.45 5.565 6464.5 0.15 59.39 25.25
1.45 5.611 6388.7 0.10 55.77 21.52
1.45 5.737 6339.8 0.046 53.98 22.86
1.45 5.816 6346.1 0.033 55.86 23.32
1.45 5.962 6374.2 0.020 59.27 24.16
1.45 6.581 6542.0 0.0046 85.89 34.41
1.45 7.100 6676.1 0.0016 138.40 46.93
1.45 7.497 6772.6 0.00010 171.92 50.99
1.50 5.926 6992.2 0.40 251.32 55.43
1.50 6.174 6819.4 0.30 137.54 37.02
1.50 6.344 6634.6 0.20 106.57 31.06
1.50 6.452 6458.6 0.10 83.27 24.54
1.50 6.573 6405.3 0.050 80.65 25.46
1.50 7.160 6517.9 0.010 108.34 30.99
1.50 8.344 6818.8 0.0011 262.37 75.18
1.50 8.639 6891.8 0.00011 312.90 75.34
1.50 8.692 6820.2 1.4E-05 329.45 78.17
1.50 8.872 6773.3 1.3E-06 247.30 63.56
1.60 9.366 6671.6 0.010 177.57 25.41
1.60 10.018 6834.7 0.0038 307.32 37.46
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4.2.3. Theoretical amplitudes in η Bootis

Recently Kjeldsen et al. (1995) reported the probable detection of solar-like oscillation
in the G0 IV star η Bootis. They identified thirteen oscillation modes in the frequency
range 750 − 950µHz and estimated the average amplitude of the luminosity variation to
be 45 ppm. Evolutionary tracks and theoretical oscillation spectra for η Boo have been
computed by Christensen-Dalsgaard, Bedding & Kjeldsen (1995) and Guenther & Demar-
que (1995). Solving the pulsation equations in the adiabatic approximation, Christensen-
Dalsgaard et al. succeeded in reproducing the observed frequency separations ∆ and the
small separation δ02. They found the frequency separations to be very sensitive upon the
mixing length and almost independent on the heavy element abundance Z at fixed location
in the HR diagram. Guenther & Demarque calculated non-adiabatic oscillation frequencies
for models assuming different stellar parameters and versions for the equation of state. In
both papers, however, the effect of turbulent pressure was not taken into account in the
computations. Here, we present damping rates and amplitudes of stochastically excited
radial oscillations including turbulent pressure in the equilibrium model and convection dy-
namics in the pulsation calculations, as well as their effects upon the pulsation frequencies.

Figure 4.14: Upper layers of an equilibrium model of η Boo assuming the parameters:
M = 1.63M�, L = 9.5L�, Teff = 6050K, X = 0.7, Z = 0.03. The model envelope was
constructed with non-local mixing-length theory using the parameters αc = 2.1, a2 = 900
and b2 = 2000, including turbulent pressure pt. The solid line shows the turbulent pressure
fraction pt/p, the dashed line the fraction of the pressure gradient arising from the turbu-
lent pressure gradient, (d pt/d r)/(d p/d r). The temperature gradient ∇ = d logT/d log p
is indicated by the dot-dashed line and the upper boundary of the convection zone is
marked by the ratio of the convective to the total heat flux, Fc/F (dotted line).
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Figure 4.15: Theoretical damping rates (a), velocity (b) and luminosity (c) amplitudes
versus frequency for η Boo. The model calculations were performed with the parameters
of Fig. 4.14. The dashed curves in panels b) & c) represent a boxcar average of the
amplitudes. Panel d) displays the frequency differences between models computed with
non-local and local mixing-length theory, respectively. The individual models, labeled as
L.a, NL.a and NL.na, are described in detail on page 63. The line-styles have the same
meaning as in Fig. 3.12.

Fig. 4.14 illustrates the equilibrium structure of the superadiabatic boundary layers of
η Boo, computed with the non-local mixing-length theory (cf. Section 2.4). For the
model parameters we assumed the suggested values from Christensen-Dalsgaard, Bedding
& Kjeldsen (1995), which are indicated in Fig. 4.14. In the upper layers of the convection
zone the turbulent pressure pt becomes up to ∼ 29 % of the total pressure p = pg + pt.
Also indicated is the ratio between the turbulent pressure gradient and the total pressure
gradient, (d pt/d r)/(d p/d r). These results demonstrate quite obviously the significant
contribution of the turbulent pressure gradient to the hydrostatic support. Moreover, in
the layers of largest superadiabaticity the gradient of the gas pressure d pg/d r becomes
negative, which results in a value of > 1 for the fraction of the turbulent pressure gradient
relative to the total pressure gradient. Similar results were also obtained from hydrody-
namical convection models (Christensen-Dalsgaard et al. 1995, Trampedach 1996).

The linear damping rates and amplitudes of luminosity and velocity variations for
η Boo are portrayed in Fig. 4.15 a-c. The peak in the amplitudes near the frequency of
0.8mHz results from the depression in the damping rates, which may be an artifact of
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the time-dependent mixing-length formalism and from an incomplete treatment of the
non-adiabatic effects. Applying a smoothing process on the amplitudes by means of a
boxcar average, the predicted values for the luminosity variations of ∼ 36 ppm are in fair
agreement with the values obtained by the observations of Kjeldsen et al. (1995).

Although the adiabatically computed frequency separations ∆ and δ02, obtained by
Christensen-Dalsgaard, Bedding & Kjeldsen (1995), agreed fairly well with the observa-
tions, there remained a difference of ∼ 10µHz between observed and computed frequencies.
These frequency differences may be reduced by using more sophisticated prescriptions for
convection including turbulent pressure and convection dynamics in the calculations. Sim-
ilar as for the solar case (cf. Section 3.4.3) we compared radial oscillation frequencies
between models using the non-local and local mixing-length theory. Details of the individ-
ual models considered in this comparison, L.a, NL.a and NL.na, are discussed on page 63.
The results for η Boo are portrayed in Fig. 4.15 d. The solid line displays the adiabatic
frequency residuals if turbulent pressure is considered in the mean model (NL.a-L.a), im-
plying a frequency shift of approximately −8µHz in the region of the observed oscillations
(750 − 950µHz). The dashed line demonstrates the effects due to nonadiabaticity (e.g.
generalized κ-mechanism, see Section 3.2.2) and turbulent pressure fluctuations (NL.na-
NL.a). The dash-dotted line portrays the frequency residuals if all effects are taken into
account (NL.na-L.a), yielding an overall change in the frequencies of only ∼ 3µHz in the
observed region. As in the solar case the effects of nonadiabaticity and turbulent pressure
fluctuations almost cancel the effects of the modification of the superadiabatic layers in
the equilibrium model due to the mean turbulent pressure. However, results of hydrody-
namical simulations suggest that the non-local mixing-length prescription underestimates
the change in the equilibrium structure (Christensen-Dalsgaard et al. 1995).

4.3. Overstable modes

For stars with logTeff
>∼ 3.85 the model calculations predict overstable modes, lying more

or less in the δ Scuti instability strip. The δ Scuti stars are variables with spectral types
A and F in the lower part of the classical Cepheid instability strip, which are in the very
interesting evolutionary phase of the main sequence and near the end of central hydrogen
burning. It was first shown by Baker & Kippenhahn (1962) that the excitation mechanism
in Cepheids, which are horizontal branch pulsators with large amplitudes of low-order ra-
dial modes (n=1,2 in double-mode Cepheids), is due to the opacity mechanism acting in
the HeII ionization zone. The same mechanism is believed to be responsible for the exci-
tation in δ Scuti stars (e.g. Dziembowski 1995 and references therein). Many δ Scuti stars,
however, have far more complex spectra of oscillation, involving both radial and non-radial
modes with low amplitudes, lying often in a narrow frequency range, which complicates
the frequency and mode identification substantially (e.g. Mangeney et al. 1991). In cooler
δ Scuti stars the outer layers still exhibit distinct convection zones. Thus in these layers
the pulsationally induced fluctuations of the turbulent fluxes may become important for
the selection mechanism of modes with observable amplitudes. The dependence of the
mode selection mechanism upon the heavy element abundance Z and mixing length will
be discussed in greater detail in Section 4.3.1 for the δ Scuti star FG Vir.
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The theoretically predicted radial order of unstable p modes in sequences of evolving
stellar models of δ Scuti stars are depicted by different symbols in Fig. 4.9 (e.g. circles
indicate the location of models in the HR-diagram for which the radial fundamental mode
was found to be overstable). The models have only a few excited modes lying in a nar-
row frequency interval and some of it display radial orders in a discontinuous sequence.
Moreover, with increasing effective temperature the overstable modes are shifting to higher
frequencies. These results are not inconsistent with observed spectra (e.g. Michel et al.
1995). The blue edge of the instability domain is predicted to shift to higher effective
temperatures with increasing radial order, in consistence with model calculations by other
authors (e.g. Stellingwerf 1979, 1980; Dziembowski 1995). Through the inclusion of the
turbulent flux perturbations in the stability analyses the computations predict well-defined
red edges. The location and width of the instability domain are sensitive to the convection
parameters and chemical composition of the models. This will be discussed in more detail
in Section 4.3.2 for an evolving 1.7M� δ Scuti star.

4.3.1. Overstable modes in FG Vir

Recent DSN13 and WET14 campaigns identified ten possible pulsation frequencies in the
δ Scuti star FG Vir (Breger et al. 1995). Due to the large number of detectable modes and
the relatively slow rotation FG Vir is one of the most promising of the ∼ 370 known δ Scuti
stars for seismic probing of stellar interior in distant stars. Tentative model calculations by
Dziembowski were successful to match the observed frequency values (presented in Breger
et al. 1995), suggesting three radial and four non-radial p modes as well as three g modes.
Here, we present tentative linear damping rates for radial modes of FG Vir models assuming
the model parameters of Guzik & Bradley (1995). They evolved stellar models of FG Vir
similar to those of Dziembowski varying the effective temperature such till the radial modes
matched those identified by Breger et al. as radial modes of FG Vir. Using their model
parameters (see Fig. 4.16), we computed non-adiabatic radial eigenfunctions of model
envelopes using Gough’s non-local, time-dependent mixing-length theory. Assuming a
heavy element abundance Z = 0.02 and mixing-length parameter αc = 2.0, our equilibrium
model results predict a moderate surface convection zone with a maximum ratio of the
convective to the total heat flux Fc/F = 0.87 at the depth of logT = 4.06. Non-adiabatic
effects due to the convective heat perturbation δFc may therefore influence pulsational
stability and should probably not be neglected in the stability analysis.

The damping rates for FG Vir models, using various values for αc and Z as well as
their dependence upon the convective dynamics and treatment of radiation are displayed
in Fig. 4.16 as function of the radial order n. Reducing the mixing-length parameter has
a predominant effect on the stability of high-order radial modes, whereas decreasing Z
influences the stability of the fundamental radial mode. The high-order modes are found
to be excited by the effects of the turbulent pressure fluctuations δ pt; if δ pt is neglected
in the pulsation calculations only the first four radial modes are found to be overstable.
These results are not in complete agreement with the radial mode identifications of Breger

13 Delta Scuti Network
14 Whole Earth Telescope
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Figure 4.16: Theoretical damping rates versus radial order n for the δ Scuti star FG
Vir assuming the model parameters according to Guzik & Bradley (1995): M = 1.82M�,
Teff=7458K, L/L�=13.43 X=0.7. The calculations were carried out using a2 = 900 and
b2 = 2000 for the non-local mixing-length parameters.

et al., who found no evidence of an unstable mode of radial order n = 2. Interesting are
the results if the turbulent flux variations are neglected in the stability computations and
radiation is treated in the diffusion approximation (lowest panel in Fig. 4.16). For this
case the fifth overtone is predicted to be overstable.

Since only envelope models are considered here, we are not able to compare our fre-
quency predictions directly with those of Breger et al.. However, comparing the ratios of
the pulsation periods of unstable radial modes may help constrain model parameters. In
Table 4.3 the computed period ratios for our FG Vir models are depicted together with
the observed values of Breger et al.. The model calculated with Z = 0.005 and αc = 1.8
predicts the smallest residuals of the period ratios relative to the observations. Moreover,
the results show a more distinctive dependence upon the heavy element abundance than
on the mixing length. A similar behaviour of the period ratios upon Z were also found in
double-mode Cepheids by Christensen-Dalsgaard & Peterson (1995).

Beside damping rates and periods, linear non-adiabatic pulsation analyses provide two
additional quantities that may be compared with observations. These “non-adiabatic ob-
servables” are the amplitude ratio f = (δL/L)/(δr/r) and phase shift ϕ(f) = ϕ(δL/L) −
ϕ(δr/r) between the luminosity and velocity variations which may be directly compared
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Table 4.3: Comparison of radial period ratios for FG Vir with theoretical models assum-
ing model parameters of Fig. 4.16 (Guzik & Bradley 1995) and various values for Z and αc.

Period Obs.: Breger Model: Z = 0.02 Model: Z = 0.01 Model: Z = 0.005
ratios et al. (1995) αc = 2.0 αc = 1.8 αc = 1.8 αc = 1.8

Π2/Π0 0.6255 0.6116 0.6115 0.6158 0.6203
Π3/Π2 0.8363 0.8285 0.8286 0.8311 0.8334

with those occurring in the Fourier decomposition of the observed light and radial veloc-
ity curve (see also Section 5). Balona & Stobie (1979) and Stamford & Watson (1981)
introduced a method for radial and non-radial mode identification of low-amplitude pul-
sations based on a linearized analytical expression for the flux variations presented first
by Dziembowski (1977). In this approach theoretical amplitude ratios and phases in dif-
ferent colours and light are compared with observational data obtained from two-color
photometry. Watson (1988) further elaborated on this approach by deriving a linearized
analytical expression for monochromatic flux variations for which the required parameters
can be obtained from detailed static model stellar atmospheres (e.g. Kurucz 1992). Re-
cently, Cugier et al. (1994) introduced an improved method for the evaluation of the flux
variations using linearized non-adiabatic eigenfunctions obtained from pulsation models
according to Dziembowski & Pamyatnykh (1993). Moreover, they demonstrated the de-
termination of the radial order of unstable modes as well as the mean stellar parameters
from their comparison of the non-adiabatic observables with data of β Cephei stars. Since
convection in β Cephei stars is almost negligible they ignored convection dynamics entirely
in their pulsation model (δFc = δpt = 0) and treated the radiative flux in the diffusion
approximation. As already mentioned above such a treatment may induce large errors in
the non-adiabatic observables for cooler stars such as FG Vir.

The effects of neglecting convection dynamics and using the diffusion instead of the
Eddington approximation to radiative transfer upon the non-adiabatic observables are
demonstrated in Fig. 4.17. A striking result is the difference in the phase shifts ϕ(f) in
the upper parts of the atmosphere, as depicted in the panels d & h. In the superadiabatic
layers, where there is the transition between radiation and convection (logp ≈ 4.3), the
diffusion approximation becomes invalid promoting a sudden change in the luminosity
eigenfunctions (see panel e) and thus in the phases of f . Moreover, the distinction in ϕ(f)
between modes of different order n becomes less pronounced in the superficial layers, which
may prevent radial mode identification by comparing the phases with observations.

Another interesting result of Fig. 4.17 is the nearly constant behaviour of the amplitude
ratio |f | in the upper layers of the atmosphere due to the much shorter radiative cooling
time τR [cf. equation (3.13)] relative to the pulsation period Π. The magnitude variations
in a particular colour can then be obtained by varying the input parameters logTeff and
log g of an accurate static model atmosphere according to the variation in f (Cugier et al.
1994). Such a static model atmosphere approximately reflects the real physical conditions
at every time instant during a pulsation cycle, since τR � Π. A more accurate method was
suggested by Frandsen (1996, personal communications) in which the mean stratification of
a static model atmosphere is modified by the non-adiabatic linear eigenfunctions in order
to compute the monochromatic flux perturbations in a particular photometric system.



4.3 Overstable modes 103

Figure 4.17: Non-adiabatic eigenfunctions and observables |f | & ϕ(f) of the first five
radial oscillation modes for models of FG Vir plotted against the depth variable log p.
The computations were carried out with the model parameters from Fig. 4.16 assuming
Z = 0.01 and αc = 1.8. Panel a) & b) show the luminosity and displacement eigenfunctions
and panel c) & d) the norm of the amplitude ratio f = (δL/L)/(δr/r) and its phase ϕ(f) =
ϕ(δL/L)−ϕ(δr/r) of a pulsation calculation with turbulent flux perturbations and the Ed-
dington approximation to radiative transfer. Panel e) - h) show δL/L, δr/r, |f | and ϕ(f) of
similar pulsation calculations in which the perturbation of the turbulent fluxes were omit-
ted (δFc = δpt = 0) and the diffusion approximation to radiative transfer was assumed.
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4.3.2. On the δ Scuti instability domain

At low surface temperatures stars exhibit distinctive surface convection zones, which influ-
ence non-adiabatic effects substantially and thus the mechanisms of excitation and damping
of pulsations in these layers. Neglecting the interaction between convection and pulsation
for these stars may therefore result in a failure to predict the proper sign of the mode
damping rates. Solving numerically the non-linear hydrodynamic equations and using a
time-varying eddy viscosity, Deupree (1977) has been successful in setting the cool bound-
ary of the RR Lyrae instability strip, which has been also found by Baker & Gough (1979)
using Gough‘s (1977) formulation of a time-dependent local mixing-length theory (cf. Sec-
tion 2.3.2). Recently, Bono et al. (1995) investigated the dependence of the RR Lyrae
fundamental red edge upon model mass and helium abundance assuming Stellingwerf’s
(1982) prescription of a non-linear, non-local, time-dependent treatment of convection.
The red edge of δ Cephei stars has been successfully produced by Xiong (1980) using
his own prescription of time-dependent convection and by Balmforth & Gough (1989) by
means of Gough’s (1977) local theory. Both calculations suggested that the inclusion of
turbulent pressure may become important for stabilizing modes as lower surface tempera-
tures are approached.

Theoretical investigations of radial pulsations of models in the δ Scuti strip have been
carried out by several authors (e.g. Stellingwerf 1979 and references therein). These com-
putations, however, ignored convection entirely or employed some form of mixing-length
theory in the equilibrium model and then neglected the pulsationally induced perturbations
in the turbulent fluxes in the stability analysis. Their results therefore failed to predict the
return to stability at the cool boundary of the instability strip for low-order radial modes.
Here we analyse the stability properties of an 1.7M� δ Scuti star, using Gough’s non-local
mixing-length prescription for convection (cf. Section 2.4.2). In particular the separate
contributions to the damping rates arising from the fluctuating Reynolds stresses and gas
pressure, as well as their dependence upon the parameters of convection, the variation of
the chemical composition and the choice of the opacity data, will be studied along the
lower δ Scuti instability strip.

The model series with constant mass of 1.7M� was calculated by specifying effec-
tive temperature and luminosity obtained from full evolution sequences by Christensen-
Dalsgaard (1993). The modal damping rates, η, as function of effective temperature across
the instability strip are portrayed in Fig. 4.18 for the radial modes of order n = 1 and
n = 2, respectively. Additionally depicted are the contributions arising from the gas
pressure fluctuations, ηg, and the perturbation of the Reynolds stresses, ηt, which both
contribute to the work integral such that η = ηg +ηt. These results suggest that the return
to stability at the cool boundary of the strip is exclusively through the fluctuations of the
turbulent pressure that oscillates out of phase with the density fluctuations. Through the
inclusion of δpt in the stability analysis, the contribution of ηg to the work integral will be
modified as a result of a change in the shape of the modal eigenfunctions. Thus by setting
artificially δpt = 0 the resulting solution of the damping rates η = ηg (triple-dot dashed
curve) displays different values relative to the ηg components of the full computations.
The differences between these results, however, are rather small and demonstrates quite
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Figure 4.18: Theoretical damping rates η as function of effective temperature for the
fundamental (n = 1) and first overtone (n = 2) radial mode. Computations were car-
ried out for models assuming the convection parameters αc = 2.0 , a2=900 & b2=2000 as
well as Z = 0.02 for the heavy element abundance. The solid curve shows the results
from the computations including the Lagrangian perturbations of the gas and turbulent
pressure. The gas pressure contribution ηg and turbulent-pressure damping contribution
ηt are indicated by the dashed and dot-dashed line, respectively. The triple-dot-dashed
curve displays the results for the calculations in which turbulent pressure fluctuations were
omitted, η : δpt = 0.

obviously that without the inclusion of the turbulent pressure fluctuations the pulsation
calculations fail to produce the red edge of the δ Scuti instability strip.

The location of the layers in which damping and driving take place can be studied by
considering the spatial dependence of the work integrals Wg and Wt, which describe the
portions of the mechanical work performed by the gas and turbulent pressure perturba-
tions, respectively (cf. Section 3.4.5). For the models with an effective temperature of
Teff=6955K and Teff= 6799K, as indicated by the labeled arrows A and B in Fig. 4.18,
the accumulated work integrals for modes with radial order n=2 are depicted in Fig. 4.19.
In regions where the accumulated work increases with radius, the modes are damped, and
where it declines pulsation is locally excited. The principal driving sources contributing
to Wg in the hotter model A are located in the HeII and HeI ionization zones, whereas
in the cooler model B the driving layers are predominantly in the HeII ionization zone.
Moreover, in the latter model Wg exhibits an oscillatory behaviour, arising from the pulsa-
tionally induced modulation of the convective heat flux Fc, which carries most of the total
energy flux in these layers. The work accumulated from the perturbation of the momen-
tum flux, Wt, experiences its largest contribution in the upper layers of the HeII ionization
zone, destabilizing the mode in the hotter model A. In the cooler model B, however, Wt

contributes significantly to the damping, which results in a stable mode. The shape of the
accumulated work integral, W , for the models when δpt is neglected in the computations,
are not very different from the solution of Wg, when solving the full set of the pulsation
equations. To estimate the effects of δFc upon the mechanism of damping and driving, the
variations of W , computed without the Lagrangian perturbations in the turbulent fluxes,
are also indicated in Fig. 4.19 using, however, the diffusion approximation to radiative
transfer. From these results it appears that δFc has some stabilizing effect upon the modal
damping rates in both models A and B.
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Figure 4.19: Accumulated work integrals as function of the depth co-ordinate log(T)
for model A (Teff = 6955K) and model B (Teff = 6799K). The results are depicted
for the first radial overtone and plotted in units of 1030 erg. The solid curve displays
the work accumulated from the perturbation of the gas pressure, Wg, and the dashed
curve the work performed by the perturbation of the turbulent pressure, Wt. The results
of the calculations in which turbulent pressure fluctuations were omitted, W : δpt = 0,
are indicated by the dot-dashed curve. The triple-dot-dashed line shows the result of the
accumulated work when convection dynamics effects were ignored in the stability analysis,
W : δpt = δFc = 0, and when radiation was treated in the diffusion approximation. The
convection zone is marked by the ratio of the convective to the total heat flux Fc/F (dotted
curve). The extents of the zones of ionization of H and He, from 5% to 95% ionization,
are similarly indicated. For the model calculations the same parameters have been used
as given in Fig. 4.18.
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Figure 4.20: Calculated linear damping rates as function of effective temperature for
the fundamental mode of radial pulsation. Results are displayed for model computations
assuming different values for the heavy element abundance and parameters for convection,
as well as opacity data from the OPAL and OP tables.

The sensitivity of the instability domain upon the mixing-length parameter αc and
upon the two non-local parameters is demonstrated in Fig. 4.20 for the fundamental radial
mode. A decrease in αc results in a significant shift of the cool boundary of the strip
towards lower temperatures, whereas the blue edge is nearly unaltered. Surface convection
in models with high effective temperatures is very inefficient and therefore less sensitive to
variation in αc than in cooler models. It appears that instability becomes less pronounced
when the heavy element abundance Z is reduced, as indicated by the long-dashed curve.
Moreover, the whole instability domain is shifted to higher temperatures. This effect may
help constrain the model parameter Z by comparing the theoretical position of the strip
with the observed one. Also indicated in Fig. 4.20 are the changes in η when using the OP
(Seaton et al. 1994) instead of the OPAL92 opacities, promoting instability and leading to
a shift of the whole strip towards higher temperatures.
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5. Phase shifts and amplitude ratios in the solar
atmosphere

5.1. Introduction

Through the improvement of observation techniques fairly accurate data now exist of
amplitude ratios and phase shifts between different types of oscillation measurements.
These measurements depend crucially on the properties of the oscillations just beneath and
in the solar atmosphere. Hence they provide information about the damping and excitation
processes within the photosphere. This can be used to improve our understanding of
the underlying physics and help us to reconstruct the eigenfunctions at the top of the
theoretical model. For the simple case of an adiabatic, isothermal atmosphere the phase
shift between irradiance and velocity is 90◦. However radiative damping as well as changes
in the convective dynamics, i.e. perturbation of the convective heat flux δFc and turbulent
pressure δpt and other non-adiabatic effects contribute to the phase shift giving a value
different from 90◦. Solar-like stars exhibit a distinctive convection zone, which influences
the non-adiabatic effects substantially, particularly in the upper part of the convection
zone, where the temperature gradient is extremely superadiabatic . Using a local, time-
dependent mixing-length formalism for convection (Baker & Gough, 1979), which accounts
for the interaction between convection and pulsation, Gough (1985) calculated phase shifts
different from 90◦, but still got an unsatisfactory agreement with the observations. However
he used the diffusion approximation to radiative transfer, which insufficiently treats the
radiation field in the super-adiabatic layers and in optical thin regions, where the pulsation
induces large deviations from thermal equilibrium.

Here we investigate the oscillation properties by means of a non-local, time-dependent
mixing-length theory and the Eddington approximation to radiative transfer in both the
envelope and pulsation model. The calculated results of the amplitude ratios and phase
shifts are compared with irradiance measurements from the IPHIR instrument on the
PHOBOS 2 spacecraft and contemporaneous velocity measurements obtained from the
Birmingham instrument at Tenerife (Schrijver, Jiménez & Däppen 1991). The height
dependence of the phase shift between temperature and velocity fluctuations are compared
with measurements derived from temporal line-profile variations formed at different heights
in the solar atmosphere (Alamanni et al. 1990; Staiger et al. 1984). Finally we discuss the
relative velocity phase and velocity amplitude as function of height in connection with
observations by Stebbins & Goode (1987).

5.2. Results

In order to compare properly theoretical phase shifts and amplitude ratios with obser-
vations, it is necessary to understand exactly which quantities should be compared with
the observations and at which height in the atmosphere. In our model calculations the
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atmosphere was treated with a grey radiation, giving a bolometric value for the calcu-
lated luminosity fluctuations. Assuming that the luminosity perturbation experiences no
further disturbance on the way from the point in the solar atmosphere where we applied
the boundary conditions, the measured continuum luminosity fluctuation corresponds to
the evaluated value at the outermost mesh-point of the model (∆Ls, in the following the
top of the atmosphere). However, most of the observational data available today are
based on measurements of the Doppler displacements of line-profile variations (velocity)
and monochromatic intensity fluctuations. A consistent comparison with such observa-
tions demands the calculation of the oscillatory spectral line profiles from the computed
eigenfunctions solving the radiative transfer equations (Frandsen 1986).

Schrijver, Jiménez & Däppen (1991) derived phase delays and amplitude ratios from
observations of continuum irradiance measurements at 500 nm in a broad-band continuum
window (5 nm) and velocity data obtained in the neutral potassium line (769.9 nm). This
line is formed at an optical depth of τ=0.013 (Christensen-Dalsgaard & Gough 1982),
which corresponds to a height of h=200 km using a T -τ–relation derived from a model
C of Vernazza, Avrett & Loeser (1981). The calculated luminosity amplitudes have been
corrected for the measured irradiance wavelength of λ =500 nm using the approximation

(δL/L)λ = (δL/L)bol

λbol

λ
, (5.1)

where

λbol =
623 nm

Teff/5777 K
, (5.2)

derived by Kjeldsen & Bedding (1995), which is accurate to a few percent for values of λ
deviating less than ±40% for λbol.

Fig. 5.1 shows the amplitude ratios of these observations together with our calculated
results as function of frequency. Theoretical results for different heights (h) in the solar at-
mosphere are shown by different line-styles and for the luminosity perturbation the surface
value ∆Ls has been used. Observations with a coherence greater than 0.7 are represented
through different symbols for the degree l. The thick solid line represents a running-mean
average of the observational data with a width of 300µHz. The velocity amplitude varies
by about 15% between the photosphere and the outer boundary conditions defined at
the temperature minimum; the relative luminosity amplitude however, is roughly constant
in this domain. The height dependence of the amplitude ratios for selected modes close
to the 5min oscillations are shown in Fig. 5.2. Modes of higher order exhibit a stronger
dependence on height, particularly in the deeper layers of the photosphere.

The phase differences between luminosity and inward directed velocity as function of
frequency are depicted in Fig. 5.3 together with the observational results from Schrijver,
Jiménez & Däppen (1991). For frequencies larger than 2.5mHz, the theoretical phases are
bend to larger values, which is due to the mechanism arising from the interaction of the
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Figure 5.1: Theoretical amplitude ratios between surface luminosity ∆Ls (outermost
meshpoint of the model) and velocity versus frequency compared with observations by
Schrijver, Jiménez & Däppen (1991). Computed results are depicted at different heights
in the atmosphere assuming the mixing-length parameters αc =1.8 ,a2=600 and b2=300.
The zero height (h=0km) corresponds to the level where the temperature is equal to Teff .
The thick, solid line indicates a running-mean average of the observations.

Figure 5.2: Calculated amplitude ratios between surface luminosity perturbation ∆Ls

and velocity as function of height in the solar atmosphere for modes in the 5 min range.
The model parameters are the same as in Fig. 5.1.
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Figure 5.3: Calculated phase delays between surface luminosity ∆Ls and inward directed
velocity as function of frequency for models with different mixing-length parameters. The
theoretical results are depicted for a photospheric level of h=200km, at which the velocity
is measured by the observations in the potassium line. Observations of low degree-modes
having a coherence greater than 0.7 are depicted as symbols (Schrijver, Jiménez & Däppen
1991). The thick, solid line represents a running-mean average of the observational data.

pulsation with the convection. These high-order modes sample the super-adiabatic layers
with more detail and are therefore more sensitive to its structure.

In Fig. 5.4 & Fig. 5.5 we compare the height dependence in the photosphere of the
phase delays between temperature and velocity with observations by Alamanni et al. (1990)
and Staiger et al. (1984) respectively. Both observations are based on temporal line-profile
variations in certain Fraunhofer lines. The measured irradiance phase is actually the ratio
between line and continuum irradiance, which becomes very uncertain for values close to
the continuum. The intensity perturbations can be described by the temperature fluc-
tuations (assuming local thermodynamic equilibrium) as long as the contribution arising
from the opacity perturbation can be neglected. At large optical depths the theoretical
phase differences increase with height but still have a too small slope compared with the
observations. At an optical depth τ=0 an additional continuum value from Fröhlich and
van der Ray (1984) is depicted, which fit fairly well with theory. Christensen-Dalsgaard &
Frandsen (1984) calculated phase shifts between temperature and velocity, using a quite
sophisticated non-grey radiation field by means of opacity distribution functions (ODF),
but neglecting the convective heat-flux perturbations. Their results, taken from Frandsen
(1986), are depicted in Fig. 5.5. Higher up in the atmosphere their results agree quite well
with the observations; however, approaching the bottom of the photosphere their phases
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Figure 5.4: Phase differences between temperature and velocity (positive values corre-
sponding to temperature leading velocity) compared with observations by Alamanni et al.
(1990) based on spatio-temporal line-profile variations. They compared the oscillating
power in the red and blue line flanks in order to derive the height dependence of the phases.
For the model calculations the same parameters have been used as given in Fig. 5.1.

Figure 5.5: Phase differences between temperature and velocity as function of the optical
depth τ . Calculated results for different modes using the model parameters from Fig. 5.1
are represented by solid, dashed and dot-dashed lines. Theoretical phase shifts calculated
by Christensen-Dalsgaard & Frandsen (1984) who used non-grey opacities by means of
opacity distribution functions but neglected convective dynamics are shown by the triple-
dot-dashed line. Circles with error bars give the corresponding observed values from
Staiger et al. (1984) and the diamond indicates a continuum value from Fröhlich & van
der Raay (1984) (adopted from Frandsen 1986).
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get larger. The inclusion of non-grey opacities significantly modifies the temperature per-
turbation, which directly feels the heat exchange associated with non-grey opacities and
may also effect the phase differences.

The frequency-averaged velocity phase and amplitude as function of height in the
photosphere is shown in Fig. 5.6 & Fig. 5.7 for models with different mixing-length pa-
rameters. Observational data by Stebbins & Goode (1987), which have been reduced by
Marmolino & Stebbins (1989) are represented by symbols. They observed Doppler shifts
in the highest-lying, nonmagnetic line, FeI 543.45 nm, using nine independent spectral
samples representing different locations in the atmosphere. After identifying the velocity
strings the data set was Fourier transformed in time and space and filtered to pass only
power in the five-minute range. The amplitudes and phases of the grand average eigen-
functions (averaged in time and horizontal position) are then obtained by performing a
Hilbert transform. In order to perform the comparison with the theory the nine spectral
samples have to be related to the formation heights of the various spectral line depths,
which are determined from non-LTE calculations by Altrock et al. (1975). The amplitude
is normalized by its value at a height h=62 km and the velocity phase is given relative
to its value at this level. There is a decent agreement between theory and observation
for models including the time-dependent mixing-length theory and using the Eddington

Figure 5.6: Relative velocity phase for models with different mixing-length parameters
as function of height in the solar photosphere. The phases have been averaged over fre-
quency for modes with a radial order between n=18 and n=31, and are given relative
to their value at a height of h=62km. The dot-dashed line gives the results for a model
neglecting the convective dynamics and using the diffusion approximation to radiative
transfer. Observations by Stebbins & Goode (1987) are depicted as diamonds (adopted
from Marmolino & Goode 1989).
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Figure 5.7: Frequency-averaged velocity amplitudes (for modes with a radial order be-
tween n=18 and n=31) as function of height in the solar photosphere for different models.
The amplitudes have been normalized to their value at h=62km. The diamonds give
the corresponding observations from Stebbins & Goode (1987) reduced by Marmolino &
Stebbins (1989).

approximation to radiative transfer. However there is a discrepancy at larger heights if
the diffusion approximation is used and the convective dynamics are neglected.
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6. Conclusion

The main purpose of this work has been to study theoretically the properties of radial
oscillations, such as damping and excitation processes and the estimation of amplitudes of
stochastically excited modes, in solar-like stars. The perhaps most important conclusion
drawn from this survey is the support of the theory that oscillations in solar-like stars are
intrinsically damped and stochastically driven by convection, explaining the comparatively
low amplitudes of such modes. This view is also consistent with detailed hydrodynamical
simulations by Stein & Nordlund (1991) for the solar case and by Trampedach (1996) for
η Bootis and α Centauri.

One of the largest deficiencies in modelling more accurate eigenfunctions in stars with
distinctive surface convection zones is the lack of a proper convection theory which can cope
the interaction with pulsation in a realistic way. Although several attempts have been made
in the last years to address this problem (for a review see Baker 1987) none of the proposed
prescriptions seem to be considered as a complete theory. The time-dependent theory of
Gough (1977) put much emphasis on the effects of the initial conditions under which each
eddy is created, i.e. the phase of pulsation of the time-varying mean field at the birth of
the eddy, whereas other prescriptions (e.g. Stellingwerf 1982; Kuhfuss 1986) considered
the effects of the interactions with the turbulent small-scale motions in more detail. It
was demonstrated by Balmforth (1992a), however, that mode stability in the solar case
depends crucially on the initial conditions out of which eddies evolve and less on the effects
associated with the dynamics by the small scale turbulence, when modelled by means of
an enhanced viscosity νe [see equation (2.104)]. Extending Gough’s time-dependent theory
by means of a non-local treatment, as implemented by Balmforth (1992a) and reviewed
in section 2.4.2, seems therefore one of the most promising prescription of convection in
a pulsating envelope, available today. In a non-local treatment of the turbulent fluxes,
the turbulent pressure and in particular its gradient can be implemented consistently in
the computations. The effects of the turbulent pressure and its pulsationally induced
fluctuations upon model results relevant to the field of helio- and asteroseismology were
discussed in great detail.

The substantial contributions of the turbulent pressure gradient to the hydrostatic
support has been demonstrated for models of the Sun and η Boo. In both models the
changes in the mean stratification of the superadiabatic layers due to the inclusion of the
mean turbulent pressure was such, that the discrepancy between observed and adiabatically
computed oscillation frequencies was reduced. Non-adiabatic effects and turbulent pressure
variations on the other hand suggest to increase the frequencies in the opposite sense to the
observed discrepancy, implying that little correction is required to the frequencies obtained
in the adiabatic approximation and in the absence of turbulent pressure. From these results
we may conclude that turbulent pressure should be taken into account in the computations
in order to reproduce more adequately the mean stratification of the convectively unstable
boundary layers, which is also in agreement with the results obtained from hydrodynamical
simulations (Rosenthal et al. 1995).

As noted by Balmforth (1992a) for the solar case, the perturbation in the momen-
tum flux, δpt, or more precisely its phase relative to the density fluctuations, contribute



118 6. Conclusion

significantly to modal damping rates in solar-type stars. With its inclusion in the sta-
bility analysis, all modes were found to be stable for models with effective temperatures
of roughly logT <∼ 3.85. For models with higher effective temperature the computations
predict well-defined instability strips for the fundamental and higher-order modes, lying
more or less in the δ Scuti range. Furthermore, it has been demonstrated, that the return
to stability at the red edge of the lower δ Scuti instability domain is solely determined by
the damping contributions associated with the variations in the momentum flux. How-
ever, it appears that the turbulent pressure fluctuations are also responsible for driving
higher-order radial modes in stars lying in the lower δ Scuti instability strip, as discussed
for the star FG Virginis. These results demonstrate quite obviously the importance of the
momentum flux variations in pulsation calculations and hence, δpt should not be neglected
in the stability analysis.

Amplitudes of intrinsically damped and stochastically driven modes were estimated for
stars evolving along the main-sequence. The computations suggest that the amplitudes
increase quite steeply with increasing luminosity and that they appear to depend less on
the model’s effective temperature. For a 1.5 M� star of spectral type F1 the predicted
luminosity amplitude could reach values of ∼ 78 ppm and hence, ∼ 16 times larger than
the values measured in the Sun. The estimated amplitudes obtained in this study, may
help observers in the choosing process for targets stars and for deciding whether a given
star is best observed in luminosity or velocity. The most promising evidence of solar-like
oscillations in a star other than the Sun was proposed for η Boo by Kjeldsen et al. (1995),
and for which the computed amplitude of ∼ 36 ppm agree fairly well with the observations.
However, for stars like Procyon and members of M67 no unambiguous detection of solar-
like oscillations were found so far, although the predicted amplitude values are larger than
the detection threshold of the used instrumentation. The convective velocities, computed
according to mixing-length theory, might therefore still be overestimated for more massive
stars, as it was noted before by Christensen-Dalsgaard & Frandsen (1983b). From the
asteroseismological space project COROT one may hope to obtain accurate data of ampli-
tudes on which one could apply at least a limited inversion, to obtain information about
the properties of convection, such as the convective velocity field. Amplitudes obtained
over a wide range of stellar parameters would therefore be very helpful to improve theories
of stellar convection.

Beside data of line widths and amplitudes, additional information is available from
observations of amplitude ratios and phase differences (the so called non-adiabatic observ-
ables) between different types of oscillation measurements. With the inclusion of convective
dynamics in the pulsation calculations and using the Eddington approximation to radia-
tive transfer, a decent agreement is obtained between theory and observations of amplitude
ratios and phase shifts in the solar atmosphere. These non-adiabatic observables may also
be used for radial and non-radial mode identification in classical pulsating stars, demand-
ing accurate non-adiabatic eigenfunctions in the superficial layers. For cooler stars with
surface convection zones accurate eigenfunctions may only be obtained with the inclusion
of the turbulent flux perturbations in the model computations, as discussed for the δ Scuti
star FG Vir.

Frequencies of gravity modes, which are believed to be already detected in some δ Scuti
stars (e.g. Breger et al. 1995), provide strong constraints on conditions in the stellar core,
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such as convective overshooting (Dziembowski & Pamyatnykh 1991; Audard, Provost &
Christensen-Dalsgaard 1995). Overshoot from a convective core would have a very sub-
stantial effect on age determinations based in the location of clusters in the HR diagram.
Moreover, the region just outside the convective stellar core is supposed to be superadia-
batic, however, dynamically stabilized by the spatial gradient of the mean molecular weight
(semi-convection). In this zone high order g modes appear to be excited by the Cowling
mechanism (e.g. Unno et al. 1989). Measurements of g modes and comparing estimated
amplitudes and phase shifts of non-radial oscillations with observations would provide ad-
ditional constraints on the control parameters of stellar evolution theory (e.g. Brown et al.
1994). Thus one of the most important and promising tasks for the future study of pulsa-
tion properties in solar-type stars as well as in low-amplitude variables would therefore be
the extension of Gough’s time-dependent convection theory for non-radial modes.
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A. Implementation Details

A.1. Equilibrium Model

A.1.1. Equations for the local Mixing-length Theory

The equations for hydrostatic equilibrium and continuity for a spherical shell with radius
r enclosing the mass m are

dp

dm
= − g

4πr2

[
1 + (3 − Φ)

pt

ρgr

]
, (A.1)

and

dr

dm
=

1
4πr2ρ

. (A.2)

They are supplemented by an energy-equation, which may be written in the absence of
any energy-producing layers due to nuclear reactions, in the following form

ρ
∂q

∂t
= −divF , (A.3)

The first law of thermodynamics provides the expression

dq = cpdT − δ

ρ
dpg , (A.4)

providing the energy equation for a spherically symmetric envelope

cp
∂T

∂t
− δ

ρ

∂pg

∂t
= −4π

∂

∂m

[
r2 (Fr + Fc)

]
. (A.5)

In a static envelope, i.e., setting ∂/∂t = 0, Eq. (A.5) has the first integral

4r2π (Fr + Fc) = L . (A.6)

Assuming the envelope to be in thermal equilibrium the luminosity L is constant outside
the energy-producing core.

The system of equations is closed by providing proper expressions for the radiative and
convective fluxes. Assuming the horizontally averaged integrated mean intensity J to be
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equal to the mean Planck function B, the mean radiative transfer equation reduces to the
diffusion approximation

Fr = −4 ar c T
3

3 κ ρ

dT

dr
. (A.7)

The turbulent fluxes of heat, Fc, and momentum, pt, are obtained according to the local
mixing-length prescription of convection, described by the equations (2.78) and (2.79). The
inclusion of the turbulent pressure, in particular its gradient in the equation for hydrostatic
support, increases the order of the system of differential equations by one. For this case,
the definition of the superadiabatic lapse rate β, provides an expression for the turbulent
pressure gradient by inverting Eq. (2.25), yielding

dpt

dr
=

dp

dr
− ρcp

δ

(
β +

dT

dr

)
, (A.8)

where p = pg + pt is the total pressure. However, this equation possesses singular points
at the edges of the convection zone (Gough 1976; Stellingwerf 1976) which complicates
the numerical treatment substantially. This can be avoided by replacing the gas pressure
gradient by the total pressure gradient in Eq. (2.25) which is equivalent to setting the
left-hand side of Eq. (A.8) to zero. Hence, the order of the differential system is artificially
reduced by one and the turbulent pressure can be found by iteration. This approximation
has been employed in the computation with the local theory, which is not necessary to
apply when using the non-local equations for convection.

In terms of the independent variable log p, the equations for a steady mean envelope
using the diffusion approximation to radiative transfer may be rewritten as

d logm
d log p

= −4πr2p
mg

µ̃ , (A.9)

d log r
d log p

= − p

ρgr
µ̃ , (A.10)

d logT
d log p

= − 3κpLr

16πr2arcT 4g
µ̃ , (A.11)

where the function µ̃ is given by

µ̃ = [1 + (3 − Φ) pt/ρgr]
−1 , (A.12)

and describes the dynamical correction to the total pressure gradient due to the anisotropy
of the Reynolds stresses.

The system of equations are solved as an initial value problem integrating from the
surface inward. For the integration a fourth-order Runge-Kutta-Fehlberg scheme was em-
ployed.
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A.1.2. Equations for the non-local Mixing-length Theory

In the upper layers of the convection zone, where there is the transition from convection to
radiation, radiative equilibrium is no longer maintained, and the diffusion approximation,
Eq. (A.7), becomes invalid. Out of equilibrium, the Eddington approximation is more
general than the optically thick approximation. It describes in non-equilibrium situations
the optically thick and thin limits (τ = 0) exactly. However, above the convection zone,
the mean radiation intensity J is equal to the Planck function B and hence, the Eddington
approximation collapses back to the diffusion approximation. Since it is known, that the
Eddington approximation produces solutions for the radiation field with an accuracy to
about 10% in the optically thin regions, a T − τ relation, fitted to a model atmosphere,
was chosen instead for the static mean atmosphere.

The radiative transfer equation for a grey, static and spherically symmetric atmosphere
(e.g. Mihalas 1978) is given by

µ
∂I

∂r
+

1
r

(
1 − µ2

) ∂I
∂µ

= ρκ (B − I) , (A.13)

where µ is the direction cosine of the incident beam with respect to the radius vector.
Following Eddington’s approach, the zeroth moment is obtained by integrating Eq. (A.13)
over all solid angles Ω

div Fr =
1
r2

∂

∂r

(
r2Fr

)
= −4πρκ (J −B) , (A.14)

where the mean intensity and radiative flux are

J =
1
4π

∫
I dΩ and Fr =

∫
µI dΩ , (A.15)

respectively. Since we are using a T − τ relation for describing the radiative transfer in the
mean atmosphere, we implemented a spatially varying Eddington factor feq (Auer & Mi-
halas 1970) in the atmosphere in order to be consistent with the Eddington approximation
employed in the pulsation calculation. With the definition for the Eddington factor

feq =
K

J
, (A.16)

where K denotes the second moment of the radiation field, the first moment of equation
(A.13) becomes

∂

∂r
(feqJ) +

1
r

(3feq − 1)J = − 1
4π
ρκFr . (A.17)

The second term of the left hand side of Eq. (A.17) may be considered as a measure of
the “curvature” of the spherical geometry and is neglected for a plane parallel atmosphere.
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For most of the stars, being in their main-sequence phase, the plane parallel atmosphere is
an adequate assumption. However, the density in the outer regions of red super-giants, for
example, are so small, that the atmosphere can cover up to 40% of the outer radius and a
plane parallel atmosphere is no longer appropriate. Since we are mainly interested in solar-
like stars, we consider here a plane-parallel atmosphere and the Eddington approximation
is described by the two first-order, ordinary differential equations

d lnJ
dm

= − κLr

64π3r4 (feqJ)

[
1 +

d ln feq

d lnJ

]−1

, (A.18)

and

dLr

dm
= 4πκ (B − J) . (A.19)

Because in a plane-parallel atmosphere, the radiative flux is constant (assuming the con-
vective layers lying below the atmosphere), the independent variable can be changed to
the optical depth τ . Using a detailed model atmosphere, the Eddington factor feq can be
derived as

feq (τ) =
1
3

[
τ + q (2/3)
τ + q (τ)

]
, (A.20)

where q(τ) is the Hopf function fitted to a model atmosphere

T 4 =
3
4
T 4

eff [τ + q (τ)] . (A.21)

The functional form of feq(T ) used in the computations was derived from a model C of
Vernazza, Avrett & Loeser (1981).

For the pure isotropic case, feq = 1/3 and hence, Eq. (A.18) simplifies to it’s usual
form

dJ

dm
= − 3κ

64π3r4
Lr . (A.22)

For radiative equilibrium, where J = B, dLr/dm becomes zero, and equations (A.19) and
(A.18) are replaced by the single equation (A.11), i.e. the diffusion approximation.

In the mean static envelope the divergence of the total energy flux must vanish pro-
viding the expression

dLr

dm
= −dLc

dm
, (A.23)

and thus the equality
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arcT
4

4π
= B = J − 1

4πκ

dLc

dm
, (A.24)

which is solved by iteration for the temperature.

An expression for the temperature gradient, ∇ = d lnT/d lnp, may be obtained from taking
the first derivative of equation (A.24), which yields

∇ =
1

4B + κT (B − J)

×
[
J
d lnJ
d ln p

+ (B − J)
(
d lnm
d ln p

− 4
d ln r
d ln p

− κp
d ln pg

d ln p

)
+

G

4πr2
m

pκ

d2Fc

d ln p2

]
, (A.25)

where the dynamical correction factor for the pressure gradient, µ̃, has been neglected and
the relation

d ln κ (pg, T )
d ln p

=
(
∂ ln κ

∂ lnT

)
pg

∇ +
(
∂ ln κ

∂ ln pg

)
T

d ln pg

d ln p
, (A.26)

has been applied. With the help of equation (A.25), the expression for the superadiabatic
lapse rate, β [cf. equation (2.25)], can be defined as

β = −dT
dr

+
(
dT

dr

)
ad

=
T

Hp
∇− δg

cpµ̃

dpg

dp
, (A.27)

where

Hp = − d r

d lnp
= − p

ρg
µ̃ , (A.28)

is the scale height of the total pressure. In contrast to the local mixing-length theory, the
superadiabatic lapse rate in the non-local theory does not exhibit singular points at the
edges of the convection zone and can therefore be computed consistently.

In section 2.4 we introduced the equations describing the non-local mixing-length theory
according to Gough (1976). Assuming a plane parallel atmosphere and using the equa-
tions (2.92) and (A.28), the expressions for the convective heat-flux, Eq. (2.98), averaged
superadiabatic lapse rate, Eq. (2.101) and turbulent pressure, Eq. (2.102), become

d2Fc

d ln p2
=

a2

α2
c

(
Fc − 1

4
F loc

c

)
, (A.29)

d2B

d ln p2
=

b2

α2
c

(B − β) , (A.30)
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and

d2pt

d ln p2
=

a2

α2
c

(
pt − ploc

t

)
, (A.31)

where

F loc
c =

1
4
ρcpΦT
gδ

σ3�2c , (A.32)

and

ploc
t =

1
4
ρσ2�2c , (A.33)

denote the source functions of the turbulent heat and momentum flux, obtained according
to the local mixing-length formulation [cf. equation (2.78) and (2.79)].

The equations discussed above build a system of ninth order and are implemented in
the following form

d logm
d log p

= −4πr2
p

mg
µ̃ , (A.34)

d log r
d log p

= − p

ρgr
µ̃ , (A.35)

d log J
d log p

=
κpL

16π2r2g (feqJ)
(1 − f) µ̃

[
1 +

d ln feq

d lnJ

]−1

, (A.36)

df

d log p
=

zf

(αc log e)2
, (A.37)

dzf
d log p

= a2
(
f − f loc

)
, (A.38)

dB

d log p
=

zβ

(αc log e)2
, (A.39)

dzβ
d log p

= b2 (B − β) , (A.40)

dν1

d log p
=

zt

(αc log e)2
− ν1

log e
, (A.41)

dzt
d log p

= a2
(
ν1 − νloc

1

)
− zt

log e
, (A.42)

where f = Lc/L, ν1 = pt/p and f loc and νloc
1 are the corresponding values obtained with

the local mixing-length theory. The new introduced variables zf , zβ and zt are defined as
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zf =
df

d log p
(αc log e)2 , (A.43)

zβ =
dB

d log p
(αc log e)2 , (A.44)

zt =
1
p

dpt

d log p
(αc log e)2 . (A.45)

The temperature gradient and the superadiabatic lapse rate are computed according to
Eq. (A.25) and Eq. (A.27).

In order to solve the system of Eq. (A.34)–Eq. (A.42) we still need nine boundary
conditions, where three of them are specified by the mass, radius and effective temperature
of the model. The remaining six conditions are obtained from the fact that the locally
computed source-functions in Eq. (A.38) and Eq. (A.42) appear to vanish at the boundaries
of the convection zone. The second-order differential equation for the non-local turbulent
fluxes may then be written in the general form

d2

d log p2
ψ = α2ψ , (A.46)

where ψ is either of Fc , B or pt and

α2 =
a2

i

(αc log e)2
, ai = {a , b} , (A.47)

with the general solution

ψ = Ae±α log p . (A.48)

The convective heat fluxes decay exponentially with log p in the convectively stable layers
adjoining the overturning layers. The characteristic length-scale of the turbulent overshoot
is determined by the value �/a = (αc/a)Hp. With typical values for αc = 2 and a2 = 900
the characteristic distance of the overshooting is 1/15 of the pressure scale-height. This is
in fair agreement with other investigations (e.g. Latour, Toomre & Zahn 1981). Above the
convection zone log p decreases to smaller values, providing a positive value for α, whilst
below the convection zone log p increases, forcing α to be negative. With the relation

zi = (αc log e)2
dψ

d log p
= ± (aiαc log e)ψ , zi = {zf , zt} , (A.49)

the general expression for the boundary condition is given by

zi ± (aiαc log e)ψ = 0 , (A.50)
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which provides the four boundary conditions

dFc

d ln p
= ±aFc

αc
, (A.51)

and

dpt

d ln p
= ±apt

αc
. (A.52)

Finally the last two boundary conditions are obtained from the requirement

B → β , (A.53)

outside the overturning layers, yielding

dzβ
d ln p

= b2 (B − β) = 0 . (A.54)

A.2. Pulsation Model

The calculation of the non-adiabatic eigenfunctions and eigenfrequencies are performed in
three steps. In a first step the pulsation equations are solved in the adiabatic approxima-
tion providing a trial solution for the quasi-adiabatic approximation to the non-adiabatic
equations (e.g. Däppen 1993). The latter equations are then solved using first the local
mixing-length theory, followed by a re-integration process assuming the non-local formu-
lation for convection.

A.2.1. Linear adiabatic radial oscillation

The solutions of the linearized oscillation equations do have exponentional time dependence
yielding the following form for any mean variable such as the total pressure, for example

p (r, t) = p0 (r)
[
1 +

δp

p0
(r) eiωt

]
, (A.55)

where the subscript zero denotes the value in the equilibrium model and the quantity
δp/p0 represents the relative perturbation in a Lagrangian frame of reference; ω is the
eigenfrequency, which is usually a complex quantity. In the adiabatic case one assumes
that the mass elements in the star neither gain nor lose heat, i.e. the entropy s remains
constant and the eigenfrequency ω becomes purely real. In this case the equation of state
can be written in the form
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δpg

pg0
= Γ1

δρ

ρ0
, (A.56)

where Γ1 is the first adiabatic exponent as defined by the equation (3.42).

Perturbing the equations for momentum (A.1) and continuity (A.2), as well as using the
relation (A.56) the adiabatic pulsation equations become to first order in the relative
perturbations

∂

∂ ln p0

(
δr

r0

)
=

p0r0
Gmρ0

(
3
δr

r0
+ Γ̃−1

1

δp

p0

)
, (A.57)

∂

∂ ln p0

(
δp

p0

)
= −δp

p0
−
(

4 +
ω2

Ω2

)
δr

r0
, (A.58)

where

Ω2 =
Gm

r30
, (A.59)

and Γ̃1 denotes the modified first adiabatic exponent if turbulent pressure pt, is considered
in the model calculations [cf. equation (3.43)]. The dynamical correction factor to the
pressure gradient, µ̃, has been neglected in the momentum equation.

As reasonable general boundary conditions, one usually demands that all relative pulsation
variables be regular both at the centre and surface of the star. At the base of the model
envelope we impose a vanishing displacement

δr

r0
= 0 . (A.60)

At the surface the mechanical condition is that appropriate to an isothermal atmosphere.
This is a reasonable approximation, since in a real atmosphere the temperature variation is
much slower than the variation in pressure or density. In the upper part of the atmosphere
(near the temperature minimum, e.g. at an optical depth τ ∼ 10−4 in the solar case)
the density is so low that the gas looses energy very inefficiently by radiation, and hence
the motion is nearly adiabatic. Eq. (A.57) and Eq. (A.58) may be written as a single,
second-order equation for the relative displacement x = δr/r0

d2x

dr2
−
(

3
r0

− 1
Hρ

)
dx

dr
+

1
r0Hρ

[
1
Γ1

(
4 +

ω2

Ω2

)
− 3
]
x = 0 , (A.61)

where Hρ = −d r/d ln ρ denotes the scale height of the density (which is evidently equal
to Hp for an atmosphere treating the gas as ideal with constant mean molecular weight).
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If we assume that the thickness of the atmosphere is small compared with the radius R
of the star, r0 may be set to the constant value R wherever it appears in the coefficients.
Hence, the first term in the coefficient of dx/dr can be neglected, and Eq. (A.61) exhibits
constant coefficients and the solution may therefore be written as

x (r) = c1 exp
(
r

Hρ
λ+

)
+ c2 exp

(
r

Hρ
λ−
)
, (A.62)

where

λ± =
1
2
± 1

2

{
1 − 4Hρ

R

[
1
Γ1

(
4 +

ω2

Ω2

)
− 3

]}1/2

. (A.63)

Since the pulsational energy of the atmosphere must remain finite as r tends to infinity,
only the λ− solution has a physically reasonable meaning. Using Eq. (A.59), it can be
shown that the term

4Hρr
2
0

Γ1Gm
ω2 =

ω2

ω2
co
, (A.64)

where

ωco =
cs

2Hρ
, (A.65)

is the so called acoustical cut-off frequency (Lamb 1906), and Eq. (A.63) may be written
in the form

λ− =
1
2

− 1
2

[
1 − 4Hρ

R

(
4
Γ1

− 3
)

− ω2

ω2
co

]1/2

. (A.66)

Assuming Hρ/R � 1 everywhere in the atmosphere, the middle term of the expression
enclosed between the brackets may be neglected compared to 1 and the remaining expres-
sion of Eq. (A.66) may explain the physical meaning of ωco. For ω < ωco, λ− is real and
the variation grows or decays exponentially; however, if ω > ωco, λ− is complex and the
motion corresponds to a propagating wave through the atmosphere. Hence, ωco represents
the minimum frequency for propagating waves and the maximum frequency for reflecting
p modes.

Applying the approximation Hρ/R� 1 to Eq. (A.63), we have to first order

λ− =
Hρ

R

[
1
Γ1

(
4 +

ω2

Ω2

)
− 3

]
. (A.67)
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Using the continuity equation Eq. (A.2) and the adiabatic equation of state Eq. (A.56),
yields the expression

δp

p0
= −Γ1

(
3x + r0

∂x

∂r

)
. (A.68)

Inserting solution (A.62) into Eq. (A.68), the mechanical boundary condition at the surface
becomes with the help of Eq. (A.67)

δp

p0
= −

(
4 +

ω2

Ω2

)
δr

r0
. (A.69)

Because of the linearity of the equations, the normalization of δr/r0 is arbitrary and one
usually chooses (e.g. Cox 1980)

δr

r0
= 1 . (A.70)

The boundary conditions (A.69) and (A.70) are applied at a suitable point in the atmo-
sphere, such as the temperature minimum.

The equations (A.57) and (A.58) together with the boundary conditions (A.60), (A.69) and
(A.70) form a Sturm Liouville eigenvalue problem for the eigenvalue ω and the eigenfunc-
tions δr/r0 and δp/p0. The problem is solved numerically and provides the trial solution for
the computation of the non-adiabatic pulsation equations using the local, time-dependent
mixing-length theory according to Gough (1977).

A.2.2. Linear non-adiabatic radial oscillation using local MLT

The non-adiabatic eigenfunctions are computed first assuming the local, time-dependent
formulation for convection, providing a trial solution for the pulsation equation appropriate
to the non-local theory. The equations are obtained by perturbing the corresponding
equations describing the equilibrium structure, Eq. (A.9)–(A.11) and Eq. (A.5), with the
terms non-linear in the fluctuations excluded. Using the equation of state written in the
form

δρ

ρ
= α0

δpg

pg0
− δ0

δT

T0
, (A.71)

the gas dynamic equations governing linear non-adiabatic radial pulsation are

∂

∂ ln p0

(
δr

r0

)
= µ̃

p0r0
Gmρ0

(
3
δr

r0
+ α0

δpg

pg0
+ δ0

δT

T0

)
, (A.72)
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∂

∂ ln p0

(
δp

p0

)
= −

{
δp

p0
+
[
3 + µ̃

(
1 +

ω2

Ω2

)]
δr

r0
+ µ̃ν1

p0r0
Gmρ0

×
[
(3 − Φ0)

(
α0
δpg

pg0
− δ0

δT

T0
− δpt

pt0

)
− δΦ

]}
, (A.73)

∂

∂ ln p0

(
δT

T0

)
= µ̃

3κ0 Lr0 p0

16 π ar cGmT 4
0

[
δLr

Lr0
+ κp

δpg

pg0
+ (κT − 4)

δT

T0
− 4

δr

r0

]
, (A.74)

∂

∂ ln p0

(
δL

L0

)
= iωµ̃

4 π r40 p0 cp0 T0

GmL0

(
δT

T0
−∇ad

δpg

pg0

)
, (A.75)

using

δL = δLr + δLc , (A.76)

and

δp = δpg + δpt , (A.77)

and where κp = (d ln κ0/d ln pg0)T0, κT = (d ln κ0/d lnT0)pg0.

The fluctuation in Fc, pt and shape factor Φ are computed according to the local time-
dependent prescription of convection expressed by the equations (2.88), (2.89) and (2.90).

Outside the convection zones, the turbulent pressure becomes zero, yielding µ̃ = 1, and
ν1 = pt/p = 0 and the momentum equation (A.73) reduces to (A.58).

The non-adiabatic pulsation equations are of fourth order requiring two more bound-
ary conditions as in the adiabatic case. At the surface an additional condition may be
obtained from perturbing the temperature-optical-depth relation for an Eddington atmo-
sphere (Baker & Kippenhahn 1965)

T 4 (τ) =
3
4
Teff (τ + 2/3) , (A.78)

providing the thermal condition

δL

L0
= 2 (1 + fτ )

δr

r0
+ (4 − κTfτ )

δT

T0
− κp

δp

p0
, (A.79)

where
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fτ =
τ0

τ0 + 2/3
, (A.80)

and τ0 represents the unperturbed optical depth. Setting τ0 = 0 we obtain the usual
condition

2
δr

r0
+ 4

δT

T0
− δLr

Lr0
= 0 . (A.81)

At the bottom of the model envelope the pulsation-thermodynamics are assumed to be
sufficiently adiabatic providing the condition

∇ad
δpg

pg0
− δT

T0
= 0 . (A.82)

The non-adiabatic pulsation equations (A.72)- (A.75), supplemented by the five boundary
conditions (A.60), (A.69), (A.70), (A.79) and (A.82), describe a linear eigenvalue problem
for the complex eigenfrequency ω. The real part of ω represents the pulsation period of
the star and the imaginary part denotes the damping or excitation rate. The system of
equations are solved by a second-order Newton-Raphson-Kantorovich algorithm, solving
the eigenfunctions and eigenvalues simultaneously (Baker, Moore & Spiegel 1971; Cash
& Moore 1980), which explains the need of the additional boundary condition (A.60).
The starting solution for the iteration may be obtained from the quasi-adiabatic approx-
imation to the non-adiabatic system. In this approximation the adiabatic eigenfunctions
δr/r0 and δp/p0 are inserted into equation (A.82) providing an expression for the tempera-
ture fluctuation δT/T0. The corresponding quasi-adiabatic eigenfunction of the luminosity
fluctuation may then be obtained from equation (A.74) using the relation

∂

∂ ln pg0

(
δT

T0

)
= ∇ad

δpg

pg0
+ pg

∂∇ad

∂ ln p0
, (A.83)

where

∂∇ad

∂ ln pg0
=
(
∂∇ad

∂ ln pg0

)
T

+
(
∂∇ad

∂ lnT0

)
pg

∇ . (A.84)
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A.2.3. Linear non-adiabatic radial oscillation using non-local MLT

The solutions of the eigenfunctions and eigenfrequencies discussed in the previous section
are used as a trial solution for the computation of the linear stability analysis problem
using the non-local, time-dependent mixing-length theory.

In order to be consistent with the computation in the equilibrium model, the treatment
of radiation transfer has been employed in the Eddington approximation. The equations
(A.19) and (A.18) become to first order in the perturbations

∂J

∂m
= − κLr0

64π3r40 (feqJ0)

(
δLr

Lr0
− δκ

κ0
− 4

δr

r0
− δJ

J0

)
, (A.85)

and

∂

∂m
(δLr) = 4πκ0B0

(
4
δT

T0
− δJ

B0

)
+ 4π (B0 − J0) δκ . (A.86)

Similar as in the static case equation (A.76) provides the following expression for the
temperature fluctuation

δT

T0
=
[
4 + i

ω

ωR

+ (1 − J0/B0) κT

]−1

×
{
δJ

B0
+

1
4πκ0B0

∂

∂m
(δLc) +

[
i
ω

ωR

∇ad − (1 − J0/B0) κp

]
δpg

pg0

}
, (A.87)

where

ωR =
4πκ0B0

cp0T0∇ad
, (A.88)

is the radiative relaxation rate, cf. equation (3.13).

The perturbation of the non-local turbulent fluxes and mathematically averaged su-
peradiabatic gradient increase the order of the system of equations by six and may be
written in the form such as for the convective heat flux, for example

α2
c

a2

∂

∂ ln p0

[
∂

∂ ln p0
(δFc) − ∂

∂ ln p0

(
δp

p0

)
∂Fc

∂ ln p0

]
=

δFc − δF loc
c +

(
Fc − F loc

c

) ∂

∂ ln p0

(
δp

p0

)
, (A.89)

where F loc
c represents the source function, computed according to the time-dependent,

local mixing-length theory, and δF loc
c denotes the Lagrangian perturbation to it.

The system of equations defined above is of tenth order and is implemented as a system
of first order differential equations in the following form
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∂

∂ ln p0

(
δr

r0

)
= µ̃

p0r0
Gmρ0

[
3
δr

r0
+

α0

1 − ν1

(
δp

p0
− δpt

p0

)
− δ0

δT

T0

]
, (A.90)

∂

∂ ln p0

(
δp

p0

)
= − δp

p0
−
[
3 + µ̃

(
1 +

ω2

Ω2

)]
δr

r0
+ µ̃ν1

p0r0
Gmρ0

×
{

(3 − Φ0)
[
δ0
δT

T0
− α0

1 − ν1

(
δp

p0
− δpt

p0

)
+

1
ν1

δpt

p0

]
+ δΦ

}
, (A.91)

∂

∂ ln p0

(
δJ

J0

)
= µ̃

κ0p0 (1 − f)L0

16π2Gm (feqJ0)

[
κT

δT

T0
+

κp

1 − ν1

(
δp

p0
− δpt

p0

)
− 4

δr

r0

− δJ

J0
+

1
1 − f

(
δL

L0
− δLc

L0

)]
, (A.92)

∂

∂ ln p0

(
δL

L0

)
= iωµ̃

4πr40p0

Gm

δ0p0

ρ0L0

(
1 − ν1

∇ad

δT

T0
− δp

p0
+
δpt

p0

)
, (A.93)

∂

∂ ln p0

(
δLc

L0

)
=

δzL

L0
+
zL

L0

∂

∂ ln p0

(
δp

p0

)
, (A.94)

∂

∂ ln p0

(
δzL

L0

)
=

a2

α2
c

[
fL (1 − ϕL)

∂

∂ ln p0

(
δp

p0

)
+
δLc

L0
− fLϕL

(
δLc

Lc0

)loc
]
, (A.95)

∂

∂ ln p0

(
δB

Bosc
0

)
=

δzβ
Bosc

0

+
zβ

Bosc
0

∂

∂ ln p0

(
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, (A.99)
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where

zL =
∂Lc

∂ ln p0
, fL =

Lc0

L0
, ϕL =

Lloc
c0

Lc0
, (A.100)

zβ =
∂B0

∂ ln p0
, fβ =

B0

Bosc
0

, ϕβ =
β0

B0
, (A.101)

zt =
∂pt

∂ ln p0
, ν1 =

pt0

p0
, ϕt =

ploc
t0

pt0
, (A.102)

and the constant value Bosc
0 denotes the peak to peak amplitude of the mathematically

averaged superadiabatic lapse rate, defined as

Bosc
0 = Max [B0 (p)] − Min [B0 (p)] . (A.103)

The supplementary equation for the temperature fluctuation, equation (A.87), can be
rewritten in terms of the dependent variables with the help of equations (A.76), (A.93)
and (A.94). Neglecting the dynamical correction factor for the pressure gradient, µ̃, in the
continuity and momentum equations, the expression for δT/T0 becomes

δT
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[
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ω
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(
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(
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(
δp
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− δpt

p0

)]}
. (A.104)

Similar as in the equilibrium model, the requirement of decaying solutions for the turbu-
lent flux perturbations outside the overturning layers, provide us six additional boundary
conditions. In a local theory for convection the turbulent fluxes and their pulsationally
induced perturbations become instantaneously zero in the convectively stable layers ad-
joining the overturning layers. Thus at the boundaries of the convection zone ϕL → 0 and
ϕt → 0 and the equations (A.95), (A.99), (A.38) and (A.42) are reduced to

∂

∂ ln p0

(
δzL
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)
=

a2

α2
c

[
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∂

∂ ln p0
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, (A.105)
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, (A.106)

d2 fL

d ln p2
=

a2

α2
c
fL , (A.107)
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d2 ν1

d ln p2
=

a2

α2
c

[
ν1 − d ν1

d ln p

]
. (A.108)

Since Eq. (A.107) and Eq. (A.108) appear to have constant coefficients, their general
solution may be written as

ψ = Aeλ ln p , (A.109)

where ψ is either of fL or ν1 and λ = +a/αc above the convection zone and −a/αc below
it. Inserting solution (A.109) into the equations (A.94), (A.105), (A.98) and (A.106)
and comparing the coefficients of the resulting expressions, the four additional boundary
conditions become

a

αc

δFc

L0
= ± ∂

∂ ln p0

(
δFc

L0

)
, (A.110)

and

a

αc

δpt

p0
= ± ∂

∂ ln p0

(
δpt

p0

)
. (A.111)

Finally the remaining two boundary conditions are obtained from the requirement

δβ = δB , (A.112)

above and below the overturning layers.

Thus the equations of the linear eigenvalue problem (A.90)-(A.99) can be solved nu-
merically with subject to the boundary conditions (A.60), (A.69), (A.70), (A.79), (A.82),
(A.110), (A.111) and (A.112).
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B. Coefficients for Gough’s time-dependent mixing-
length equations

The coefficients of the linearized perturbations of the turbulent fluxes and shape parameter,
as expressed by the equations (2.88), (2.89) and (2.90), are summarized below according
to Gough (1977) and Baker & Gough (1979):

W10 =
δg
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+
δ (δ)
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+
δ (∆)
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− ε2κ10 −
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, (B.1)

W11 = −2i
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(1 + ε)µ11 − εκ11

2 + iσ̃ (1 − ε)
, (B.2)

W12 = (1 + ε)µ10 − εκ10 , (B.3)
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Θ10 = W10 +W12 + Φ10 , (B.5)
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Θ12 = W12 , (B.7)
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where
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2µ10 = −Φ10 , (B.11)
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and where ε = (1 + η2
0S)−1/2, cf. equation (2.70), σ̃ = ω/σ, ν1 = pt/p, ν2 = d pt/d p and

δ� ∼ αcδHp.
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The remaining functional expressions F ,G , and H appearing in equations (2.88),
(2.89) and (2.90) are defined as

F = I Γ (2 − iσ̃) , (B.21)

G = J /I + � (2 − iσ̃) , (B.22)

H =
[
2
δr

r0
+ (1 + ε)µ12 − εκ12

]
F

− (2 − iσ̃) (W10 −W12)F −W12F [1 + (2 − iσ̃)G ] , (B.23)

where

I = 107{E1 [2.88 (1 + iσ̃)] − 320E1 [2.88 (3 + iσ̃)]} , (B.24)

J = i
dJ

dσ̃
=

12
(1 + iσ̃) (3 + iσ̃)

(
51/2s

2

)iσ̃

, (B.25)

and where Γ, �, and E1 denote the gamma function, digamma function, and exponential
integral of first order, and s = 0.05.
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C. Opacity Interpolation

C.1. Introduction

The opacity calculation is far too complicated to be performed within stellar evolution
programmes. Consequently, the opacity is found by interpolation in precomputed tables;
hence, we are faced with the choice of a suitable interpolation procedure. In this Appendix
we discuss the accuracy of interpolation methods and its influence on the results of stellar
model calculations.

In our survey, we consider three interpolation schemes. The first method uses splines
under tension (Cline 1974), which has been used so far in several evolution and envelope
calculation programmes (e.g. Christensen-Dalsgaard 1982). The second scheme is based on
birational splines which we have implemented according to Späth (1991). And finally the
third method uses a C1 interpolant defined over triangles, which enables us to interpolate
data given on an irregular grid (Montefusco & Casciola 1989).

In a first step we compared these methods with an analytical formula derived by
Stellingwerf (1975). This formula is a fit to the Cox-King tables using proper exponential
functions and rational fractions. In order to emphasize the impact of the table grid-spacing
on the interpolation errors, the comparison has been carried out with different mesh points
in log(T ) according to the OPAL92 (Iglesias, Rogers & Wilson 1992) and OPAL95 tables
(Iglesias & Rogers 1996). In a next step we compared the opacity between model envelopes,
calculated with the above introduced interpolation schemes for the solar case and a 1.5 M�
ZAMS star. The resulting changes in the temperature gradient and velocity of sound of
the model envelopes will be discussed.

C.2. Methods

In the OPAL tables the opacity is tabulated as a function of temperature, log(R), (where
R=ρ3/T6, ρ being the density and T6 = 10−6T ), and the chemical composition which
can be specified by the mass-fractions of hydrogen (X) and of the heavy elements (Z).
The opacity (κ) is found by interpolation in the four-dimensional space, normally using a
bivariate method in the log(T )–log(R) plane and applying a univariate scheme in X and
Z, respectively. The following methods have been considered for interpolating the opacity
in the temperature–density space:

C.2.1. Splines under tension

The geometry of the log(κ)–surface is often such that use of the commonly applied cubic
spline interpolation may give rise to large artificial variations between the grid points.
Cline (1974) was guided by the physical notion of an elastic band passing through rings at
the interpolation points, and which can be pulled by its ends to eliminate all unnecessary
wiggles. This introduces the additional requirement that the quantity f

′′ − σ2f varies
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linearly between the given grid points, where f is the resulting piecewise interpolant with
continuous first and second derivatives. Here the parameter σ determines the amount of
the “tension”. A small value of σ gives essentially a cubic spline behaviour, whereas a
large value results in a linear interpolant f between the mesh points.

C.2.2. Rational splines

In this method rational fractions are used for the nonlinear terms of the piecewise inter-
polating function defined as

fk (x) = aku+ bkt+ ck
u3

pt+ 1
+ dk

t3

pu+ 1
; t =

x− xk

∆xk
; u = 1 − t, (C.1)

where ak, bk, ck, dk are the spline-coefficients. The coefficients are determined for the given
function values defined at the grid points xk. The parameter p specifies the pole of the
rational function and defines the curvature of fk(x). The value p = 0 leads to the well-
known cubic spline interpolant in Eq. (C.1).

C.2.3. Minimum-norm interpolation in triangles

One of the disadvantages of using spline-based interpolation methods is that the given
table points have to be defined on a rectangular and regular grid. Here we introduce a
scheme which interpolates arbitrarily scattered data in the plane. The interpolated value
is computed in three steps. First a triangulation of the given table points is carried out,
using the max–min angle optimization criterion due to Lawson (1977). In the next step,
the first partial derivatives are evaluated, solving the following minimization problem

Min
∑
n

∫
ei

[
∂2F

∂e2i

]2

dsi, (C.2)

where F is an element from the set of interpolating cubic Hermite polynomials, defined
on all edges ei, i = 1 . . . n, of the triangulation, and dsi being the element of arc-length
along ei. The interpolated value is then found by the triangular blending method due to
Nielson (1983) using certain minimum-norm properties, which results in an interpolant of
second-order accuracy with continuous first derivatives.

C.3. Results

The relative opacity differences between the minimum-norm interpolation scheme and
Stellingwerf’s analytical fit to the Cox-Tabor tables are depicted in Fig. C.1 as a con-
tour plot in the log(R)–log(T ) space for different grid-spacings in temperature. Using the
OPAL92 grid spacing (top panel) we encounter a local maximum of the interpolation er-
rors in the order of 1% at a temperature of log(T ) ≈ 5.2. They occur at a point where
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Figure C.1: Relative interpolation errors between minimum-norm scheme and Stellingw-
erf’s analytical formula, using the grid spacing of the OPAL92 (top) and OPAL95 (bottom)
tables. In the top panel the opacity tracks of model envelopes for the Sun (solid line) and
a 1.5 M� ZAMS star (dashed line) are depicted.
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Figure C.2: Relative differences of the opacity (κ) and temperature gradient (∇) be-
tween model envelopes calculated with the rational splines scheme and Cline’s spline under
tension (R-C), and between the rational splines and minimum-norm method (R-M) for the
solar case (top panel) and a 1.5 M� ZAMS star (bottom panel). In both panels the ratio
between the convective to the total flux (Fc/F) is depicted. Additionally, the upper panel
shows the temperature derivative of the opacity and the bottom panel the differences in
the velocity of sound (cs). For the interpolation parameters σ and p values of 0.005 and
0.1 has been used, respectively.
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there is a local maximum in the step-size of the temperature grid which coincides with
the falling edge of the opacity–bump at this particular temperature. The steepness of this
edge increases with density or R, resulting in an absolute maximum error in the opacity
of 3.4% at log(R) ≈ 0.8. The opacity tracks of model envelopes for the Sun and a 1.5 M�
ZAMS star indicate their expected magnitude and location of interpolation errors.

Suggestions have been made (e.g. Moskalik & Dziembowski 1992) that interpolation
might be improved by the inclusion of additional grid points. In the bottom panel of
Fig. C.1 the results are displayed for the grid used in the OPAL95 tables, which do have
a finer mesh in the temperature, revealing substantially smaller errors. The maximum
value has been reduced to 1.5%, and occurs at the same R-value previously found in the
OPAL92 tables.

In Fig. C.2 the opacity differences are depicted as a function of temperature between
model envelopes calculated with the three interpolation schemes for the Sun and a 1.5 M�
ZAMS star. For the solar case (top panel) we encounter at log(T )≈ 5.1 a difference
in the opacity of 1.5% between the rational splines method and Cline’s splines under
tension (R-C). Fortunately this occurs in the convection zone, indicated by the ratio of the
convective to the total flux (Fc/F). However in the radiative atmosphere at log(T ) ≈ 3.7
the differences exhibit a value of up to 2% , whereas the changes between the rational
splines and the minimum-norm method (R-M) are substantially smaller. At this log(T )
value the temperature derivative of the opacity exhibits a rapid change in a small inter-
val, where Cline’s interpolant seems to display artificial variations. The differences in the
opacity for the R-C comparison became even more significant for the 1.5 M� star (bottom
panel of Fig. C.2) where we found values larger than 4%.

In regions where radiation contributes to the total flux and coincides with the opacity
changes, the differences in the temperature gradient are in the order of 1% for the solar
case and larger than 4% for the 1.5 M� star. The resulting changes in the velocity of sound
for the 1.5 M� star are in the order of up to 2% and less than 0.1% for the Sun. The
implications from these results on the adiabatic frequencies are rather negligible, yielding a
maximum change of less then 1µHz. However the impact on the nonadiabatic frequencies
might be more severe, since nonadiabaticity is also confined in a small domain in the upper
part of the convection zone.
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R., Monteiro M.J.P.F.G., Nordlund, Å., 1995, in: Proc. IAU Colloq. 155: Astrophys-
ical Applications of Stellar Pulsation, Stobie R.S., Whitelock P.A. (eds.), PASP 83,
p. 447.

Houdek G., 1997, in: Proc. IAU Symp. 181: Sounding Solar and Stellar Interiors, Schmider
F.-X., Provost J. (eds.), Nice Observatory, Poster Volume, p. 227

Houdek G., Rogl J., 1996, Bull. Astr. Soc. India 24, 317.

Houdek G., Balmforth N., Christensen-Dalsgaard J., 1995, in: Proc. 4th SOHO Workshop:
Helioseismology, Hoeksema, J.T., Domingo V., Fleck B., Battrick B. (eds.), ESA SP-
376, vol.2, ESTEC, Noordwijk, p. 447.

Houdek G., Rogl J., Balmforth N., Christensen-Dalsgaard J.,1995, in: Proc. GONG’94:
Helio- and Astero-seismology from Earth and Space, Ulrich R.K., Rhodes Jr E.J.,
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Zusammenfassung

Die Entdeckung der Variabilität der Sonne mit Perioden um 5 Minuten zu Beginn der
60-er Jahre (Leighton et al. 1962) und deren Identifikation als globale nicht-radiale Os-
zillationen (Deubner 1975) war eine der wichtigsten Entwicklungen in der Geschichte der
Sternenphysik. In den letzten 25 Jahren wurden massive Anstrengungen unternommen, die
diesen beobachteten Schwingungen zugrundeliegende Physik, zu verstehen. Es entstand
eine neue Disziplin der Astrophysik, die Helioseismologie. Mit Hilfe dieser neuen Methode
konnten zahlreiche, detaillierte Informationen über die Eigenschaften der Sonne und ihrer
Physik im Inneren gewonnen werden. Diese Informationen stellen ferner einen wichtigen
Beitrag zur Verbesserung der Theorie über den Aufbau der Sonne und ihrer Entwicklung
dar. Trotz der enormen Fortschritte in der Helioseismologie gibt der Mechanismus, der
für die Anregung von sonnenähnlichen Schwingungen verantwortlich ist, Anlaß für zahlrei-
che Diskussionen. Im Gegensatz zu den klassischen Variablen, z.B. den Cepheiden, zeigen
sonnenähnliche Sterne, sowie Rote Riesen, ausgeprägte Konvektionszonen in den äußeren
Schichten des Sternes auf. Um den Energieaustausch zwischen der Pulsation und der
Konvektion einerseits und dem Strahlungsfluß andererseits beschreiben zu können, wird
eine zeitabhängige Konvektionstheorie sowie eine genaue Beschreibung des Strahlungsfel-
des (z.B. Eddington Approximation) benötigt. Zeitabhängige Konvektionstheorien, die die
Kopplung der Oszillationen mit dem turbulenten Geschwindigkeitsfeld beschreiben, stehen
derzeit nur näherungsweise zur Verfügung. Mit Hilfe der Konvektionstheorie von Gough
(1976, 1977) wurde von Balmforth (1992a,c) die Annahme erhärtet, daß die Oszillationen
in der Sonne intrinsisch gedämpft und stochastisch angeregt sind. Die stochastische Anre-
gung der beobachteten Pulsation in der Sonne wird durch die Emission von Schallwellen
der turbulenten Multipol-Quellen verursacht (Goldreich & Keeley 1977b). Ferner konnte
Balmforth mit dieser Theorie die Geschwindigkeits-Amplituden der Sonnenschwingungen
abschätzen, die in guter Übereinstimmung mit den beobachteten Daten stehen.

Die derzeit einzigen Amplituden-Berechnungen von sonnenähnlichen Schwingungen in
anderen Sternen wurden von Christensen-Daalsgard & Frandsen (1983b) veröffentlicht,
die eine sehr vereinfachte Beschreibung der Kopplung zwischen Pulsation und Konvek-
tion verwendeten. Es ist das Hauptziel dieser Dissertation, die Schwingungseigenschaften
von Hauptreihensternen mit Hilfe der nichtlokalen, zeitabhängigen Mischungswegtheorie
von Gough zu untersuchen, sowie die Geschwindigkeits- und Leuchtkraftamplituden von
stochastisch angeregten Schwingungen in Sternen zu berechnen.

Eine Methode für das Testen von Konvektionstheorien ist der Vergleich von berech-
neten und beobachteten Pulsationsfrequenzen. Es konnte für die Sonne und für den
Hauptreihenstern η-Bootis gezeigt werden, daß der Beitrag des turbulenten Druckgra-
dienten zum hydrostatischen Gleichgewicht die vorhandene Diskrepanz zwischen theore-
tischen und beobachteten Frequenzen deutlich reduziert. Diese Ergebnisse sind auch in
guter Übereinstimmung mit den Resultaten von Rosenthal et al. (1995), die mit Hilfe
von hydrodynamischen Simulationen erzielt wurden. Der Einfluß nicht-adiabatischer Ef-
fekte sowie der Fluktation des tubulenten Druckes (Impulsflusses) führten jedoch zu einer
Vegrößerung der obigen Diskrepanz zwischen berechneten und beobachteten Frequenzen.

Die Fluktation des Impulsflusses stellt jedoch den wichtigsten Beitrag zur Dämpfung
der Oszillationen in sonnenähnlichen Sternen dar. Ohne ihre Berücksichtigung in der
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Stabilitätsanalyse würden fast alle Pulsationsmoden überstabil sein, wie es Balmforth
(1992a) für die Sonne berichtete. Für Sternmodelle mit einer Effektivtemperatur von
log T <∼ 3.85 wurden ausgeprägte Instabilitätsstreifen für die fundamentale radiale Schwin-
gung und deren höheren Ordnungen gefunden. Darüber hinaus konnte gezeigt werden, daß
die Rückkehr zur Stabilität am roten Rand des unteren δ Scuti Instabilitätsstreifens aus-
schließlich durch die Variation des Impulsflusses erfolgt.

Die berechneten Amplituden von stochastisch angeregten radialen Oszillationsmoden
in Hauptreihensternen, in denen alle Schwingungen stabil sind, vergrößern sich mit Alter
und Masse der Sterne. Für einen 1.5M� Stern vom Spektraltyp F1 wird eine Leucht-
kraftamplitude voraus gesagt, die ∼ 16 mal größer ist als jener Wert, der für die Sonne
gemessen und berechnet wird. Die derzeit einzige Beobachtung von möglichen sonnen-
ähnlichen Oszillationen in anderen Sternen wurde von Kjeldsen et al. (1995) für η Boo
berichtet, für welchen die berechneten Amplituden in guter Übereinstimmung mit der Be-
obachtung sind. Die hier berechneten Amplituden stellen unter anderem eine große Hilfe
für die Selektion von ‘Targetsternen’ dar und für die Entscheidung, ob die Schwankungen
in der Leuchtkraft oder in der Geschwindigkeit eines bestimmten Sternes optimal beob-
achtet werden können (solche Informationen sind nicht nur für erdgebundene Beobachtung
von Bedeutung, sondern auch für Weltraumprojekte, wie z.B. COROT, das Pulsationsfre-
quenzen, Amplituden und andere Oszillationseigenschaften in mehreren sonnenähnlichen
Sternen messen wird).

Durch die rasante Entwicklung in der Beobachtungstechnologie und durch den Einsatz
von Satelliten stehen sehr genaue Beobachtungsdaten von Phasenverschiebungen zwischen
verschiedenen Oszillationsarten schon heute für die Sonne zur Verfügung. Diese Beobach-
tungsdaten geben Auskunft über die komplizierte Oberflächenstruktur der Sonne sowie
deren Effekte auf die seismische Qualität der globalen Oszillationen. Mit Hilfe der nichtlo-
kalen, zeitabhängigen Mischungswegtheorie wurden Berechnungen von Phasenverschiebun-
gen zwischen verschiedenen Arten von radialen Eigenfunktionen in der Sonnenatmosphäre
durchgeführt und die Modellresultate mit den IPHIR Beobachtungsdaten verglichen. Mit
diesen Simulationsrechnungen konnte gezeigt werden, daß durch die Berücksichtigung der
dynamischen Effekte der Konvektion (Fluktationen des turbulenten Druckes sowie des
konvektiven Flusses), eine wesentlich bessere Übereinstimmung mit den Beobachtungen
erreicht werden kann. Phasenverschiebungen und Amplitudenverhältnisse zwischen Os-
zillationen in verschiedenen Farben und im integrierten Licht können auch für die Iden-
tifikation von radialen und nicht-radialen Pulsationsmoden in anderen Sternen, wie z.B.
vom Typ δ Scuti, von großer Hilfe sein. Für den relativ kalten δ Scuti Stern FG Vir
wurde der Einfluß der dynamischen Effekte der Konvektion auf die Form der Eigenfunk-
tionen diskutiert und aufgezeigt, daß diese Effekte für die Modellierung von genaueren
Eigenfunktionen von großer Wichtigkeit sind.

Eines der großen Ziele für die zukünftige Verbesserung von Sternmodellen und der
zugrundeliegenden Physik wäre die Möglichkeit, die theoretischen Pulsationseigenschaften
von nicht-radialen Schwingungen mit Daten von einer großen Anzahl von Sternen zu ver-
gleichen, die mit netzwerkweiten Beobachtungs-Kampagnen oder mit Satelliten gewonnen
wurden. Mit Hilfe einer zeitabhängigen Konvektionstheorie für nicht-radiale Oszillatio-
nen (z.B. durch Erweiterung der obigen Mischungswegtheorie von Gough) könnten dann
weitere Erkenntnisse über den turbulenten Energietransport in Sternen erworben werden.
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